
Rare Feature Selection in High Dimensions

Xiaohan Yan∗ Jacob Bien†

July 10, 2020

Abstract

It is common in modern prediction problems for many predictor variables to be
counts of rarely occurring events. This leads to design matrices in which many columns
are highly sparse. The challenge posed by such “rare features” has received little atten-
tion despite its prevalence in diverse areas, ranging from natural language processing
(e.g., rare words) to biology (e.g., rare species). We show, both theoretically and em-
pirically, that not explicitly accounting for the rareness of features can greatly reduce
the effectiveness of an analysis. We next propose a framework for aggregating rare
features into denser features in a flexible manner that creates better predictors of the
response. Our strategy leverages side information in the form of a tree that encodes
feature similarity.

We apply our method to data from TripAdvisor, in which we predict the numerical
rating of a hotel based on the text of the associated review. Our method achieves
high accuracy by making effective use of rare words; by contrast, the lasso is unable
to identify highly predictive words if they are too rare. A companion R package,
called rare, implements our new estimator, using the alternating direction method of
multipliers.

1 Introduction

The assumption of parameter sparsity plays an important simplifying role in high-dimensional
statistics. However, this paper is focused on sparsity in the data itself, which actually makes
estimation more challenging. In many modern prediction problems, the design matrix has
many columns that are highly sparse. This arises when the features record the frequency of
events (or the number of times certain properties hold). While a small number of these events
may be common, there is typically a very large number of rare events, which correspond to
features that are zero for nearly all observations. We call these predictors rare features. Rare
features are in fact extremely common in many modern data sets. For example, consider the
task of predicting user behavior based on past website visits: Only a small number of sites
are visited by a lot of the users; all other sites are visited by only a small proportion of users.

∗Data Scientist, Microsoft; email: xy257@cornell.edu
†Associate Professor, Data Sciences and Operations, Marshall School of Business, University of Southern

California; email: jbien@usc.edu

1

a
rX

iv
:1

8
0
3
.0

6
6
7
5
v
2
  
[s

ta
t.

M
E

] 
 8

 J
u
l 

2
0
2
0



As another example, consider text mining, in which one makes predictions about documents
based on the terms used. A typical approach is to create a document-term matrix in which
each column encodes a term’s frequency across documents. In such domains, it is often the
case that the majority of the terms appear very infrequently across the documents; hence
the corresponding columns in the document-term matrix are very sparse (e.g., Forman 2003;
Huang 2008; Liu et al. 2010; Wang et al. 2010). In Section 6, we study a text dataset with
more than 200 thousand reviews crawled from https://www.tripadvisor.com. Our goal is
to use the adjectives in a review to predict a user’s numerical rating of a hotel. As shown
in the right panel of Figure 7, the distribution of adjective density, defined as the propor-
tion of documents containing an adjective, is extremely right-skewed, with many adjectives
occurring very infrequently in the corpus. In fact, we find that more than 95% of the 7,787
adjectives appear in less than 5% of the reviews. It is common practice to simply discard
rare terms,1 which may mean removing most of the terms (e.g., Forman 2003; Huang 2008;
Liu et al. 2010; Wang et al. 2010).

Rare features also arise in various scientific fields. For example, microbiome data measure
the abundances of a large number of microbial species in a given environment. Researchers
use next generation sequencing technologies, clustering these reads into “operational tax-
onomic units” (OTUs), which are roughly thought of as different species of microbe (e.g.,
Schloss et al. 2009; Caporaso et al. 2010). In practice, many OTUs are rare, and researchers
often aggregate the OTUs to genus or higher levels (e.g., Zhang et al. 2012; Chen et al.
2013; Xia et al. 2013; Lin et al. 2014; Randolph et al. 2015; Shi et al. 2016; Cao et al. 2017)
or with unsupervised clustering techniques (e.g. McMurdie and Holmes 2013; Wang and
Zhao 2017b) to create denser features. However, even after this step, a large portion of
these aggregated OTUs are still found to be too sparse and thus are discarded (e.g., Zhang
et al. 2012; Chen et al. 2013; Shi et al. 2016; Wang and Zhao 2017b). The rationale for this
elimination of rare OTUs is that there needs to be enough variation among samples for an
OTU to be successfully estimated in a statistical model (Ridenhour et al., 2017).

The practice of discarding rare features is wasteful: a rare feature should not be inter-
preted as an unimportant one since it can be highly predictive of the response. For instance,
using the word “ghastly” in a hotel review delivers an obvious negative sentiment, but this
adjective appears very infrequently in TripAdvisor reviews. Discarding an informative word
like “ghastly” simply because it is rare clearly seems inadvisable. To throw out over half of
one’s features is to ignore what may be a huge amount of useful information.

Even if rare features are not explicitly discarded, many existing variable selection methods
are unable to select them. The challenge is that with limited examples there is very little
information to identify a rare feature as important. Theorem 1 shows that even a single rare
feature can render ordinary least squares (OLS) inconsistent in the classical limit of infinite
sample size and fixed dimension.

To address the challenge posed by rare features, we propose in this work a method for
forming new aggregated features which are less sparse than the original ones and may be
more relevant to the prediction task. Consider the following features, which represent the
frequency of certain adjectives used in hotel reviews:

1For example, in the R text mining library tm (Feinerer and Hornik, 2017), removeSparseTerms is a
commonly used function for removing any terms with sparsity level above a certain threshold.

2



• Xworrying,Xdepressing, . . . ,Xtroubling,

• Xhorrid,Xhideous, . . . ,Xawful.

While both sets of adjectives express negative sentiments, the first set (which might be
summarized as “worry”) seems more mild than the second set (which might be summarized
as “horrification”). In predicting the rating of a hotel review, we might find the following
two aggregated features more relevant:

X̃worry = Xworrying +Xdepressing + · · ·+Xtroubling

X̃horrification = Xhorrid +Xhideous + · · ·+Xawful.

The distinction between “horrid” and “hideous” might not matter for predicting the hotel
rating, whereas the distinction between a “worry”-related word versus a “horrification”-
related word may be quite relevant. Thus, not only are these aggregated features less rare
than the original features, but they may also be more relevant to the prediction task. A
method that selects the aggregated feature X̃horrification thereby can incorporate the infor-
mation conveyed in the use of “hideous” into the prediction task; this same method may be
unable to otherwise determine the effect of “hideous” by itself since it is too rare.

Indeed, appropriate aggregation of rare features in certain situations can be key to at-
taining consistent estimation and support recovery. In Theorem 2, we consider a setting
where all features are rare and a natural aggregation rule exists among the features. In that
setting, we show that the lasso (Tibshirani, 1996) fails to attain high-probability support
recovery (for all values of its tuning parameter), whereas an oracle-aggregator does attain
this property. Theorem 2 demonstrates the value of proper aggregation for accurate fea-
ture selection when features are rare. This motivates the remainder of the paper, in which
we devise a strategy for determining an effective feature aggregation based on data. Our
aggregation procedure makes use of side information about the features, which we find is
available in many domains. In particular, we assume that a tree is available that represents
the closeness of features. For example, Figure 1 shows a tree for the previous word example
that is generated via hierarchical clustering over GloVe (Pennington et al., 2014) embeddings
learned from a different data source. The two contours enclose two subtrees resulting from
a cut at their joint node. Aggregating the counts in these subtrees leads to the new features
X̃worry and X̃horrification described above. We give more details of constructing such a tree in
Section 3.1.

In Section 2, we motivate our work by providing theoretical results demonstrating the
difficulty that OLS and the lasso have with rare features. We further show that correct
aggregation of rare features leads to signed support recovery in a setting where the lasso
is unable to attain this property. In Section 3, we introduce a tree-based parametrization
strategy that translates the feature aggregation problem to a sparse modeling problem. Our
main proposal is an estimator formulated as a solution to a convex optimization problem
for which we derive an efficient algorithm. We draw connections between this method and
related approaches and then in Section 4, provide a bound on the prediction error for our
method. Finally, we demonstrate the empirical merits of the proposed framework through
simulation (Section 5) and through the TripAdvisor prediction task (Section 6) described
above. In simulation, we examine our method’s robustness to misspecified side informa-

3





When λ = 0, this coincides with the OLS estimator, which is uniquely defined when n > p
and X is full rank:

β̂OLS(n) = (XTX)−1XTy.

To better understand the challenge posed by rare features, we begin by considering the effect
of a single rare feature on OLS in the classical p-fixed, n → ∞ regime. We take the jth
feature to be a binary vector having k nonzeros, where k is a fixed value not depending on
n. As n increases, the proportion of nonzero elements, k/n, goes to 0. We show in Theorem
1 that β̂OLS

j (n) does not converge in probability to β∗
j with increasing sample size. This

establishes that OLS is not a consistent estimator of β∗ even in a p-fixed asymptotic regime.

Theorem 1. Consider the linear model (1) with X ∈ R
n×p having full column rank. Further

suppose that Xj is a binary vector having (a constant) k nonzeros. It follows that there exists
η > 0 for which

lim inf
n→∞

P

(∣∣∣β̂OLS

j (n)− β∗
j

∣∣∣ > η
)
> 0.

Proof. The result follows from taking lim infn→∞ of both sides of (7) in Appendix A and
observing that 2Φ

(
−ηk1/2/σ

)
does not depend on n.

The above result highlights the difficulty of estimating the coefficient of a rare feature.
This suggests that even when rare features are not explicitly discarded, variable selection
methods may fail to ever select them regardless of their strength of association with the
response. Other researchers have also acknowledged the difficulty posed by rare features in
different scenarios. For example, in the context of hypothesis testing for high-dimensional
sparse binary regression, Mukherjee et al. (2015) shows that when the design matrix is too
sparse, any test has no power asymptotically, and signals cannot be detected regardless of
their strength. Since the failure is caused by the sparsity of the features, it is therefore
natural to ask if “densifying the features” in an appropriate way would fix the problem. As
discussed above, aggregating the counts of related events may be a reasonable way to allow
a method to make use of the information in rare features.

2.2 Aggregating Rare Features Can Help

Given m subsets of {1, . . . , p}, we can form m aggregated features by summing within each
subset. We can encode these subsets in a binary matrix A ∈ {0, 1}p×m and form a new

design matrix of aggregated features as X̃ = XA. The columns of X̃ are also counts, but
represent the frequency of m different unions of the p original events. For example, if the
first subset is {1, 6, 8}, the first column of A would be e1 + e6 + e8 and the first aggregated

feature would be X̃1 = X1 + X6 + X8, recording the number of times any of the first,
sixth, or eighth events occur. A linear model, X̃β̃, based on the aggregated features can be
equivalently expressed as a linear model, Xβ, in terms of the original features as long as β
satisfies a set of linear constraints (ensuring that it is in the column space of A):

X̃β̃ = (XA)β̃ = X(Aβ̃) = Xβ.

5



The vector β lies in the column space of A precisely when it is constant within each of the
m subsets. For example,

enforcing β1 = β6 = β8 ⇔ aggregating features: X1β1+X6β6+X8β8 = (X1+X6+X8)β1 = X̃1β̃1.

(3)

In practice, determining how to aggregate features is a challenging problem, and our proposed
strategy in Section 3 will use side information to guide this aggregation.

For now, to understand the potential gains achievable by aggregation, we consider an
idealized case in which the correct aggregation of features is given to us by an oracle. In the
next theorem, we construct a situation in which (a) the lasso on the original rare features is
unable to correctly recover the support of β∗ for any value of the tuning parameter λ, and
(b) an oracle-aggregation of features makes it possible for the lasso to recover the support
of β∗. For simplicity, we take X as a binary matrix, which corresponds to the case in
which every feature has n/p nonzero observations. We take β∗ to have k blocks of size
p/k, with entries that are constant within each block. The last block is all zeros and the
minimal nonzero |β∗

j | is restricted to lie within a range that is expands with n, p and k. The
oracle approach delivers to the lasso the k aggregated features that match the structure in
β∗. These aggregated features have n/k nonzeros, and thus are not rare features. Having
peformed the lasso on these aggregated features, we then duplicate the k elements, p/k times
per group, to get β̂oracle

λ ∈ R
p. The lasso with the oracle-aggregator is shown to achieve high-

probability signed support recovery whereas the lasso on the original features fails to achieve
this property for all values of the tuning parameter λ.

Theorem 2. Consider the linear model (1) with binary matrix X ∈ {0, 1}n×p, p ≤ n,
and XTX = (n/p)Ip: every column of X has n/p one’s and X1p = 1n. Suppose β∗ =
β̃∗ ⊗ 1p/k for β̃∗ = (β̃∗

1 , . . . , β̃
∗
k−1, 0). Suppose k < p/(36 log n). Then, the interval I =

(σ
√

4k
n
log(k2n), σ

√
p
3n

log (2c̃p/k)] with c̃ = 1
3
e(π/2+2)−1

√
1
4
+ 1

π
is nonempty and for min

i=1,...,k−1

∣∣∣β̃∗
i

∣∣∣ ∈
I, the following two statements hold:

(a) The lasso fails to get high-probability signed support recovery:

lim sup
p→∞

sup
λ≥0

P

(
S±(β̂

lasso
λ ) = S±(β

∗)
)
≤ 1

e
.

(b) The lasso with an oracle-aggregation of features succeeds in recovering the correct signed
support for some λ > 0:

lim
n→∞

P

(
S±(β̂

oracle
λ ) = S±(β

∗)
)
= 1.

Proof. See Appendix B.

Even when the true model does not have a small number of aggregated features (i.e., β∗

does not have k ≪ p distinct values), it may still be beneficial to aggregate. The next result
exhibits a bias-variance tradeoff for feature aggregation.

6



Theorem 3 (Bias-Variance Tradeoff for Feature Aggregated Least Squares). Consider the
linear model (1) with X having full column rank (n > p) and a general vector β∗ ∈ R

p.

Let C = {C1, . . . , C|C|} be an arbitrary partition of {1, . . . , p}. Let β̂C ∈ R
p be the estimator

formed by performing least squares subject to the constraint that parameters are constant
within the groups defined by C. Then, the following mean squared estimation result holds:

1

n
E‖Xβ̂C −Xβ∗‖2 = 1

n
‖X‖2op

|C|∑

ℓ=1

∑

j∈Cℓ

(
β∗
j − |Cℓ|−1

∑

j′∈Cℓ

β∗
j′

)2

+
σ2|C|
n

Proof. See Appendix C.

The bias term is small when there is a small amount of variability in coefficient values
within groups of the partition C, i.e. when β∗ is approximately constant within each group.
Even when β∗ in truth has a large k (even k = p), there may still exist a partition C with

|C| ≪ k for which the bias term is small and thus E‖Xβ̂C−Xβ∗‖2 ≪ E‖Xβ̂OLS−Xβ∗‖2 =
σ2p.

3 Main Proposal: Tree-Guided Aggregation

In the previous section, we have seen the potential gains achievable through aggregating rare
features. In this section, we propose a tree-guided method for aggregating and selecting rare
features. We discuss this tree in Section 3.1, introduce a tree-based parametrization strategy
in Section 3.2, and propose a new estimator in Section 3.3.

3.1 A Tree to Guide Aggregation

To form aggregated variables, it is infeasible to consider all possible partitions of the features
{1, . . . , p}. Rather, we will consider a tree T with leaves 1, . . . , p and restrict ourselves to
partitions that can be expressed as a collection of branches of T (see, e.g., Figure 1). We
sum features within a branch to form our new aggregated features.

