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1 Introduction

Learning regulatory dynamics and forecasting are two canonical problems in the analysis of
multivariate time series, with widespread applications in economics, signal processing and
biostatistics amongst others. In recent years, there has been increasing focus in networks or
graphical models of time series to describe how a multivariate time series’ components in-
teract with each other. Vector AutoRegressions (VAR) estimated using parsimony-inducing
regularization (penalties or priors) have become a popular alternative [8, 16, 33, 20] to fac-
tor modeling of high-dimensional time series, e.g., [7]. In the classical time series and signal
processing literatures, Vector AutoRegressive Moving Average (VARMA) models are known
to provide a more parsimonious description of a linear time invariant system than VAR.
However, in practice, their use has been limited due to identification and estimation is-
sues. The goal of this work is to overcome these challenges by theoretically and empirically
investigating the large-scale VARMA as a competitive alternative to the VAR.

In a VARMA,(p, ¢) model, a stationary d-dimensional mean-zero vector time series v, is

modeled as a function of its own p past values and ¢ lagged error terms. More precisely,
p q
Yy = Z Dpy_g + Z Omai—m + ay, (1.1)
/=1 m=1

where {®, € R>?}D_ are autoregressive parameter matrices, {©,, € R>9}? | are moving
average parameter matrices, and a; denotes a d-dimensional mean-zero white noise vector
time series with d x d nonsingular contemporaneous covariance matrix Y,. The primary focus
of this work is to consider VARMA models where d is moderate or large. A VAR is a special
case of the VARMA without moving average coefficients (©,, = 04xq, for m =1,...,q).
Although VARs are more intensively investigated (e.g., [15, 42] for computational con-
tributions; [10, 34, 56, 9] for theoretical contributions, and [41, 25] for applications), sev-
eral reasons exist for preferring the more general VARMA class. Unlike VAR, the class of
VARMA is closed under marginaliztion and linear transformation [38]. In macroeconomics,
VARMA is popular for its close link with linearized dynamic stochastic general equilibrium

(DSGE) models [32, 23]. A parsimonious finite order VARMA can capture the dynamics of



a potentially infinite-order VAR, leading to improved estimation and forecasting accuracy.
Empirically, VARMAs have been shown to outperform VARs in terms of estimation and
forecasting accuracy [32, 4]. Our empirical analysis also demonstrates such improvements
(see Section 5). Importantly, we see that VARMA achieves this improved forecast accuracy
using a more parsimonious description of the data than VAR.

Despite its advantages over VAR, VARMA has not been very popular among practitioners
due to its computational and theoretical challenges in model identification and specification.
The model (1.1) is not identifiable in general (see Section 2.1), i.e. there can be different
combinations of AR and MA matrices {®,} and {©,,} that lead to the same data generating
process. The problem of model identification refers to finding a “simple” element in this
equivalence set & of all such AR-MA matrices (see Section 2 for formal definition), usually by
specifying a number of restrictions on model parameters. The problem of model specification
refers to finding these restrictions along with the model orders p, ¢ in a data-driven fashion.

Arguably the most popular identification procedure is the FEchelon form identification
(28, 45, 14], which amounts to selecting a basis for the row space of a block Hankel matrix
(see Section 4 of [17]). Specifying an Echelon form involves selecting Kronecker orders
(related to indices of rows that form the above basis) from a O ((p + ¢)?)-dimensional set,
by comparing an equally large number of models. Data-driven strategies, involving a series of
canonical correlation tests, or regressions based on model selection criteria (e.g., AIC, BIC,
information theoretic criterion) were proposed [2, 3, 44]. However, all of these methods are
computationally intensive and lack a formal asymptotic theory that combines specification
and estimation. Assuming d is fixed, [44] proved asymptotic theory for the specification
step. Then, assuming Kronecker orders are known, consistency of parameter estimation
was established. This procedure has been tested only on very small d, and finite sample
performances are not clear (Section 3.4, [39]).

Other popular identification and specification methods include scalar component models
[49, 6, 5] and final equations form [58, 27, 53]. While these and other existing identification
procedures [28, 45, 14] require different sets of assumptions—sometimes more relaxed ones
than we will consider—on the structure of the process, they inherently face the same limita-

tions for large-scale models. The uncertainty and error in the data-driven specification stage



is not accounted for in the analysis of the model parameter estimation stage.

These computational and theoretical challenges of aggregating the model selection and
parameter estimation are akin to the variable selection challenges in linear regression, where
shrinkage methods (e.g., ridge, lasso, elastic net) have been successfully used in combining
selection and parameter estimation. A key advantage of these approaches is that they allow
formal asymptotic analysis of the complete specification-plus-estimation procedure.

In this work, we show that these convex optimization based techniques of regulariza-
tion and dimension reduction, by now ubiquitous in the field of high-dimensional statistics,
provide new perspectives and solutions to large-scale VARMA identification and estimation
problems with several attractive properties.

I. Automatic identification of parsimonious VARMA models. We show that by
devising a suitable convex penalty, we can identify a parsimonious element in the equivalence
class £ in an intuitive yet objective fashion (Section 2). More formally, we can define the class
of AR-MA matrices with minimum ¢;-norm as a partially identified class of “sparse” VARMA
models RE = argming g)ce{> j—; [Pells + D201 1Oml[l1}. We could also use a modified,
strongly convex penalty argmin g g)ce {30, (121 + all@el3) + Y4, (101 +all€ 2}
with a very small a = 0 to identify a parsimonious element in RE, viz. the uniqgue AR-MA
matrices with minimum Frobenius norm (Proposition 2.1).

II. Computationally efficient estimation of VARMA models. Our identification
strategy explicitly links the search for a unique, parsimonious model throughout the identi-
fication, specification and estimation stages. The same penalty used in our identification is
used as a regularizer to define a natural VARMA estimator corresponding to this identified
target (Section 3). We show on real and simulated data examples (Section 5 and Appendix
G) that such parsimonious VARMA models lead to important gains in forecast accuracy
compared to parsimoniously estimated VARs. An implementation of our fully-automated
VARMA identification and estimation procedure is available in the R package bigtime [54].

III. Non-asymptotic theory for sparse VARMA. We also provide a non-asymptotic
theoretical analysis of our proposed sparse VARMA estimator (Section 4). Our analysis
explicitly captures the complexity of model selection, and does not assume the identification

restrictions are known a priori as in existing asymptotic analysis of VARMA [18, 21]. While



to the best of our knowledge, consistency of VARMA estimators has been studied only in
the low-dimensional, fixed d asymptotic regime [32, 22|, our error bound analysis shows
consistent estimation is possible in a double-asymptotic regime d,T — oco. We provide
two main results on consistency (Proposition 4.1). Our first result in the spirit of partial
identification [40, 48] states that under suitable sparsity assumptions our algorithm provides
a parsimonious VARMA estimator (small ¢;-norm) whose distance from the equivalence class
& asymptotically vanishes as long as logd/T — 0. Our second result on point identification

states that our estimator converges in probability to our identified target in £ as long as

d*logd/T — 0.

2 Identification of the VARMA

We revisit the VARMA identification problem in Section 2.1, then introduce an optimization-
based, parsimonious identification strategy for VARMA in Sections 2.2 and 2.3.

2.1 Identification Problem

Consider the VARMA 4(p, q) of Equation (1.1) with fixed autoregressive order p and moving
average order ¢. The model can be written using compact lag operators as ®(L)y; = O(L)ay,

where the AR and MA operators are respectively given by
O(L) =1 —®L—DL” — ... = &, L7 and O(L) =1+ O1L+O,L% +... +6,L7,

with the lag operator L¢ defined as L'y, = v,_,. We assume the model is stable and invertible
meaning respectively that det{®(z)} # 0 and det{©(z)} # 0 for all |z| < 1 (z € C). The
process {y;} then has an infinite-order VAR representation I1(L)y, = a;, where II(L) =
O NL)®(L) =1—-1LL—1yL? — -, with det{II(2)} # 0 for all |z|] < 1. The II-matrices
can be computed recursively from the AR matrices {®,} and MA matrices {O,,} (e.g., [12],
Chapter 11). The VARMA is uniquely defined in terms of the operator II(L), but not in
terms of the AR and MA operators ®(L) and O(L), in general. That is, for a given II(L),



p, and ¢, one can define an equivalence class of AR and MA matrix pairs,
Epq(I(L)) = {(2,0) : ©(L) = O(L)IL(L)},

where @ = [®;---®,] and © = [©;---O,]. This class can, in general, consist of more than
one such pair, implying that further identification restrictions on the AR and MA matrices
are needed for meaningful estimation.

In order to connect identification to estimation, we first provide an alternate characteri-

zation of the equivalence class &, ,(II(L)) in terms of a Yule-Walker type equation.

Proposition 2.1 (Yule-Walker type equation for VARMA). Consider a white noise process
{at}rez with mean zero and variance ¥,. For a stable, invertible linear filter I1(L) that allows
a VARMA4(p,q) representation TI(L) = ©7Y(L)®(L), consider the process y; = I17(L)ay
and define z = [y -yl ral oo alq}T. Then, (®,0) € &,,(II(L)) if and only if
Ba(ptq)xd = [@1:...:D,: 0 ... @q]T is a solution to the system of equations p,, = X.03,
where p,, = Elzy,'] and ¥, = E[zz/]. That is,

E,a(T1(L)) = {(2,0) : p., = £.5}. 2.1)

A proof of this proposition is provided in Appendix A.1. Note that both p,, and ¥, can
be expressed as functions of IT and ¥, alone (i.e. they do not depend on © and @), and
hence are uniquely defined for the underlying process y;. While the AR(o0) representation
given by II in Proposition 2.1 is unique, it allows an equivalent characterization in terms of
many (®, ©) combinations. Each of these combinations is a solution to the (potentially)
underdetermined system of equations in Proposition 2.1.

A key consequence of this proposition is that our identification target can be defined
by optimizing over the solution set of this Yule-Walker type equation. Further, we can
use sample analogues of p., and X, in our estimation step to search for this target in a

data-driven fashion.



2.2 Optimization-based Identification

We rely on strongly convex optimization to establish identification for VARMA models.
Among all feasible AR and MA matrix pairs, we look for the one that gives the most
parsimonious VARMA representation. We measure parsimony through a pair of convex
regularizers, Par(P) and Pya(©). Our identification results apply equally well to any convex
function: one may consider, amongst others, the /;-norm, the />-norm, the nuclear norm, and
combinations thereof. Our methodology also allows for a different choice of convex function
for the AR and MA matrices if prior knowledge would allow a more informed modeling
approach. This might be particularly useful in economics, for instance, where one may be
interested in a parsimonious AR structure for interpretability, but can allow for a non-sparse
MA polynomial to increase forecast accuracy.

We now define the regularized equivalence class of VARMA representations as

RE,(T(L)) = argmin {Par(®) + Pyia(©) st (L) = O(LI(L)}. (2.2)

This regularized equivalence class is a subclass of the equivalence class &, ,(II(L)), contain-
ing the regularized VARMA representations. If the objective function in (2.2) is strongly
convex, then the regularized equivalence class consists of one unique AR-MA matrix pair, in
which case identification is established. However, for the ¢1-norm, for instance, the objective
function is convex but not strongly convex. Hence, to ensure identification for this case, we

add two extra terms to the objective function and consider

(@), 01) = argmin{Pan(®) + Para (0) + 1215+ S 101} st $(L) = O(LII(L)}. (23)

$,0

)

Problem (2.3) is strongly convex and thus has a unique solution pair (&, ©(®) for each o >
0. For any stable, invertible VARMA, we then define its unique regularized representation
in terms of the AR-MA matrices as

(@, 00 = lim (), 00), (2.4)

a—0t



The following proposition, proved in Appendix A.2, establishes that (®®, ©©) is in the reg-
ularized equivalence class RE, ,(II(L)) and furthermore is the unique pair of autoregressive
and moving average matrices in this set having the smallest Frobenius norm. This result is
similar to a result in the regression context, which states that the LARS-lasso solution has

the minimum ¢s-norm over all lasso solutions (see [50], Lemma 7).

Proposition 2.2. The limit in (2.4) exists and is the unique pair in the set RE, ,(II(L))

whose Frobenius norm squared is smallest:

(@,01) = argmin{[| |7 + O] st. (€,0) € RE, (IL(L))}.
$,0

2.3 Sparse Identification

While our identification results apply equally well to any convex function, we give special
attention to sparsity-inducing convex regularizers. In this case, the regularized equivalence
class in (2.2) is a sparse equivalence class, meaning that, in general, we would expect many
of the elements of the AR and/or MA matrices to be exactly equal to zero.

To guarantee the sparsest VARMA representation, one might consider taking Par(®P) =
|®|lo and Pya(©) = ||O]|o. However, since the fy-penalty is non-convex, a unique solution
cannot be guaranteed. One can construct examples in which there exist multiple equivalent,
sparsest VARMASs, see [51] and Appendix A.3.1. Strong convexity in (2.3) is key to guaran-
teeing uniqueness of (®(*), ©(*)). For sparsity, we may therefore add to the fo-norm in (2.3)
the ¢1-norm Pagr(P) = ||P||; and Pua(O) = ||©O]|1 as a sparsity-inducing convex heuristic.

While our theory will focus on the ¢;-norm, in the empirical sections we also investigate
a time-series specific alternative penalty, the hierarchical lag (hereafter “HLag”) penalty [43,
55]: Par(®) = Zf:l Z?:l > i1 1®ep)isll, and Pua(©) = Z?:l Z?ﬂ > m=1 1Ol
with @y i = [Prij- .. Ppijl € RO and Opngyij = [Omyij - .- O] € RO This
penalty involves a lag-based hierarchical group lasso penalty (e.g., [57]) on the AR (or MA)
parameters. It allows for automatic lag selection by forcing lower lags of a time series in one
of the VARMA equations to be selected before its higher order lags and is thus built on the

intuition of encouraging increased sparsity in ®, and ©, as the lag increases.
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3 Sparse Estimation of the VARMA

We estimate and determine the degree of parsimony of VARMA parameters by the use of
convex regularizers. Since the VARMA4(p, ¢) of Equation (1.1) cannot be directly estimated
as it contains the unobservable (latent) lagged errors, we proceed in two phases, in the spirit
of [46, 21], and references therein. In Phase-I, we approximate these unobservable errors. In

Phase-II, we estimate the VARMA with the approximated lagged errors.

