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Abstract

Classical tests for a difference in means control the type I error rate when the
groups are defined a priori. However, when the groups are instead defined via clus-
tering, then applying a classical test yields an extremely inflated type I error rate.
Notably, this problem persists even if two separate and independent data sets are
used to define the groups and to test for a difference in their means. To address this
problem, in this paper, we propose a selective inference approach to test for a differ-
ence in means between two clusters. Our procedure controls the selective type I error
rate by accounting for the fact that the choice of null hypothesis was made based on
the data. We describe how to efficiently compute exact p-values for clusters obtained
using agglomerative hierarchical clustering with many commonly-used linkages. We
apply our method to simulated data and to single-cell RNA-sequencing data.

Keywords: post-selection inference, hypothesis testing, difference in means, type I error

*Corresponding author: lucy.gao@stat.ubc.ca



1 Introduction

Testing for a difference in means between groups is fundamental to answering research
questions across virtually every scientific area. Classical tests control the type I error rate
when the groups are defined a priori. However, it is increasingly common for researchers
to instead define the groups via a clustering algorithm. In the context of single-cell RNA-
sequencing data, researchers often cluster the cells to identify putative cell types, then test
for a difference in means between the putative cell types in that same data set; see e.g.
Hwang et al. (2018). Unfortunately, available tests do not properly account for the double-
use of data, which invalidates the resulting inference. One example of this problematic
issue can be seen in the FindMarkers function in the popular and highly-cited R package
Seurat (Satija et al. 2015, Butler et al. 2018, Stuart et al. 2019, Hao et al. 2021). Many
recent papers have described the issues associated with the use of data for both clustering
and downstream testing, without proposing suitable solutions (Luecken & Theis 2019,
Léhnemann et al. 2020, Deconinck et al. 2021). In fact, testing for a difference in means
between a pair of estimated clusters while controlling the type I error rate has even been
described as one of eleven “grand challenges” in the entire field of single-cell data science
(L&hnemann et al. 2020). Similar issues arise in the field of neuroscience (Kriegeskorte
et al. 2009).

In this paper, we develop a valid test for a difference in means between two clusters

estimated from the data. We consider the following model for n observations of ¢ features:
X ~ MN (1, 1, 0%1), (1)

where g € R™9, with rows pu;, is unknown, and o2 > 0 is known. (We discuss the case



where o2 is unknown in Section 4.3.) For G C {1,2,...,n}, let

_ 1 - 1
hg = —Zm and  Xg = _ZXiu (2)
9] 2 6] 2
which we refer to as the mean of G and the empirical mean of G in X, respectively. Given

a realization x € R" 9 of X, we first apply a clustering algorithm C to obtain C(x), a

partition of {1,2,...,n}. We then use x to test, for a pair of clusters Ci,Cy € C(x),

S COL i, #
Hy™ ) e, = g, versus H{™®) e o g, @

It is tempting to simply apply a Wald test of (3), with p-value given by

Peien (IXe, = Xello 2 l17e, = 7¢,ll2) - (4)
_ _ Héélvé2}
where || X5 — Xglla "~ ( ﬁ + |C_12\) - Xq- However, since we clustered x to get

C(x) = {C,}K_,, we will observe substantial differences between {Z¢ }i—, even when there
is no signal in the data, as is shown in Figure 1(a). That is, in (4), the random variable
on the left-hand side of the inequality follows a scaled x, distribution, but the right-hand
side of the inequality is not drawn from a scaled x, distribution, because C, and C, are
functions of x. In short, the problem is that we used the data to select a null hypothesis
to test. Since the Wald test does not account for this hypothesis selection procedure, it is
extremely anti-conservative, as is shown in Figure 1(b).

At first glance, it seems that we might be able to overcome this problem via sample
splitting. That is, we divide the observations into a training and a test set, cluster the
observations in the training set, and then assign the test set observations to those clusters,
as in Figures 2(a)—(c). Then, we apply the Wald test in (4) to the test set. Unfortunately,

by assigning test observations to clusters, we have once again used the data to select a null
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Figure 1: (a) A simulated data set from (1) with g = O199x2 and 0? = 1. We apply average
linkage hierarchical clustering to get three clusters. The empirical means (defined in (2))
of the three clusters are displayed as triangles. QQ-plots of the Uniform(0, 1) distribution
against the p-values from (b) the Wald test in (4) and (c) our proposed test, over 2000
simulated data sets from (1) with g = 0199x2 and o? = 1. For each simulated data set, a

p-value was computed for a randomly chosen pair of estimated clusters.

hypothesis to test, in the sense that Héél’éz’} in (3) is a function of the test observations.
Thus, the Wald test is extremely anti-conservative (Figure 2(d)). In other words, sample
splitting does not provide a valid way to test the hypothesis in (3).

In this paper, we develop a selective inference framework to test for a difference in
means after clustering. This framework exploits ideas from the recent literature on selective
inference for regression and changepoint detection (Fithian et al. 2014, Loftus & Taylor
2015, Lee et al. 2016, Yang et al. 2016, Hyun et al. 2018, Jewell et al. 2019, Mehrizi &
Chenouri 2021). The key idea is as follows: since we chose to test Héél’éz} L g, = g,
because él, = C(x), we can account for this hypothesis selection procedure by defining a
p-value that conditions on the event {C;,Cs € C(X)}. This yields a correctly-sized test, as

seen in Figure 1(c).