We would like to aggregate features that are related, and thus we would like to have T
encode feature similarity information. Such information about the features comes from prior
knowledge and/or data sources external to the current regression problem (i.e., not from
y and X). For example, for microbiome data, T could be the phylogenetic tree encoding
evolutionary relationships among the OTUs (e.g., Matsen et al. 2010; Tang et al. 2016;
Wang and Zhao 2017a) or the co-occurrence of OTUs from past data sets. When features
correspond to words, closeness in meaning can be used to form T (e.g., in Section 6, we
perform hierarchical clustering on word embeddings that were learned from an enormous
corpus).

In (3), we demonstrated how aggregating a set of features is equivalent to setting these
features’ coefficients to be equal. To perform tree-guided aggregation, we therefore associate
a coefficient βj with each leaf of T and “fuse” (i.e., set equal to each other) any coefficients
within a branch that we wish to aggregate.

7



γ8

γ6

γ1 γ2 γ3

γ7

γ4 γ5

β1 β2 β3 β4 β5

γ8

γ6

γ1 γ2 γ3

γ7

γ4 γ5

β1 β2 β3 β4 β5

Figure 2: (Left) An example of β ∈ R
5 and T that relates the corresponding five features.

By (4), we have βi = γi + γ6 + γ8 for i = 1, 2, 3 and βj = γj + γ7 + γ8 for j = 4, 5. (Right)
By zeroing out the γi’s in the gray nodes, we aggregate β into two groups indicated by the
dashed contours: β1 = β2 = β3 = γ6 + γ8 and β4 = β5 = γ8. Counts data are aggregated for
features sharing the same coefficient: Xβ = (X1 +X2 +X3)β1 + (X4 +X5)β4.

3.2 A Tree-Based Parametrization

In order to fuse βj’s within a branch, we adopt a tree-based parametrization by assigning a
parameter γu to each node u in T (this includes both leaves and interior nodes). The left
panel of Figure 2 gives an example. Let ancestor(j) ∪ {j} be the set of nodes in the path
from the root of T to the jth feature, which is associated with the jth leaf. We express βj

as the sum of all the γu’s on the path:

βj =
∑

u∈ancestor(j)∪{j}
γu. (4)

This can be written more compactly as β = Aγ, where A ∈ {0, 1}p×|T | is a binary matrix
with Ajk := 1{uk∈ancestor(j)∪{j}} = 1{j∈descendant(uk)∪{uk}}. The descendants of each node u
define a branch Tu, and zeroing out γv’s for all v ∈ descendant(u) fuses the coefficients in
this branch, i.e., {βj : j ∈ L(Tu)}. Thus, γdescendant(u) = 0 is equivalent to aggregating the
features Xj with j ∈ L(Tu) (see the right panel of Figure 2).

Another way of viewing this parametrization’s merging of branches is by expressingXβ =
XAγ, where (XA)ik =

∑p
j=1 XijAjk =

∑
j:j∈descendant(uk)∪{uk} Xij aggregates counts over all

the descendant features of node uk. By aggregating nearby features, we allow rare features to
borrow strength from their neighbors, allowing us to estimate shared coefficient values that
would otherwise be too difficult to estimate. In the next section, we describe an optimization
problem that uses the γ parametrization to simultaneously perform feature aggregation and
selection.

3.3 The Optimization Problem

Our proposed estimator β̂ is the solution to the following convex optimization problem:

min
β∈Rp,γ∈R|T |





1

2n
‖y −Xβ‖22 + λ


α

|T |∑

ℓ=1

wℓ |γℓ|+ (1− α)

p∑

j=1

w̃j |βj|


 s.t. β = Aγ



 .

(5)

8



We apply a weighted ℓ1 penalty to induce sparsity in γ̂, which in turn induces fusion of
the coefficients in β̂. In the high-dimensional setting, sparsity in feature coefficients is also
desirable, so we also apply a weighted ℓ1 penalty on β. The tuning parameter λ controls
the overall penalization level while α determines the trade-off between the two types of
regularization: fusion and sparsity. In practice, both λ and α are determined via cross
validation. The choice of weights is left to the user. Our theoretical results (Section 4)
suggest a particular choice of weights, although in our empirical studies (Sections 5 and 6)
we simply take all weights to be 1 except for the root, which we leave unpenalized (wroot = 0).
Choosing wroot = 0 allows one to apply strong shrinkage of all coefficients towards a common
value other than zero.

When α = 0, (5) reduces to a lasso problem in β; when α = 1, (5) reduces to a lasso
problem in γ. Both extreme cases can be efficiently solved with a lasso solver such as glmnet
(Friedman et al., 2010). For α ∈ (0, 1), (5) is a generalized lasso problem (Tibshirani and
Taylor, 2011) in γ, and can be solved in principle using preexisting solvers (e.g., Arnold
and Tibshirani 2014). However, better computational performance, in particular in high-
dimensional settings, can be attained using an algorithm specially tailored to our problem.
With weights wr = 0 and {wℓ = 1, w̃j = 1}{ℓ6=r,j∈[1,p]}, we write (5) as a global consensus
problem and solve this using alternating direction method of multipliers (ADMM, Boyd et al.
(2011)). The consensus problem introduces additional copies of β and γ, which decouples
the various parts of the problem, leading to efficient ADMM updates:

min
β(1),β(2),β(3),β∈Rp

and γ(1),γ(2),γ∈R|T |





1

2n

∥∥y −Xβ(1)
∥∥2
2
+ λ


α

|T |∑

ℓ=1

wℓ

∣∣∣γ(1)
ℓ

∣∣∣+ (1− α)

p∑

j=1

w̃j

∣∣∣β(2)
j

∣∣∣





 (6)

s.t. β(3) = Aγ(2),β = β(1) = β(2) = β(3) and γ = γ(1) = γ(2).

In particular, our ADMM approach requires performing a singular value decomposition
(SVD) on X, an SVD on (Ip : −A) (these are reused for all λ and α), and then applying
matrix multiplies and soft-thresholdings until convergence. See Algorithm 1 in Appendix D
for details. Appendix D.1 provides a derivation of Algorithm 1 and Appendix D.2 discusses
a slight modification for including an intercept, which is desirable in practice.

3.4 Connections to Other Work

Before proceeding, we draw some connections to other work. Wang and Zhao (2017b) in-
troduce a penalized regression method with high-dimensional and compositional covariates
that uses a phylogenetic tree. They apply an ℓ1 penalty on the sum of coefficients within
a subtree, for every possible subtree in the phylogenetic tree. Their penalty is designed to
encourage the sum of coefficients within a subtree to be zero, which naturally detects a sub-
composition of microbiome features. By contrast, our method applies an ℓ1 penalty on our
latent variables γu’s, which induces the regression coefficients within subtrees to have equal
values. Thus, their penalty encourages the sum of coefficients within a subtree to be zero,
whereas ours induces equality. For a simple example, suppose β1 and β2 form a subtree of
the phylogenetic tree. Their penalty would promote β1 = −β2 whereas ours would promote
β1 = β2. The basic assumption of their method is that contrasts of species abundances within

9



a subtree may be predictive, whereas the basic assumption of our method is that average
species abundance within a subtree may be predictive. These different structural assump-
tions will be appropriate in different situations. In this paper’s context of rare features, our
assumption is the relevant one: Consider a subtree containing a large number of species. By
asking for equality of coefficients, our method promotes the aggregation of species counts
across the subtree, leading to denser features; by contrast, asking for coefficients to sum to
zero does not address the problem of feature rarity.

Existing work has also considered the setting in which regression coefficients are thought
to be clustered into a small number of groups of equal coefficient value. For example, She
(2010) and Ke et al. (2015) do this by penalizing coefficient differences. Neither method,
however, is focused specifically on rare features and thus they do not rely on side information
to perform this clustering of coefficients. In our setting, the side information provided by the
tree plays an important role in compensating for the extremely small amount of information
available about rare features.

Several other methods assume a relevant undirected graph over the predictors and use a
graph-Laplacian or graph-total-variation penalty to promote equality of coefficients that are
nearby on the graph (Li and Li, 2010; Li et al., 2018). Depending on the setting, this graph
may either be pure side information (Li and Li, 2010) or be a covariance graph estimated
based on X itself (Li et al., 2018). While the above methods use graph information “edge-
by-edge”, Yu and Liu (2016) incorporate graphical information “node-by-node” to promote
joint selection of predictors that are connected on the graph.

Guinot et al. (2017) considers a similar idea of aggregating genomic features with the help
of a hierarchical clustering tree; however, in the tree is learned from the design matrix and the
prediction task is only used to determine the level of tree cut, whereas our method in effect
uses the response to flexibly choose differing aggregation levels across the tree. We consider
a strategy similar to theirs, which we call L1-ag-h in the empirical comparisons. Kim et al.
(2012) propose a tree-guided group lasso approach in the context of multi-response regression.
In their context, the tree relates the different responses and is used to borrow strength across
related prediction tasks. Zhai et al. (2018) propose a variance component selection scheme
that aggregates OTUs to clusters at higher phylogenetic level, and treats the aggregated
taxonomic clusters as multiple random effects in a variance component model. Finally,
Khabbazian et al. (2016) propose a phylogenetic lasso method to study trait evolution from
comparative data and detect past changes in the expected mean trait values.

4 Statistical Theory

In this section, we study the prediction consistency of our method. Since T encodes feature
similarity information, throughout the section we require T to be a “full” tree such that each
node is either a leaf or possesses at least two child nodes. We begin with some definitions.

Definition 1. We say that B ⊆ V(T ) is an aggregating set with respect to T if {L(Tu) :
u ∈ B} forms a partition of L(T ).

The black circles in Figure 3 form an aggregating set since their branches’ leaves are a
partition of {1, . . . , 8}. We would like to refer to “the true aggregating set B∗ with respect

10



u1

u2 u3

u4

u5

1.3 1.3 1.3 3.5 4.7 0 0 3.5
β∗
1 β∗

2 β∗
3 β∗

4 β∗
5 β∗

6 β∗
7 β∗

8

Figure 3: In the above tree, B∗ = {u1, u2, u3, u4, y5} has its nodes labeled with black circles.

to T ” and, to do so, we must first establish that there exists a unique coarsest aggregating
set corresponding to a vector β∗.

Lemma 1. For any β∗ ∈ R
p, there exists a unique coarsest aggregating set B∗ := B(β∗, T ) ⊆

V(T ) (hereafter “the aggregating set”) with respect to the tree T such that (a) β∗
j = β∗

k for
j, k ∈ L(Tu) ∀u ∈ B∗, (b) |β∗

j − β∗
k| > 0 for j ∈ L(Tu) and k ∈ L(Tv) for siblings u, v ∈ B∗.

The lemma (proved in Appendix E) defines B∗ as the aggregating set such that further
merging of siblings would mean that β∗ is not constant within each subset of the partition.

Definition 2. Given the triplet (T ,β∗,X), we define (a) X̃ = XAB∗ ∈ R
n×|B∗| to be the

design matrix of aggregated features, which uses B∗ = B(β∗, T ) as the aggregating set, and
(b) β̃∗ ∈ R

|B∗| to be the coefficient vector using these aggregated features: β∗ = AB∗β̃∗.

We are now ready to provide a bound on the prediction error of our estimator, which is
proved in Appendix F.

Theorem 4 (Prediction Error Bound). If we take λ ≥ 4σ
√
log(2p)/n, w̃j = ‖Xj‖2 /

√
n for

1 ≤ j ≤ p and wℓ = ‖XAℓ‖2 /
√
n for 1 ≤ ℓ ≤ |T |, then

1

n

∥∥∥Xβ̂ −Xβ∗
∥∥∥
2

2
≤ 3λ

(
(1− α)

∑

j∈A∗

w̃j|β∗
j |+ α

∑

ℓ∈B∗

wℓ|β̃∗
ℓ |
)

holds with probability at least 1− 2/p for any α ∈ [0, 1].

This is a slow rate bound for our method. The standard slow rate bound for the lasso
is σ

√
log p/n‖β∗‖1. The next corollary establishes that our method, for any choice of α,

achieves this rate.

Corollary 1. Suppose ‖Xj‖2 ≤
√
n for 1 ≤ j ≤ p. Then, taking λ = 4σ

√
log(2p)/n and

using the weights in Theorem 4,

1

n
‖X(β̂ − β∗)‖22 . σ

√
log p/n‖β∗‖1

holds with probablity at least 1− 2/p for any α ∈ [0, 1].

11



Proof. See Appendix G.

The previous corollary establishes that one does not worsen the rate by using our method
over the lasso in a generic setting. But is there an advantage to using our method? Our
method is designed to do well in circumstances in which |B∗| is small, that is β∗ is mostly
constant with grouping given by the provided tree. The next corollary considers the extreme
case in which β∗ is constant (and nonzero).

Corollary 2. Under the conditions of Corollary 1, suppose β∗
1 = . . . = β∗

p 6= 0. Taking

α ≥ [1 + ‖X1p‖2/(p
√
n)]

−1
,

1

n

∥∥∥Xβ̂ −Xβ∗
∥∥∥
2

2
. σ

√
log p

n
‖β∗‖1 ·

‖X1p‖2
p
√
n

holds with probability at least 1 − 2/p. Thus, this improves the lasso rate when ‖X1p‖2 =
o(p
√
n).

Proof. See Appendix H.

For certain sparse designs, the above condition holds. For example, when n = p and
X =

√
nIn, ‖X1p‖2 =

√
n‖1n‖2 = n which is o(p

√
n) = o(n3/2). The next proposition

considers a more general sparse X scenario.

Proposition 1. Suppose each column of X has exactly r nonzero entries chosen at random
and independently of all other columns. Suppose all nonzero entries equal

√
n/r so that

‖Xj‖2 =
√
n for every column 1 ≤ j ≤ p. If 8 log(n+1)

3p
< r

n
→ 0, then ‖X1p‖2/(p

√
n)→ 0 in

probability.

Proof. See Appendix I.

Proposition 1 combined with Corollary 2 demonstrates that our method can improve the
prediction error rate over the lasso. While this corollary focuses on the rather extreme case
in which all coefficients are equal, we expect the result to be generalizable to a wider class
of settings. Indeed, the empirical results of the next section suggest that our method can
outperform the lasso in many settings.

5 Simulation Study

We start by forming a tree T with p leaves. To do so, we generate p latent points in R

and then apply hierarchical clustering (using hclust in R Core Team (2016) with complete
linkage). We would like the tree to partition the leaves into k clusters of varying sizes and at
differing heights in the tree (which will correspond to the true aggregation of the features).
To do so, we first generate k cluster means µ1, . . . , µk ∈ R with µi = 1/i. The first k/2
means have 3p/(2k) associated latent points each, and the remaining k/2 means have p/(2k)
associated latent points each. The latent points associated with µi are drawn independently
from N (µi, τ

2 minj(µi − µj)
2), where τ = 0.05.

12



Are features
aggregated?