3.1 Phase-I: Approximating the unobservable errors

The VARMA of Equation (1.1) has a pure VAR(00) representation if it is invertible (Section

2.1). We therefore approximate the errors a; by the residuals of a VAR(p) given by

p
Y = Z I-y—r + €, (3.1)
T=1

for (p+1) < t < T, with p a finite number, {II, € R™}?_, the AR parameter matrices, and
£, a vector error series. Denote the estimates by ﬁT and residuals by &; = y; — ZE 1 ﬁTyt_T.

Estimating the VAR(p) of Equation (3.1) is challenging since p needs to be sufficiently
large such that the residuals &; accurately approximate the errors a;. Since, a large number
of parameters (pd?), relative to the time series length 7', needs to be estimated, we use regu-
larized estimation. For ease of notation, first rewrite model (3.1) in compact matrix notation
Y =17 + E, where Y = [yz11...yr] € RXTP) 7 = 25, ...2p] € RPXTP) with 2z =
w1 yls]T € RPUVE =[5, ep] € R™TP) and IT = [ITy ... IT] € R™%. The

regularized autoregressive estimates 11 are obtained as
. (1 )
IT = argmin §||Y —11Z||% + A xP(I) ¢, (3.2)
I

where we use the squared Frobenius norm as loss function and P(II) is any convex regularizer.
In our simulations and applications, we focus on sparsity-inducing regularizers (¢;-norm or
HLag penalty). The penalty parameter A\ > 0 then regulates the degree of sparsity in I:
the larger An, the sparser II. Problem (3.2) can be efficiently solved using Algorithm 1 in



[43].

3.2 Phase-II: Estimating the VARMA

We continue with the approximated lagged errors &_y,...,&_, instead of the true errors
at—1, ..., a4 in Equation (1.1). The resulting model
p q
yt - Z q)fyt—ﬂ + Z @mé\t—m + Uy, (33>
/=1 m=1
is a regression of ¥ on Yi_1,...,Yi—p,Et—1,- .., Et—q With vector error series u;. To tackle

the VARMA overparameterization problem and establish identification simultaneously with
estimation, we again use regularization.

Rewrite the lagged regression (3.3) in compact matrix notation ¥ = &7 + ©X + U,
where Y = [yor1...yr] € RXT0 7 = [z51 .. 27) € RP*T0) with 2, = [y, ...y 5]" €
REPD X = [2541 ... x7] € RT with z, = [E] ... &[]T € RUD with 6 = max(p, §),
for specified order p,q, U = [ugii...ur] € R*T=9 & = [,...d;] € R>*% and © =
[©1...0;] € R The regularized VARMA estimates are obtained as:

(2, 0) = ar%fgin{%HY—@Z—@XH%Jr/\@PAR(@)JrA@PMA(@H%(Acbl\q’HmeAeH@H%)},

(3.4)
where g, Ao > 0 are two penalty parameters. By adding the regularizers Pagr(®P) and
Pua(©) to the objective function, estimation of large-scale VARMAS is feasible. The addi-
tion of the squared Frobenius norms makes the problem strongly convex, ensuring a unique
solution in the same way as was done in the identification scheme (2.3). Optimization prob-
lem (3.4) can be solved via the proximal gradient algorithm in Appendix F. We investigate

the forecast accuracy of the proposed VARMA on simulated data in Appendix G.

3.3 Choosing Tuning Parameters

The estimation procedure involves three sets of user-defined choices: (i) the maximum lag

orders p,p,q; (ii) the penalty parameters Am, Ag, A\e; and (iii) the parameter a to ensure
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uniqueness. We choose these in either a data-driven or computationally inexpensive manner.
Below we motivate our choices and address implications of misspecification.

The maximal lag orders p,p, and . We take p = [1.5v/T] and p = ¢ = |0.75v/T|.
Our theoretical analysis suggests that p < T2¢ (Proposition 4.2), and for larger d, overse-
lecting AR/MA orders only affects the estimation and prediction performance at a rate of
log d (Proposition 4.4). To simplify practical implementation, we therefore set these values
at a slightly larger order O(v/T).

We perform a simulation study (Appendix G.4) to investigate misspecification of the
maximal lag orders. We find that, in general, overselecting is less severe than underselecting.
The price to pay for overselection is smaller for the HLag penalty than for the ¢;-penalty since
the former performs automatic lag selection. As such, it can reduce the effective maximal
order of each series in each equation of the VAR (Phase-I) and VARMA (Phase-II).

The penalty parameters A, A\ and \g. We select the penalty parameters using
cross-validation. Below, we describe the selection of A in Phase-I; in Phase-1I, we proceed
similarly but using a two-dimensional grid search for the penalty parameters (g, Ag).

Following [24], we use a grid of ten penalty parameters starting from Ap max, an estimate
of the smallest value for which all parameters are zero, and then decreasing in log linear
increments. We then use the following time series cross-validation approach: For each time
point t = S,..., T —h, with S = |0.9-T'| and forecast horizon h, we estimate the model and
obtain parameter estimates. This results in ten different parameter estimates, one for each
value of the penalty parameter in the grid. From these estimates, we compute h-step ahead
forecasts ’y\gj\r)h obtained with penalty parameter A\. We select the value of Ay that gives the
most regularized model whose Mean Squared Forecast Error

T—h

1 1
MSFE{Y = > lyern — Tonll?
h T—h— S+ 1 — d||yt+h ytJrh“ )

is within one standard error (see [29]; Chapter 7) of the minimal MSFE. In simulations, we
take h = 1; in the forecast applications, we also consider other forecast horizons.
The parameter a. We will sometimes refer to Equation (3.4) as an “elastic net”

problem, although, unlike A\¢ and Ag, the parameter « is not treated as a statistical tuning
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parameter; rather, as a small positive value simply used to ensure uniqueness. Our simulation
study in Appendix A.3.2 reveals that the addition of a small non-zero « indeed produces
sparse VARMA estimates close to the unique () 0©)) pair defined in Equation (2.4).
For a = 0, we still retrieve sparse VARMA estimates that are close to an element in the
sparse equivalence class. The resulting estimates are typically sparser (i.e. they have fewer
non-zero components) than the estimates obtained with a small non-zero « since the target
(®©,0) corresponds to the pair with minimum Frobenius norm among all minimum-¢;
VARMA representations. Since our main objectives are to produce VARMA estimates that
are close to the sparse equivalent class and have good out-of-sample forecast performance,
we prefer to work with the sparser estimates and thus take @ = 0 in practice, as we have

done in our forecast applications (Section 5) and simulations (Appendix G).

4 Theoretical Properties

We establish consistency of our VARMA estimator with the lasso penalty in Phase-1 and
elastic net penalty in Phase-II under a double asymptotic regime where dimension d grows
with the sample size. Our Phase-II estimator is essentially an elastic net regression, but
introduces additional complexities compared to i.i.d. or stochastic regression that need to be
dealt with in the asymptotic analysis. The rows of the design matrix consist of consecutive

observations from an approximate version of the time series z; = [y | : ... 1yl b al | ...

al q]T, with a; approximated by Phase-I residuals ;. The error term in the regression involves
€; which do not have an analytically tractable distribution. In addition, since ®(L)y; =
©(L)ay, the population covariance matrix of the predictors ¥, is potentially singular. It is not
clear whether a restricted eigenvalue (RE) assumption, commonly used in high-dimensional
regression [37], holds in Phase-II regression.

We start by establishing in Section 4.1 deterministic upper bounds on the estimation
error of a generic elastic net regression under some sufficient conditions. A crucial step to
verify these sufficient conditions is to derive upper bounds to control the approximation error

of a; by &; in Phase-I. We do this in Section 4.2. Finally, in Section 4.3 we show that these

sufficient conditions for Phase-II elastic net regression are satisfied with high probability for
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random realizations from the VARMA model, and present estimation error bounds.

To maintain analytical tractability when tackling the VARMA specific complexities, we
consider two modifications in Phase-II. First, we use g, := y,—&;, the fitted values from Phase-
I, instead of g, as response in Phase-II. The analysis can be modified in a straightforward
fashion to use y; as response, although the resulting upper bounds become larger. Second,
we consider a constrained version of the penalized Phase-II estimator with an additional
side constraint on the /;-norm of the regression coefficient. Equivalence of the constrained
and penalized versions follows from duality of the convex programs. The additional side
constraint on the regression coefficient is easy to implement in practice [1], and has been
used for technical convenience in earlier literature on high-dimensional statistics [37].

We assume Gaussianity in our analysis, primarily to apply some concentration inequalities
for Gaussian processes in our non-asymptotic error bound analysis. The results can be
extended to non-Gaussian VARMA using recent concentration bounds for non-Gaussian
linear processes [47] with potentially slower convergence rate for processes with heavier tails
than Gaussian, although the technical exposition becomes more cumbersome.

Notation. We denote the sets of integers, real, and complex numbers by Z, R, and C,
respectively. We use ||.|| to denote the Euclidean norm of a vector and the operator norm of
a matrix. We reserve ||.||o, ||-|l1 and [|.]|s to denote the number of nonzero elements, ¢; and
(~ norms of a vector or the vectorized version of a matrix, respectively, and .|| to denote
the Frobenius norm of a matrix. For a matrix-valued, possibly infinite-order lag polynomial
A(L) = 3 s AeL’, we define || A|| := maxgerq [|A(”)], and use Ap(L) and A_(L)
to denote the truncated version Z?:o A,L* and the tail series Y ok AyL*, respectively. We
also use [|Al|2,1 to denote the sum of the operator norms of its coefficients, »,- || A¢l|. More
generally, for any complex matrix-valued function f(6) of frequencies 6 € [—m, 7| to CP*P,
we define || f|| := maxpej—nq || f(#)]]. In our theoretical analyses, we use ¢;, i = 0,1,2,..., to
denote universal positive constants whose values do not rely on the model dimensions and
parameters. For two model dependent positive quantities A and B, we also use A 77 B to
mean that for any universal constant ¢ > 0, we have A > ¢B for sufficiently large sample

size. Finally, A < B means A 7 B and A X B.
Remark 4.1 (Measures of Dependence). We adopt the spectral density based measures

13



of dependence introduced in [10] to capture the role of temporal dependence in our non-
asymptotic error bounds. For a d-dimensional centered stationary time series {x;}icz with
autocovariance function I'y(h) = Cov(zy, zerp) = Elzyx),,], h € Z, we define the spectral
density function f,(0) = 5= >0 T.(0)e™™ 0 € [—m, 7). The quantity [|f,[| is taken
as a measure of temporal and cross-sectional dependence in the time series {z;}. For a
stable, invertible VARMA process v, in (1.1) with Apin(2X,) > 0, it is known that f, is
non-singular on [—m, 7] and there exist two model dependent quantities C' > 0 and p € [0, 1)
such that ||[IL;|| < C p7, for all integers 7 > 1 [22]. This implies for any p > 1, we have
I_zll21 < CpP/(1 — p). The quantities || f, ]|, |||, ||| and |II_j |21 appear in our error

bounds, and capture the effects of temporal dependence on the convergence rates.

4.1 Elastic Net with Singular Gram Matrix

Consider an elastic net penalized regression problem where the population covariance matrix
of the predictors is singular. The problem is non-identifiable in the sense that there is
no “true” coefficient vector. Rather, the elastic net penalty itself is used to specify an
identified target among all equivalent data-generating models. The following proposition
provides deterministic upper bounds on estimation and in-sample prediction errors under

some sufficient conditions. The proof is in Appendix C.

Proposition 4.1. Let ¥ € RP*P be a non-negative definite matriz with Ay (X) = 0 and let
p € R be in the column space of . For some a > 0, y,e € RY and X € RVN*P | consider

the linear regression model y = X 3" + ¢ with identified target
B = argmin {P,(8) s.t. 3 = p},
B
where Po(B) := ||l + (/2)||8]1?, and define the estimator
3(a) . 2
Y = argmin —|ly — XB||° + A\P.(8),
Bilplhsm T

for some n and M, where M > ||3®||,. Then for any choice of A > 2HXT5/nHOO and
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Gn > HXTX/n — ZHOO, the following holds:

1 .
(a) In-Sample Prediction: —|| X @ — X3 |2 < A [2M + aM?/2],

n
4q, M? + X [2M + aM? /2]

Ain (%) ’

(b) Partially-Identified Estimation: Brg;n 16 — 8|1 <
Ep=p

where AT

min

(X) is the smallest non-zero eigenvalue of X.

In addition, define the constrained version of the estimator
Ao . 1
B = angmin {Pa(9) st Ly - X612 < 4, 8l < ).

Then, for any r, > L||XTe|| , and s, > |+ lell* = 02|, A, = 02 + s, and M > |||,

we have

R 2
(¢) Point-Identified Estimation: Hﬁ[(g]) — | < 20, +2(VD/a + M)}/,

AMrp+2s,+4M3q,,
+
Amin (E)

where v, :=

The VARMA estimator from Phase-II can be expressed in the above regression format
(see Equation (4.5)) withn=T—¢, N =nd, ¥ =3, and D = d*(p+ ¢). We will show that
modulo some terms capturing the effect of temporal dependence, A, q,,r, can be chosen in
the order of at most O(y/log D/n) with high probability.

Under this setting, part (a) will imply in-sample prediction consistency in the high-
dimensional regime log D /n — 0 as long as the identification target 3*(®) is weakly sparse, i.e.
its /1-norm grows sufficiently slowly. Consequently, our VARMA forecasts will asymptotically
converge to the optimal forecasts.

Part (b) will ensure that the Euclidean distance of our VARMA estimator from the set
of data-generating vectors {8 : ¥,8 = p,,} converges to zero in the asymptotic regime
log D/n — 0, assuming weak sparsity of 5*(®). The rate of convergence also relies on the
curvature of the population loss captured by Al (¥).

Error bound for the point identification part (¢) will imply that with an appropriate choice

of s,, consistent estimation of our identification target is possible in the double-asymptotic
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regime D?log(D)/n — 0, as long as 8*(®) is weakly sparse in the sense of small £,-norm. This
error bound also increases linearly with the inverse of «, the parameter capturing curvature

of the penalty function P, ().

Remark 4.2. We focus on prediction and estimation instead of model selection consistency
for two reasons. First, model selection consistency in penalized regression holds only under
incoherence or irrepresentable conditions [59], which are stringent even for i.i.d. data, and are
not known to hold with high probability for multivariate stationary time series data. Second,
since we work with an equivalence class of models potentially having different sparsity pat-
terns, it is not obvious how to define sparsity of a true model, in general. However, we have
conducted a simulation experiment (Appendix A.3.2) to assess model selection properties of

our estimator in finite samples, which shows promising results.

4.2 Approximation Error in Phase-1

Our main interest in this section is in approximating the errors a; by the Phase-I residuals &,
for use in Phase-II. As a by-product, we also provide estimation error bounds for VAR(c0)
coefficients (see Proposition D.1).