A large body of work evaluates the statistical significance of a clustering by testing the
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Figure 2: (a) A simulated data set from (1) with g = O19ox2 and 0? = 1. (b) We cluster
the training set using average linkage hierarchical clustering. (c) We assign clusters in the
test set by training a 3-nearest neighbors classifier on the training set. (d) QQ-plot of the
Uniform(0, 1) distribution against the Wald p-values in the test set, over 2000 simulated

data sets for which each cluster in the test set was assigned at least one observation.

goodness-of-fit of models under the misspecification of the number of clusters (Chen et al.
2001, Liu et al. 2008, Chen et al. 2012, Maitra et al. 2012, Kimes et al. 2017) or by assess-
ing the stability of estimated clusters (Suzuki & Shimodaira 2006). Most of these papers
conduct bootstrap sampling or asymptotic approximations to the null distribution. Our
proposed framework avoids the need for resampling and provides exact finite-sample infer-
ence for the difference in means between a pair of estimated clusters, under the assumption
that o in (1) is known. Chapter 3 of Campbell (2018) considers testing for a difference in
means after convex clustering (Hocking et al. 2011), a relatively esoteric form of clustering.
Our framework is particularly efficient when applied to hierarchical clustering, which is one
of the most popular types of clustering across a number of fields. Zhang et al. (2019) pro-
poses splitting the data, clustering the training set, and applying these clusters to the test
set as illustrated in Figures 2(a)—(c). They develop a selective inference framework that

yields valid p-values for a difference in the mean of a single feature between two clusters



in the test set. Our framework avoids the need for sample splitting, and thereby allows
inference on the set of clusters obtained from all (rather than a subset of) the data.

The rest of the paper is organized as follows. In Section 2, we develop a framework
to test for a difference in means after clustering. We apply this framework to compute
p-values for hierarchical clustering in Section 3. We describe extensions, simulation results,

and applications to real data in Sections 4, 5, and 6. The discussion is in Section 7.

2 Selective inference for clustering

2.1 A test of no difference in means between two clusters

Let x € R™"*? be an arbitrary realization from (1), and let C and Cs be an arbitrary pair
of clusters in C(x). Since we chose to test chl’CQ} because C;,Cy € C(x), it is natural to

define the p-value as a conditional version of (4),
P, cca (1K = X, ll2 2 136, = Z,ll2 | €1.C € CX)). (5)

This amounts to asking, “Among all realizations of X that result in clusters C, and ég,
what proportion have a difference in cluster means at least as large as the difference in
cluster means in our observed data set, when in truth ps = fs,?” One can show that
Ca}

rejecting Hécl’ when (5) is below « controls the selective type I error rate (Fithian et al.

2014) at level a.

Definition 1 (Selective type I error rate for clustering). For any non-overlapping groups of
observations Gy,Gs C {1,2,...,n}, let H{){gl’gQ} denote the null hypothesis that fig, = [ig,-

We say that a test of Hégl’gz} based on X controls the selective type I error rate for clustering



at level o if
P, 191,92 (’reject Hégl’gﬁ based on X at level o | G1,Gy € C(X)) <a VO0<a<l. (6)
0

That is, if Héghg?} is true, then the conditional probability of rejecting Hégl’%} based on X

at level o, given that Gy and Gy are clusters in C(X), is bounded by «.

However, (5) cannot be calculated, since the conditional distribution of || Xs — Xg [|2

given C1,C, € C(X) involves the unknown nuisance parameters 7l‘lJ/‘( ¢, épM Where wh =
I, — ﬁ projects onto the orthogonal complement of the vector v, and where
2
(C1,Co)li = 1{i € C1}/|Ca] — 1{i € C2}/|Cal. (7)

In other words, it requires knowing aspects of g that are not known under the null. Instead,

we will define the p-value for Héél €} in (3) to be

p(X; {Clvc?}) = PH551,52} (HX& - X(fQH? 2 Hfél - £62||2 ‘ C,C € C(X)vﬂ-j((jhég)x = ﬂj_(éh@)xa

dir (X, — X¢,) = dir (7, ~7,) ), (8)

= W

where dir(w) = p=1{w # 0}. The following result shows that conditioning on these
additional events makes (8) computationally tractable by constraining the randomness in

X to a scalar random variable, while maintaining control of the selective type I error rate.

Theorem 1. For any realization x from (1) and for any non-overlapping groups of obser-

vations G1,Gs C {1,2,...,n},

1 1
p(X; {gb g2}) =1-F Hi% - ingQ;U + 7S<X; {g17g2}> ) (9)
Gi| |G|



where p(+;-) is defined in (8), F(t;¢,S) denotes the cumulative distribution function of a

¢ - Xq random variable truncated to the set S, and

111 T 1631

S(x;{G1,G:}) = {qb >0:G1,6.€C <7TVL(91,92)X + <ﬂ¢1> v(G1, Go) dir(zg, — ng)T> } (10)
Furthermore, if Héghg?} is true, then
Pyona (n(Xi{G1,G)) Sa | GG €C(X)) =a, V0<a<l. (11)

That is, rejecting Hégl’%} whenever p(x;{G1,Ga}) is below « controls the selective type I

error rate (Definition 1) at level .

We prove Theorem 1 in Section S1.1 of the supplement. It follows from (9) that to

compute the p-value p(x; {C1,Cs}) in (8), it suffices to characterize the one-dimensional set
S=8x{C1.C}) ={>0:C1,C € C(X(9)}, (12)

where S(x; ) is defined in (10), and where

~

Xl(¢) = 71-;‘)( + ( e ) 1% dir(jél — :f’@z)T, U= V(Cl,ég), (13>

L/|Ci] +1/1C,|
for v(-,-) defined in (7).
While the test based on (8) controls the selective type I error rate, the extra conditioning
may lead to lower power than a test based on (5)(Lee et al. 2016, Jewell et al. 2019, Mehrizi
& Chenouri 2021). However, (8) has a major advantage over (5): Theorem 1 reveals that

computing (8) simply requires characterizing S in (12). This is the focus of Section 3.