L1: lasso

L1-dense: lasso on dense features

No

Is the aggregation
supervised? L1-ag-h: lasso, aggregated by height

L1-ag-d: lasso, aggregated by cluster density
No

our methodYes

Yes

Figure 4: A comparison between our method and four other methods

By design, there are k interior nodes in T corresponding to these k groups, which we index
by B∗. We form A corresponding to this tree and generate β∗ = AB∗β̃∗. We zero out k · s
elements of β̃∗ ∈ R

k and draw the magnitudes of the remaining elements independently from
a Uniform(1.5, 2.5) distribution. We alternate signs of the nonzero coefficients of β̃∗. The
design matrix X ∈ R

n×p is simulated from a Poisson(0.02) distribution, and the response
y ∈ R

n is simulated from (1) with σ = ‖Xβ∗‖2/
√
5n. For every method under consideration,

we average its performance over 100 repetitions in all the following simulations.
We consider both low-dimensional (n = 500, p = 100, s = 0) and high-dimensional

(n = 100, p = 200, s ∈ {0.2, 0.6}) scenarios, in each case taking a sequence of k values up to
p/2. We apply our method with T and vary the tuning parameters (α, λ) along an 8-by-50
grid of values. We take all weights equal to 1 except that of the root node, which we take as
zero (leaving it unpenalized). In the low-dimensional case, we compare our method to oracle
least squares, in which we perform least squares on XAB∗ . Oracle least squares represents
the best possible performance of any method that attempts to aggregate features. We also
include least squares on the original design matrix X. In the high-dimensional case, we
compare our method to the oracle lasso, in which the true aggregation XAB∗ (but not the
sparsity in β̃∗) is known, and to the lasso and ridge regression, which are each computed
across a grid of 50 values of the tuning parameter.

In addition to the above methods, we compare our method to three other approaches,
meant to represent variations of how the lasso is typically applied when rare features are
present (see Figure 4 for a schematic). The first approach, which we refer to as L1-dense,
applies the lasso after first discarding any features that are in fewer than 1% of observations.
The second and third approaches apply the lasso with features aggregated according to T
in an unsupervised manner. The second approach, L1-ag-h, aggregates features that are in
the same cluster after cutting the tree at a certain height. In addition to the lasso tuning
parameter, the height at which we cut the tree is a second tuning parameter (chosen along
an equally-spaced grid of eight values). The third approach, L1-ag-d, performs merges in
a bottom-up fashion along the tree until all aggregated features have density above some
threshold. This threshold is an additional tuning parameter (chosen along an equally spaced
grid of eight values between 0.01 and 1). The lasso tuning parameter in these methods is
always chosen along a grid of 50 values.

We measure the best mean-squared estimation error, i.e., minΛ ‖β̂(Λ) − β∗‖22/p, where
“best” is with respect to each method’s tuning parameter(s) Λ. The top two panels of
Figure 5 show the performance of the methods in the low-dimensional and high-dimensional
scenarios, respectively. Given that our method includes least squares and the lasso as special
cases, it is no surprise that our methods have better attainable performance than those

13



10 20 30 40 50

0
.0

0
0
.0

5
0
.1

0
0
.1

5
0
.2

0
0
.2

5

(n, p, s) = (500, 100, 0)

k

B
e
s
t 
m

e
a
n
−

s
q
u
a
re

d
 e

s
ti
m

a
ti
o
n
 e

rr
o
r

●
●

●

●

●

●

●

●

●

●

●

●

least squares

L1−dense

L1−ag−h

L1−ag−d

our method

oracle least squares

20 40 60 80 100
0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

(n, p, s) = (100, 200, 0.2)

k

B
e
s
t 
m

e
a
n
−

s
q
u
a
re

d
 e

s
ti
m

a
ti
o
n
 e

rr
o
r

●

●

●

●

●

●

●

●

●
●

●

●

lasso

ridge

L1−dense

L1−ag−h

L1−ag−d

our method

oracle lasso

0.1 0.2 0.3 0.4

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

(n, p, s, k) = (100, 200, 0.2, 40)

τ

B
e
s
t 
m

e
a
n
−

s
q
u
a
re

d
 e

s
ti
m

a
ti
o
n
 e

rr
o
r

● ●

●

● ●

●

●

●

●

●

●

●

lasso

ridge

L1−dense

L1−ag−h

L1−ag−d

our method

oracle lasso

20 40 60 80 100

0
.0

0
.5

1
.0

1
.5

2
.0

2
.5

3
.0

(n, p, s) = (100, 200, 0.6)

k

B
e
s
t 
m

e
a
n
−

s
q
u
a
re

d
 e

s
ti
m

a
ti
o
n
 e

rr
o
r

●

●
●

●

●

●

●

●

●
●

●

●

lasso

ridge

L1−dense

L1−ag−h

L1−ag−d

our method

oracle lasso

Figure 5: Estimation error of all methods under (Top Left) (n, p, s) = (500, 100, 0) ver-
sus varying k ∈ {10, 20, 30, 40, 50}; (Top Right) (n, p, s) = (100, 200, 0.2) versus vary-
ing k ∈ {20, 40, 60, 80, 100}; (Bottom Left) (n, p, s, k) = (100, 200, 0.2, 40) versus varying
τ ∈ {0.05, 0.15, 0.25, 0.35, 0.45}; (Bottom Right) (n, p, s) = (100, 200, 0.6) versus varying
k ∈ {20, 40, 60, 80, 100}.

14



●

●

●
●

●

●

●

●

0.5 0.6 0.7 0.8 0.9 1.0

4
0

6
0

8
0

1
0
0

1
2
0

(n, p, s, k) = (100, 200, 0.2, 40)

Mean Rand Index (Group Recovery)

M
e
a
n
 H

a
m

m
in

g
 D

is
ta

n
c
e
 (

S
u
p
p
o
rt

 R
e
c
o
ve

ry
)

●

●

●

lasso

ridge

L1−dense

L1−ag−h

L1−ag−d

our method

oracle lasso

●

●

●
●

●
●

●

●

0.5 0.6 0.7 0.8 0.9 1.0

4
0

6
0

8
0

1
0
0

1
2
0

(n, p, s, k) = (100, 200, 0.6, 40)

Mean Rand Index (Group Recovery)

M
e
a
n
 H

a
m

m
in

g
 D

is
ta

n
c
e
 (

S
u
p
p
o
rt

 R
e
c
o
ve

ry
)

●

●

●

lasso

ridge

L1−dense

L1−ag−h

L1−ag−d

our method

oracle lasso

Figure 6: Mean Hamming distance versus mean Rand index for various methods’
best estimates under (Left) (n, p, s, k) = (100, 200, 0.2, 40) and (Right) (n, p, s, k) =
(100, 200, 0.6, 40). For our method, the eight circles correspond to eight different α values,
varying from 0 to 1. Decreasing circle size corresponds to increasing α value.

methods. These results indicate that our method performs nearly as well as the oracle when
the true number of aggregated features, k, is small and degrades (along with the oracle) as
this quantity increases. The two other methods that use the tree, L1-ag-h and L1-ag-d,
do less well than our method, but still do better than L1-dense, which simply discards rare
features. In the (n, p, s) = (100, 200, 0.2) case, L1-dense performs almost identically to the
lasso, while L1-ag-h and L1-ag-d degrade to the lasso as k increases. By comparing the
right two panels of Figure 5, we notice our method outperforms the ridge at large k when s
increases from 0.2 to 0.6, which can be explained by the increased sparsity in β∗.

We also evaluate model performance with respect to group recovery and support recovery.
Recall that our method is computed over eight α values, between 0 and 1, and fifty λ values.
At each α, we find the minimizer β̂(λ̂) for ‖β̂(λ)−β∗‖22 over all λ values. We measure group
recovery by computing the Rand index (comparing the grouping of β̂ to that of β∗), and
measure support recovery by computing the Hamming distance (between the supports of β̂
to that of β∗). The closer the Rand index is to one, the better our method recovers the
correct groups. The smaller the Hamming distance is, the better our method recovers the
correct support. For the high-dimensional scenario with k = 40, we plot eight pairs (one for
each α value) of Rand index and Hamming distance values for s = 0.2 and s = 0.6 in Figure
6. We also compute the two metrics for the lasso, ridge, L1-dense, L1-ag-h, L1-ag-d, and
oracle lasso. In the left panel of Figure 6, which corresponds to the low-sparsity case in
β∗, our method achieves its best performance at the largest α value. As the sparsity level
increases, we see from the right panel of Figure 6 that the best α shifts towards zero. In
both cases, our method outperforms the lasso, ridge, L1-dense, L1-ag-h, and L1-ag-d.

Clearly, the performance of our method, L1-ag-h and, L1-ag-d will depend on the quality
of the tree being used. In the previous simulations we provided our method with a tree that
is perfectly compatible with the true aggregating set. In practice, the tree used may be only
an approximate representation of how features should be aggregated. We therefore study the

15



sensitivity of our method to misspecification of the tree. We return to the high-dimensional
setting above with k = 40, and we generate a sequence of trees that are increasingly distorted
representations of how the data should in fact be aggregated.

We begin with a true aggregation of the features into k groups as described before. In each
repetition of the simulation, we generate a (random) tree T by performing hierarchical clus-
tering on p random variables generated similarly as before except having increasing τ value,
as a way to control the degradation level of the tree. When τ is small, the latent variables
will be well-separated by group so that the tree will have an aggregating set that matches the
true aggregation structure (with high probability). As τ ∈ {0.05, 0.15, 0.25, 0.35, 0.45} in-
creases, the between-group variability becomes relatively smaller compared to within-group
variability, and thus the information provided by the tree becomes increasingly weak. The
bottom left panel of Figure 5 shows the degradation of our method as τ increases when
(n, p, s, k) = (100, 200, 0.2, 40). Our method, L1-ag-h, and L1-ag-d all suffer from a poor-
quality tree; the latter two degrade more quickly than ours.

6 Application to Hotel Reviews

Wang et al. (2010) crawled TripAdvisor.com to form a dataset2 of 235,793 reviews and ratings
of 1,850 hotels by users between February 14, 2009 and March 15, 2009. While there are
several kinds of ratings, we focus on a user’s overall rating of the hotel (on a 1 to 5 scale),
which we take as our response. We form a document-term matrix X in which Xij is the
number of times the ith review uses the jth adjective.

We begin by converting words to lower case and keeping only adjectives (as determined by
WordNet Fellbaum 1998; Wallace 2007; Feinerer and Hornik 2016). After removing reviews
with missing ratings, we are left with 209,987 reviews and 7,787 distinct adjectives. The
left panel of Figure 7 shows the distribution of ratings in the data: nearly three quarters of
all ratings are above 3 stars. The extremely right-skewed distribution in the right panel of
Figure 7 shows that all but a small number of adjectives are highly rare (e.g., over 90% of
adjectives are used in fewer than 0.5% of reviews).

Rather than discard this large number of rare adjectives, our method aims to make pro-
ductive use of these by leveraging side information about the relationship between adjectives.
We construct a tree capturing adjective similarity as follows. We start with word embed-
dings3 in a 100-dimensional space that were pre-trained by GloVe (Pennington et al., 2014)
on the Gigaword5 and Wikipedia2014 corpora. We also obtain a list of adjectives, which the
NRC Emotion Lexicon labels as having either positive or negative sentiments (Mohammad
and Turney, 2013). We use five nearest neighbors classification within the 100-dimensional
space of word embeddings to assign labels to the 5,795 adjectives that have not been labeled
in the NRC Emotion Lexicon. This sentiment separation determines the two main branches
of the tree T . Within each branch, we perform hierarchical clustering of the word embedding
vectors. Figure 8 depicts such a tree with 2,397 adjectives (as leaves).

We compare our method (with weights all equal to 1 except for the root node, which
is left unpenalized) to four other approaches described in Figure 4. For L1-dense, we first

2Data source: http://times.cs.uiuc.edu/~wang296/Data/
3Data source: http://nlp.stanford.edu/data/glove.6B.zip

16



R
atin

g
P
rop

ortion
1

0.066
2

0.085
3

0.105
4

0.308
5

0.436

%
 o

f R
e
v
ie

w
s
 U

s
in

g
 A

d
je

c
tiv

e

Number of Adjectives

0
.0

0
.2

0
.4

0
.6

0
.8

1
.0

0 1000 2000 3000 4000

F
igu

re
7:

(L
eft)

d
istrib

u
tion

of
T
rip

A
d
v
isor

ratin
gs.

(R
igh

t)
on

ly
414

ad
jectives

ap
p
ear

in
m
ore

th
an

1%
of

rev
iew

s;
th
e
h
istogram

gives
th
e
d
istrib

u
tion

of
u
sage-p

ercen
tages

for
th
ose

ad
jectives

ap
p
earin

g
in

few
er

th
an

1%
of

rev
iew

s.