Suppose we re-index data in the form (y_-1), Y——2), - - s Y—1, Y0, Y1, - - -, yr). In Phase-I,

we regress y; on its most recent p lags:

D 0o
Y = Z Iy +e;, where & = (at + Z HTyt_T> ) (4.1)
T=1

T=p+1
The autoregressive design takes the form Yr. g = XrxapBapxa + Erxa, where
Y =1lyr tyr1: ...y, X = ((Yr—imj+1)h<icri<j<pr B = [, : ... : I" and
E = [er : er_1 ¢ ... : g]". Vectorizing this regression design with 7' samples and d*p

parameters, we have Y = Zf* + vec(F), where Y = vec()), Z = I ® X, and f* = vec(B).

In Phase-I, we consider a lasso estimator

. 1
B = argmin — |[Y = ZBI" + A|B]l, . (42)

BERTP
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where § = Vec(g ) and B= [ﬁl I ﬁﬁ]T. We denote the residuals of the Phase-I regression

as & = Y — Zle Iy
Our next proposition provides upper bounds on the approximation error of a; by &, for a

random realization of (7" + p) data points from the VARMA model (1.1). A complete proof

is given in Appendix D.

Proposition 4.2. Consider any solution 3 of (4.2) using a random realization of Ny

from the VARMA model (1.1). Choose p =< T2~ for some ¢ € (0,1/2), and X\ > Xy, where

No = 2,1 [34 maxx { |05 °, 1} v/Iog(@B)/T + |15, |, for some A >1.

Then, for T = logd*p, there exist universal constants c; > 0 such that with probability at

least 1 — coexp [—(c; A% — 2) log d*p],

!

1 . ) P
fZH&—&H < AZ:=20) |,
t=1 =1

S
IN
b

1 A 2 2 2 2
s, 73060 o)’ < A= dmax {aZan g, 1A}

!

1 .
3 lE —al? < amax {AZamd ||l 1101}
t=1

T
If, in addition, {11y, ... T1;} are sparse so that k := SP_ |[I,||, 2 T, then for any choice of
A>2)\g and T 7 maX{ﬁ2|ny|||2|ny*1H|2, 1}k(logd + log p), we can use a potentially tighter
upper bound A2 = (128/m)||| £, || kA%

Remark 4.3 (Convergence Rate & Truncation Bias). The error bounds A? and A2 scale
with Ag, which has two terms. The first term decays polynomially with 7. The second
term HH_[};] H2 | captures the truncation bias arising from using a VAR(p) approximation to
a VAR(oo) process. When p < T 3¢, this term decays exponentially with T3¢ since

c C

I-ll,, < 757" = 75 o T4 10g(1/p)] (4.3)

where C, p are as defined in Remark 4.1. This bias also appears in our Phase-II analysis.
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Remark 4.4 (Choice of p, Slow & Fast Rates, and RE Condition). As long as p increases
polynomially fast with 7', the truncation bias vanishes as T" — oo and the approximation
errors A, and A, decay with T at a rate O(\/W ). However, under sparsity of II
and choosing p =< T/27¢, a suitable Restricted Eigenvalue (RE) condition holds with high
probability (see Appendix D for details), and these approximation errors decay at a faster rate
O(log d/T). The choice of (1/2—¢) in the exponent ensures that 7' = p* holds asymptotically.

This choice of p matches with low-dimensional VARMA analysis presented in [22].

4.3 Prediction and Estimation Error in Phase-11

For simplicity of exposition, we assume that p and ¢ are known and p > p + ¢. It will
be evident from our analysis that similar conclusions hold as long as we replace these with
any upper bounds of p and ¢. Without loss of generality, we also assume that the Phase-11

regressions are run with the following re-indexing of observations:
p q
i :Z<I)gyt_g+26mét_m+ut, fort=1,2,....n, n=T—g, (4.4)
(=1 m=0

where u; = O(L)(a; — &), and ©g = I. As mentioned earlier, we consider a variant of the
Phase-II regression where the fitted values from Phase-1, 3, = y; — &;, are used as response

instead of y;. The autoregressive moving average design then takes the form

~T T T T T
Un Yn-1 - Ynop En-1 -+ En_g T
@Zfl ?Jrlz e y;zr—l—p ész S élflfq ol .
= + ,
) : ) oT
—— ulT
i Yo oo W S0 o Gy | Bugraxa =
—_— = — = Unxa
Ynxd and(p+q)
where & = [® : ... : ®,], and © =[Oy : ... : ©,]. Vectorizing the above regression
problem with n samples and d?(p + q) parameters, we have
vec()) = (I ® Z~> vec(B) + vec(U) . (4.5)
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In order to apply Proposition 4.1 on this regression problem with N = nd and D = d*(p+
q), we first provide suitable choices of ¢,, s, and 7, (same as choice of \) that hold with high
probability for a random realization of (T + p) consecutive observations from the VARMA

~\ T ~ o~
process. To this end, note that H <I ® Z> (I ® Z) /n—1®3,|| = HZTZ/n -3,

o0
In Section 4.2, we have discussed how the approximation errors A,, A, and the truncation

bias term ||II_f5 |21 decay with the sample size. In this proposition, we show that ¢,,r, and

sn/d can be chosen to be a linear combination of the above terms and \/logd?(p + q)/n,
where the coefficients of this linear combination depend on model parameters and capture

the role of temporal dependence in these convergence rates.

Proposition 4.3. Consider the Phase-1I regression (4.5) with design matriz I ® Z and
error vector vec(U). Set o2 = e] Var (O(L)I_;(L)y) e;, for j =1,....d. Then there exist
universal constants ¢; > 0 such that the event

£ {Hgvz/n_ s < d]Eu|_<n

d
1 9 9
~Jloec@)? = > o
j=1

< sn} (4.6)

holds with probability at least 1 — coexp [—(c1 A% — 2)log d*(p + q)], where

logd2(p+q)+(p Q(A —|—A2)
q, a al
A

n

= P
log d?(p +
T = 80771\/W+S0r,2< 5+A2+||1_L[15]||271>,
905,1

log d?(p +
P TWLD | o (ata2),

spfd =
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and Qg1,Pq.2, Pris Pr2, Psi1, Ps2 are functions of the model parameters

2
ear = 20l (p+allmall)

¢o2 = max{2¢,2\/27q||f,||" (p+61\HH[ﬁ1H\2>1/2}7

a1 = 27O T3, N1,

pop = max {20]3 1, 4v2rl|O)|" gy, A" O]l }
e = cull 1A max {1101 iy 2, . 1T}

I H2,1}'

era = allfyll 1Ol max{1,
Using Proposition 2.1, the identification target in (2.3) with an elastic net penalty becomes
o
(@@, ) = argrgin {||[<I> : Ol + §||[¢) : O]||% s.t. vec(p.,) = (I ® Zz)vec(ﬁ)} . (4.7)
q)v

where p.,, Y. and [ are as defined in Proposition 2.1. We consider the penalized and con-

strained versions of the estimator

. . 2
vec <[<I>(°‘) : @(a)]T> = argmin 1 Hvec(y) —(I® Z)BH + AP.(B)
IBll, <M T
. . 1 _q2
vec ([@fg% : @fgfﬂ) = argmin {Pa(ﬁ) s.t. — Hvec(y) —[I®2)p| < An} :
1811, <M n

A direct application of Proposition 4.1 with the choices of ¢,r,, s, in Proposition 4.3 then
leads to the following upper bounds on the prediction and estimation error of the penalized

and constrained versions of our two-phase VARMA estimator.

Proposition 4.4 (VARMA Estimation and Prediction Errors). Consider a random re-
alization of T' 4+ p consecutive observations {y1,...,yr+s} from a stable, invertible Gaus-
sian VARMA model (1.1), and let n =T — q denote the sample size in Phase-1I. Denote
Ky = masc{Lf, I, 0., €], }-

(a) Forecast Error: Lety; = ) Poyi—o+> b1 OmGi—pm and gy =Y <T>gyt,g+23n:1 O,81m

denote the optimal and the penalized VARMA forecasts respectively. Then, for a choice of
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A < K3 max {\/logdz(p +4q) /n, AE}, and M > ||®@||, + |©@]; for some a > 0,

| . log d?(p + ¢
- § 5: — yi||* = Op K§M2 max log d*(p + q) ), 1T z]l2,1, A p | -
n n

t=1

(b) Partially-identified Estimation: With the same choice of \, M and « in (a), the penalized

estimator is partially identified and satisfies

2 Ky M? log d*(p + q)
=0p | —L— — = ||TI_5 JANS .
. P <A+ (FZ(O)) maX{ n ) “ [p}HQ,la

min

min H
(®,0)€Ep,q(II(L))

((ﬁ(a)) @(a)) —(®,0)

(¢) Point-identified Estimation: For a choice of A, < K3||TI_3|3,, max{d\/log d*(p + q) /n, A}

and any o > 0, the constrained version of the estimator is point identified and satisfies

Hla) J(@) a a
H@[C]?@[C]) — (2@, 0)

1/2
2 K3M? log d?
‘ = Op Y max{d3 MJIH—WHQJ’AE
n

F @ v/ A (I2(0))

Part (a) of this proposition ensures that as long as the identification target is parsimonious
in the sense of small /;-norm and the penalty parameter is chosen appropriately, the VARMA
forecasts converge to the optimal forecasts (which uses any element from the equivalence class
Epq(I1)) in the asymptotic regime log d/n — 0. The truncation bias term |[II_g |21 and the
approximation error from Phase-I A, also converges to zero in this asymptotic regime, as
shown in Section 4.2. The convergence rates are further affected by the strength of temporal
dependence in the VARMA process, as captured by the term K.

In addition, part (b) ensures that the distance of our penalized estimator from the equiv-
alence class also asymptotically vanishes in this high-dimensional regime. Further, the con-
vergence rates are affected by the minimum positive eigenvalue of the variance-covariance
matrix of the process z;, which captures the curvature of the loss function.

Part (c) shows that our constrained estimator converges in probability to our identifica-
tion target, but in a low-dimensional regime d3+/log d/n — 0. This slow rate is a consequence
of the fact that we did not assume sparsity on the entire equivalence class &, ,(II), so search-
ing for the correct identification target within this equivalence class still has a complexity of

the order of d?. The tuning parameter « also affects the convergence rate, since this captures
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the degree of curvature of the term P,(.) in the loss function. However, taking a sequence

of a,, that converges to 0 at a rate slower than d° \/ log d?(p + q)/n, we can still guarantee

consistent estimation of the target (®©, 0©) with the minimum Frobenius norm.

5 Forecast Applications

We present three forecast applications:

(i) Demand forecasting. Weekly sales data (in dollars) are collected for d = 16 prod-
uct categories of Dominick’s Finer Foods from January 1993 to July 1994 (T = 76). Data are
taken from https://research.chicagobooth.edu/kilts/marketing-databases/dominicks.
To ensure stationarity, we take each series in log differences and consider sales growth. Aug-
mented Dickey-Fuller tests help support that the sales growth series are stationary.

(ii) Volatility forecasting. We collect monthly realized variances for d = 17 stock
market indices, from January 2009 to December 2016 (T = 96). Realized variances, com-
puted from five minute returns, are obtained from http://realized.oxford-man.ox.ac.
uk/data/download and log-transformed following standard practice. Augmented Dickey-
Fuller tests help support that the log-realized variances are stationary.

(iii) Macro-economic forecasting. We consider d = 168 quarterly macro-economic
series of length 7" = 60 ending in 2008, Quarter 4. Data are taken from the Journal of Applied
Econometrics Data Archive, a full list of the series is available in [35] (Data Appendix), along
with the transformations to make them approximately stationary.

In all considered cases, the number of time series d is large relative to the time series
length T'. First, we discuss the model parsimony of the estimated VARMA and VAR with

HLag penalties. Secondly, we compare their forecast accuracy for different forecast horizons.

5.1 Model Parsimony

Since the sparse VARMA and VAR estimators with HLag penalties both perform automatic
lag selection, they give information on the effective maximum AR and MA orders. Consider
the d x d moving average lag matrix Z@ of the estimated VARMA whose elements are

IAJ(:M]. = max{m : @ng # 0}, where IAJ(:),Z.J. =0 if (:)mw =0 for all m =1...,q. This lag
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Figure 1: Demand data set: AR-lag matrix (left) and MA-lag matrix (middle) of the esti-
mated VARMA, and AR-lag matrix of the estimated VAR (right).

matrix shows the maximal MA lag for each series j in each equation 7 of the corresponding
estimated VARMA. If entry ij is zero, this means that all lagged MA coefficients of time
series J on time series ¢ are estimated as zero. If entry 4j is, for instance, three, this means
that the third lagged moving average term of series j on series i is estimated as non-zero, but
the forth and higher as all zero. Similarly, one can construct the autoregressive lag matrix
Ea of the estimated VARMA and the autoregressive lag matrix Eﬁ of the estimated VAR.
Figure 1 shows the lag matrices of the estimated VARMA and VAR on the demand data.
Similar findings are obtained for the other data sets and therefore omitted. The MA lag
matrix of the VARMA (middle panel) is very sparse: 247 out of 256 entries are equal to
zero. By adding just few MA terms to the model, serial correlation in the error terms is
captured. As a result, a more parsimonious VARMA model is obtained: 107 out of the 3,072
(around 3%) estimated VARMA parameters are non-zero. In contrast, 877 out of the 3,328
(around 25%) estimated VAR parameters are non-zero. We find the more parsimonious

VARMA to often give more accurate forecasts than the VAR, as discussed next.

5.2 Forecast Accuracy

We compare the forecast accuracy of VARMA to VAR through an expanding window forecast

exercise. Let h be the forecast horizon. At each time point ¢t = S,...,T — h, we sparsely
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Table 1: Mean Squared Forecast Errors at different forecast horizons for the two estimators
on the three data sets. P-values of the Diebold-Mariano tests are given in parentheses.