2.2 Interpreting x'(¢) and S

Since X' = T — Zg,, where Ty is defined in (2) and # is defined in (13), it follows that

the ith row of x'(¢) in (13) is

(
_é T T 3 = — e . 5

T + (@1"5‘\62') (¢ — ||, — xé2]\2) dir (xél — xé2) . ified,

[X/((b)]z =\Nx — < €] ) (¢ — Hi’él — ECQHQ) dir (f@l — f@) , ifie ég, (14)

|C1]+|Ca]

Zi, if ¢ Q/CAl Uég.

0
We can interpret x’(¢) as a perturbed version of x, where observations in clusters C, and G,
have been “pulled apart” (if ¢ > [|Zs, —Zg, ||2) or “pushed together” (if 0 < ¢ < [|Zs, —T¢, [|2)
in the direction of Ts — Zs,. Furthermore, S in (12) describes the set of non-negative ¢
for which applying the clustering algorithm C to the perturbed data set x'(¢) yields C
and C,. To illustrate this interpretation, we apply average linkage hierarchical clustering
to a realization from (1) to obtain three clusters. Figure 3(a)-(c) displays x = x'(¢) for
¢ = ||Tg, — ZTg,ll2 = 4, along with x'(¢) for ¢ = 0 and ¢ = 8, respectively. The clusters
C1,Cy € C(x) are shown in blue and orange. In Figure 3(b), since ¢ = 0, the blue and orange
clusters have been “pushed together” so that there is no difference between their empirical
means, and average linkage hierarchical clustering no longer estimates these clusters. By
contrast, in Figure 3(c), the blue and orange clusters have been “pulled apart”, and average

linkage hierarchical clustering still estimates these clusters. In this example, S = 2.8, 00).

3 Computing S for hierarchical clustering

We now consider computing S defined in (12) for clusters defined via hierarchical clustering.

After reviewing hierarchical clustering (Section 3.1), we explicitly characterize S (Section

9
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Figure 3: The observations belonging to C,CyeC (x) are displayed in blue and orange
for: (a) the original data set x = x'(¢) with ¢ = [|Zs — Zg,[l2 = 4, (b) a perturbed data
set x'(¢) with ¢ = 0, and (c) a perturbed data set x'(¢) with ¢ = 8.

3.2), and then show how specific properties, such as the dissimilarity and linkage used, lead

to substantial computational savings in computing S (Sections 3.3-3.4).

3.1 A brief review of agglomerative hierarchical clustering

Agglomerative hierarchical clustering produces a sequence of clusterings. The first cluster-
ing, CM(x), contains n clusters, each with a single observation. The (¢ 4 1)th clustering,
C*V(x), is created by merging the two most similar (or least dissimilar) clusters in the
tth clustering, for t = 1,...,n — 1. Details are provided in Algorithm 1.

Algorithm 1 involves a function d(G, G’;x), which quantifies the dissimilarity between
two groups of observations. We assume throughout this paper that the dissimilarity between
the ith and ¢’th observations, d({i}, {i'}; x), depends on the data through z; — z} only. For
example, we could define d({i}, {7'};x) = ||z; — zy||3. When max{|G|, |G’|} > 1, then we
extend the pairwise similarity to the dissimilarity between groups of obervations using the

notion of linakge, to be discussed further in Section 3.3.

10



Algorithm 1 Agglomerative hierarchical clustering of a data set x
Let CM(x) = {{1},{2},...,{n}}. Fort=1,....,n—1:

1. Define {Wl(t)(x),WQ(t)(x)} = argmin d(G,G’;x). (We assume throughout this
G,G'eC® (x),G#G’
paper that the minimizer is unique.)

2. Merge Wl(t) (x) and WQ(t) (x) at the height of d (Wl(t) (x),Wz(t) (x);x> in the dendro-
gram, and let C**1)(x) = C(x) U {Wl(t) (x) U (X)} \ {Wl(t) (x), Wi (X)} :

3.2 An explicit characterization of S for hierarchical clustering

We saw in Sections 2.1-2.2 that to compute the p-value p(x; {C;,C,}) defined in (8), we
must characterize the set S = {¢ > 0: C;,C, € C(x'(¢))} in (12), where x/(¢) in (13) is a
perturbed version of x in which observations in the clusters C, and C, have been “pulled

together” or “pushed apart”. We do so now for hierarchical clustering.

Lemma 1. Suppose that C = C" 5K+ i e. we perform hierarchical clustering to obtain

K clusters. Then,
a (WO )W (x0:%(9)) = d (W (), WP (i), ¥ 62 0.Y =1, on— K, (15)

where (Wl(t) (x),WQ(t) (x)) is the “winning pair” of clusters that merged at the t' step of
the hierarchical clustering algorithm applied to x. Furthermore, for any ¢ > 0,

C1,Co € C(X(¢) if and only if COX(¢)=CY(x)Vt=1,....n—K+1. (16)

We prove Lemma 1 in Section S1.2 of the supplement. The right-hand side of (16) says
that the same merges occur in the first n — K steps of the hierarchical clustering algorithm

applied to x'(¢) and x. To characterize the set of merges that occur in x, consider the set

11



of all “losing pairs”, i.e. all cluster pairs that co-exist but are not the “winning pair” in

the first n — K steps:

n—K

L) = |J {{6.9}:0.9 €cVx).6 #¢.16.9} # (W0 M =)} . (1)

t=1
Each pair {G,G'} € L(x) has a “lifetime” that starts at the step where both have been cre-

ated, lgg(x) = min {1 <t <n—K:6,g € C(x),{G,0} # (), W (x)}}, and

ends at step ug.g/(x) = max {1 <t <n - K :6,G' € CV(x),{6,6'} # (W (), Wi (x)} } .