expectable
pickled

corned
stocked
stuffed

packaged
rum

alaskan
salmon

lengthwise
coarse

uncooked
avocado
shredded
chopped
peeled
rotten

fat
bottom
tops

topped
topping

frozen
dried

steaming
whipping

leftover
stale
boiled
sour

hungry
starving

exhausted
dehydrated

caring
tending

distressed
stricken

blind
deaf

disabled
homeless

elderly
aged

eighteen
fifty

ninety

contracted
treated

ill
pregnant

sick
dying

conjoined

dominican
returning
departed

stranded
rescued

mod
ultra

eponymous

hip
punk
secret
hidden
dirty

fake
animal

pet

wild
mad

colored
orange

red
highland

crescent
midwestern

rural
unpopulated
undeveloped

untouched
inaccessible

wooded
hilly

sprawling
populated

scrub
shallow
rocky
sandy

nautical
loco

sportive
tropical

torrential
cloudy
damp

wet
humid
rainy
windy
chilly

weather
cold
warm

cool
hourly

annual
yearly
gross

total
minus

projected
surpassing
whopping
average

adjusted

il
xx

prepaid

mailed
postal

misrepresented

inflated
skewed

unfounded
misleading

false
dubious

questionable
incomplete

inconsistent
incorrect
sketchy

obscure
aforementioned

peculiar
seeming
confusing
ambiguous
problematic

unsolicited
unauthorised

forfeit
outright

heard
loud

yelled

shouted
screaming

crying
blaring
banging

attic
upstairs

downstairs
awake
asleep
waking

awakened
sleeping
breathing

otc
ci

wee
wan
tan
bum

capitalist

orientated
lumbering

imperialistic

ethnic
foreign

domestic
thai

indonesian
korean

vietnamese
chinese

masculine
gay

abusive
abused

harassed
communist

political

liberal
penal

mandatory

strict
forbidden
prohibited

violated
restricted
limiting
slight

downward
dim

faded
dashed

disappointing

dismal
lackluster
subdued
upbeat
tepid

stock
dipped
rose

fell
dropping

falling

risen
fallen

lowered
slashed
sterling

recovering

recovered
lost
beat

beaten
ranked
fourth

consecutive
missed

shot
tied
lone

minute
foul
frank

sometime
mid
late
ago

fired
dismissed

sent
ordered
sufficient
lacking

minimal
excessive
excess
waste
raw

scarce
worst
blame
blamed

struggling
experienced

faced
hurt
bad

worse
poor

weak
affected
impacted
negative

favorable
dangerous

isolated
unstable
elevated
relative

low
reduced

bush
federal
internal

due
previous
following

subsequent
hearing

incident
superior
potent

formidable
probable
potential
apparent

serious
remote

neighboring
camp

near
nearby

scrambled
rushed
rush

waiting
stopped

collect
tried
trying

decided
wanted

attempted

forced
unable

remaining

left
removed

abandoned
spread

found
covered
exposed

offensive
defensive
uniformed

loyal

armed
fighting

pro

anti
opposed

backed
explosive

unidentified
searching
spotted

automatic
warning

flash
killing

stabbing

executed
infamous
notorious
charged

guilty
suspect

criminal
alleged
petty

drunken
drunk

operative
cutaneous

facial
bone
minor

sustained
suffering
severe
bodily

mental
fossil

warming
magnetic
hydraulic

ambient
fluid
liquid

synthetic

additive
content
analog
runny

itchy
scratchy

edible
inedible
fragrant
potted
rust
rusty

powdery
mushy
greasy

flaky
sticky
watery
hairy

hollow
fuzzy
eyed

buff
reddish
bluish

darkening
opaque

murky
okay

alright

dear
damn
remiss
napping

seasick
picky
brag

bragging
inquiring

discerning
tripping
lingual

bioluminescent
equidistant

interlaced
schematic
derisive
audible
buzzing

whispering
upwind
buggy
huffy

toed
hooked
wired

plugged

fab
gabby

littler
bedded

looseleaf
tropic
pied
trojan

iberian
smoking

secondhand
addictive
alcoholic

gastrointestinal
allergic

asthmatic
sensitive
touchy

negotiable
obligatory

overdue
undecided

shy

inclined
worried

concerned
confused
unhappy

frustrated
hesitant
reluctant
unwilling

eager

anxious
skeptical

wary

advertised
billed

booked
unavailable

rested
disposed

compensated
graded

categorized

checked
sorted
farthest
distant

approaching
wandering
sneaking
touching
bouncing

crossed
halfway

stuck
sideways
dragging
sliding

driven
rolling

rolled
floating
drifting
tipped
stray

discriminatory
discriminating

intrusive
explicit

unsafe
impractical

unusable
poorly

ineffective
inadequate
consuming

costly
repetitive

needless
unnecessary

discouraged
apprehensive

leery
mum

adamant
disturbed
horrified

disgusted
appalled
dismayed
hysterical

terrified
distraught

stung

embarrassed
annoyed

irritated
bothered

complaining

thunderstruck
gobsmacked
flabbergasted
speechless
apologetic

incredulous
bewildered

baffled
perplexed
puzzled

unimpressed

disheartened
perturbed

offended
disliked
dazzled

enamored
pestered

patronized
lazy

kindly

wise
jolly
sly

insane
incompetent
unresponsive

selfish
arrogant

naive
ignorant
uncaring

aloof
forgiving

squeamish
fussy

indulgent

obnoxious
overbearing

cocky
pushy
uptight
surly

sullen
clueless
grumpy

lame
rude

downright
nasty
ugly

stupid
silly

weird
crazy

inexperienced
disorganized
disorganised
unimaginative

unmotivated
indifferent

uninterested
noisy
rowdy
unruly

disgruntled

irate
meagre

sizeable
exorbitant

extortionate
overpriced
tempting
enticing

limitless
lofty

manageable
unmanageable

bearable
intolerable
unbearable
aggravating
compounded

stressful
pleasurable

draining
taxing
spoilt

spoiled
dreary

miserable
lousy

mediocre
feeble

pathetic
pitiful

hurried
fumbling
clumsy

haphazard
perfunctory

halfhearted
wimpy
crappy

touristy
grouchy
crotchety
snooty
snotty

smallish
grungy

scruffy
constipated

thieving
grubby
dodgy
tatty
tipsy

skanky

slothful
bothersome
nauseating

yucky
lumpy
untidy

insubstantial
unappealing

unattractive
raunchy
trashy

tasteless
shameless
ostentatious

obtrusive
impersonal

unsupportive

unromantic
uninviting
repulsive
revolting

stereotyped

soulless
glorified

decadent
unsavory

harmless
insignificant
imaginable

serviceable
characterless

flavorless
existent

unmentionable
borderline
atrocious
deplorable
appalling
disgusting

shameful
disgraceful

inexcusable
repugnant

undesirable
disadvantageous

unhelpful
unfriendly

unprofessional

dishonest
inconsiderate

impolite
disrespectful

mistaken
ignored
contrary
justified

beforehand
realised

understandable
unavoidable
unfortunate

solved
corrected
rectified

flush
crack

cracked
interfering
obliged
obliging
reverting
bowing

systematic
cleansing
irregular

transient
endless

countless
occasional
sporadic

evil
invisible

mysterious

sheer
utter

unbelievable
nonsense

outrageous

ludicrous
absurd

ridiculous
frightening

scary

bizarre
odd

strange

eerie
chilling

ominous
futuristic
unreal

worrying
depressing
alarming
disturbing
troubling

horrid
hideous
ghastly

dreadful
horrendous

horrific
horrifying

terrible
horrible
awful

inconvenient
useless
pointless
boring

tedious
dull

bland
unpleasant

uncomfortable
awkward
unnerving

disconcerting
annoying
irritating
abrupt

unexpected

sudden
immediate

swift
stark
blunt
sharp

extreme
harsh

draconian
drastic

humiliating
embarrassing

shocking

hostile
unacceptable
inappropriate
disappointed

surprised

shocked
stunned
angered
angry

furious
answering
repeated
echoing
nervous

tired
bored
weary

impatient

sad
sorry

ashamed
upsetting

upset
tricky

challenging

difficult
tough
figured

wondering

noticed
seeing

afraid
scared
wanting
pretend

desperate

vain
unlucky
tiring

frustrating
packed

crowded
jammed

filled
empty

surrounded
lined

folding

wooden
draped
bearing
pictured

framed
stacked
strung

barefoot
legged

bare
naked
staring

seated
sitting

dressed
wearing

worn

dress
beige

skimpy

wrinkled
soiled
rear

overhead
upper

outer
blank
flip

diagonal
squared

narrowing
gaping

umbrella
mat

tiered
roofed
musty
moldy

smelling
putrid
fishy
hokey

pretentious
tacky

cheesy
spooky
sneaky
groovy

smoky
bouncy

mellow
melodious

boggy
waterlogged

soggy

faultless
passable

moonlit
drizzly
comfy
cushy
stuffy

cramped

cluttered
swanky
seedy

dank
claustrophobic

filthy
smelly

threadbare
shabby
dingy
grimy

spartan

drab
ramshackle

decrepit
uphill

gruelling

tortuous
sleepless

hectic
frantic

overpowering
suffocating
unrelenting

blazing
leisurely

brisk
uneventful
eventful

unimpressive
iffy

unsatisfying

unannounced
attendant
nonstop

understaffed
lax

outdated
cumbersome

inefficient
inoperable
operable

unattended
unlocked
ventilated
moveable
movable

motorized
stationary

unclean
sterile

sterilized
watered
scrubbed
patched
hydrated

tonic
soundproof
hydroponic

crusted
proofed

treed
deadened
slopped
thudding

vertiginous

extraordinaire
manque

slippy
piscine

barefooted
offish

laxative
swish
redux

spanking

maniac
repellent
repellant
especial
copious
frayed

soured
marred
chaotic
tense
heated

split

dominated
destroyed
damaged

ruined
wrecked

shut
shuttered
interrupted

ended
broke
swept

hammered
struck

suspended

cancelled
delayed

threatened
continued
renewed

close
closed
blocked
sealed

controlled
regulated

reserved
vested

temporary

vacant
communal
unoccupied
occupied
raining

splashed

soaked
washed
littered

scattered
burning

burnt
burned
apart

broken
blown
thrown
parked

smashed
smashing
preserved
neglected

overlooked
forgotten

sunken
mangled

grave

dead
buried
torn

wrapped

wound
shady

crooked
paved

winding
bumpy

dirt
dusty
muddy
rough

slippery
icy

faulty

overloaded
leaky
spotty
shoddy

substandard
uneven

tight

slack
steep

flat
narrow

dense
thick
large
heavy

underground
pedestrian

raging
roaring

rumbling
congested
clogged

flooded
overflowing

prize

earned
received
million
worth
valued

streaming

electronic
digital

instant
online

interactive
broadband
wireless
mobile

portable

automated
managerial

technical
financial
corporate
profitable

competitive
overseas

commercial
direct

standby
beneficiary

token
supplementary
supplemental

generic
prescription

unlimited
minimum
maximum
premium

rental
affordable
expensive

inexpensive
cheap

convenient
accessible
suitable

ideal
attractive
desirable
regent

meridian
intercontinental
mediterranean

continental
pacific

atlantic
jet

plane

landed
flying

fly
intrepid

chartered
guided

tracked
sighted
express

outbound
natural
mineral
oriental

occidental
electrical

mechanical
motor
electric

discovered
detected
artificial
surface

equipped

fitted
mounted
powered

built
designed

model
integrated
developed
operational
operating

dual
fixed

existing

conventional
advance
advanced
increased
expanded
improved

enhanced
maintained

limited
extended
insured

prudential

neutral
polar

net
posted

level
high

higher

raised
expected

anticipated

lowest
overall

combined
revised

processed
imported

available
distributed
contained
material

documented
collected

radio
nightly
daily

weekly

medium
tiny

small
larger

smaller
size
sized
visible

characteristic
distinctive

unique

distinct
obvious

surprising

noticeable
subtle
striking

dramatic
lesser
myriad

assorted
ranging

varied
varying

tremendous
considerable

greater

substantial
significant

massive
vast
huge

enormous

wide
deep

inner
rich

diverse
missing

alive
cleared
headed
loaded
driving
walking
catching
running

short
long
right

free
middle
home
half
past

turned
away

back
cut

cutting
easy

quick

slow
fast
pass

passing

forward
ahead
behind
pressed
pressing

meet
prepared

ready

must
willing

noted
described

acknowledged

stated
pointed

stressed
learned

understood
realized
telling

advised
aware

informed
proved

determined
neither

convinced
clear

impossible

otherwise
deciding

likely
unlikely
possible

future
chance
enough

able
still
kept

alone
done
sure
going

go

coming
gone

real
big

bigger
pretty

little
kind
like
hard

excellent
quality

best
good

better
fair
fine

protected
protecting

clean
safe

secure

critical
key

important

vital
crucial
main
major

leading

active
involved

responsible
becoming

transformed
assumed
assuming
present

current
mere
zero

comparable
equivalent
changed
changing

similar
unusual
subject

latter
unlike
normal
typical

usual
every

entire
whole

supposed

intended
required

needed
necessary

used
applied

connected
separate
multiple

individual
related

common

different
specific

particular

certain
medical
patient

elementary

textbook
bilingual

experimental

modern
contemporary

alternative
choice

preferred

basic
standard
traditional
custom
resident

hired
retired
trained

professional
amateur
eligible
qualified

prospective

selected
select

assigned

rank
top

ranking
junior

elite
recognised
respected

foremost
outstanding
exemplary

creative
artistic
worthy

ultimate
extraordinary
exceptional
enduring
genuine

famous
legendary

great
greatest

honored
dedicated
absolute
universal
ordinary
everyday

pure

satisfying
simple

straightforward

self
conscious
personal
physical
hispanic

american
native
latin
asian
african
side
cross

opposite

outside
inside
front

standing
prior

initial
last

earlier
early

later
completed

set
full

complete

historic
marked

celebrated
converted

settled
relocated

incorporated

established
live

living
new
next

beginning
starting

moved
moving
working
spent

less
far

even

much
well

made
just
one

another
travelled
traveled
attended
gathered

fewer
least
none
eight

nine
seven

five
six
two
four
three
twenty
thirty

ten
twelve
fifteen
eleven
dozen

hundred
divided
together
arranged
jewish

affiliated
formed
joined

nationwide
coordinated
organised
organized

said
according

official
confirmed
reported

national
european

international
union
united

appointed

elected
representative
represented

senior
associate
assistant
executive
general

scheduled
planned
august
opened

held
sign

signed
approved
agreed

announced
joint

initiative
presidential

premier
prime

indian
canadian

british
australian
english

irish
royal

colonial
victorian
newborn
teenage
teenaged

adult
female
male
young

older
younger

old
born

married
mexican
cuban
italian

brazilian
spanish

portuguese
japanese

greek

turkish
giant

owned
sold

based
firm
boss
ex

former
swiss
french
belgian

dutch
danish
german

polish

ii
roman

ottoman
prussian

metropolitan

industrial
residential

urban
capital

northeast
southeast

north
south
west
east

central
southern
northern
western
eastern
terminal

port
bay

base
busy

bustling

downtown
uptown
plain

bordered
overlooking
surrounding

adjacent
square

located
situated
peaceful

mass
expressed

voiced
forthcoming
upcoming

recent
latest

ongoing
continuing

civic
oriented
minded
friendly

cooperative
understanding

shared
sharing

diplomatic
strategic

historical
cultural
many

various
several

numerous
popular

known
considered

local
private
public

independent
legal

center
complex

human
social

environmental
loose
thin
soft

smooth
transparent

relaxing

relaxed
accommodating

conditioned
festive
inviting

welcoming

welcome
customary

routine
casual
intimate
correct
wrong

acceptable

reasonable
sensible
proper

appropriate
practical
objective

whatsoever
true

meaning
regardless

mean

whatever
knowing

proof

definite
geared

motivated
engaged
engaging

accustomed
alike

looking
thinking

interested
focused
reliable
accurate
careful

thorough
timely
prompt
speedy

intuitive
agile

economical
suited
utilized

apt
preferable

knowledgeable
reputable

responsive

honest
competent
growing
grown

fresh
mixed
mild

moderate
positive
strong

consistent
solid

cautious
modest
steady

overnight
quiet

calm
signal

alert
elaborate
detailed

extensive
brief

lengthy

formal
informal
frequent
constant

plus

extra
additional
regular
special

accompanied
accompanying

placed

attached
summary
supreme

unanimous
handled

addressed
resolved
fulfilled
relieved
assured
confident
pleased

satisfied
empowered
supervised

assisted
promising
appealing
demanding
accepted
accepting
reverse

reversed
drawn

handed
taking

taken
given
giving

exclusive
sole

granted
requested

authorized
permanent

partial

dated
listed

unknown
exact
actual
verified

confirming

disclosed
topnotch

moderne
metal
iron

concrete
stone
votive

illuminated
lit

lighted

carved
sculpted
painted

decorated
adorned

handmade
antique

stained
pastel

arch
arched
tiled

glazed
paneled

ornate
domed

immaculate
cathedral
outward
inland
farther

rounded
sheltered

twin
tall
laid
lay

nestled
tucked
shaped

etched
sacred

mythical
heavenly

divine
marian
elder
noble

hollywood

star
swank
ruby

shining

stellar
glowing

faint
bygone

bust
gargantuan

gigantic
precious
priceless

rare

exotic
rustic
quaint

picturesque

secluded
idyllic
posh

upscale
upmarket
parisian

chic
fashionable

trendy
plush

luxe
palatial

luxurious
opulent

sumptuous

scenic
panoramic

sunset
sunrise
pleasant
breezy
sunny

gothic
baroque

architectural