Estimator Weekly Monthly Quaterly
Demand Data Volatility Data Macro-economic Data
h=1 h=8 h=13 h=1 h=6 h=12 h=1 h=4 h=38

VARMA 0.473 0.578  0.550 0.781 1.080 1.065 0974 1.152 1.281

VAR 0.499 0.703 0.715 0.728 1.209 1.429 0.977 1.170 1.401
(0.141)  (0.041)  (<0.001) (0.142)  (0.050)  (0.007) (0.412)  (0.080)  (0.003)

estimate the VARMA and VAR. We take S such that forecasts are computed for the last 25%
of observations. We estimate the model on the standardized series and obtain h-step-ahead

(@ _
it+h —

forecasts and corresponding forecast errors e Yit+h — Yirrn for each series 1 <4 < d.
The overall forecast performance is measured by computing the Mean Squared Forecast Error
for a particular forecast horizon h, as in Equation (3.5). For the weekly marketing data set,
we take h = 1,8,13. For the monthly volatility data set, we take h = 1,6,12. For the
quarterly macro-economic data set, we take h = 1,4,8. To assess the difference in forecast
performance between VARMA and VAR, we use a Diebold-Mariano (DM-) test ([19]).

The MSFEs on the three data sets are given in Table 1. Across all considered data sets
and horizons, VARMA gives either a significantly lower MSFE than the VAR estimator (in
5 out of 9 cases at the 5% level, in 1 case at the 10% level) or performs equally well (in 3 out
of 9 cases). The gain in forecast accuracy over VAR is typically the largest for the longest
forecast horizons. VARMA not only gives a lower MSFE averaged over the considered time
points, but it also attains the lowest MSFE for the large majority of time points. For the
demand data at horizon h = 13, for instance, it outperforms VAR for all time points except
two. The sparse VARMA method is thus a valuable addition to the forecaster’s toolbox
for large-scale multivariate time series models. It exploits the serial correlation between

the error terms and, as a consequence, often gives more parsimonious forecast models with

competitive or better forecast accuracy than a sparse VAR.

6 Conclusion

We present sparse identification and estimation for VARMA models. Our estimator, available

in the R package bigtime, is naturally aligned with our identified target through the use of
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sparsity-inducing convex regularizers and can be computed efficiently even for large-scale
VARMASs. Under a double-asymptotic regime where both d,T" — oo, we prove consistency
of our two-step sparse VARMA estimation for stable, invertible Gaussian VARMA processes.
Simulation and real data analyses show that our sparse VARMA model can produce better
forecasts compared to sparse VAR by fitting more parsimonious models.

There are several questions we did not address. Our two-stage procedure can be general-
ized to an iterative method, as in [18]. However, developing a double-asymptotic theory for
such an iterative method is complex and left for future research. The convergence rates of
our point-identified Phase-II estimator can be potentially sharpened under restricted eigen-
value assumptions. Identifying a class of sparse VARMASs for which such assumptions hold
with high probability is an interesting theoretical question. Inference of model parameters

can be pursued by adopting debiasing approaches [31, 52|, and are left for future research.
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Supplement to “Sparse Identification and Estimation of
Large-Scale Vector AutoRegressive Moving Averages”

We present the proofs of sparse identification in Section A. Proofs of key technical ingredients
required for Phase-I and II analyses are in Section B, along with some additional lemmas to
control the error due to using &; instead of €; in Phase-II. Sections C, D and E contain results
for error bound analysis in elastic net, Phase-I and II, respectively. Section F contains details

of Phase-I and IT algorithms. Section G presents the results on several numerical experiments.

Notations. We denote the sets of integers, real, and complex numbers by Z, R, and C,
respectively. We use ||.|| to denote the Euclidean norm of a vector and the operator norm
of a matrix. We reserve ||.||o, ||.|i and ||.||« to denote the number of nonzero elements,
¢ and /., norms of a vector or the vectorized version of a matrix, respectively, and ||.||r
to denote the Frobenius norm of a matrix. The symbol S! is used to denote the vectors
v € R? with |[v]] = 1. We use Apax(.) and Apin(.) to denote the maximum and minimum
eigenvalues of a (symmetric or Hermitian) matrix. We use |.| to denote the absolute value of
a real number or complex number. We use V* to denote the conjugate transpose of a com-
plex matrix, vector or scalar V. For a matrix-valued, possibly infinite-order lag polynomial
A(L) = s AcLt, we define || A|| := maxgerq [|A(”)], and use Ap(L) and A_(L)
to denote the truncated version Z?:o AyL* and the tail series Y ok AyL*, respectively. We
also use [|Al|2,1 to denote the sum of the operator norms of its coefficients, »,- || A¢l|. More
generally, for any complex matrix-valued function f of frequencies from [—7, 7] to CP*P | we
define || || := maxpej—nq [|f(#)]|. In our theoretical analyses, we use ¢;, i = 0,1,2,..., to
denote universal positive constants whose values do not rely on the model dimensions and
parameters. Their values are allowed to change from equation to equation. For example,
we will use ¢y instead of 2¢y, ¢y + 2 etc. within a proof to keep the notations simple. For
two model dependent positive quantities A and B, we also use A 7~ B to mean that for any
universal constant ¢ > 0, we have A > ¢B for sufficiently large sample size. Finally, A < B

means A 22 B and A 3 B.
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Measures of Dependence. We adopt the spectral density based measures of dependence
introduced in [10] to conduct our non-asymptotic analysis. For a d-dimensional centered sta-
tionary Gaussian time series {z;};cz with autocovariance function I';(h) = Cov(zy, z11p) =
Elzix/,,), h € Z, we assume the spectral density function f, () := 5= >"2 T, (0)e ™, 0 €
[—7, 7], exists, is non-singular a.e. on [—m, 7], and ||f.]| < oco. The quantity ||f.|| is
taken as a measure of temporal and cross-sectional dependence in the time series {x;}.
We say that the time series x; is stable if ||| f.|| < oo. More generally, for any pair of d-
dimensional centered, stable time series {z;} and {y,;}, the cross-spectral density is defined
as fy,(0) = % Sooe Tuy(0)e™™ where I'y (k) = Cov(xy, yii4), for b € Z. If the joint pro-
cess w; = [x],y7]" is stable, i.e. it satisfies || f.|| < oo, it follows that || fuulI* < Il £l £,ll-

For a stable, invertible VARMA process y; in (1.1) with Apin(2,) > 0, it is known that
f, is non-singular on [—m, 7] and there exist two model dependent quantities C' > 0 and
p € [0,1) such that ||II,|| < C p7, for all integers 7 > 1. This implies for any § > 1, we have
IMglaa < C7/(1 - ). The quanities ||,

}fy_lm and ”H—[ﬁ]H2,1 appear in our error

bounds, and captures the effects of temporal dependence on the convergence rates.

A Proofs for Sparse Identification

A.1 Yule-Walker type Equations for VARMA

Proof of Proposition 2.1. Define

5P7Q(H<L)) = {(CI)’ @) PPy = Zz/B}

We first show that &, ,(II(L)) C &,,(TI(L)). To this end, note that any (®,0) € &,,(TI(L))
satisfies v, = 8"z + a;. Therefore, E [ytth] =B'E [ztzﬂ + E [atzﬂ. Since E [atth] =0,
this implies pZTy =By,

Next we show that &, ,(II(L)) C &,,(II(L)). To this end, note that the set &,,(TI(L))
can be characterized precisely as the set of matrix AR and MA parameters ® and © which

satisfy almost surely (a.s.)

w=0"n+a, telk, (A.1)
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for a process y; = II71(L)ay, where a; s (0,%,) is a white noise process.
Now, consider a solution of the Yule-Walker type linear systems of equation § € &, 4(TI(L)).
Since &, 4(TI(L)) C &,,(TI(L)) and &,,(TI(L)) # ¢, this solution takes the form g = 8* + 4,

where 8% = [®7:...: @5 : O .. @Z}T € &,4(II(L)) is a particular solution of the linear

systems, and § = [011 ¢ ... 1 01p 1 09g 1 ... §2q]T satisfies X.0 = Og(ptq)xd-

This implies § ' X.5 = Ogxg, i.e. var(d'z;) = 0gxq. In other words, J 'z is almost surely
a constant. Since E[z] = 0, we conclude that 6"z = 0 a.s.

Now, consider any centered linear process y; = II"!(L)a;, as mentioned above. Then,

since f* € &, 4(II(L)), for any ¢t € Z we have
Yy = Pyt .+ Py, +OTa 1+ .+ O + ay.
Also, since, 6"z, = 0 a.s., we have

Yo = (D7 +01)ye1 + (P54 612)ye2+ ... + (D) + 01p)Yi—p

+(O7 +021)ar—1 + ... + (O] + dag)as—g + a; as.

It follows from (A.1) that 8 € &, ,(TI(L)), proving &, ,(TI(L)) C &,4(TI(L)).

A.2 Optimization-based Identification

Consider the convex minimization problem

C* = argmin f(x)

where f: R™ — [0,00) is a convex function and £ C R" is an affine space. We assume that

C* is non-empty (i.e. the minimum is attained) and let
z* = argmin ||z||? s.t. z € C*,
zeL

which is unique since this is a strongly convex problem.
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Defining f(z, o) = f(x) + $[|=|]*, we see that f(-, @) is a-strongly convex for each o > 0

and therefore there is a unique minimizer
To = argmin f(z, a).
zeL

Proposition A.1. The sequence of minimizers of f(-,a)) converge, as o — 0%, to the unique

minimizer of f(-) that has smallest ly-norm: lim, o+ T, = T*.

Proof. We begin with a lemma.

Lemma 1.

a—0t (0%

Proof. By definition of x*,
* (]2 — : 2 t. < f¥
l7[* = min [|lz[|" s.t. f(z) < 7,
where f* = min,c, f(z). This can be equivalently expressed (see, e.g., [11]) as
|z*||* = minsup L(z; \)
zel A>0

where

L(z; A) = [J2|* + A(f(z) = f7) = Alf (2, 2/X) = f°].
By strong duality (Slater’s condition holds since C* # ()), we can interchange the “min” and
the “sup”:

l2*]|* = sup g (),
A>0
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where g(\) = minge,s L(z; ). Now, for A > A > 0,

g(\) = min L(z, \)

zeL

=min {L(z,\) + (A = N)[f(z) — [*]}

zeL

> min L(z, \) + (A — A) min[f(z) — f*]

€L €L

> g(A).

Thus, g is a non-decreasing function, and

lim g(A) = sup g(\) = [l2*
A>0

A—00

Now,

a7 = Jim g(A) = Jim {A[f(xzn,2/A) — f]} = lim (2/a)[f(z4.0)

a—0t

or, subtracting ||z*||* from both sides,

0= lim (2/a)[f(2a,a) = f(z", a)].

a—0t

By a-strong convexity of f(-, «),

o
f(y:0) 2 f(wa,0) + Zllwa =yl
for any y € L.
Applying this with y = x* gives
* Q * |12
F(5*,0) > [(ra0) + 5 llre = 27|

lza = 2"|I* < (2/0)[f (2", @) = f(2a, a)].
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Taking the limit of both sides, Lemma 1 gives
lim ||z — 2%]|* < 0.
a—0

Thus,

lim x, = x”*.
a—0

The above results are now easily applied to prove Proposition 2.2.

Proof of Proposition 2.2. Denote x = (®,0). Consider the convex function f(z) = Par(P)+
Pua(©), and the affine space £ in which ®(L) = ©(L)II(L) holds. It follows from Proposi-
tion A.1 that lim,_,o+ (), @) = (&) ), u

A.3 Identification for Multiple, Sparsest VARMA Representa-

tions
A.3.1 A Toy Example

In Section 2.3, we refer to multiple equivalent, sparsest VARMA representations, as, for

instance, discussed in Section 4.5.2 of [51]. As an example, we consider the VAR(1) and

VMA(1) models

0 1 01
Y = Y1+ 0 = Y = ai—1 + ag.
00 00

In this section, we establish our unique identification target for this example.
Following the VARMA (p,q) notation of our paper we write ®(L)y; = ©(L)a;, where the

AR and MA operators are respectively given by
O(L)=1— O L —DyL>—...—D,L” and O(L) =1+ O,L+O,L*+...+6,L7,

with the lag operator L* defined as L*y; = y,_,. For the VMA(1) example with MA-coefficient

31



matrix equal to

A=
0 0

we equivalently have ®(L) = (I —0L) = I and O(L) = (I + AL) in the VARMA(1,1)
formulation. Further, since det{®(z)} # 0 and det{O(z2)} # 0 for all |z] < 1 (z € C),
this model is stable and invertible, and the process {y;} then has an infinite-order VAR
representation II(L)y, = a;, where II(L) = © Y (L)®(L) = I — ;L — TI,L* — --- | which
in this case simplifies to II(L) = (I + AL)™'T = I — AL. We then recognize this model
is equivalent to a VAR(1) model with AR-coefficient matrix A, or we equivalently have
®(L) = (I — AL) and (L) = (I +0L) = I, in its VARMA(1,1) formulation.

In our paper, we therefore note that both models, as defined by their AR and MA
coefficient matrix pairs (®,0): (I, A) and (A, I), respectively, are in the same VARMA(1,1)
equivalence class & ; with respect to II(L) = (I — AL). This is defined for the general
VARMA (p,q) model as &,,(II(L)) = {(,0) : ®(L) = O(L)II(L)}, and in this case we
specifically have

E11(I — AL) = {(®,0): (I —®L) = (I + OL)(I — AL)}.

For the equivalence relation of £ ; to hold for the given A, any matrix pair (®,©) in the set
must also be of the form
® = P(a) = 0o and © = 0O(b) = 00 ,
00 00
for a,b € R such that, a4+ b = 1, and so there are many solutions, not just the two identified
above.

We now turn to considering this problem from the proposed optimization-based identifi-
cation perspective (Section 2.2) by using strongly convex optimization to establish identifi-
cation. Among all feasible AR and MA matrix pairs (®,0), we look for the one that gives
the most parsimonious representation of the VARMA. Specifically, we measure parsimony

through a pair of convex regularizers, Par(®) and Pya(0). Our identification results apply
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equally well to any convex function; one can consider, amongst others, the ¢;-norm, the
l9-norm, the nuclear norm, and convex combinations thereof.