By construction, each pair {G,G'} € L(x) is never the winning pair at any point in its
lifetime, i.e. d(G,G";x) > d (Wl(t)(x), ét)(x);x> for all Igg/(x) <t < ugg(x). There-

fore, x'(¢) preserves the merges that occur in the first n — K steps in x if and only if
A(9.6x(6)) > d (W), W8 (x):x(6)) for all lgg(x) < t < ugg(x) and for al
{G,G'} € L(x). Furthermore, (15) says that d (Wl(t) (x), WP (x): X’(gb)) =d (Wl(t) (x), WS (x); X)
forall > 0 and 1 <t <n — K. This leads to the following result.

Theorem 2. Suppose that C = C~5+Y j.e. we perform hierarchical clustering to obtain

K clusters. Then, for S defined in (12),

S = ﬂ {gf) >0:d(G,G":x(¢)) > max (x)d (Wft)(x), W2(t) (X);X)} . (18)

(G.6"eL(x) lgyg/(x)gtgug!g/

where {Wl(t) (X),WQ(t) (X)} is the pair of clusters that merged at the t'" step of the hier-
archical clustering algorithm applied to x, L£(x) is defined in (17) to be the set of “losing
pairs” of clusters in x, and [lg g (X), ug g (X)] is the lifetime of such a pair of clusters in x.

Furthermore, (18) is the intersection of O(n?) sets.

We prove Theorem 2 in Section S1.3 of the supplement. Theorem 2 expresses Sin (12)

12



as the intersection of O(n?) sets of the form {¢ > 0:d(G,G’;x'(¢)) > hg g (x)}, where

hog(x) = max d (W60, W) (x):x) (19)

lg,g' () <t<ug g/
is the maximum merge height in the dendrogram of x over the lifetime of {G,G’'}. The
next subsection is devoted to understanding when and how these sets can be efficiently
computed. In particular, by specializing to squared Euclidean distance and a certain class
of linkages, we will show that each of these sets is defined by a single quadratic inequality,

and that the coefficients of all of these quadratic inequalities can be efficiently computed.

3.3 Squared Euclidean distance and “linear update” linkages

Consider hierarchical clustering with squared Euclidean distance and a linkage that satisfies

a linear Lance-Williams update (Lance & Williams 1967) of the form
d(G1 U G, Gs;x) = aud(G1, G3; ) + aad(Ga, G3; %) + Bd(G1, Ga; %). (20)
This includes average, weighted, Ward, centroid, and median linkage (Table 1).

Average Weighted Ward Centroid Median Single Complete

Satisfies (20) v v v v v X X

Does not produce

v v v X X v v

mversions

Table 1: Properties of seven linkages in the case of squared Euclidean distance (Murtagh

& Contreras 2012). Table 1 of Murtagh & Contreras (2012) specifies ay, s, and 3 in (20).

We have seen in Section 3.2 that to evaluate (18), we must evaluate O(n?) sets of the
form {¢ > 0:d(G,G";x'(¢)) > hg g (x)} with {G,G'} € L(x), where £(x) in (17) is the set

of losing cluster pairs in x. We now present results needed to characterize these sets.

13



Lemma 2. Suppose that we define d({i},{i'};x) = ||lz; — zy||3. Then, for all i # 7,
N2
d({i},{i'};x'(¢)) = @i ® + bis ¢ + cir, where for v defined in (13), @i = (Vifyi'> )
by =2 <<V|Z|;|T2'> (dir(xTD), x; — xy) — aii/HXTﬁHQ), and c;; = ’ T — Ty — (%) (xTD)
2

Lemma 2 follows directly from the definition of x'(¢) in (13), and does not require (20)

to hold. Next, we specialize to squared Euclidean distance and linkages satisfying (20),
and characterize d(G,G’;x/'(¢)), the dissimilarity between pairs of clusters in x'(¢). The
following result follows immediately from Lemma 2 and the fact that linear combinations
of quadratic functions of ¢ are also quadratic functions of ¢.

Proposition 1. Suppose we define d({i},{i'};x) = ||lz; — z#||3, and we define d(G,G';x)
using a linkage that satisfies (20). Then, d(G,G";x'(¢)) is a quadratic function of ¢ for
all G # G'. Furthermore, given the coefficients corresponding to the quadratic functions

d(G1,Gs3; X' (9)), d(Ga,Gs; X' (9)), and d(Gy,Ga; X' (9)), we can compute the coefficients cor-
responding to the quadratic function d(Gy U Gy, Gs;x'(¢)) in O(1) time, using (20).

Lastly, we characterize the cost of computing hgg(x) in (19). Naively, computing
hg g (x) could require O(n) operations. However, if the dendrogram of x has no inversions
below the (n — K)th merge, i.e. if d (Wl(t) (x), Wi (x);x) <d (Wl(tﬂ)(x), WQ(tH)(x);x)
for all t < n — K, then hgg(x) = d qug’g,(x))(x), 2(ug’g,(x)>(x);x). More generally,

hgg (x) = max d (Wl(t) (x), WQ(t) (x); x) , where Mg g (x) = {t Hgg(x) <t <

teMg gr(x)U{ug gr (%)}
ug g (x),d (Wl(t) (x), WQ(t) (x);x) > d (Wftﬂ)(x), Q(tﬂ)(x);x) } is the set of steps where
inversions occur in the dendrogram of x during the lifetime of the cluster pair {G,G'}. This

leads to the following result.