decorative

interior
exterior
downhill

quadruple

double
triple

swimming

indoor
outdoor
world

olympic
golden
gold

silver
won

winning

round
final

finished
straight
open

grand

instrumental
solo
piano

bass
sound
familiar

sounding
singing

pop

master
magic

magical

twentieth
inspired

reminiscent
mirrored
reflected
evident

romantic
romance
adapted

novel
directed
directing

entitled
written
original

included
featured

straw
oval

identical
matching

matched
uniform

fit
fitting

color
light

dark
bright

black
white
brown
gray
grey

yellow
pink

blue
green

curt
pitched
played
game

single

first
second

third
eleventh

ninth
fifth
sixth

seventh
capped

timed
opening
closing

stretch
midway

amicable
cordial
utmost
sincere
loving

righteous

virtuous
conscientious

compassionate
hearty

lukewarm
gracious

hospitable
respectful
courteous

polite
diligent

attentive
solicitous

considerate
sanitary

blanket
protective

botanical
landscaped

leafy

shaded
aerobic

drinkable
usable
plentiful

abundant
adequate

ample
satisfactory

workable
painless

tolerable
worthwhile

doable
inclusive

conducive
complementary

beneficial
flexible
effective
efficient

cc
stereo
deluxe

compact

cd
adjustable

trim
optional
groomed

wed
educated
wealthy
healthy

healthier
vibrant

cosmopolitan

tolerant
civilized

windward
virgin

coral
canary

tuscan
venetian

neapolitan

florentine
jamaican

hawaiian
creole
nigh

galore
presto

spellbound
pricy

homely
scrumptious
appetizing

alfresco
pampering

uncrowded
uncluttered
undisturbed

sparse

restful
sedate

unobtrusive
discreet
serene
tranquil
joyful

cheerful
cheery

encyclopedic

boundless
unparalleled
unsurpassed

unmatched
unbeatable

flawless
understated
effortless

impeccable
superlative

fluent
speaking
spoken
capable
powerful

aggressive

counter
smart
clever

sophisticated

innovative
slim
tame

marginal
meager

hefty

sizable
valuable

invaluable
handy
helpful

useful
spare

wasted
saved
saving

generous

paid
paying

brave
bold

fabulous
fantastic
wonderful

terrific
phenomenal
astonishing

amazing

incredible
awesome

marvelous
marvellous

glorious
majestic

magnificent
splendid

spectacular
stunning

breathtaking
dazzling
superb

brilliant
impressive

remarkable
deserved
decent

respectable
happy

ok
comfortable

nice
perfect

seasoned
accomplished

talented
appreciative

enthusiastic
impressed
appreciated

fancied
entertained

adored
keen
avid

curious
excited
amazed
delighted

thrilled
loved
liked

fortunate
lucky

grateful
glad

thankful
hot
dry

salt
baking

cereal
crackers
peanut
fluffy

vanilla
caramel
blended

powdered

nuts
toasted
steamed

roast
chicken

fried
baked
grilled

cooked
roasted

olive
mint

cherry
honey
ripe
juicy

tender
sweet
salty

savory
tasty

delicious
darling

pat
ace

favourite
favorite
outback
super

mini
classic

homemade
takeout

complimentary
personalized

inflatable
plastic

rubber
disposable

cushioned
waterproof

removable
adagio
yummy

velvet
indigo

frosted
quilted
topless

nude
laughing
smiling
petite

polished
exquisite
elegant
graceful

crisp
sparkling
bubbly

lush
pristine

colorful
beautiful
gorgeous

lovely

tanned
refreshed
spotless
squeaky
roomy
snug
cozy
cosy

glossy
stylish

sleek
flashy

glamorous
pricey
fancy
skinny

oversized
shiny

sparkly

finer
flowery
legible
airy

expansive

enclosed
furnished
spacious

interconnected
augmented
configured
elliptical

circular
rectangular

discrete
functional

corresponding

defined
preset

desired
optimal

approximate

inferior
feminine

funny

humorous
ironic

amusing

hilarious
thoughtful
passionate
energetic

lively
spirited

memorable
unforgettable

exciting
fascinating
interesting
intriguing

informative
entertaining
enjoyable

authentic
timeless

fashioned
quintessential

funky
retro

eclectic
minimalist
pleasing
inspiring
alluring

enchanting
mesmerizing

charming
delightful

quirky
endearing

earthy
soothing

invigorating
refreshing

wholesome
homey

tasteful
classy
creepy

cute
adorable
chatty

personable
approachable

mannered
talkative

gritty

neat
tidy

humble
unassuming

unpretentious

F
igu

re
8:

T
ree
T

over
2,397

ad
jectives:

th
e
left

su
b
tree

is
for

ad
jectives

w
ith

n
egative

sen
tim

en
t
an

d
th
e
righ

t
su
b
tree

is
for

ad
jectives

w
ith

p
ositive

sen
tim

en
t.

17



discard any adjectives that are in fewer than 0.5% of reviews before applying the lasso. Both
L1-ag-h and L1-ag-d have an additional tuning parameter to take care of: for L1-ag-h

we vary the height at which we cut the tree along an equally-spaced grid of ten values; for
L1-ag-d we choose the threshold for aggregations’ density along an equally spaced grid of
ten values between 0.001 and 0.1.

Mean Squared Prediction Error
prop. n p n/p our method L1 L1-dense L1-ag-h L1-ag-d

1% 1,700 2,397 0.71 0.870 0.894 0.895 0.882 0.971
5% 8,499 3,962 2.15 0.783 0.790 0.805 0.785 0.899
10% 16,999 4,786 3.55 0.758 0.764 0.788 0.764 0.902
20% 33,997 5,621 6.05 0.742 0.749 0.773 0.747 1.173
40% 67,995 6,472 10.51 0.739 0.740 0.768 0.742 1.108
60% 101,992 6,962 14.65 0.733 0.736 0.769 0.734 1.155
80% 135,990 7,294 18.64 0.733 0.733 0.765 0.734 0.886
100% 169,987 7,573 22.45 0.729 0.731 0.765 0.731 0.956

Table 1: Performance of five methods on the held-out test set: L1 is the lasso; L1-dense
is the lasso on only dense features; L1-ag-h is the lasso with features aggregated based on
height; and L1-ag-d is the lasso with features aggregated based on density level.

We hold out 40,000 ratings and reviews as a test set. To observe the performance of these
methods over a range of training set sizes, we consider a nested sequence of training sets,
ranging from 1% to 100% of the reviews not included in the test set. For all methods, we
use five-fold cross validation to select tuning parameters and threshold all predicted ratings
to be within the interval [1, 5]. Table 1 displays the mean squared prediction error (MSPE)
on the test set for each method and training set size.

As the size of the training set increases, all methods except for the lasso with aggregation
based on density (L1-ag-d) achieve lower MSPE. Among the four lasso-related methods, L1
and L1-ag-h outperform the other two. As the training set size n increases, the number
of features p also increase but at a relatively slower rate. We notice that when n/p is less
than 10.51, our method outperforms the other four lasso-related methods. As n/p increases
beyond 10.51, i.e., in the statistically easier regimes, L1 and L1-ag-h attain performance
comparable to our method. We conduct paired t-tests between squared prediction errors
from our method and L1-ag-h at every (n, p) pair (i.e., every row of Table 1). Five out of
the eight tests are significant at the 0.005 significance level (See Appendix J Table 4).

To better understand the difference between our method, the lasso, and L1-ag-h, we color
the branches of the tree generated in the n = 1, 700 and p = 2, 397 case (i.e., proportion
is 1%) according to the sign and magnitude of β̂ for the three methods. The bottom tree
in Figure 9 corresponds to our method and has many nearby branches sharing the same
red/blue color, indicating that the corresponding adjective counts have been merged. By
contrast, the top tree in Figure 9, which corresponds to the lasso, shows that the solution
is sparser and does not have branches of similar color. The middle tree in Figure 9 shows
that L1-ag-h produces something between the two, merging some adjectives with strong
signals while keeping the rest as singletons. The strength and pattern of aggregations vary

18





between our method and L1-ag-h. Inspection of the merged branches from our method
reveals words of similar meaning and sentiment being aggregated. In Figure 10, we plot
{|β̂j|} against the percentage of reviews containing an adjective. We find that our method
selects rare words more than the other two methods. The rarest word selected by the lasso
is “filthy”, which appears in 0.47% of reviews. By contrast, our method selects many words
that are far more rare: at the extreme of rarest words, our method selects 797 words that
appear in only 0.059% of reviews; L1-ag-h selects 31 out of these 797 rarest words. Our
method is able to select more rare words through aggregation: it aggregates 2,244 words into
224 clusters, leaving the remaining 153 words as singletons. Over 70% of these singletons
are dense words (where, for this discussion, we call a word “dense” if it appears in at least
1% of reviews and “rare” otherwise). This is four times higher than the percentage of dense
words in the original training data. Of the 224 aggregated clusters, 42% are made up entirely
of rare words. After aggregation, over half of these clusters become dense features. As a
comparison, L1-ag-h aggregates 1,339 words into 506 clusters while keeping 1,058 words
as singletons. Only 10% of these singletons from L1-ag-h are dense words. Of the 506
aggregated clusters from L1-ag-h, 68% are made by rare words only, among which only 15%
become dense clusters after aggregation.

Table 2 shows the density and estimated coefficient values for eight words falling in a
particular subtree of T . The words “heard” and “loud” occur far more commonly than the
other six words. We see that the lasso only selects these two words whereas our method
selects all eight words (assigning them negative coefficient values). In contrast, L1-ag-h,
while also aggregating the two densest words in this branch into a group, does not select the
six rare words. Examining the six rare words, it seems quite reasonable that they should
receive negative coefficient values. This suggests to us that the lasso’s exclusion of these
words has to do with their rareness in the dataset rather than their irrelevance to predicting
the hotel rating.

adjectives heard loud yelled shouted screaming crying blaring banging
density 4 0.0300 0.0235 0.0006 0.0006 0.0029 0.0006 0.0006 0.0041

β̂lasso
λ -0.057 -0.147 0 0 0 0 0 0

β̂
L1−ag−h

λ,height -0.174 -0.174 0 0 0 0 0 0

β̂ours
λ -0.128 -0.128 -0.039 -0.039 -0.039 -0.039 -0.039 -0.039

Table 2: Term density and estimated coefficient for adjectives in the selected group

Existing work in sentiment analysis uses side information in other ways to improve pre-
dictive performance (Thelwall et al., 2010). For example, Wang et al. (2016), working in an
SVM framework, forms a directed graph over words that expresses their “sentiment strength”
and then requires that the coefficients corresponding to these words honor the ordering that
is implied by the directed graph. For example if word A is stronger (in expressing a certain
sentiment) than word B, which in turn is stronger than word C, then their method enforces
βA ≥ βB ≥ βC . Such constraints can in some situations have a regularizing effect that
may be of use in rare feature settings: for example, if βA ≈ βC and B is a rare word, this

4The term density is computed over the training set.

20



constraint would help pin down βB’s value. However, if βA and βC are very different from
each other, the constraint may offer little help in reducing the variance of the estimate of
βB. Another difference is that the method uses hard constraints that are not controlled by
a tuning parameter, so that even when there is strong evidence in the data that a constraint
should be violated, this will not be allowed. By contrast, our method shrinks toward the
constant-on-subtrees structure without forcing this to be the case.

Mean Squared Prediction Error
tree setting our method L1 L1-dense L1-ag-h L1-ag-d

GloVe-50d 0.748 0.749 0.773 0.752 0.775
GloVe-100d 0.742 0.749 0.773 0.747 1.173
GloVe-200d 0.741 0.749 0.773 0.747 1.140
ELMo 0.669 0.676 0.732 0.685 0.783

Table 3: Performance of five methods under various tree settings on the held-out test set.
Among the tree settings, GloVe-50d, GloVe-100d and GloVe-200d correspond to hierarchical
clustering trees generated with GloVe embeddings of differing dimensions. We collapse over
two million ELMo embedding vectors of adjectives into 6,001 clusters using mini-batch K-
Means clustering (Sculley, 2010), then generate a hierarchical tree upon the 6,001 cluster
centroids. The performance is based on 33,997 training reviews (i.e., corresponding to the
20% row of Table 1).

Section 5 investigated the effect of using a distorted tree (see the bottom left panel of
Figure 5). In the context of words there are multiple choices of trees one could use. Table
3 shows the effect of applying our method to different types of trees. Here we focus on one
situation with 33,997 training reviews. We first consider the effect of changing the dimension
of the GloVe embedding. One might suppose that as the embedding dimension increases the
tree becomes more informative. Indeed, one finds that our method and L1-ag-h achieve
improved performance as this dimension increases. The last method, L1-ag-d, has more
variability in its performance as the GloVe tree varies, making it the poorest performing
method. Both L1 and L1-dense do not make use of the tree and thus they are unaffected by
changes to the embedding dimension. But a limitation of the methods is that they all are
based on the bag-of-words model, and therefore do not take word context into consideration.
For example, the models do not differentiate between the use of “bad” in “the hotel is bad”
versus “the hotel is not that bad”. To bring context into consideration, we leverage deep
contextualized word representations from ELMo (Peters et al., 2018) to generate an auxiliary
tree (See Appendix K for details). Unlike traditional word embeddings such as GloVe that
associate one embedding per word, deep word embeddings can capture the meaning of each
word based on the surrounding context. From Table 3 we find test errors improve substan-
tially with the ELMo tree for our method, L1 and L1-ag-h. Among all methods and all tree
settings, our method with the ELMo tree performs the best. This suggests our method can
better leverage the power of contextualized word embeddings than competing methods.

21



7 Conclusion

In this paper, we focus on the challenge posed by highly sparse data matrices, which have
become increasingly common in many areas, including biology and text mining. While much
work has focused on addressing the challenges of high dimensional data, relatively little at-
tention has been given to the challenges of sparsity in the data. We show, both theoretically
and empirically, that not explicitly accounting for the sparsity in the data hurts one’s pre-
diction errors and one’s ability to perform feature selection. Our proposed method is able to
make productive use of highly sparse features by creating new aggregated features based on
side information about the original features. In contrast to simpler tree-based aggregation
strategies that are occasionally used as a pre-processing step in biological applications, our
method adaptively learns the feature aggregation in a supervised manner. In doing so, our
methodology not only overcomes the challenges of data sparsity but also produces features
that may be of greater relevance to the particular prediction task of interest.

Acknowledgments

The authors thank Andy Clark for calling our attention to the challenge of rare features.
This work was supported by NSF CAREER grant, DMS-1653017.

Appendices

A Failure of OLS in the Presence of A Rare Feature

Theorem 5. Consider the linear model (1) with X ∈ R
n×p having full column rank. Further

suppose that Xj is a binary vector having k nonzeros. It follows that

P

(∣∣∣β̂OLS

j (n)− β∗
j

∣∣∣ > η
)
≥ 2Φ

(
−ηk1/2/σ

)
for any η > 0, (7)

where Φ(·) is the cumulative distribution function of a standard normal variable.

Proof. The distribution of the OLS estimator is β̂OLS
j (n) ∼ N(β∗

j , σ
2[(XTX)−1]jj). By

applying blockwise inversion (see, e.g., Bernstein 2009), with the jth row/column of XTX

in its own “block”, we get

[(XTX)−1]jj = [XT
j Xj −XT

j X−j(X
T
−jX−j)

−1XT
−jXj]

−1

= [‖Xj‖2 − ‖(XT
−jX−j)

−1/2XT
−jXj‖2]−1

≥ ‖Xj‖−2 = k−1.

Thus,

P

(∣∣∣β̂OLS
j (n)− β∗

j

∣∣∣ > η
)
= 2Φ

(
− η

σ
√

[(XTX)−1]jj

)
≥ 2Φ

(
−ηk1/2/σ

)

where Φ(·) is the distribution function of a standard normal variable.

22



B Proof of Theorem 2

In the setting of Theorem 2, we have Xβ∗ = X̃β̃∗, where X̃ = X(Ik ⊗ 1p/k) ∈ R
n×k. The

two estimators, the oracle lasso on the aggregated data (X̃) and the lasso on the original
data (X), are defined below.

• Oracle lasso estimator β̂oracle
λ = β̌oracle

λ ⊗ 1p/k where β̌oracle
λ is the unique solution to

min
β̃∈Rk

1

2n
‖y − X̃β̃‖22 + λ‖β̃‖1.