To be concrete for this particular example, let us specifically consider using the ¢;-norm:
Par(®) = ||®]l; and Pya(©) = ||©]|;. Then for any fixed a > 0, a uniquely identified
solution (5((1),@(&)) is

. = - o = a — — —
argmin { @] + 8]l + 5[} + SIO1% st. (1—FL) = (I +OL)(I - AL)}
$,0

(see general case, Equation (2.3)), and this is equivalent to

2 2
. o
argmin + + st.a+b=1},

+
®(a),0(b) 0 0 00
1 1 F F

Do |
o
o
(e}
o
(@)

or more simply,

argmin { la] + [0 + Slaf? + S st a+ b= 1} ,
®().00) 2 2

This optimization problem is strongly convex and thus has a unique solution pair (5@, @(a))
for each value of & > 0. We further define our final (unique) optimization-based identified
VARMA representation as
(6(0)7@(0)) = lim (6(0‘)7@(0‘))7
a—0t
a result which is proved (in the general case) in Proposition 2.2 to be the unique pair
of autoregressive and moving average matrices in the ‘regularized equivalent’ class having

smallest Frobenius norm, i.e., the regularized equivalent (sub-) class of & 1( — AL) in this

example is defined as RE; (I — AL) =
argmin {||®]|; + ||}y s.t. (I —®L)=(I+OL)(I — AL)} = argmin { |a| + [b] s.t. a+b =1}
$,0 P

®(a),0(b)

(which has many solutions, i.e., b =1—a,a € [0,1]). Then our final unique solution for this
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specific problem is

@",8") = argmin { |af? + b st. (B(a), B(b)) € REL(T — AL)}
©(a),0(b)

= argmin { [a]>+ |b]* s.t. b=1—a,a €[0,1]}.
®(a),0(b)

This has the unique solution a = b = 0.5, or

- 0 0.5
o
0 O

and we can further confirm by hand this solution is in & ;(I — AL), since

-1 2

I+ 0 0.5 I I 0 0.5 A 0 0.5 o 01 L) = (-an)
0 0 0 0 0 0 00
Finally, we note that although the proposed unique VARMA(1,1) solution above does not
have as few non-zero parameters as either the pure VMA(1) or VAR(1) model (in which there
was just one), in finding this solution via optimization with constraints there was still only one
free parameter, and therefore the same overall model complexity in this regard. Furthermore,
this is only the unique solution derived under the ¢;-norm choice of regularization, and
we reiterate that the flexible framework that we propose also allows any (user specified)
convex function for regularization-based identification, including the ¢;-norm, the f5-norm,

the nuclear norm, and convex combinations thereof.

A.3.2 Simulation

We further illustrate sparse identification with a small simulation study. Figure A1l (panel

a) shows a VARMA ;_5(1, 1) model

0.2 0.05 0 —-0.25
(bdense = 5 and @dense = >

0 01 0 -01
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with the dense (®,0) having 80 nonzero entries. However, this VARMA model can be

alternatively expressed in terms of

02 O 0 —-0.2
(I)sparse = ) and ®sparse = )

0 O 0O O

a sparse (®,0) having only 32 nonzero entries (panel b); or

0O — 01 -01 and ©0) — 0.1 -01

0 0 0 0

having only 64 nonzero entries (panel c).

Note that there are multiple equivalent, minimum-¢; VARMA representations. Two
of these are visualized in panels (b) and (c) but others exist such as the pair where the
AR and MA matrices of the “sparse” design are swapped. All have minimal ¢;-norm (i.e.
|®[]; = ||©]]; = 3.2). Panel (c) displays the unique pair (& O©) defined in Equation
(2.4), as the one having minimal fy-norm (i.e. ||[®©]2 = ||[©@||2 = 0.32). When choosing
the /;-norm as the convex regularizer, our optimization-based identification strategy would
favor the sparser VARMA representations over the denser one since the former have a smaller
¢1-norm (i.e. ¢1-norm for the dense design is ||®||; = ||©O]]; = 5.6).

To illustrate the link between our identification and estimation stages, consider the fol-
lowing simulation experiment: We take Y, = I; and generate time series of length 7" = 1000
(after 200 burn-in observations) from the dense VARMA (Figure A1, panel a). We then use
our sparse VARMA procedure with ¢;-norm as convex regularizer and take p = ¢ = 1 to
obtain the AR and MA parameter estimates. The number of simulations is N = 500.

First, we estimate the VARMA with a = 0; the corresponding estimates are visualized
in Figure A1l panel (d), for an illustrative simulation run. The results are very stable from
one simulation run to another. Although we generate the time series from the dense DGP,
our procedure encourages identification and estimation of sparser models and thus returns
sparser estimates. Since there are infinitely many equivalent “true” (®,©) pairs, we are not

interested in comparing the estimates to the dense (®, ©) pair used to originally generate the
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Figure Al: True AR and MA matrices from three equivalent VARMA representations: (a)
a dense, (b) a sparse and (c) the target VARMA. The estimates obtained with our sparse
VARMA estimation procedure for v = 0 are displayed in panel (d); for a small o # 0 in panel
(e). Darker shading of cells indicate parameters that are larger in (absolute) magnitude.

data. Instead, we aim to produce estimates that are close to the sparse equivalence class. In
almost all simulation runs (496 out of 500), Matthews Correlation Coefficient (MCC) between
the sparse (®, ©) (Figure A1, panel b) and the estimates equals one; thereby providing perfect
recovery. By taking a = 0, our simulation results thus show that our estimates are very close
to one of the elements in the sparse equivalance class, which is in line with our theoretical
result on partially identified estimation.

Next, we estimate the VARMA with a non-zero but small a (we take a = 1072, thus
small relative to the selected values for A\¢ ~ 10% and \g ~ 10). By adding the ¢5-norm to the
objective function, we expect to produce estimates that are closer to the unique (®©, 0©)),
This expectation is confirmed by our results, as can be seen from the corresponding estimates,
visualized in Figure A1 panel (e). The average (over the simulation runs) MCC between the
target (Figure A1, panel c¢) and the estimates is 0.97 with a standard error smaller than
0.001.

Since there exist multiple equivalent, sparsest VARMA representations with different sup-
port, we do not focus on model selection consistency in the paper but instead on forecasting.

For forecasting purposes, we are interested in obtaining a parsimonious VARMA represen-
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tation with good out-of-sample performance. For this reason, we prefer to use a = 0 in
the simulation study and forecast applications since our numerical experiments showed that
this generally produces a sparser (i.e. with fewer non-zero coefficients) estimated VARMA

compared to the estimates obtained when taking a non-zero but small.

B Key Technical Ingredients

Our first technical ingredient provides a deviation bound (in element-wise maximum norm)
for the product of two random matrices, whose rows consist of consecutive observations from
two time series that are outputs of a linear filter applied on the same stationary Gaussian
time series. In the analysis of both Phase-I and Phase-II, we use this result to control
upper bounds on inner products of columns of the design matrix and the error matrix. This

proposition generalizes a similar concentration bound in [10] for uncorrelated time series.

Proposition B.1. Let {y; }1ez be a d-dimensional stable, Gaussian, centered time series with
spectral density f,. Consider two time series Xy = A(L)y; and Y; = B(L)y:, whose d x d
matriz-valued lag polynomials A(L) and B(L) satisfy ||All21 < oo, ||Bll21 < co. Let X =
(X7 Xp_q o0 Xl]T and Y =[Yr :Yp_q:---: Yl]T be two data matrices, each containing
in its rows T consecutive observations from the time series { X, } and {Y;}, respectively. Then

there exists a universal constant ¢ > 0 such that for anyn > 0 and any u,v € S, we have
P [Ju" (XTY/T = Txy(0) v| > 6x|f, | max{ A% [1BII*} 7] (B.1)

is at most 6 exp[—cT min{n, n*}].
In addition, if T 7 log d, then for any A > 0, the following upper bound holds with probability
at least 1 — 6 exp [—2(cA? — 1) log d):

| XY/ < 2l [3A max{ ILAIE 11} v2Togd/T + 1A 1811, -

Remark B.1. The two terms in the above bound can be viewed as the variance and bias
terms. The first term provides a bound on the deviation of XY /T around its expectation

in element-wise maximum norm. This bound scales with the dimension d at a rate /logd/T
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similar to the case of i.i.d. random variables. In addition, the terms ||| f,|l, [|/A|l and [|B]|
capture the effect of temporal dependence on the convergence rates. The second term pro-
vides a bound on the bias, i.e. the population covariance between the time series X; and
Y;. This Holder-type bound involves the operator norms of the spectral density of y; (across
frequencies), and the linear filters A(L) and B(L) applied on y;. The bound on bias can be
potentially improved using additional structures of the linear filters (see remark after proof

below).

Proof of Proposition B.1. In order to obtain a high probability concentration bound, we first
state a generalized version of Proposition 2.4(b) in [10], allowing for correlation between the
two time series. The proof follows along the same line, only replacing (2/n) > | w'z" with
(2/n) > 7wzt — Cov(z', w') in the left hand side of the first equation in their proof.

Let {X; ez and {Y;};cz be two d-dimensional stationary Gaussian centered time series,
with autocovariance function I'y )y (h) = cov(Xy, Yiin) = E[X}Y,},] and cross-spectral density
fxy. Assume the process Z, = [X," : ;7] is stable so that it has bounded cross-spectrum
[ fxy|| < oo. Let X and Y be T x d data matrices, with rows corresponding to consecutive
observations from the time series {X;} and {Y;}, respectively. Then, for any u, v € R? with

|lull <1, ||v|| £ 1, and any n > 0, we have

P [u"(X"Y/T = Txy (0)v| > 2 [l fxll + I fx + 1AMl ] (B.2)

is at most 6 exp[—cT min{n,n*}] for some universal constant ¢ > 0.
Next, we use the fact that || fx,y[|* is at most || fx [[[lfv I, so that || fx.yv [l + [l fx Il + v

is at most 3 max[ I, [l I}

By definition of X; and Y}, the spectral densities take the form

Fx(0) = A(e”)f,(0)A" (),
fr(0) = B(e”)f,(0)B"(e"),
Fxy(0) = A(”)f,(0)B(c").

This implies || fx [l < AN, A< IBIPIAI and [y Il < IANIBIINAII < oo, so
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that the above concentration bound can be applied. Plugging in these upper bounds into
the above concentration inequality, we prove the first part of our proposition.

In order to prove the second part, we set n = A\/W and take union bound of the
event in (B.2) over d? choices of u,v € {ey,...,e4}, the set of canonical unit vectors in R?.

Since T' =~ log d, we have min{n, n?} = n? so that the above inequality implies

P[I272/T] > IPxr Ol + 6mAllf, | max{ILAI, I1BIP} v/2log d/T]

is at most 6d? exp[—cA?log d*] = 6exp [—(cA? — 1) log d?].

Next, in order to get an upper bound on ||I'x y(0)|/~, note that

I'xy(0) = Cov(A(L)y, B(L)y:)

= > > AI(t—-m)B,,

£>0 m>0
™

— > e mOAf(0)B,),do

T >0 m>0

= ) [ / ' (Z Ageiw> F(0)e™™dg

m>0 T \£>0

B'.

Therefore,

1Ty (0)lloo < ITxy ()] < 27 LA £y I Bl 2,1
O

Remark B.2. Note that the bound on ||I'xy (0)|| may be improved using information on
the dependence between X; and Y;. For instance, if we consider X; = 4, , and Y; = y;, then
we can expect that 'y y (0), the covariance between X; and Y}, will decay with larger ¢, but
our bound does not. A tighter bound on ||I'xy (0)|| can potentially be obtained using special

structures of X; and Y}, as in our proof of Proposition D.2.

Our second key technical ingredient will be used to provide an upper bound on the
operator norm of the spectral density of a time series of the form z; in Proposition 2.1 in
terms of the spectral density of y; and the linear filter used to generate a; from y;. We use

this to provide a finite-sample upper bound on the deviation of the sample Gram matrix in
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the Phase-II regression from its population analogue.

Proposition B.2. Consider a d-dimensional centered stable process {y;}, and a dxd matriz-

valued lag polynomial C(L) with finite ||C||21. Then the spectral density of the d(p + q)-

dimensional derived process

= [y;r—b ytT—27 <. 7ytT—pvc(L)y;r—la .-

satisfies || 2l < (p+ gllC®) I1£, -

LC(Lyyl,]

Proof of Proposition B.2. Let C(L) =, C,yL* be a potentially infinite order d x d matrix-

valued lag polynomial. The autocovariance function of the process {z;} takes the form

Yt—1

ytfp

I'.(h) = Cov(z, zt45) = Cov
C(L)yt—

C(L)ytfq ]

Yt—1+hn

Yi—p+h

C(L)Yi—14n

C(L)ytfq+h ]

The d(p + q) X d(p + q) matrix on the right can be partitioned into four blocks. Since

[Ty (R[] < 27| fyll < oo for all b € Z, and |[|Clla1 = D 4 [|Cell < oo, using dominated

convergence theorem we can express the four blocks as follows.

1. Block (1,1), size dp x dp: consists of p* submatrices of size d x d each, the (r,s)’

h

submatrix given by Cov (yi—p, Yt—sin) = I'y(r — s+ h), for 1 <r, s, < p;

2. Block (1,2), size dp x dq: consists of pg submatrices of size d x d each, the (r,s

)th

submatrix given by Cov (yt,r, Eezo C’gyt,erh,g) = Zego Ly(r—s+h—0C/], for 1 <

r<p, 1<s<g

3. Block (2,1), size dq x dp: consists of pg submatrices of size d x d each, the (r,s

)th

submatrix given by Cov (Zezo Coli—r—p, yt_$+h) = Zezo Cly(r—s+h+1?), for1 <

r<gq,1<s<p;
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4. Block (2,2), size dq x dq: consists of ¢> submatrices of size d x d each, the (r,s)™"

submatrix given by Cov (Zezo Colyt—r—t, ) >0 Cg/yt_5+h_g/) =Y w50 Oy (h+r—s+
C—=10"Cp, for 1 <r s <gq.

Similarly, the spectral density f.(6) = (1/2m) > - T.(h)e~™? for any 6 € [—m, 7| can be
partitioned into four blocks as follows:
Block (1,1): the (r,s)" submatrix, for 1 <r <p, 1 < s < ¢, is given by

Ly(h+r— s)e~ht — ei(r_s)efy(ﬁ)

=—00

1
2
h

Block (1,2): the (r,s) submatrix, for 1 <r <p, 1 < s < ¢, is given by

1 < »
Dy Z ZFy(r—s+h—€)C’;e ho

h=—o00 £>0
1 & | |
= D |5 2 Dulr— st h— e Gl et
>0 h=—o0

_ fy(9>c*(€i9)ei(r—s)6‘
Block (2,1): the (r,s)™ submatrix, for 1 <r < ¢, 1 < s < pis given by

1 —i
%ZCng(r—s+h+€)e ho

>0

1 = —1 r—s i(r—s
= Z[% Z Ty (r — s+ h+ £)e hir=stOf | gilr=st0)0

£>0 h=—00

_ e (Z c) £,(6) = () £,0).