Proposition 2. For any {G,G'} € L(x), given its lifetime lgg(x) and ugg(x), and
gwen M(x) = {1 <t<n-K:d (Wl(t) (x), WS (x); x) <d (Wl(tﬂ)(x), WQ(HI)(X);X) },

14



i.e. the set of steps where inversions occur in the dendrogram of x below the (n — K)th

merge, we can compute hg g/(x) in O(|M(x)| + 1) time.

We prove Proposition 2 in Section S1.4 of the supplement. Proposition 2 does not
require defining d({i}, {i'};x) = ||z; — z«||3 and does not require (20) to hold. We now
characterize the cost of computing S defined in (12), in the case of squared Euclidean

distance and linkages that satisfy (20).

Proposition 3. Suppose we define d({i},{i'};x) = ||v; — z#||3, and we define d(G,G';x)
using a linkage that satisfies (20). Then, we can compute S defined in (12) in O<(|M(X)|+
log(n))n2> time.

A detailed algorithm for computing S is provided in Section S2 of the supplement. If the
linkage we use does not produce inversions, then |[M(x)| = 0 for all x. Average, weighted,
and Ward linkage satisfy (20) and are guaranteed not to produce inversions (Table 1), thus

S can be computed in O(n?log(n)) time.

3.4 Squared Euclidean distance and single linkage

Single linkage does not satisfy (20) (Table 1), and the inequality that defines the set {¢ >
0:d(G,G;x'(¢)) > hgg(x)} is not quadratic in ¢ for |G| > 1 or |G| > 1. Consequently, in
the case of single linkage with squared Euclidean distance, we cannot efficiently evaluate
the expression of Sin (18) using the approach outlined in Section 3.3.

Fortunately, the definition of single linkage leads to an even simpler expression of S than
(18). Single linkage defines d(G,G’;x) = min d({i},{i'};x). Applying this definition

i€Gi’'eg’

to (18) yields S = N N N {¢>0:d{i},{7};x(¢)) > hgg(x)}, where L(x) in
{G,G'YeL(x)i€Gi'eG’

(17) is the set of losing cluster pairs in x. Therefore, in the case of single linkage, S =

15



~

N Siv, where £'(x) = {{i,i'} :i € G,7' € ¢, {G,¢'} € L(x)} and
{isYeL! ()

Sii = { >0 d{i},{i'};x > ma hg g (x } The following result
o= {0z 0 d ) > max o) wing

characterizes the sets of the form ‘SA’“/

Proposition 4. Suppose that C = C" K+ je. we perform hierarchical clustering to

obtain K clusters. Let 1 £ 1. Ifi,i' € Ci ori,i' € Cy ori,i ¢ C1 UGy, then S“/ = [0, 00).
Otherwise, S; = {¢ >0 d({i}, {i'};x'(¢)) > d (wf"*m (x), W) (X);x)} .

We prove Proposition 4 in Section S1.5 of the supplement. Therefore,
§= N S
{i,4'}eL! (%)

- N {gzﬁZO: d({i}, {i'}; X' () >d(Wl(”_K)(x),WZ("_K)(X);X>}, (21)

{i,¢YeZ(x)

where Z(x) = £'(x)\ H{z’,z‘/} Li,i e él} U {{i,i’} Li,i e éz} U {{i, M i g G U @H.
Recall from Lemma 2 that in the case of squared Euclidean distance, d({i}, {i'};x/(¢)) is
a quadratic function of ¢ whose coefficients can be computed in O(1) time. Furthermore,
O(n?) sets are intersected in (21). Therefore, we can evaluate (21) in O(n?log(n)) time by

solving O(n?) quadratic inequalities and intersecting their solution sets.

4 Extensions

4.1 Monte Carlo approximation to the p-value

We may be interested in computing the p-value p(x; {él,ég}) defined in (8) for clustering
methods where S in (12) cannot be efficiently computed (e.g. complete linkage hierarchi-

cal clustering or non-hierarchical clustering methods). Thus, we develop a Monte Carlo
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approximation to the p-value that does not require us to compute S. Recalling from (12)

that S = S(x; {C1,Ca}), it follows from Theorem 1 that

P {C1,Co}) = E[1 {0 = |Ize, = 76, 12:C1.C2 € Cx(9) }] /B [1{C1.C e Cx(0)) }] , (22)
for ¢ ~ o ( I Cl\ + E) - Xq» and for x'(¢) defined in (13). Thus, we could naively sample

O1y. .., ON P ( IC_ll\ + e |> X, and approximate the expectations in (22) with averages

over the samples. However, when [|Zs — g, |2 is in the tail of the o ( T @> “ Xq

distribution, the naive approximation of the expectations in (22) is poor for finite values of
N. Instead, we use an importance sampling approach, as in Yang et al. (2016). We sample

wi,. .. wy AN <H3_761 — T |2, 07 (IC + m)), and approximate (22) with

p(x: {C1,Ca}) ~ (ﬁ_vjl mil {wi > (136, — 7,12, €1, Ca € C(x’(wi))}> / (fjl mi1 {C,C € C(x'(w,-))}),

for m; = QEZ;, where f; is the density of a o ( I + |c_|> - Xq random variable, and f; is
. = A 2 L L .
the density of a N <||93cl To,llo; 0 <\c}\ + |éz|>> random variable.