• Lasso estimator β̂lasso
λ is defined in (2).

We begin by establishing that the interval I is nonempty, which is ensured by the con-
straint k < p/(36 log n). In particular, the lower bound of the interval is below the upper
bound if

12k log(k2n) < p log(2c̃p/k)

Now, log(k2n) ≤ 3 log n and log(2c̃p/k) ≥ 1 as long as 2c̃p/k > e. Now, 2c̃ > 0.6, so if
p/k ≥ 5 then it would suffice to show that

36k log n < p.

And this constraint does imply that p/k ≥ 5. The two parts of the theorem follow from the
following two propositions.

Proposition 2 (Support recovery of oracle lasso). Suppose min
i=1,...,k−1

∣∣∣β̃∗
i

∣∣∣ > σ
√

4k
n
log(k2n).

With λ = σ
√

log(k2n)
kn

, the oracle lasso recovers the correct signed support successfully:

lim
n→∞

P

(
S±(β̂

oracle
λ ) = S±(β

∗)
)
= 1.

Proof. The scaled matrix
√

k
n
X̃ is orthogonal since

X̃TX̃ = (Ik ⊗ 1p/k)
TXTX(Ik ⊗ 1p/k) =

n

p
· p
k
Ik =

n

k
Ik.

Orthogonality implies that

β̌oracle
λ = S

((√
k

n
X̃T

)(√
k

n
y

)
, λk

)
= S

(
k

n
X̃Ty, λk

)
(8)

where k
n
X̃Ty = k

n
X̃TX̃β̃∗ + k

n
X̃Tε = β̃∗ + k

n
X̃Tε ∼ Nk(β̃

∗, kσ
2

n
Ik). By the Chernoff bound

for normal variables, for any t > 0,

P

(∣∣∣∣
k

n
(X̃j)

Ty − β̃∗
j

∣∣∣∣ > t

)
≤ 2 exp

(
− t2

2kσ2/n

)
for j = 1, . . . , k.

23



Choosing t = σ
√

k log(k2n)
n

and applying a union bound yields

P

(∥∥∥∥
k

n
X̃Ty − β̃∗

∥∥∥∥
∞

> σ

√
k log(k2n)

n

)
≤ 2k exp

(
−σ2k log(k2n)/n

2kσ2/n

)
=

2√
n
.

Hence, with probability at least 1− 2√
n
, we have

∥∥∥ k
n
X̃Ty − β̃∗

∥∥∥
∞
≤ σ

√
k log(k2n)

n
= λk, due

to our choice of λ = σ
√

log(k2n)
kn

. Under
∥∥∥ k
n
X̃Ty − β̃∗

∥∥∥
∞
≤ λk, the following results hold.

• By β̃∗
k = 0 and

∣∣∣∣
k

n
(X̃k)

Ty

∣∣∣∣ =
∣∣∣∣
k

n
(X̃k)

Ty − β̃∗
k

∣∣∣∣ ≤
∥∥∥∥
k

n
X̃Ty − β̃∗

∥∥∥∥
∞
≤ λk,

we have β̌oracle
λ,k = S

(
k
n
(X̃k)

Ty, λk
)

= 0 and β̌oracle
λ,ℓ = β̌oracle

λ,k = β̃∗
k = β∗

ℓ for all

ℓ > k−1
k
n.

• For j = 1, . . . , k − 1, since
∣∣∣ kn(X̃j)

Ty − β̃∗
j

∣∣∣ ≤ λk and
∣∣∣β̃∗

j

∣∣∣ ≥ min
i=1,...,k−1

∣∣∣β̃∗
i

∣∣∣ > 2λk, we

must have k
n
(X̃j)

Ty and β̃∗
j share the same sign. Moreover, we either have

∣∣∣∣
k

n
(X̃j)

Ty

∣∣∣∣ ≥
∣∣∣β̃∗

j

∣∣∣ > λk

or
∣∣∣ kn(X̃j)

Ty
∣∣∣ <

∣∣∣β̃∗
j

∣∣∣ in which case
∣∣∣ kn(X̃j)

Ty − β̃∗
j

∣∣∣ =
∣∣∣
∣∣∣ kn(X̃j)

Ty
∣∣∣−
∣∣∣β̃∗

j

∣∣∣
∣∣∣ =

∣∣∣β̃∗
j

∣∣∣ −∣∣∣ kn(X̃j)
Ty
∣∣∣ ≤ λk and therefore

∣∣∣∣
k

n
(X̃j)

Ty

∣∣∣∣ ≥
∣∣∣β̃∗

j

∣∣∣− λk ≥ 2λk − λk = λk.

Thus,
∣∣∣ kn(X̃j)

Ty
∣∣∣ > λk for j = 1, . . . , k − 1. By definition of β̂oracle

λ and (8), for
j−1
k
n < ℓ ≤ j

k
n,

β̂oracle
λ,ℓ = β̌oracle

λ,j = S

(
k

n
(X̃j)

Ty, λk

)
=

k

n
(X̃j)

Ty


1− λk∣∣∣ kn(X̃j)Ty

∣∣∣




which is of the same sign as β̃∗
j (and the same sign as β∗

ℓ ).

In the above two bullet points, we have shown S±(β̂
oracle
λ ) = S±(β

∗) holds with probability
at least 1− 2√

n
. Hence,

lim inf
n→∞

P

(
S±(β̂

oracle
λ ) = S±(β

∗)
)
≥ lim

n→∞
1− 2√

n
= 1.

Since lim supn→∞ P

(
S±(β̂

oracle
λ ) = S±(β

∗)
)

= 1, the limit for P

(
S±(β̂

oracle
λ ) = S±(β

∗)
)

is

1.

24



Lemma 2. Suppose ε ∼ Nn(0, σ
2In) and c̃ = 1

3
e(π/2+2)−1

√
1
4
+ 1

π
. Then

P

(
max

ℓ=1,...,p
|XT

ℓ ε| ≤ 2σ

√
n

3p
log(2c̃p)

)
≤
(
1− 1

p

)p

.

Proof. Let Z be a standard Gaussian variable. Theorem 2.1 of Côté et al. (2012) provides a
lower bound for the Gaussian Q function (i.e., P(Z > z)). Choosing κ = 3

2
in their Theorem

2.1 yields

P(Z > z) ≥
(
1

3
e(π/2+2)−1

√
1

4
+

1

π

)

︸ ︷︷ ︸
c̃

e−
3z2

4

where c̃ = 1
3
e(π/2+2)−1

√
1
4
+ 1

π
is independent of z. Given that Xℓ has n/p one’s and X1p =

1n, we have XT
ℓ ε

iid∼ N(0, n
p
σ2) for ℓ = 1, . . . , p. By expressing XT

1 ε =
√

n
p
σZ, we have for

any η > 0,

P(XT
1 ε > η) ≥ c̃e−

3η2p

4σ2n ⇒ P(|XT
1 ε| > η) ≥ 2c̃e−

3η2p

4σ2n .

Moreover,

P

(
max

ℓ=1,...,p
|XT

ℓ ε| ≤ η

)
=
(
P
(
|XT

1 ε| ≤ η
))p

=
(
1− P

(
|XT

1 ε| > η
))p ≤

(
1− 2c̃e−

3η2p

4σ2n

)p

.

Plugging in η = 2σ
√

n
3p
log (2c̃p) in the above inequality yields

P

(
max

ℓ=1,...,p
|XT

ℓ ε| ≤ 2σ

√
n

3p
log (2c̃p)

)
≤
(
1− 1

p

)p

.

Proposition 3 (Failure of support recovery of lasso). Suppose min
i=1,...,k−1

∣∣∣β̃∗
i

∣∣∣ ≤ σ
√

p
3n

log (2c̃p/k)

where c̃ = 1
3
e(π/2+2)−1

√
1
4
+ 1

π
. The lasso fails to get high-probability signed support recovery:

lim sup
p→∞

sup
λ≥0

P

(
S±(β̂

lasso
λ ) = S±(β

∗)
)
≤ 1

e
.

Proof. The lasso solution can be simplified to β̂lasso
λ = S( p

n
XTy, λp). Since β∗

ℓ 6= 0 for

ℓ ≤ k−1
k
p and β∗

ℓ = 0 for ℓ > k−1
k
p, the following is a necessary condition for β̂lasso

λ to recover
the correct signed support:

∃ λ s.t. |XT
ℓ y| > λp for ℓ ≤ k − 1

k
p and |XT

ℓ y| ≤ λp for ℓ >
k − 1

k
p

⇔
min

ℓ≤ k−1
k

p
|XT

ℓ y| > max
ℓ> k−1

k
p
|XT

ℓ y|.

25



Furthermore, we have

XT
ℓ y = XT

ℓ

(
p∑

j=1

Xjβ
∗
j + ε

)
=

n

p
β∗
ℓ +XT

ℓ ε.

Define ī := argmin
i=1,...,k−1

∣∣∣β̃∗
i

∣∣∣ and A :=

{
max

ℓ> k−1
k

p
|XT

ℓ ε| ≤ 2σ
√

n
3p
log(2c̃p/k)

}
. Then

P

(
S±(β̂

lasso
λ ) = S±(β

∗)
)

≤P
(

min
ℓ≤ k−1

k
p
|XT

ℓ y| > max
ℓ> k−1

k
p
|XT

ℓ y|
)

≤P
(

min
ī−1
k

p<ℓ≤ ī
k
p

|XT
ℓ y| > max

ℓ> k−1
k

p
|XT

ℓ y|
)

≤P
(
n

p

∣∣∣β̃∗
ī

∣∣∣+ min
ī−1
k

p<ℓ≤ ī
k
p

|XT
ℓ ε| > max

ℓ> k−1
k

p
|XT

ℓ ε|
)

=P

(
n

p

∣∣∣β̃∗
ī

∣∣∣+ min
ī−1
k

p<ℓ≤ ī
k
p

|XT
ℓ ε| > max

ℓ> k−1
k

p
|XT

ℓ ε| and Ac

)

+ P

(
n

p

∣∣∣β̃∗
ī

∣∣∣+ min
ī−1
k

p<ℓ≤ ī
k
p

|XT
ℓ ε| > max

ℓ> k−1
k

p
|XT

ℓ ε|
∣∣∣A
)
· P(A)

≤P
(
n

p

∣∣∣β̃∗
ī

∣∣∣+ min
ī−1
k

p<ℓ≤ ī
k
p

|XT
ℓ ε| > 2σ

√
n

3p
log(2c̃p/k)

)
+ P (A)

=

[
P

(
|XT

1 ε| > 2σ

√
n

3p
log(2c̃p/k)− n

p

∣∣∣β̃∗
ī

∣∣∣
)] p

k

+ P (A) (by XT
ℓ ε being i.i.d.)

≤
[
P

(
|XT

1 ε| > σ

√
n

3p
log(2c̃p/k)

)] p
k

+ P (A)
(
by
∣∣∣β̃∗

ī

∣∣∣ ≤ σ

√
p

3n
log(2c̃p/k)

)

≤
[
2 exp

(
− p

2σ2n
· σ

2n

3p
log (2c̃p/k)

)] p
k

+

(
1− k

p

) p
k

(by Chernoff ineq and Lemma 2)

≤2 p
k exp

(
− p

6k
log (2c̃p/k)

)
+

(
1− k

p

) p
k

=2
p
k

(
2c̃p

k

)− p
6k

+

(
1− k

p

) p
k

=

(
c̃p

32k

)− p
6k

+

(
1− k

p

) p
k

which holds for all λ ≥ 0. In particular,

sup
λ≥0

P

(
S±(β̂

lasso
λ ) = S±(β

∗)
)
≤
(

c̃p

32k

)− p
6k

+

(
1− k

p

) p
k

.

26



Taking lim sup on both side yields

lim sup
p→∞

sup
λ≥0

P

(
S±(β̂

lasso
λ ) = S±(β

∗)
)
≤ lim

p→∞

(
c̃p

32k

)− p
6k

+ lim
p→∞

(
1− k

p

) p
k

= 0 +
1

e
=

1

e
.

C Proof of Theorem 3

Let A ∈ {0, 1}p×|C| denote the aggregation matrix corresponding to the partition C. Ag-

gregated least squares uses the design matrix X̃ = XA, where each column is the sum of
features in a group of C. Left-multiplication by A maps this back to p-dimensional space:

β̂C = AX̃+y.

Its fitted values are

Xβ̂C = X̃X̃+y = X̃X̃+(Xβ∗ + ε).

Now, X̃ is full-rank and

Xβ̂C ∼ Np(X̃X̃+Xβ∗, σ2X̃[X̃TX̃]−1X̃T ).

Now,

E[Xβ̂C] = X̃X̃+Xβ∗

= X̃X̃+XAA+β∗ + X̃X̃+X(Ip −AA+)β∗

= XAA+β∗ + X̃X̃+X(Ip −AA+)β∗

since XAA+β∗ is in the column space of X̃, and

E[Xβ̂C]−Xβ∗ = X(AA+ − Ip)β
∗ + X̃X̃+X(Ip −AA+)β∗

= (X̃X̃+ − In)X(Ip −AA+)β∗

E‖Xβ̂C −Xβ∗‖2 = ‖(X̃X̃+ − In)X(Ip −AA+)β∗‖2 + σ2tr(X̃[X̃TX̃]−1X̃T )

= ‖(X̃X̃+ − In)X(Ip −AA+)β∗‖2 + σ2|C|
≤ ‖X‖2op‖(Ip −AA+)β∗‖2 + σ2|C|

since ‖(X̃X̃+ − In)‖op = 1 and the trace of a projection matrix is the rank of the target
space. Finally, observe that

‖(Ip −AA+)β∗‖2 =
|C|∑

ℓ=1

∑

j∈Cℓ

(
β∗
j − |Cℓ|−1

∑

j′∈Cℓ

β∗
j′

)2

.

27



D Consensus ADMM for Solving Problem (5)

The ADMM algorithm is given in Algorithm 1. Let X = SVDcompact(Ũ , D̃, Ṽ ) be the

compact singular value decomposition of X, where D̃ ∈ R
min(n,p)×min(n,p) is a diagonal matrix

with non-zero singular values on the diagonal, and Ũ ∈ R
n×min(n,p) and Ṽ ∈ R

p×min(n,p)

contain the left and right singular vectors in columns corresponding to non-zero singular
values, respectively. Similarly, we have (Ip : −A) = SVDcompact(·, ·, Q̃) where Q̃ ∈ R

(p+|T |):p

contains p right singular vectors correponding to non-zero singular values.