>0
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Block (2,2): the (r,s)™" submatrix, for 1 <r < ¢, 1 < s < ¢ is given by

Z Yo Cly(h+r—s+t—0)Cre ™

h*—oo £0'>0
! N —i r—s+{—{/ i(r—s
= Z(Jz(% ny(h+r—s+€—£’)e (htr—s+t Z)G>CT +e—2)6
£,0>0 h=—00
= z r—s)0 (ZC ezé@) fy (Z ng 4 9) _ ez r—s OC( ze)fy< ) ( )
>0 >0
Let v, and v, denote the vectors [¢”, ..., e®’]" and [¢”,.. ., e"’]T respectively. Then the

four blocks of f.(0) can be expressed as (vv3) @ f,(0), (v,0%) @ (f,(0)C*(e?)), (vquy) ®
(C(e) f,(0)) and (vgv)) @ (C(e”) f,(0)C*(e")) respectively. Since ||v,| = | /viv, = /P, and

llvgll = /@, and ||[A ® B|| = ||A||||B]|, by the norm compression inequality we obtain

I < pllf Il v/2alllfyHICl]

VadlLINCl allfen?
= |I£,lll (p +gliC]I®) -

O

Lemma B.1 (Controlling &; — &;). Let {x;} be a d-dimensional, centered, stable Gaussian
time series, and let z; = B(L)(é; — &), where B(L) is a finite order lag polynomial of degree
qgand {é; — e}, t =1,,...,n+ ¢ is a sequence of d-dimensional random vectors satisfying
S é —edl?/(n+q) < A? on an event € such that P(€) > 1— ¢y exp[—(c; A2 — 1) log d%p].
Also, let {wt}t:yj be a sequence of random vectors given by w; = &,_; — ,_;, for some
j€{1,...,q}. Consider data matrices X', Z and W containing n consecutive observations
from the time series z, 2; and w; respectively, and assume n =~ log(d*p). Then there exist
constants ¢; > 0 such that for any two unit vectors u,v € S% !, each of the following

statements holds with probability at least 1 — ¢ exp[—(c; A% — 1) log d*p:

) JuT (X7 2/m) o] < [2rllall (1 + A Viog @5 /m)| " TF AT ANBas

(i) [u™ WTZ/n)v| < (1+ q/n) AZ||B]|2,1.
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Proof. In order to prove (i), note that

u' (XTZ/n)v = % Z (u'zy) [vT Z By (E1-x — €tk)]

k=0

— Z % Z (uTxt) (UTBk(épk — 5t7k>)
. 1_” ] L1
Z [ﬁ Z (UTJ?t) ] [ﬁ Z (UTBk(ét_k — 5t—k)) ] .

k=0 t=1

IA

Using the concentration inequality in Proposition 2.4 and the upper bound on the spec-
tral norm of population covariance matrix in Proposition 2.3 of [10], square of the first
term in each summand is at most 27| f.[|(1 + Ay/logd?p/n) with probability at least
1 — copexp[—(c;A? — 1) logd?p]. Also, using the Cauchy-Schwarz inequality, square of the

second term in the k' summand above satisfies, on the event &,
1 & R ) 1 A
n ; [(UTBk(st_k —&k)) } < o ; | BellPléc—k — eill* = || Be|*(1 + q/n) A2

Together, this implies |u' (X Z/n)v| is upper bounded by
21|l fellv/1 + g/n (1 + Ay/log d2p/n)' 2 (31, || Bell) A with the specified probability.

In order to prove (ii), note that

u' WTZ/n)v = %Z CHEEE) (UT Z By(—r — 5t—1c)>

t=1

0 [y ) 1/2 Lo , 1/2
<> [ A ey

n
k=0 t=1 t=1

Using the argument above, we can check that on the event &£, the square of the first term
in each summand is at most (1 + ¢/n)A2? and the square of the second term in the k"
summand is at most (1 + ¢/n)||By||*?A2. Putting things together, the right hand side of the
above inequality is bounded above by (1+ ¢/n) (3_4_, || Bkl|) AZ. O

Lemma B.2. Consider ¢; and A, as in Lemma B.1, and A, as defined in (D.5). Let Z be

a data matrix consisting of n consecutive observations from the time series
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T T T AT AT AT T -
Wi 13 Ysas - Yrpr €154 251 €44] , and Z a data matrix for

{z} =Wl vla 7ytT—p7 al y,al 4. a0 q] Assume n 27 log(d*(p + ¢)) and p > p +q.
Then there exist universal constants ¢; > 0 such that for any u, v € S*P+9~1 with probability

at least 1 — cgexp[—(c1A? — 1) log d*(p + q)], the following holds:

W (272/n-T.(0)) v (1 + Av/Tog @(p + g)/n) + q(1 + ¢/n) A2

12 [2rll£1I0 + AVIoe @0 /ma(L+a/m)] A,

Proof. We begin by re-writing z; as z; + w;, where
w, = [OT, o 0T (G —an) T (B — at_q)T} " Then the following decomposition

holds:

‘uT <2T2/n - Fz(())> v} < Ju" (2TZ/n—T.(0) o]+ |u" (Z2"W/n)v|
+ T (ZTW/n)ul + [u" (WTW/n) vl

Using Proposition 2.4 in [10], we can obtain a high probability upper bound on the first term

on the right hand side in terms of ||f.[|. In order to control the second and third terms,

assume v = [v] , vy, ... ,v;rq]T, where each v; € R?, and note that

}uT (ZTW/n) v‘ = ‘% Z(uth)(vat)

—1 n 1/2 Lo 1/2
< |- Z(uth)2 [— Z(vat)Ql

_n t=1 nt:l

- 12 [ A1 ™ 5 12
< [l AViogd T o] 305D (s - ai)

i Lk=0 = t=1

i 12 r g 1/2
< [l + Aviogdlp + a)/m)] D0+ a/m)llpl A2

i Lk=0

The result follows by using the fact that on the event £, square of the second term in

the above product is upper bounded by ¢(1 + ¢/n)AZ, and noting that ' (W' W/n)v =
i (wlw) (vTw) < (14 q/n)A7 O
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C Proof of Proposition 4.1 (Elastic Net)

Proof of Proposition 4.1. Set B +— B(O‘), and define g5 = PS(B), the projection ofﬁ onto
the affine space 8 := {8: 58 =p}. Note that 8* € S. Set v = § — 8%, v; =  — S5,
vy = 3% — B*. Then vy € N(X), v1 L N (), and ||v]|* = ||v1]|* + ||ve]|?>. Consider

R 1 a .
B € argmin —|Y = X812+ (181 + S 18]12) subject to |81 < M

BERY

where M > ||5*|]x.
Start with the basic inequality

1 Al ) a, ang 1 %112 * Q *112
L= X[ (04 S0817) < iy = X8I A (1671 + 516°1P)
n 2 n 2
This implies
lX Q_ETXT <\ || * g *(12 * 2
~[[X0l* = —0 X e < A (I187]lr = 18"+ vll) + 5 (18°1° = 15"+ ©lF)
Since || X "e/n|l < A/2, moving the second term to the right we get
* * Q * *
0T (XTX/n) v < Allolly + A (181 = 18+ olla) + 5 (18712 = 18"+ v]?)] .
which in turn implies, by triangle inequality,
T (XTX/n)v < A [2“5*“1 + %HB*HQ] < A[2M +aM?/2).
This implies

v = v (E=X"X/n)v+v" (XTX/n)v

IN

1= — XTX/n||_ vl + A [2M + aM?/2]

N

4g, M? + X [2M + aM?/2] , since [jv]|; < 18111 + 18%|l, < 2M.
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By the orthogonal decomposition v = v + v, we have

v ' Yo =0 Lv; > AL (D) [ ]|%

min
Combining the above two inequalities,

4q, M? + X [2M + aM? /2]

ol = 113 = B < o

We restate the point identification result of part (c) in the form of a complete proposition

C.1. [l

Proposition C.1. Let ¥ € RP*P be a non-negative definite matriz with Anin(X) = 0 and
let p € RP be in the column space of ¥.. Consider the linear regression model yny, =

Xprﬁ*D(:)l + enx1 with identified target
3@ = argmin {P,(B) s.t. T8 = p},
B

where Po(B) := ||B]l1 + (a/2)||8]], and let

N

. 1
B = angain {Pa(3) st 1y~ X6 < Aw. 3l < M}

be the estimator. On the event

L e
= lell” = o*
n

= {IXTX/n =3, < g X7l <

Ssn}

and choosing A, = 0%+ s, and M > ||3*¥||;, the following holds:

R 2
/6(04) _ 6*(04) < 21}n + 2(\/5/0[ + M)Uqll/27

[ 4Mrn+25n+4MQQn +
where v, := AT () and A,

(3) is the smallest non-zero eigenvalue of .
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Proof of Proposition C.1. The estimator can be written as

A

ﬂ(a) i= argmin {,Poz(6) st. B €Ay, ||ﬂ||1 < M}7 (Cl)
B

where A, = {8 : 2|y — XB||> < A,}. Our proof consists of a series of lemmas. We begin
by relating the estimator’s constraint set to the equivalence class of parameters that could

have generated the data.

Lemma C.1. If A, > 02+ s, then 8*® € A, on the event &.

Proof. By the triangle inequality,

1 1
EH?/ — XB*|? = EHgH2 < 0? + sy

Our next lemma is a result about our estimator’s in-sample prediction performance.

Lemma C.2. If we choose A,, = 02 + s, then on the event &,

L st _ gy

HHX(B — BN < 4AMr, + 2s,.
Proof. We rewrite the inequality L[y — X 3] < A, as

) 1 .
IX (B = B NP < n(An = —lel?) + 26X (57 = ).
n

Our choice of A,, means that

+ Sp.

1 1 1
An =~ el = 0 + 50 — —[lell* < |o* — —[e])”
n n n

On the event &£, we know that this is bounded by 2s,,. Thus,

X (B — )| < 2ns, + 25T X (57 — 3@),
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Furthermore,
IX (5 = B @) |* < 2ns, + 2] X Te|oo - | = .
Dividing both sides by n and recalling the definition of r,, (through the event &) gives
CIX(B) - B)? < 25y + 20|71 - B
The triangle inequality and recalling that both vectors are bounded by M in ¢; norm gives

1.
ZIX (B — B2 < AMr, + 2.
n

Our next lemma extends this prediction result from X to X1/2.

Lemma C.3. If we choose A,, = 02 + s, then on the event &,
[ZV2(B@) — )12 < AMr, + 25, + 4M?g,.

Proof. Writing

1

MW%@”—ﬁWWF=%Wﬂ@“—6W%W+%@”—6W%WZ—EXfXM%”—W“W

we apply Lemma C.2 to get

A *(a o(a *(a 1 a(a *(a
[BY2(3) = BO)* < AMry + 25, + (B = ) (8 = —XTX) (B = 5+().

Now, for a matrix A, v' Av = 37 vid;v; < [[Allee 2o, [villvs] = [ Allsolv]|7, and recalling

the definition of ¢, (through the event £) we have
ISY2(B) — NP < AMry, + 28, + gul B — 87|13,

The result follows by the triangle inequality and that both vectors are bounded by M in ¢,
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norm. O

At this point, we move from prediction bounds to estimation bounds. Our next step is
to translate the previous result to a statement about our estimator not being too far from

the set of possible parameters that generated our data, that is the affine space {8 : 35 = p}.

Lemma C.4. Let Bl(f‘) denote the projection of B(a) onto the affine subspace {f : 35 = p}:
5 = argmin {3 - B 5. 26 = p}..
If we choose A,, = 0% + s,,, then on the event &,

18 = 352 < v,

where
AMr, + 25, + 4M?q,
Uy, 1=
Ar_'r—un(z)
and AT, (¥) is the smallest non-zero eigenvalue of 3.

Proof. The distance of B(O‘) to the affine space is given by

18 = B = min {13 - 8 s.t. £5 = p}
B
— i 3e) _ grle) _ 5|12 =
—m(;m{Hﬂ B@) — 5|2 s.t. 25_0}

= IZZF (B = g7

where in the second equality we use that £5*® = p and in the third equality we use that
the row space and null space are orthogonal complements and therefore the residual after

projecting onto the null space is equivalent to the projection onto the row space of 3 (and
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here the row space and column space are identical). Now, ¥X* = (£1/2)*X/2 and so

13 — B2 = ||(ZY2)rSY2(B@) — pH@))2
< (B2 HPRY2(B@ — g2

< =23 = B )P/ AL (2):

The result follows from the previous lemma. m

At this point, we have bounded the distance between our estimator and the identified
target in the direction orthogonal to the affine space. The remainder of the proof of the
proposition is aimed at bounding the distance along the affine space. To do so, we make use

of the strong convexity of the objective function P,.

Lemma C.5. Under the same setup and conditions as the previous lemma,

Pa(BE") = Pu(B) < (VD +ad)u) + G,

where v,, is defined in Lemma C.4.

Proof By the triangle inequality, ||ﬁ )”1 — 3@, < ||6 — B@]|; and ||Bl(3a)|] < ||B@| +

I Bl 57 — B@)||. Squaring this second inequality gives

1BS2 < 1812 + 1185 = B@)2 4+ 2| 3@ - |85 — g
< NB@N2 + 1185 = B2 + 2M | B — B

Thus,

Pa(B) = PalBD) < 1B = Bl + 5 (1857 = B2 + 201113 - 3]

< (VD +aM)||BE" = B + SIIBE - B

The result follows from the previous lemma. O
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Lemma C.6. Let pra) be the projection of B(O‘) onto {B: X8 = p}. If we choose A,, = 02+s,
and M > ||8*®||;, then on the event &,

18 — B @2 < 2(VD/a + M)wY? + vy,

AMr,+28,+4M2q,
where v,, ;= L=
" Amm(z)

Proof. By a-strong convexity of P, and the definition of 5*(®), we have that for any v such
that Xy = p,
*(ov o *o
Pa(7) = Pa(B) + Sy = 8|

Substituting B](f) for v and rearranging terms gives
185 = 8" < (2/0) |Pa(B3”) = Pa(8®)] -

By Lemma C.1, 8*(®) € A, and by assumption ||3*(®)||; < M, thus 8*® is feasible for (C.1),
meaning that P, (3(®) < P,(8*). Thus,

1857 = 82 < (2/a) | Pa(B”) = PalB)] .

We apply the previous lemma to the right-hand side to conclude the proof. O

The results of Lemma C.4 and Lemma C.6 can now be combined to give the desired

estimation result:

1@ — @2 = |3 — B2 4 || — g2
< v, +2(VD/a+ M)v? + v,

< 20, + 2(VD/a + M)v}/?.