4.2 Non-spherical covariance matrix

The selective inference framework in Section 2 assumes that x is a realization from (1), so

that Cov(X;) = ¢%I,. In this subsection, we instead assume that x is a realization from
X ~ MN (1,1, 2), (23)

where ¥ is a known ¢ x ¢ positive definite matrix. We define the p-value of interest as

ps(x:{C1,C}) = P ieren (HE_( 6 — X3 > 1572 (z, — 26113 ‘ C1.C; € C(X),
Trj(éhég)X (c s dir (2_1/2()_(51 — X@Q)) = dir (2—1/2@@1 — :féz)) )
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Theorem 3. For any realization x from (23), and for any non-overlapping groups of

observations Gi,Gs C {1,2,...,n},
pe(x; {61, Ga}) = 1= F (IS5xT0(Gr, Go) s (G, Go)lo, Sl 161,G2))) . (24)

where Sy(x: {G1.G2}) = {62 0: G1.Ga € € (mjig, g, + 6 (iEHEa1g ) din(2AxTv(G1.G2)) 782 ) |

Furthermore, if Hégl’gﬂ is true, then

]P)Hégl»QQ}(pE(X; {G1,G2}) <a|G1,G: €C(X)) =a, forall0<a<1.

Hégl,g2}

That is, rejecting whenever ps(X; {G1,G2}) is below o controls the selective type I

error rate (Definition 1).

We omit the proof of Theorem 3, since it closely follows that of Theorem 1. In the
case of hierachical clustering with squared Euclidean distance, we can adapt Sections
3.3-3.4 to compute Sx(x; {él,éz}) by replacing agy, by, and ¢;y in Lemma 2 with a;; =

D — D 2 T~ 2 . Ai—’\-l T 5, . ~ ~ _ A
<V|Z|,;|l|/§Z ) (||Eﬂ}1(/2:c”7?1)||2> ’ bii’ = 2((1/"1;'1‘/%1 > <Hzﬂ)1</2l;HTZ,;”2> <d11“(XTV), xi_xi’>_aii’|’2 1/2XTVH2>7
_— 2

o == (Y5 ) &)

2

and Eii’ = ‘ .
2

4.3 Unknown variance

The selective inference framework in Section 2 assumes that ¢ in model (1) is known. If o
is unknown, then we can plug an estimate of ¢ into (9), as follows:

. 5 4 _ _ . 1 1 A

P (x4C.Co}) = 1= F ( 17g, — g, [l 6 |+ —, S ). (25)

ICi] G

Intuitively, if we plug in a consistent estimate of o, we might expect to asymptotically
control the selective type I error rate. For example, this is true in the context of selec-
tive inference for low-dimensional linear regression (Tian & Taylor 2017), where the error

variance can be consistently estimated under mild assumptions.
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Unfortunately, consistently estimating ¢ in (1) presents a major challenge. Similar
issues arise when estimating the error variance in high-dimensional linear regression; see
e.g. Reid et al. (2016). Thus, we adopt a similar approach to Tibshirani et al. (2018),
which studied the theoretical implications of plugging in a simple over-estimate of the
error variance in the context of selective inference for high-dimensional linear regression.
In the following result, we show that plugging in an asymptotic over-estimate of ¢ in (25)

leads to asymptotic control of the selective type I error rate (Definition 1).

Theorem 4. Forn = 1,2,..., suppose that X™ ~ MN (™ 1,,06°1,). Let x™ be a
realization of X, and CAfn) and Cé") be a pair of clusters estimated from x™. Suppose

that lim P {em e} (&(X(N)) >0 ‘ CAin)Jan) € C(X("))) = 1. Then, for any a € [0,1],

n—o0 H(]

we have that lim P {e{m e (ﬁ(X(n); {CAYL)’CASn)}) <« ‘ C}M)CA&TL) e C(X(n))) < a.
HO

n—o0

We prove Theorem 4 in Section S1.6 of the supplement. In Section S3, we provide an

estimator of o that satisfies the conditions in Theorem 4.

4.4 Consequences of selective type I error rate control

This paper focuses on developing tests of Hégl’%}

: fig, = fjig, that control the selective
type I error rate (Definition 1). However, it is cumbersome to demonstrate selective type
I error rate control via simulation, as P(G;,Gs € C(X)) can be small when Hégl’gﬂ holds.

Nevertheless, two related properties can be demonstrated via simulation. Let Hy denote

the set of null hypotheses of the form Hégl’%} that are true. The following property holds.

Proposition 5. When K =2, i.e. the clustering algorithm C(-) estimates two clusters,

P (p(X;C(X)) <« ’ Hg(x) € 7-[0> =, foral0<a<l, (26)
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where p(+;-) is defined in (8). That is, if the two estimated clusters have the same mean,

then the probability of falsely declaring otherwise is equal to a.

We prove Proposition 5 in Section S1.7 of the supplement. What if K > 27 Then,
given a data set x, we can randomly select (independently of x) a single pair of estimated

clusters G; (x), G2(x) € C(x). This leads to the following property.

Proposition 6. Suppose that K > 2, i.e. the clustering algorithm C(-) estimates three or
more clusters, and let G1(x), G2(x) € C(x) denote a randomly selected pair. If {G1(X), G2(X) }
and X are conditionally independent given C(X), then for p(-;-) defined in (8),

P <p(X; (G1(X), G2(X)}) < o | H{91006200) ¢ 7—L0> —a, foral0<a<l.  (27)

We prove Proposition 6 in Section S1.7 of the supplement. Recall that in Figure 1(c),
we simulated data with g = 0,44, so the conditioning event in (27) holds with probability
1. Thus, (27) specializes to P(p(X; {G1(X),G2(X)}) < a) = a, i.e. p(X;{G1(X),G2(X)}) ~
Uniform(0, 1). This property is illustrated in Figure 1(c).

5 Simulation results

Throughout this section, we use the efficient implementation of hierarchical clustering in

the fastcluster package (Miillner et al. 2013) in R.