Algorithm 1 Consensus ADMM for Solving Problem (5)

Input: y,X,A, n, p, |T |, λ, α, ρ, ǫabs, ǫrel, maxite.
1: X = SVDcompact(·, D̃, Ṽ )

2: (Ip : −A) = SVDcompact(·, ·, Q̃)

3: β0 ← β(i)0 ← v(i)0 ← 0 ∈ R
p ∀i = 1, 2, 3

4: γ0 ← γ(j)0 ← u(j)0 ← 0 ∈ R
|T | ∀j = 1, 2

5: continue← true

6: k ← 0

7: while k < maxite and continue do

8: k ← k + 1

9: β(1)k ←
[
Ṽ diag

(
1

[D̃T D̃]ii+nρ

)
Ṽ T + 1

nρ
(Ip − Ṽ Ṽ T )

] (
XTy + nρβk−1 − nv(1)k−1

)

10: β
(2)k
j ← S

(
βk−1
j − 1

ρ
v
(2)k−1
j ,

λ(1−α)w̃j

ρ

)
∀j = 1, . . . , p

11: γ
(1)k
ℓ ←




S
(
γk−1
ℓ − 1

ρ
u
(1)k−1
ℓ , λαwℓ

ρ

)
if wℓ > 0

γk−1
ℓ − 1

ρ
u
(1)k−1
ℓ if wℓ = 0

12:

(
β(3)k

γ(2)k

)
←
(
Ip+|T | − Q̃Q̃T

)[(βk−1

γk−1

)
− 1

ρ

(
v(3)k−1

u(2)k−1

)]

13: βk ← (β(1)k + β(2)k + β(3)k)/3

14: γk ← (γ(1)k + γ(2)k)/2

15: v(i)k ← v(i)k−1 + ρ(β(i)k − βk) ∀i = 1, 2, 3

16: u(j)k ← u(j)k−1 + ρ(γ(j)k − γk) ∀j = 1, 2.

17: if
√

∑3
i=1 ‖β(i)k − βk‖22 +

∑2
j=1

∥

∥

∥
γ(j)k − γk

∥

∥

∥

2

2
≤ ǫabs

√

3p + 2|T |+ǫrel max

{
√

∑3
i=1 ‖β(i)k‖22 +

∑2
j=1

∥

∥

∥
γ(j)k

∥

∥

∥

2

2
,

√

3
∥

∥βk
∥

∥

2
2
+ 2

∥

∥γk
∥

∥

2
2

}

and ρ

√

3‖βk − βk−1‖22 + 2‖γk − γk−1‖22 ≤ ǫabs
√

3p + 2|T | + ǫrel
√

∑3
i=1 ‖v(i)k‖22 +

∑2
j=1 ‖u(j)k‖22 then

18: continue← false

19: end if

20: end while

Output: βk,γk

28



D.1 Derivation of Algorithm 1

The ADMM updates involve minimizing the augmented Lagrangian of the global consensus
problem (6),

Lρ(β
(1),β(2),β(3),γ(1),γ(2),β,γ;v(1),v(2),v(3),u(1),u(2))

=
1

2n

∥∥y −Xβ(1)
∥∥2
2
+ λ


α

|T |∑

ℓ=1

wℓ

∣∣∣γ(1)
ℓ

∣∣∣+ (1− α)

p∑

j=1

w̃j

∣∣∣β(2)
j

∣∣∣


+ 1∞{β(3) = Aγ(2)}

+
3∑

i=1

(
v(i)T (β(i) − β) +

ρ

2
‖β(i) − β‖22

)
+

2∑

j=1

(
u(j)T (γ(j) − γ) +

ρ

2
‖γ(j) − γ‖22

)
.

1. Update β(1).

β(1)k+1 := argmin
β(1)∈Rp

{
1

2n

∥∥y −Xβ(1)
∥∥2
2
+
〈
v(1)k, (β(1) − βk)

〉
+

ρ

2
‖β(1) − βk‖22

}
.

Let X = SVD(U ,D,V ) be the singular value decomposition of X, where U ∈ R
n×n

contains left singular vectors in columns, V ∈ R
p×p contains right singular vectors

in columns, and D ∈ R
n×p is a rectangular diagonal matrix with decreasing singular

values on the diagonal. First order condition to the above problem gives us:

(XTX + nρIp)β
(1)k+1 = XTy + nρβk − nv(1)k

⇒ V (DTD + nρIp)V
Tβ(1)k+1 = XTy + nρβk − nv(1)k

⇒ β(1)k+1 = V diag
(
([DTD]ii + nρ)−1

)
V T

(
XTy + nρβk − nv(1)k

)
.

When n ≥ p, we have

β(1)k+1 = Ṽ diag
(
([D̃TD̃]ii + nρ)−1

)
Ṽ T

(
XTy + nρβk − nv(1)k

)
. (9)

When n < p, the SVD can be expressed in a compact form: D = (D̃ : 0) and

V = (Ṽ : Ṽ⊥) where D̃ ∈ R
n×n and Ṽ ∈ R

p×n are from the compact SVD of X, and

Ṽ⊥ ∈ R
p×(p−n). Thus,

V diag
(
([DTD]ii + nρ)−1

)
V T =

(
Ṽ : Ṽ⊥

)
diag

(
([DTD]ii + nρ)−1

)
(
Ṽ T

Ṽ T
⊥

)

= Ṽ diag
(
([D̃TD̃]ii + nρ)−1

)
Ṽ T + Ṽ⊥Ṽ

T
⊥ /(nρ)

= Ṽ diag
(
([D̃TD̃]ii + nρ)−1

)
Ṽ T + (Ip − Ṽ Ṽ T )/(nρ).

So when n < p,

β(1)k+1 =
[
Ṽ diag

(
([D̃TD̃]ii + nρ)−1

)
Ṽ T + (Ip − Ṽ Ṽ T )/(nρ)

] (
XTy + nρβk − nv(1)k

)
.

(10)

Since Ṽ = V when n ≥ p and V V T = Ip, we have (10) boil to (9) in that case.

29



2. Update β(2).

β(2)k+1 := argmin
β(2)∈Rp

{
ρ

2

∥∥∥∥β
(2) −

(
βk − 1

ρ
v(2)k

)∥∥∥∥
2

2

+ λ(1− α)

p∑

j=1

w̃j

∣∣∣β(2)
j

∣∣∣
}
.

The solution is simply elementwise soft-thresholding:

β
(2)k+1
j = S

(
βk
j −

1

ρ
v
(2)
j ,

λ(1− α)w̃j

ρ

)
∀j = 1, . . . , p.

3. Update γ(1).

γ(1)k+1 := argmin
γ(1)∈R|T |




ρ

2

∥∥∥∥γ
(1) −

(
γk − 1

ρ
u(1)k

)∥∥∥∥
2

2

+ λα

|T |∑

ℓ=1

wℓ

∣∣∣γ(1)
ℓ

∣∣∣



 .

Since sometimes we will choose to wℓ = 0 for the root, we break the solution into cases:

γ
(1)k+1
ℓ =

{
S
(
γk
ℓ − 1

ρ
u
(1)k
ℓ , λαwℓ

ρ

)
if wℓ > 0

γk
ℓ − 1

ρ
u
(1)k
ℓ if wℓ = 0.

4. Joint update of β(3) and γ(2).

(
β(3)k+1

γ(2)k+1

)
:= argmin

β(3)∈Rp,γ(2)∈R|T |

{∥∥∥∥β
(3) −

(
βk − 1

ρ
v(3)k

)∥∥∥∥
2

2

+

∥∥∥∥γ
(2) −

(
γk − 1

ρ
u(2)k

)∥∥∥∥
2

2

}

s.t. (Ip : −A)

(
β(3)

γ(2)

)
= 0.

The solution is the projection of

(
βk

γk

)
− 1

ρ

(
v(3)k

u(2)k

)
onto the null space of (Ip : −A).

Let (Ip : −A) = SVD(·, ,Q) where Q = (Q̃ : Q̃⊥) ∈ R
(p+|T |):(p+|T |) contains all the

right singular vectors in columns. So Ip+|T | = QQT = Q̃Q̃T + Q̃⊥Q̃
T
⊥. Since Q̃

corresponds to non-zero singular values of (Ip : −A) by construction, we have Q̃⊥
corresponds to the zero singular values, making itself an orthonormal basis for the null
space of (Ip : −A). Thus,

(
β(3)k+1

γ(2)k+1

)
= Q̃⊥(Q̃

T
⊥Q̃⊥)

−1Q̃T
⊥

[(
βk

γk

)
− 1

ρ

(
v(3)k

u(2)k

)]

= Q̃⊥Q̃
T
⊥

[(
βk

γk

)
− 1

ρ

(
v(3)k

u(2)k

)]

=
(
Ip+|T | − Q̃Q̃T

)[(
βk

γk

)
− 1

ρ

(
v(3)k

u(2)k

)]

30



5. Update global variables β and γ.

βk+1 := argmin
β∈Rp

3∑

i=1

∥∥∥∥β −
(
β(i)k+1 +

1

ρ
v(i)k

)∥∥∥∥
2

2

= β̄k+1 +
1

ρ
v̄k (11)

γk+1 := argmin
γ∈R|T |

2∑

j=1

∥∥∥∥γ −
(
γ(j)k+1 +

1

ρ
u(j)k

)∥∥∥∥
2

2

= γ̄k+1 +
1

ρ
ūk (12)

where β̄k := β(1)k+β(2)k+β(3)k

3
, v̄k := v(1)k+v(2)k+v(3)k

3
, γ̄k := γ(1)k+γ(2)k

2
and ūk := u(1)k+u(2)k

2
.

6. Update dual variables.

v(1)k+1 := v(i)k + ρ(β(i)k+1 − βk+1) for i = 1, 2, 3,

u(1)k+1 := u(j)k + ρ(γ(j)k+1 − γk+1) for j = 1, 2.

Similarly, averaging the updates for u and the udpates for v gives

v̄k+1 = v̄k + ρ(β̄k+1 − βk+1) (13)

ūk+1 = ūk + ρ(γ̄k+1 − γk+1) (14)

Substituting (11) and (12) into (13) and (14) yields that v̄k+1 = ūk+1 = 0 after the
first iteration.

Using βk = β̄k and γk = γ̄k in the above updates, the updates become Lines 9-16 of
Algorithm 1. Next, we follow Section 3.3.1 in Boyd et al. (2011) to determine the termination
criteria. We first write Problem (6) in the same form as Problem (3.1) in Boyd et al. (2011)
which is presented below in typewriter font:

min
x,z

{f(x) + g(z) s.t. Ax+ Bz = c}

where

A = I3p+2|T |, B = −




Ip 0
Ip 0
Ip 0
0 I|T |
0 I|T |




, c = 0, x =




β(1)

β(2)

β(3)

γ(1)

γ(2)




and z =

(
β

γ

)
.

The primal and dual residuals are

rk+1 = Axk+1+Bzk+1−c =




β(1)k+1 − βk+1

β(2)k+1 − βk+1

β(3)k+1 − βk+1

γ(1)k+1 − γk+1

γ(2)k+1 − γk+1




and sk+1 = ρATB(zk+1−zk) = ρ




βk+1 − βk

βk+1 − βk

βk+1 − βk

γk+1 − γk

γk+1 − γk




.

By Condition (3.12) in Boyd et al. (2011), the ADMM algorithm stops when both resid-
uals are small. In our case, the termination criteria are the following.

31



1. The primal residual is small:
√√√√

3∑

i=1

‖β(i)k − βk‖22 +
2∑

j=1

‖γ(j)k − γk‖22

≤
√

3p+ 2|T | · ǫabs + ǫrel ·max





√√√√
3∑

i=1

‖β(i)k‖22 +
2∑

j=1

‖γ(j)k‖22,
√

3 ‖βk‖22 + 2 ‖γk‖22



 .

2. The dual residual is small:

ρ·
√
3‖βk − βk−1‖22 + 2‖γk − γk−1‖22 ≤

√
3p+ 2|T |·ǫabs+ǫrel·

√√√√
3∑

i=1

‖v(i)k‖22 +
2∑

j=1

‖u(j)k‖22.

D.2 Treatment of Intercept in Problem (5)

When an intercept β0 is included in the least squares, Problem (5) becomes:

min
β0∈R,β∈Rp,γ∈R|T |

s.t. β=Aγ





1

2n
‖y −Xβ − β01n‖22 + λ


α

|T |∑

ℓ=1

wℓ |γℓ|+ (1− α)

p∑

j=1

w̃j |βj|





 . (15)

First-order coniditon of the solution (β̂0, β̂) yields that

∂ 1
2n
‖y −Xβ − β01n‖22

∂β0

∣∣∣∣∣
(β0,β)=(β̂0,β̂)

=
1

n
1T
n (1nβ̂0− (y−Xβ̂)) =

1

n
(nβ̂0−1T

n (y−Xβ̂)) = 0.

So β̂0 =
1
n
1T
n (y −Xβ̂). Plugging β̂0 in Problem (15) and letting H = In − 1

n
1n1

T
n yields

min
β∈Rp,γ∈R|T |

s.t. β=Aγ





1

2n
‖Hy −HXβ‖22 + λ


α

|T |∑

ℓ=1

wℓ |γℓ|+ (1− α)

p∑

j=1

w̃j |βj|





 ,

which can now be solved using our consensus ADMM algorithm.

E Proof of Lemma 1

We first show existence of such B∗ by providing a feasible procedure to find B∗. Suppose
β∗ has at least two distinct values (otherwise B∗ = {r} trivially). Start with B = L(T ) so
that the first constraint is satisfied. If for siblings u, v in B such that the second constraint
is violated, by construction β∗

j = β∗
k for j ∈ L(Tu) and k ∈ L(Tv). So we replace u, v in B

with their parent node. We repeat the above steps until the second constraint is satisfied,
while holding the first constraint. Thus, B satisfies the two requirements for B∗.

Suppose B∗ and B̃∗ are different aggregating sets for β∗. Without loss of generality,
suppose there exists u ∈ B̃∗ but u /∈ B∗. Then u is a descendant or an ancestor of some
nodes in B∗; for either case the second constraint will be violated. Thus, such u does not
exist and B̃∗ = B∗.

The existence and uniqueness of A∗ follow from the definition of support of β∗.

32



F Proof of Theorem 4

Denote our penalty by Ω(β,γ) := α
∑|T |

ℓ=1 wℓ |γℓ|+ (1−α)
∑p

j=1 w̃j |βj|. We follow the proof

strategy used in Theorem 1 of Lou et al. (2016) to prove this theorem. If (β̂, γ̂) is a solution
to Problem (5), then we have

1

2n

∥∥∥y −Xβ̂
∥∥∥
2

2
+ λΩ(β̂, γ̂) ≤ 1

2n
‖y −Xβ‖22 + λΩ(β,γ)

for any (β,γ) such that β = Aγ. Let (β∗,γ∗) be such that

β∗ = AB∗β̃∗ and γ∗
ℓ =

{
β̃∗
ℓ if ℓ ∈ B∗

0 otherwise.

Plugging in y = Xβ∗ + ε and (β,γ) = (β∗,γ∗), with some algebra we have

1

2n

∥∥∥Xβ̂ −Xβ∗
∥∥∥
2

2
+ λΩ(β̂, γ̂) ≤ λΩ(β∗,γ∗) +

1

n
εTX∆̂(β∗) (16)

where ∆̂(β∗) = β̂ − β∗. By β̂ = Aγ̂ and β∗ = Aγ∗ (and writing ∆̂(γ∗) = γ̂ − γ∗),

1

n
εTX∆̂(β∗) =

1

n
εTXA∆̂(γ∗).