This establishes the proposition. O
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D Proof of Proposition 4.2 (Phase-I Analysis)

We divide the proof of Proposition 4.2 in four steps. First, in Proposition D.1, we provide
deterministic upper bounds on the estimation errors (ﬁ—H) and approximation errors around
the regression residuals (¢;,—¢;) for a given realization of (T'+p) consecutive observations from
the VARMA process, under some sufficient conditions. Then we show in Propositions D.2
and D.3 that for a random realization from the VARMA process, these conditions are satisfied
with high probability when the sample size is sufficiently large. Finally, we provide upper
bound on the approximation errors around the true VARMA errors (¢; — a;) in Proposition
D.4.

We start with the deterministic upper bound on the deviation of the estimated residuals
£, around &; without making any assumption on the design matrix Z. This is essentially
a so-called “slow rate” bound, as appears in the lasso regression literature [26]. Then we
provide a tighter upper bound on the above deviation, and an upper bound on the deviation

of {II,}*_, around {II,}”_,, under a restricted eigenvalue (RE) condition [37, 10]:

Assumption D.1 (Restricted Eigenvalue, RE). A symmetric matriz G,«, satisfies the re-

stricted eigenvalue (RE) condition with curvature v > 0 and tolerance 6 > 0 if
v Gu > q|lv||* = S|lv||?, forall vER (D.1)

These upper bounds involve the curvature and tolerance parameters v, ¢ as well as the
quantity ||Z7€/T ||, and do not relate directly to the VARMA parameters. Propositions
D.2 and D.3 then provide insight into how these quantities depend on VARMA parameters,

when we have a random realization from a stable, invertible VARMA model (1.1).

Proposition D.1. Consider any solution 3 of (4.2) using a given realization of {yedizi;
from the VARMA model (1.1), and set £ = vec(FE). Then, for any choice of the penalty
parameter X > 2 HZTF,’/THOO, we have

T P

1 .

T Do llE =l <22 L), = AL (D.2)
t=1

=1
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Further, assume {Ily,... ,II;} are sparse so that k := 5:1 |IL:|[,, and the sample Gram
matriz Z"Z|T satisfies RE(v,6) of Assumption D.1 for some model dependent quantities
v > 0,0 > 0 such that ko < ~/32. Then for any choice of A > 4||ZT5/THOO, we have the

following upper bounds

_ _ 1/2
p N p N 2
M, —1L|| <64kr/n, HHT—HT < 16vVkN /7,
;H <64k | ) VN
1 T
T D lle —edll* < 128kX7/y =: A2 (D.3)

t=1
Proof of Proposition D.1. Since § is a minimizer of (4.2), we have
o Y - N ARV Y
T 1 T L
Let v = B — [* denote the error vector. Substituting Y = Z3* 4+ £ in the above, we obtain
1 2 * ]' 2 *
Z1E = Zo + XNI8* + olly < €I + A",
Moving some terms to the right hand side of the inequality, we get

v (ZTZ)T)v <20" (ZTEJT) + X(||B*]ls = [|18* + v]1) - (D.4)

Since A > 2||Z7€ /T ||, and the first term on the right is at most 2||v||1||Z "€ /T ||, We have

p
0T (Z7Z)T) 0 < Aol + 1671 — 157 +oll) < 2018 = 23S T .
T=1
Then (D.2) follows from the fact that

T
1.~ 2 1
T T A 2
v (Z7Z)T)v = = HXB—XBHF == ;1 18 — &

Next, suppose J denotes the support of 5*, ie. J = {j e{l,...,d*p}: B # O}. By our
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assumption, |J| < k. Inequality (D.4), together with our choice of A, then leads to

A * *
0<v' (Z7Z)T)v < 5 (vslle + Nlvgellr) + A UBIIL — 1187 +vslly = [Jvsell)
A
< 5 (lvslls + [vsellr) + A (lvslls = [[vsell1)
3 A
< 7||UJ||1 - §||UJC||1 < 2 Jvslls < 2M o1

Since A > 0, the first inequality on the last line ensures ||vsc||;y < 3||lvs|]1, so that ||v]|; <

4||lvs]l1 < 4VE|jv||. Using the RE condition (D.1) and the upper bound on kd, we have

v (Z2'Z/T) v 2 y|ol* = dllv]l = (v = 16k) [o]|* = - lv]]*.

DO [2

Combining these upper and lower bounds on v" (Z TZ/ T) v, we obtain the final inequalities

as follows:

Yol2/2 <o (27 Z/T) v < AV
= ||| < 16AVE/7,

and consequently ||Jv|l; < 4vE|v]| < 64kN/7.
Together with v" (Z7Z/T)v < 2X||v|1, we obtain the final in-sample prediction error
bound 128kA?/~. O

Our next proposition provides a non-asymptotic upper bound on || Z "€ /T||o, which holds
with high probability for large d, p. If X is chosen as the same order of this bound, Proposition
D.1 then shows how the upper bounds of estimation and approximation errors vary with

model parameters.

Proposition D.2 (Deviation Condition: Phase-I). If {y_-1),...,yr} is a random real-
ization from a stable, invertible VARMA model (1.1), then there exist universal constants

¢; > 0 such that for any A > 1, with probability at least 1 — cqexp|—(c; A% — 1) log d*p,
2 =
1278/ Tl < 215, [34 max {15511, 1} ioR(@H)/T + |15, ] -
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Proof of Proposition D.2. Note that |ZTE/T||ec = |XTE/T||ee = maxi<p<; ||X(;)E/T||oo,
where Xp) = [(yr—n) .- : (y1-n)] -

Define X; = y_p = LMy, and Y, = ¢, = a; + Z:‘;ml I,y = U (L)ye. The first term
in our upper bound follows from (B.1) in Proposition B.1, by using X; = Ly, Y; = ¢; =
5 (L)y; and n = A\/W. To obtain the second term, i.e. the bound on the bias term

I'xy(0), we use the representation Y; = ¢, = a; + Z;’iﬁ 1 -y as follows:

Lxy(0) = Cov <yth,at+ > HTytT> = > Ty(h—7)ml.

T=p+1 T=p+1

First, note that the entries of I'x y(0) are upper bounded as follows:

Iy O, < Iy O < (s 0,001 ) 11, < 25040 T,

The last inequality holds since for any h € Z, I'y(h) = f; e f,(0)do.
O

The next proposition investigates sample size requirements for the RE condition to hold
with high probability, and also provides insight into how the tolerance and curvature param-

eters depend on the VARMA model parameters.

Proposition D.3 (Verifying Restricted Eigenvalue Condition). Consider a random real-
ization of (T + p) data points {y_(—1y,...,yr} from a stable, invertible VARMA model
(1.1) with Awin(Xa) > 0. Then there exist universal constants ¢; > 0 such that for T 7
max{w?, 1}k(logd + logp), the matriz Z'Z|T satisfies RE(y,5) with probability at least

1 — ¢y exp(—coTmin{w™2,1}), where

v=7/£ s @ = espll N[5 ]] 6 = v max{w?, 1} log(dp)/T.

Proof of Proposition D.3. The proof follows along the same line of arguments as in Propo-
sition 4.2 of [10], where the restricted eigenvalue condition was verified for processes {y;}
generated according to a finite-order VAR process. In particular, rows of the design matrix

were generated from the process g, = [y, ,...,y ;.,]" allowing a VAR(1) representation
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with closed form expressions of spectral density and autocovariance. In the present context,
{7:} does not have a VAR representation. However, a close inspection of the proof in [10]
shows that it is sufficient to derive a lower bound on A (I'5(0)) and an upper bound on
| f5lll, and the rest of the argument follows. Next, we derive these two bounds for the process
{e}-

First we consider Ay, (I'3(0)). Note that I';(0) can be viewed as the variance-covariance
of a vectorized data matrix containing p consecutive observations from the process y;. Hence,

using Proposition 2.3 and Equation (2.6) of [10], we can show that

Amin (03(0)) > min 2w Ay, (£,(0)) = 27| £;72]])

0€[—m,7]

The upper bound on ||| f;]| follows from Proposition B.2, by setting C(L) = 0, which

implies ;1] < Bl I .

Proposition D.4. Consider the Phase-I regression residuals €; in Proposition D.1. Assume
(1/T) 2 N6 — el < A2 with probability at least 1 — coexp|—(c1 A% — 1) log d*p] for some

universal constants ¢; > 0, and T = log(d*p). Then there exist ¢; > 0 such that

(a) For any v € S, with probability at least 1 — cyexp|—(c; A% — 1) log(d?p)],

M:

T(& - ay))® < 4max {Ag, 4 [T, |||fy|||} = A2, (D.5)

t:l

(b) In particular, with probability at least 1 — coexp[—(ci A% — 2) log(d*p)],

T

1 . 2 2
max o Z (6 — ayy)” < AL (D.6)

(c) With probability at least 1 — co exp[—(c; A? — 2) log(d?p)],

1~ .
= D1l — ail” < 4max { A2 4xd [Tz 15, 15,01} (D.7)
t=1
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Proof. We use the decomposition &, —a; = (£, —&;) + (6 — a;) and analyze the sum of squares

for the two parts separately. In particular, note that

T T T
1 . 2 1 . 2 1 2
7 Z (v'(& —a))” < 4max {? Z CHEEES) T Z (v"(ee — ar)) } :
=1 =1 =1

By assumption, the first part is at most A% with probability at least 1—cq exp [—(c; A? — 1) log d?p).
To work with the second part, note that e, —a; = II_p;(L)y; =: wy, say. The spectral density

of wy satisfies || f,,|| < ||TI- Il fylll. Using Propositions 2.3 and 2.4 of [10], we obtain the

[p] H2,1

following upper bound for any n > 0,

1 .
P { (fwtw? ) v > 2| £, I(1+n) | < 2exp [~¢T min {n,77}] .

Setting n = (1A% — 1) log d*p/T (note that n < 1 when T = log d*p), we conclude that the
second term is at most 47 || f,|| with probability at least 1 — 2exp [—(c; A? — 1) log d?p).
The second inequality (D.6) follows by taking an union bound over the choices v =
e1,...,eq, the unit vectors, and multiplying the tail probability by d?p > d. The third
inequality (D.7) follows by adding up these d terms corresponding to the d unit vectors. [

Proof of Proposition 4.2. The slow rate bounds follow from Propositions D.1, D.2 and D.4.
To establish the fast rate, note that by Proposition D.3, the RE condition with v =
/] w = espll flll|I| /7]l and 6 = v max{w?, 1} log(dp)/T holds with probability at
least 1 — ¢y exp [—cok log(dp)], for T = max{w?, 1}k(logdp). Since k(logdp) > log(d*p) for

k > 2, the event where both RE and deviation condition of Proposition D.2 hold has prob-
ability at least 1 — cgexp [—(c; A% — 1) log(d*p)] for some universal constants ¢; > 0. These
choices also ensure k§/y = max{w? 1}log(dp)/T < 1/32 for large enough 7. Plugging in
the value of v in the final inequality of Proposition D.1 leads to the tighter upper bound
A2 = 128kN? /vy = (128/7)||| £, ||| kA%, O
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E Propositions and Proofs for Phase-II Analysis

Before presenting the proof of 4.3, in Proposition E.1 we provide a high probability upper

bound on HZ~TL{ / n’ , which is required for the choices of both A in the penalized version

[e.9]

and r, in the constrained version. Deriving upper bounds for the other quantities ¢,, s,

follow similar arguments, and an outline is provided in the proof of Proposition 4.3.

Proposition E.1 (Deviation Bound: Phase-II). There ezist universal constants ¢; > 0 such
that if n 7= log d*(p + q), then for any A > 0 the following holds with probability at least
1 — coexp[—(c; A% — 2) log d*(p + q)):

log d*(p + q)
n

HZ;TU/TLHOO < ¢ + 2 (Ae + A+ HH—[ﬁ]Hm) ,

where

aullfyllA max {1, 0117 [T g3,

call fyll 1], max{1, [T, }-

HHm\HQ}:

©1

P2

Proof of Proposition E.1. Recall n = T' — q is the number of observations in the Phase-II

regression. The element-wise maximum norm can be expressed as

T T AT
|27umll = wax wmax{|ypusm| || Eaum|_}
1<t<p
I<m<gq
where Vi) = [Yn—¢:...: yl_g]T is a data matrix with n consecutive observations from the
process {y:}, E(m) = [Enom ... él,m}T is a data matrix with n consecutive observations

from the process {&;}, and U is a data matrix with n consecutive observations from the
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process {u;}. Also, the process {u;} can be alternately expressed as

u = ®(L)y: — O(L)e
= O(L)(a; — &)
= O(L)(a; —&;) —O(L)(ér — &)

(L)
(L)
= 6(L) (T(L) — T, (L)) — O(L)(E — =)
= ALy, + B(L)E — =), say.

The lag polynomial A(L) = O(L)II_jz(L) satisfies [|A]| < [|O[[IT_gl2,1, and B(L) =
—O(L) is a finite order lag polynomial.

Now note that each term y(}j)u /n can be expressed in the form of a sample covariance
matrix @/(Lzyt,ut) = > 0 yi—eu; /n. With this notation, we can decompose this into
two terms and apply deviation bounds from Proposition B.1 and Lemma B.1 on each term

separately. To be precise, for any £, 1 < ¢ < p, we have
Cov(yi_e, us) = Cov(L'y,, A(L)y;) + Cov(Liy, B(L) (¢, — &)).
Similarly, for any m, 1 < m < ¢, we can decompose @(ét,m, u;) into four parts as

Cov(E1—m — Etms AL)Y1) + Cov(Ey—m — E1—m, B(L) (2, — &)
+Cov(Ilg (L) L™ yr, A(L)ye) + Cov (I (L) L™y, B(L) (& — £1)-

Using bounds from Proposition B.1 and Lemma B.1 then implies that there are universal

constants ¢; > 0 such that each of the following events hold with probability at least 1 —
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cod? exp|—(c1 A% — 1) logd*(p + q)] as long as n > q, p > p + q and n = log d*(p + q):

|Covizty. B —2)||_ < 2v2mlIf A Ol
|Coviztye Ay _ < 2xilsll [N0I1 115311, +

3Amax {1, 0] T3]3, }v/log @ (o + a)/n|

Héo\v(ét_m e ALYy < 2V2aI£, 11 [Tzl A

|CovErm — erms BLYE — =) < 21185, A2

|Covtmp(z) Ly, BLyE — )| < 2v2rll il ||l A 1],

|Covtmgzy Ly, ARY)|| < 218, [NOI T3, [T+

2, BI04 2, ) Vlos & + g}/

3Amax{‘HH[ﬂ‘

Summing up the six terms above and taking a union bound over 1 </ <p, 1 <m < g,

we obtain the final upper bound. O

Proof of Proposition 4.3. We start by deriving a suitable choice of s,,. To this end, note that

for each 7, 1 < j < d, we have \//z;(utj) can be expressed as

e} Cov(u,u)e; = ef Cov (O(L)TTg5(L)ys, O(L)5(L)w) e
—2¢] Cov (O(L)IL_i5(L)ys, O(L) (&, — 1)) €
+e] Cov (O(L) (& — &), O(L) (& — &1)) e;.