5.1 Uniform p-values under a global null

We generate data from (1) with g = 0,,4,, so that Héél’éz’} holds for all pairs of estimated
clusters. We simulate 2000 data sets for n = 150, o € {1,2,10}, and ¢ € {2,10,100}. For
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each data set, we use average, centroid, single, and complete linkage hierarchical clustering
to estimate three clusters, and then test Héél Ca} for a randomly-chosen pair of clusters. We
compute the p-value defined in (8) as described in Section 3 for average, centroid, and single
linkage. For complete linkage, we approximate the p-value as described in Section 4.1 with
N = 2000. Figure 4 displays QQ plots of the empirical distribution of the p-values against
the Uniform(0, 1) distribution. The p-values have a Uniform(0, 1) distribution because our
proposed test satisfies (27) and because g = 0,,4; see the end of Section 4.4 for a detailed
discussion. In Section S4.1 of the supplement, we show that plugging in an over-estimate o

as in (25) yields p-values that are stochastically larger than the Uniform(0, 1) distribution.

(a) Average linkage (b) Centroid linkage (c) Single linkage (d) Complete linkage
5 1.00 p g 1.00 / E 1.00 P E 1.00 /
< 0.754 A S 0.754 / S 0.754 / S 0.754
& & & &
— 0.50 — 0.50 — 0.50 — 0.50
] Z © © ©
o / o o o
= 0.254 S = 0.254 £ 0.251 = 0.254
£ £ £ £
i 0.004 T T T W 0.004 T T T W 0.004 T T T W 0.004 T T T T
0.00 025 050 075 1.00 0.00 025 050 075 1.00 0.00 025 050 0.75 1.00 0.00 025 050 0.75 1.00
Theoretical quantiles Theoretical quantiles Theoretical quantiles Theoretical quantiles
Model parameters ® 9=2,6=1 @ 9=2,0=10 q=10, ¢ =1 q=10,6=10 @ 9g=100,c=1 q=100, 6 =2

Figure 4:  For 2000 draws from (1) with pp = 0, n = 150, ¢ € {2,10,100}, and
o € {1,2,10}, QQ-plots of the p-values obtained from the test proposed in Section 2.1,

using (a) average linkage, (b) centroid linkage, (c) single linkage, and (d) complete linkage.

5.2 Conditional power and recovery probability
We generate data from (1) with n = 30, and three equidistant clusters,

0g—1

—4/2 /2
/"LIZ...:/’L%: |:0q7/1:|7/l%+1::u%: |:\/§5/2i|7/£%+1:-~~:/1/n: |:Oq/71j|7 (28)
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for 0 > 0. For each simulated data set, we use average, centroid, single, and complete linkage
hierarchical clustering to estimate three clusters, and then test Héél’@} for a randomly-
chosen pair of clusters, with significance level o = 0.05. We simulate 300,000 data sets
for o = 1, ¢ = 10, and seven evenly-spaced values of ¢ € [4,7]. We define the conditional
power to be the conditional probability of rejecting H;‘él Ca} for a randomly-chosen pair of
estimated clusters, given that the randomly-chosen pair of estimated clusters correspond
to two true clusters. Since this conditions on the event that the randomly-chosen pair
of estimated clusters correspond to two true clusters, we are also interested in how often
this event occurs. We therefore consider the recovery probability, the probability that
the randomly-chosen pair of estimated clusters correspond to two true clusters. Figure
5 displays the conditional power and recovery probability as a function of the distance
between the true clusters (0).

Figure 5 displays conditional power and recovery probability as a function of the dis-

tance between the true clusters (0). For all four linkages, the conditional power and recovery

(a) Conditional power (b) Recovery probability

L 1.0 ———— ] Z1.00
2 54 — s Linkage
80.9 T 0754 g
— 084 o Average
e S 0,50 — Centroid
So7q - Complet
= 1 [) — Complete
° > 0.25
S 061 8 = Single
SRR | | A — . | |

4 5 6 7 4 5 6 7

Distance between true clusters (3) Distance between true clusters ()

Figure 5: For the simulation study described in Section 5.2, (a) conditional power of the
test proposed in Section 2 versus the difference in means between the true clusters (9), and
(b) recovery probability versus §. Conditional power and recovery probability are defined

in Section 5.2.
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probability increase as the distance between the true clusters (0) increases. Average and
complete linkage have the highest conditional power, and single linkage has the lowest con-
ditional power. Average, centroid, and complete linkage have substantially higher recovery
probabilities than single linkage.

We consider an alternative definition of power that does not condition on having cor-

rectly estimated the true clusters in Section S4.2 of the supplement.

6 Data applications

6.1 Palmer penguins (Horst et al. 2020)

In this section, we analyze the penguins data set from the palmerpenguins package in

R (Horst et al. 2020). We estimate o with &(x) = Z Z(% —7j)?/(ng — q) for z; =

i=1j=1
Z z;;/n, calculated on the bill length and flipper length of 58 female penguins observed in
the year 2009. We then consider the 107 female penguins observed in the years 2007-2008
with complete data on species, bill length, and flipper length. Figure 6(a) displays the
dendrogram obtained from applying average linkage hierarchical clustering with squared
Euclidean distance to the penguins’ bill length and flipper length, cut to yield five clusters,
and Figure 6(b) displays the data.

We test Héél €} for all pairs of clusters that contain more than one observation, using
the test proposed in Section 2.1, and using the Wald test described in (4). (The latter
does not account for the fact that the clusters were estimated from the data, and does
not control the selective type I error rate.) Results are in Table 2. The Wald p-values are

small, even when testing for a difference in means between a single species (Clusters 1 and
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(a) Dendrogram (b) Data Clusters
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Figure 6: (a) The average-linkage hierarchical clustering dendrogram and (b) the bill
lengths and flipper lengths, as well as the true species labels and estimated clusters, for the

Palmer penguins data described in Section 6.1.

2). Our proposed test yields a large p-value when testing for a difference in means between
a single species (Clusters 1 and 2), and small p-values when the clusters correspond to
different species (Clusters 1 and 3, and Clusters 3 and 4). The p-values from our proposed
test are large for the remaining three pairs of clusters containing different species, even
though visual inspection suggests a large difference between these two clusters. This is
because the test statistic is close to the left boundary of S defined in (12), which leads to

low power: see the discussion of Figure S3 in Section S4.2 of the supplement.

Cluster pairs (1, 2) (1,3) (1,4) (2,3) (2,4) (3,4)
Test statistic  10.1 25.0 10.1 33.8 17.1 18.9
Our p-value  0.591 1.70 x 107 0.714  0.070 0.291 2.10 x 1076

Wald p-value 0.00383 < 1073%7 0.00101 < 107397 429 x 1075 1.58 x 10~

{C1.C2} .

Table 2: Results from applying the test of H fie, = He,, proposed in Section 2 and

the Wald test defined in (4) to the Palmer penguins data set, displayed in Figure 6(b).

24



6.2 Single-cell RNA sequencing data (Zheng et al. 2017)

Single-cell RNA sequencing data quantifies the gene expression levels of individual cells.
Biologists often cluster the cells to identify putative cell types, and then test for differential
gene expression between the clusters, without properly accounting for the fact that the
clusters were estimated from the data (Luecken & Theis 2019, Lahnemann et al. 2020,
Deconinck et al. 2021). Zheng et al. (2017) classified peripheral blood mononuclear cells
prior to sequencing. We will use this data set to demonstrate that testing for differential
gene expression after clustering with our proposed selective inference framework yields

reasonable results.

6.2.1 Data and pre-processing

We subset the data to the memory T cells, B cells, and monocytes. In line with standard
pre-processing protocols (Duo et al. 2018), we remove cells with a high mitochondrial gene
percentage, cells with a low or high number of expressed genes, and cells with a low number
of total counts. Then, we scale the data so that the total number of counts for each cell
equals the average count across all cells. Finally, we apply a log, transformation with a
pseudo-count of 1, and subset to the 500 genes with the largest pre-normalization average
expression levels. We separately apply this pre-processing routine to the memory T cells
only, and to all of the cells. After pre-processing, we construct a “no clusters” data set by
randomly sampling 600 memory T cells, and a “clusters” data set by randomly sampling

200 each of memory T cells, B cells, and monocytes.
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6.2.2 Data analysis

We apply Ward-linkage hierarchical clustering with squared Euclidean distance to the “no
clusters” data to get three clusters, containing 64, 428, and 108 cells, respectively. For each
pair of clusters, we test Hécl Ca} fig, = lig, using (i) the test proposed in Section 4.2 under

model (23) and (ii) using the Wald test under model (23), which has p-value

Peren (X = Xe)'27H(Xe, = Xe,) 2 (T, —7¢,) 37T, —7¢)) - (29)

For both tests, we estimate 3 by applying the principal complement thresholding (“POET”,
Fan et al. 2013) method to the 9,303 memory T cells left out of the “no clusters” data set.
Results are in Table 3. The p-values from our test are large, and the Wald p-values are
small. Recall that all of the cells are memory T cells, and so (as far as we know) there are

no true clusters in the data.

“No clusters” “Clusters”l
Cluster pairs | (1, 2) (1, 3) (2, 3) (1, 2) (1, 3) (2, 3)
Test statistic | 4.05 4.76 2.96 3.04 4.27 4.38
Our p-value | 0.20 0.27 0.70 460 x 10728 320 x 1078 1.13x 1077
Wald p-value | < 107397 < 107307 < 107307 | < 107307 < 107397 < 107397

Ca} .

Table 3: Results from applying the test of Hgél’ fie, = I, proposed in Section 4.2 and

the Wald test in (29) to the “no clusters” and “clusters” data described in Section 6.2.1.

We now apply the same analysis to the “clusters” data. Ward-linkage hierarchical
clustering with squared Euclidean distance results in three clusters that almost exactly
correspond to memory T cells, B cells, and monocytes. For both tests, we estimate 3 by

applying the POET method to the 21,757 memory T cells, B cells, and monocytes left
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out of the “clusters” data set. Results are in Table 3. The p-values from both tests are
extremely small. This suggests that our proposed approach is able to correctly reject the

null hypothesis when it does not hold.

7 Discussion

In this paper, we proposed a selective inference framework for testing the null hypothesis
that there is no difference in means between two estimated clusters, under (1). This directly
solves a problem that routinely occurs when biologists analyze data, e.g. when testing for
differential expression between clusters estimated from single-cell RNA-sequencing data
(Luecken & Theis 2019, Lédhnemann et al. 2020, Deconinck et al. 2021).

The framework proposed in Section 2 assumed that o in (1) was known. Similarly, the
extended framework in Section 4.2 assumed that 3 in (23) was known. These assumptions
are unlikely to hold in practice. Thus, in the data applications of Sections 6.1-6.2, we
replaced o in (1) and X in (23) with estimates. In Section 4.3, we explored the theoretical
implications of this replacement, under model (1). Future work could include investigating
how best to estimate o in (1) and % in (23). Another potential avenue for future work
would be to develop an analogue of Theorem 4 in Section 4.3 under model (23).

The tests developed in this paper are implemented in the R package clusterpval.
Instructions on how to download and use this package can be found at
http://lucylgao.com/clusterpval. Links to download the data sets in Section 6 can be
found at https://github.com/lucylgao/clusterpval-experiments, along with code to

reproduce the simulation and real data analysis results from this paper.
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