We then use upper bounds on the individual terms using the deviation bounds provided in
our technical ingredients.
In particular, set w; := O(L)II_f5(L)y;. Then || f,[| < O] |- H§1 £y lll. Setting 0% =
e, L'y(0)e;, Proposition 2.4 of [10] implies, with probability at least 1—c; exp [—(c2 A — 1) log d*(p + q)],
the following holds:

ejTCov(wt, wy)e; — 0]2- < 27| full Av/log &2 (p + q) /n.
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The second term in the above expansion, 6;6(;/ (wi, ©(L)(é; — €1)) €, can be bounded in

absolute value (use Lemma B.1 and note that n > ¢, n = log d*(p + q)) by the following:
1/2
2v2r || ful 2 Ac 1O, -

The last term in the above expansion, eJTC/(;/ (O(L)(ér — &), O(L) (€ — &1)) €, can be bounded

in absolute value (see proof of Lemma B.1(ii)) by the following:
2 2
2(18]l3, Az

Combining these, we obtain the following choice of s,, (with o? as 25:1 o3):

sn = 2|0l [Tz, £, Ad log d(p+ q)/n +
ay/2ml|O [Tz |[3, 1l d A O], +2d O], AZ

The choice of ¢, follows from Lemma B.2, with a union bound over d?(p + ¢)* choices of

w,v as canonical unit vectors in R¥®?*9)_ In particular, we have

Gn = 27| .|| AV/log 2(p + q) /n + 2gA% + 2/ 27| f. || g A

The choice of 7, follows directly from the Proposition E.1. O

F Implementation of the Sparse VARMA Procedure

Phase-II Proximal Gradient Algorithm. The objective function in (3.4) is separable
over the d rows of ®,© and can thus be solved in parallel by solving the “one-row” sub-
problems, see e.g., [43]. Denote the i"* row of Y by Y; = R>(T=2) the i row of ® by
;. € R and the i'" row of © by ©,. € R'*%_ The Proximal Gradient Algorithm for the
one-row subproblems is given in Algorithm 1.

Choice of convex regularizers. As indicated in Section 3, we focus on the ¢;-norm
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Algorithm 1 Proximal Gradient Algorithm to solve Phase-I1

Input Yi, Z, X, p, q, ©;.[0], ©;.[0], e, Ao, @, PAR(®), Pua(O), €

Initialization Set

(] @1[2] — G)L [1] «— @lz [0]

e step size s = 1/01(A)2, with o1(A) the largest singular value of the matrix A = (£)
Iteration For r =3,4,...

~ r—2
. ¢(—<I’i.[7“—1}+m(q>i»[r_l]_q)i-[r_z])

1

° q)l[T](—i
1—|—O¢~)\q>

. Proxsxépi((p) ((/5— qu>£i($)),
where ’
B Veli(d)=—(Yi —6Z—0[r—1]X)Z7,
] Prostq)Pi(q)) () the proximal operator of the function s/\q>Pi(‘f’)(,) where PAr(®) =3, Pz‘(q))(q)i‘)'
r—2
r+1

Proxs/\epi’(@ <9 - SV(_),Ci(G)),

e 0 0O,r—1+

(©;.[r —1] — ©;.[r —2])

° @1[7“] — —
l14+a-do
where
B Voli(0)=—(Yi — . [r]Z —0X)XT,

B Prox () the proximal operator of the function s)\@Pi(@)(-) where Pva(©) =3, Pi(@)(@i')'

re PO
Convergence Iterate until ||®;.[r] — ®;.[r — 1]||oc < € and ||0;.[r] — O;.[r — 1]||c < €

Output &;. + ®;.[r]; ;. « O,.[r]

and HLag penalty as choices of convex regularizers. For the ¢;-norm,

d p

d q
PO @) =3 [y ) and P70 =373 10,1,
1

j=1 = Jj=1 m=1

For the HLag penalty,

d q
e
126451 and P2(©,) =33 |00yl

1 j=1 m=1

NE

PP =

Jj=1

~
I
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G Simulation Study

We investigate the performance of the proposed VARMA estimator through a simulation
study. We generate data from a VARMA,(p, ¢) with time series length "= 100. To ensure
identification, we take ®,, 1 < ¢ < p, diagonal matrices and set each diagonal element of
®, equal to 0.4/¢. For the autoregressive order, we take p = 4. For the error covariance
matrix, we take X, = I;. To reduce the influence of initial conditions on the data generating
processes, the first 200 observations were discarded as burn-in for each simulation run.

We consider several settings for the moving average parameters. We take banded matrices
for ©,,, 1 < m < g with the diagonal elements of ©,, equal to §/m, the elements on the
first lower and upper subdiagonals equal to 6/(10m), and the elements on the second lower
and upper subdiagonals equal to 6/(100m). The parameter 6 regulates the strength of the
moving average signal. The parameter ¢ regulates the moving average order. We investigate
the effect of the following features. (1) The MA signal strength: we vary the parameter
0 € {0,0.4,0.6,0.8}. The larger 6, the stronger the moving average signal. Note that for
0 = 0, the true model is a VAR. (i) The MA order: we vary the parameter q € {4,6,8,10}.
(71i) The number of time series: we vary the number of time series d € {5, 10,20,40}. In all
considered settings, the VARMA models are invertible and stable.

Estimators. We compare the following estimators. (i) “VARMA(p, ¢; a;)”: the VARMA
estimator of model (1.1) with an oracle providing the true errors a; and orders p and ¢. (ii)
“VARMA (p, ¢;&;)” the VARMA estimator of model (3.3) with approximated errors and an
oracle providing the orders p and ¢. (iii) “VARMA(p, ¢;&;)”: the VARMA estimator of model
(3.3) with approximated errors and specified orders p = g = [0.75v/T|. (iv) “VAR(p)”: the
VAR estimator of model (3.1) with specified order p = [1.5v/T]. We use both the ¢;-norm
and the HLag penalty to obtain our estimates.

Performance Measure. We compare the performance of the estimators in terms of
out-of-sample forecast accuracy. We generate time series of length 7'+ 1 and use the last

observation to measure forecast accuracy. We compute the Mean Squared Forecast Error
1.1
s S 2
MSFE = > C—i”y(zu)rl — G,
s=1
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Figure A2: Mean Squared Forecast Errors (averaged over the simulation runs) of the four
estimators for different values of (a) the moving average parameter 6, (b) the moving average
order ¢, and (c) the number of time series d.

where y@ is the vector of time series at time point ¢ in the s** simulation run, and ﬂfs) is its

predicted value. The number of simulations is N = 500. We focus on out-of-sample forecast
accuracy in the simulation study, in line with the discussion of the applications in Section 5.
We did also compare the estimators in terms of the estimation accuracy of the II-matrices;

similar conclusions are obtained and available from the authors upon request.

G.1 Effect of the Moving Average Signal Strength

Figure A2 panel (a) shows the MSFEs (averaged over the simulation runs) of the four esti-
mators for different values of the moving average parameter 6, which regulates the moving
average signal strength. We report the results for the HLag penalty and d = 10,q = 4.

If the true model is a VARMA (i.e. 6 # 0), the VARMA estimators perform better
than the VAR, as expected. The larger 6, the larger the gain of VARMA over VAR. The
differences in forecast accuracy between the VARMA estimators and the VAR estimator
are all significant, as confirmed by paired t-tests (at the 5% significance level). Among
the VARMA estimators, there is no significant difference between “VARMA(p, ¢;a;)” and
“VARMA (p, ¢; &;)” thus supporting the validity of the two-phase approach. The VARMA
estimator with estimated errors and selected orders (i.e., “VARMA(p, ¢;&,)”) performs, for

all values of 6, very similarly to the one with known orders. The loss in forecast accuracy of

64



Table Al: Mean Square Forecast Errors (averaged over the simulation runs) of the four
estimators with either HLag penalty or £;-norm and for different values of the moving average
parameter 0. P-values of a paired t-test are in parentheses.

VARMA(p,q;a;) ~ VARMA(p,¢;&;)  VARMA(p,q; &) VAR(p)

HLag fq HLag I HLag 12 HLag fq
=0 1.234 1.263 1.234 1.263 1.292 1.334 1.243 1.317
(<0.01) (<0.01) (<0.01) (<0.01)
=04 1.270 1.299 1.273 1.303 1.311 1.387 1.393 1.558
(0.415) (0.396) (0.040) (<0.01)
=06 1.281 1.315 1.281 1.321 1.351 1.459 1.536 1.802
(0.360) (0.293) (<0.01) (<0.01)
=08 1.349 1.383 1.355 1.399 1.454 1.582 1.780 2.159
(0.275) (0.170) (<0.01) (<0.01)

not knowing the autoregressive or moving average order is limited to 5% on average.

If the true model is a VAR (i.e. # = 0), the VARMA estimators with known orders
both reduce to a VAR(p) estimator since 6 = 0, hence ¢ = 0. They give the lowest MSFE.
However, in practice, the orders of the model are not known. For unknown orders, the
VARMA estimator is competitive to the VAR estimator. The VARMA estimator attains this
competitveness since, in general, it returns a more parsimonious model (i.e. the estimated
VARMA has more sparse AR coefficients with some sparse MA coefficients than the number
of sparse coefficients in the estimated VAR).

The relative performance of the four estimators with HLag penalty are compared to the
results with ¢;-norm in Table Al. For the estimators with unknown maximal lag orders
(i.e. VARMA(p, ¢;&;) and VAR(p)), HLag outperforms the ¢;-norm in all considered cases
(p-values paired t-test < 0.05). For the estimators with known maximal lag orders, (e.g.,
VARMA(p, ¢; a;) and VARMA(p, ¢;&;)), HLag performs, overall, as good as the ¢;-norm.
These results are in line with the findings of [43].

G.2 Effect of the Moving Average Order

Figure A2 panel (b) shows the MSFEs of the four estimators for different values of the mov-
ing average order q. We report the results for the HLag penalty and d = 10,60 = 0.8. Similar
conclusions are obtained with the /;-norm and other values of d and 6, therefore omitted.
For all values of ¢, the VARMA estimators perform significantly better than the VAR es-

timator. The oracle VARMA estimators perform equally good and are closely followed by
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Figure A3: Mean Squared Forecast Errors (averaged over the simulation runs) of the
VARMA(p, q; &) estimator with HLag penalty (black solid line) and ¢;-penalty (blue dashed
line) for different values of the maximal lag orders p and ¢ (horizontal axis) and number of
time series d = 5 (left), d = 10 (right).

the VARMA estimator with approximated errors and unknown orders. The latter improves

forecast accuracy over the VAR estimator by about 20% on average.

G.3 Effect of the Number of Time Series

Figure A2 panel (c) shows the MSFEs for different values of the number of time series d.
We report the results for the HLag penalty and ¢ = 4,0 = 0.8. As the number of time series
increases relative to the fixed time series length 7', it becomes more difficult to accurately
estimate the model. Hence, the MSFEs of all estimators increase. For all values of d, the
VARMA estimators attain lower values of the MSFE than the VAR estimator. All differences
are significant. The loss in forecast accuracy of not knowing the AR and MA order is only
2% for k = 5 and remains limited to 20% for k = 40. The margin by which the VARMA
estimator (with approximated errors and unknown orders) improves forecast accuracy over

the VAR increases from around 7% for k = 5 to around 30% for k = 40.

G.4 Implications of Misspecifying the Maximal Lag Orders

Next, we investigate the implications of misspecifying the maximal AR and MA lag orders of

the VARMA. We generate data from the VARMA model with p =¢=4,0 = 0.8, d = 5,10
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Table A2: Data-based Simulation Design: Mean Squared Forecast Errors (averaged over the
simulation runs) of the four estimators with HLag penalty and different forecast horizons.

Standard errors around the reported results are in parentheses.
Forecast horizon VARMA(p,q;a;) VARMA(p,q;&;) VARMA(p,q;8;) VAR(p)

h=1 0.764 0.763 0.765 0.758
(0.021) (0.022) (0.022) (0.025)
h=38 0.782 0.783 0.785 0.877
(0.022) (0.022) (0.022) (0.026)
h =13 0.784 0.785 0.787 0.877
(0.022) (0.022) (0.022) (0.026)

and estimate a sparse VARMA model with maximal lag orders smaller than, equal to and
larger than the true orders. Note that a maximal lag order of seven corresponds to our
recommendation (p = § = [0.75v/100] = 7). Figure A3 shows the MSFEs for the sparse
VARMA estimator with HLag penalty and ¢; penalty, different values of the maximal AR
and MA lag orders (horizontal axis) and number of time series (panels).

The lowest MSFEs are attained at the true maximal lag order of four, as expected. At
a maximal lag order of one, all models are misspecified and the MSFEs are the largest.
Using too small maximal lag orders thus has more severe consequences than using too large
maximal lag orders. Furthermore, the drop in MSFE at our recommended maximal lag
orders (of seven) remains small provided that one uses an HLag penalty. Indeed, the price
to pay for too large maximal lag orders is smaller for HLag than the standard ¢; penalty

since HLag encourages low maximal lag orders.

G.5 Data-based Simulation Design

As a last experiment, we consider a data-based design [30]. Similar to [13], we carry out a
simulation by bootstrapping the actual demand set with d = 16 and 7" = 76 as discussed
in Section 5 of the paper. We start from the autoregressive and moving average estimates
obtained with the sparse VARMA method with HLag penalties and p = § = |0.75v/T] = 6
We then generate data from a VARMA,(p, ¢) using a non-parametric residual bootstrap
procedure (e.g., [36]) with bootstrap errors an i.i.d. sequence of discrete random variables
uniformly distributed on {1,...,7T}.

Table A2 gives the MSFEs of the four estimators at different forecast horizons h = 1, 8, 13,

as used in Section 5. For the VARMA estimators with known orders, we use p = ¢ = 3, in line
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with the largest reported values in Figure 1. First of all, note that it becomes more difficult

to obtain accurate forecasts for longer horizons; the MSFEs of all estimators increases with

h. The relative performance of VARMA compared to VAR is tied to the forecast horizon:

at h = 1, all estimators perform equally well (i.e. there are no significant differences, as

confirmed through paired t-tests). At longer forecast horizons, the VARMA estimators still

perform equally well but statistically outperform the VAR estimator. These findings support

the results from Section 5.
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