We next bound n−1εTX∆̂(β∗) = (1−α)n−1εTX∆̂(β∗)+αn−1εTXA∆̂(γ∗) in absolute value.
Define Vj := n−1/2XT

j ε for j = 1, . . . , p and Uℓ := n−1/2AT
ℓ X

Tε for ℓ = 1, . . . , |T |. With the
choice of weights w̃j = ‖Xj‖2 /

√
n for 1 ≤ j ≤ p and wℓ = ‖XAℓ‖2 /

√
n for 1 ≤ ℓ ≤ |T |,

∣∣∣∣
1

n
εTX∆̂(β∗)

∣∣∣∣ =
∣∣∣∣(1− α)

1

n
εTX∆̂(β∗) + α

1

n
εTXA∆̂(γ∗)

∣∣∣∣

=

∣∣∣∣∣∣
(1− α)

p∑

j=1

{
XT

j ε√
n‖Xj‖2

· ‖Xj‖2√
n

∆̂
(β∗)
j

}
+ α

|T |∑

ℓ=1

{
AT

ℓ X
Tε√

n‖XAℓ‖2
· ‖XAℓ‖2√

n
∆̂

(γ∗)
ℓ

}∣∣∣∣∣∣

=

∣∣∣∣∣∣
(1− α)

p∑

j=1

{
Vj

‖Xj‖2
· w̃j∆̂

(β∗)
j

}
+ α

|T |∑

ℓ=1

{
Uℓ

‖XAℓ‖2
· wℓ∆̂

(γ∗)
ℓ

}∣∣∣∣∣∣

≤ (1− α)

p∑

j=1

{ |Vj|
‖Xj‖2

· w̃j

∣∣∣∆̂(β∗)
j

∣∣∣
}
+ α

|T |∑

ℓ=1

{ |Uℓ|
‖XAℓ‖2

· wℓ

∣∣∣∆̂(γ∗)
ℓ

∣∣∣
}

≤ (1− α) max
1≤j≤p

|Vj|
‖Xj‖2

·
p∑

j=1

w̃j

∣∣∣∆̂(β∗)
j

∣∣∣+ α max
1≤ℓ≤|T |

|Uℓ|
‖XAℓ‖2

·
|T |∑

ℓ=1

wℓ

∣∣∣∆̂(γ∗)
ℓ

∣∣∣

(17)

where the second to last inequality follows from the triangle inequality.

33



Since ε ∼ Nn(0, σ
2In), Vj ∼ N (0, ‖Xj‖22σ2/n) for j = 1, . . . , p and Uℓ ∼ N (0, ‖XAℓ‖22σ2/n)

for ℓ = 1, . . . , |T |. By Lemma 6.2 of Bühlmann and van de Geer (2011), we have for x > 0

P

(
max
1≤j≤p

|Vj|
‖Xj‖2

> σ

√
2(x+ log p)

n

)
≤ 2e−x and

P

(
max

1≤ℓ≤|T |

|Uℓ|
‖XAℓ‖2

> σ

√
2(x+ log |T |)

n

)
≤ 2e−x.

By the union bound,

P

(
max
1≤j≤p

|Vj|
‖Xj‖2

> σ

√
2(x+ log p)

n
or max

1≤ℓ≤|T |

|Uℓ|
‖XAℓ‖2

> σ

√
2(x+ log |T |)

n

)
≤ 4e−x.

By the construction of T , each internal node has at least 2 child nodes. To go up to the next
level from the leaf nodes, only one node “survives” among its siblings. For T with p leaf
nodes, there must be at most p− 1 internal nodes where the maximum number is achieved
when T is a full binary tree. So |T | ≤ 2p. Choosing x = log(2p), we have that the following
results hold with probability at least 1− 2/p:

max
1≤j≤p

|Vj|
‖Xj‖2

≤ 2σ

√
log(2p)

n
and max

1≤ℓ≤|T |

|Uℓ|
‖XAℓ‖2

≤ 2σ

√
log(2p)

n
.

Plugging these upper bounds into (17), we have the following inequality holding with high
probability:

∣∣∣∣
1

n
εTX∆̂(β∗)

∣∣∣∣ ≤ 2σ

√
log(2p)

n


(1− α)

p∑

j=1

w̃j

∣∣∣∆̂(β∗)
j

∣∣∣+ α

|T |∑

ℓ=1

wℓ

∣∣∣∆̂(γ∗)
ℓ

∣∣∣




= 2σ

√
log(2p)

n
Ω(∆̂(β∗), ∆̂(γ∗)) (18)

Let λ ≥ 4σ
√

log(2p)/n and 0 ≤ α ≤ 1. By (16) and (18), the following holds with
probability at least 1− 2/p:

1

2n

∥∥∥Xβ̂ −Xβ∗
∥∥∥
2

2
≤ 1

2
λΩ(∆̂(β∗), ∆̂(γ∗))− λΩ(β̂, γ̂) + λΩ(β∗,γ∗)

≤ 1

2

(
λΩ(β̂, γ̂) + λΩ(β∗,γ∗)

)
− λΩ(β̂, γ̂) + λΩ(β∗,γ∗) (by triangle inequality)

≤ 3

2
λΩ(β∗,γ∗) =

3

2
λ


(1− α)

p∑

j=1

w̃j|β∗
j |+ α

|T |∑

ℓ=1

wℓ|γ∗
ℓ |




=
3

2
λ

(
(1− α)

∑

j∈A∗

w̃j|β∗
j |+ α

∑

ℓ∈B∗

wℓ|β̃∗
ℓ |
)

where A∗ is the support of β∗.

34



G Proof of Corollary 1

With ‖Xj‖2 ≤
√
n the weights in Theorem 4 become:

• For 1 ≤ j ≤ p, w̃j =
‖Xj‖2√

n
≤ 1.

• For 1 ≤ ℓ ≤ |T |, wℓ =
‖XAℓ‖2√

n
≤ 1√

n

∑
j∈L(Tuℓ )

‖Xj‖2 ≤ |L(Tuℓ
)|.

The inequality in wℓ is by the triangle inequality and the definition of A: the ℓth column
Aℓ encodes the descendant leaves of the node uℓ, i.e., Ajℓ = 1{j∈descendant(uℓ)∪{uℓ}}. By

construction of β̃∗, all coefficients in the branch rooted by an aggregating node uℓ share the
same value, i.e., β∗

j = β̃∗
ℓ for all j ∈ L(Tuℓ

) where ℓ ∈ B∗. Thus, for ℓ ∈ B∗,

β̃∗
ℓ =

∥∥∥β∗
L(Tuℓ )

∥∥∥
1

|L(Tuℓ
)| ⇒

∑

ℓ∈B∗

wℓ

∣∣∣β̃∗
ℓ

∣∣∣ ≤
∑

ℓ∈B∗

|L(Tuℓ
)|




∥∥∥β∗
L(Tuℓ )

∥∥∥
1

|L(Tuℓ
)|


 = ‖β∗‖1 .

Plugging the choice of λ and the above upper bounds into Theorem (4) yields

1

n

∥∥∥Xβ̂ −Xβ∗
∥∥∥
2

2
≤ 12σ

√
log(2p)

n

(
(1− α)

∑

j∈A∗

w̃j|β∗
j |+ α

∑

ℓ∈B∗

wℓ|β̃∗
ℓ |
)

≤ 12σ

√
log(2p)

n
((1− α) ‖β∗‖1 + α ‖β∗‖1)

. σ

√
log p

n
‖β∗‖1 (by log(2p) = log 2 + log p ≤ 2 log p)

which holds up to a multiplicative constant with probablity at least 1− 2/p.

H Proof of Corollary 2

With β∗
1 = . . . = β∗

p the aggregating set consists of the root, i.e., B∗ = {r}. Thus, β̃∗
r =

β∗
1 = ‖β∗‖1/p and wr = ‖X1p‖2/

√
n. With ‖Xj‖2 ≤

√
n, we have w̃j = ‖Xj‖2/

√
n ≤ 1 for

1 ≤ j ≤ p.
Plugging λ = 4σ

√
log(2p)/n into Theorem (4) yields

1

n

∥∥∥Xβ̂ −Xβ∗
∥∥∥
2

2
≤ 12σ

√
log(2p)

n

(
(1− α)

∑

j∈A∗

w̃j|β∗
j |+ αwr|β̃∗

r |
)

≤ 12σ

√
log(2p)

n

(
(1− α) ‖β∗‖1 + α

‖X1p‖1
p
√
n
‖β∗‖1

)

. σ

√
log p

n
‖β∗‖1

(
(1− α) + α

‖X1p‖2
p
√
n

)

35



which holds up to a multiplicative constant with probablity at least 1 − 2/p. Now, if α ≥
[1 + ‖X1p‖2/(p

√
n)]

−1
, then

1− α ≤ α
‖X1p‖2
p
√
n

and so
1

n

∥∥∥Xβ̂ −Xβ∗
∥∥∥
2

2
. σ

√
log p

n
‖β∗‖1 α

‖X1p‖2
p
√
n

It follows that if ‖X1p‖2 = o(p
√
n), then our method achieves a better rate than the lasso

rate of σ
√

log p/n ‖β∗‖1.

I Proof of Proposition 1

Let X́(1), . . . , X́(p) ∈ {0, 1}n be iid copies of the random vector X́ ∈ {0, 1}n with 1T
nX́ = r

and P(X́i = 1) = r/n ∀i = 1, . . . , n. By construction {X́(1), . . . , X́(p)} each has r nonzero
entries. For the jth column of X, let Xj =

√
n/rX́(j) so that its nonzero entries equal√

n/r and ‖Xj‖2 =
√
n.

For the random vector X́, its expectation and covariance (Σ) diagonal entries are

EX́ =
r

n
1n and Σii = V ar(X́i) =

r

n

(
1− r

n

)
=: τ 2.

Suppose ‖X́ − EX́‖2 ≤ L for some L > 0. Let Z :=
∑p

j=1 X́
(j) and v(Z) := max{‖E[(Z −

EZ)(Z−EZ)T ]‖op,E[‖Z−EZ‖22]}. Corollary 6.1.2 of Tropp (2015) gives the concentration
inequality for Z: ∀t ≥ 0,

P (‖Z − EZ‖2 ≥ t) ≤ (n+ 1) · exp
( −t2/2
v(Z) + Lt/3

)
. (19)

First, we derive a closed form for L. By construction of X́ (in particular 1T
nX́ = r),

∥∥∥X́ − EX́
∥∥∥
2

2
=
∥∥∥X́ − r

n
1n

∥∥∥
2

2
= (n− r)(0− r

n
)2 + r(1− r

n
)2 = r(1− r

n
) = nτ 2.

So choose L = ‖X́ − EX́‖2 =
√
nτ . Next, we simplify the two components of v(Z):

‖E[(Z − EZ)(Z − EZ)T ]‖op = ‖Cov(Z)‖op = p‖Σ‖op,

E[‖Z − EZ‖22] =
n∑

i=1

V ar(Zi) = tr(Cov(Z)) = p · tr(Σ).

Furthermore, max{‖Σ‖op, tr(Σ)} = tr(Σ) since Σ is positive semidefinite. Combining the
above yields

v(Z) = p · tr(Σ) = p · n · τ 2 = pL2.

Substituting v(Z) and EZ = pr/n · 1n into (19) yields

P

(∥∥∥Z − pr

n
1n

∥∥∥
2
≥ t
)
≤ (n+ 1) · exp

( −t2/2
pL2 + Lt/3

)
∀t ≥ 0.

36



Since Xj =
√

n/rX́(j), we have X1p =
√

n/rZ and ∀t ≥ 0,

P

(∥∥∥∥X1p − p

√
r

n
1n

∥∥∥∥
2

≥
√

n

r
t

)
= P

(∥∥∥Z − pr

n
1n

∥∥∥
2
≥ t
)
≤ (n+1)·exp

( −(t/L)2/2
p+ (t/L)/3

)
=: F (t).

Choosing t = pr/
√
n and by the triangle inequality,

‖X1p‖2 ≤ ‖X1p − p
√
r/n · 1n‖2 + ‖p

√
r/n · 1n‖2 ≤

√
n/r · t+ p

√
r = 2p

√
r

holds with probability at least 1 − F (pr/
√
n). Also t/L = pr/(nτ). We next simplify

F (pr/
√
n).

F

(
pr√
n

)
= (n+ 1) · exp

(
−1

2

(
pr
nτ

)2

p+ 1
3

(
pr
nτ

)
)

= (n+ 1) · exp
(
− pr2

2n2τ2

1 + r
3nτ

)

⇒ logF

(
pr√
n

)
= log(n+ 1)− 1

2
· p(r/n)2

τ 2 + 1
3
· τ · r

n

≤ log(n+ 1)− 1

2
· p(r/n)2

r/n+ 1
3
(r/n)3/2

(
by τ =

√
r

n

(
1− r

n

)
≤
√

r

n

)

≤ log(n+ 1)− 1

2
· p(r/n)
1 + 1

3

(
by

r

n
≤ 1
)

= log(n+ 1)− 3

8
· pr
n
.

So, P(‖X1p‖2 ≤ 2p
√
r) ≥ 1 − exp

(
log(n+ 1)− 3pr

8n

)
. Note that r

n
> 8 log(n+1)

3p
ensures the

exponent converges to negative infinity as n and p increase. Thus, if r > 8n log(n+1)
3p

, then

‖X1p‖2 = Op(p
√
r) ⇔ ‖X1p‖2

p
√
n

= Op

(√
r

n

)
.

So, we have ‖X1p‖2 = op(p
√
n) if r = o(n) and r > 8n log(n+1)

3p
.

J Paired t-tests between our method and L1-ag-h

To compare the test errors in the first two columns of Table 1 in the main paper, we perform
a two-sample t-test for each row. For each of the n = 40, 000 reviews, a pair of squared
prediction errors is calculated, one from each method. Conditional on the training set, these
n pairs can be thought of as independent. Table 4 shows the resulting p-values.

prop. 1% 5% 10% 20% 40% 60% 80% 100%
p-value 3.95× 10−9 0.086 7.21× 10−7 7.56× 10−8 2.2× 10−16 0.056 0.105 0.001

Table 4: Paired t-tests between squared prediction errors from our method and L1-ag-h on
the held-out test set. The prop. values correspond to different training sizes in Table 1.

37



K Hierarchical Clustering Tree with ELMo

Embeddings from Language Models (ELMo) is a state-of-the-art natural language processing
framework for representing words with deep contextualized embeddings (Peters et al., 2018).
ELMo leverages a deep neural network that is pre-trained on a large text corpus and has
multiple attractive properties. For our purpose, the most relevant property of ELMo is that
its word embeddings account for the context in which the words appear. In particular, the
ELMo embedding assigned to a word is a function of the entire sentence containing that
word. This means that the same word in different contexts will have different embeddings.
This is a great advantage over traditional word embeddings such as GloVe (Pennington et al.,
2014).

Among the training sets listed in Table 1, we focus on one scenario when n = 33, 997 and
p = 5, 621 (which corresponds to 20% of the entire training reviews). We use TensorFlow
(Abadi et al., 2015) and an ELMo model pre-trained on the One Billion World Language
Model Benchmark5 to get 1,024-dimensional embeddings for all words in the 33,997 training
reviews and the 40,000 held-out testing reviews. To establish a fair comparison with existing
experimentation, we keep only adjective embeddings in the reviews, which leaves us 952,974
adjective embeddings for training and 1,122,030 adjective embeddings for testing. Again,
the same adjective in various sentences has different ELMo embeddings whose proximities
encode how the word is used in each context.

We use mini-batch K-Means clustering (Sculley, 2010) to cluster the 952,974 adjectives
from training into 6,001 clusters. The choice of the number of K-Means clusters ensures
that the comparison between ELMo and GloVe (which is based on p=5,621) is roughly on
the same scale of features. After mini-batch K-Means clustering, we update each cluster
centroid to the averaged embeddings for training adjectives assigned to the cluster. We also
associate testing adjectives to the clusters by Euclidean distance. After associating adjectives
to clusters, we construct a document-cluster matrix for training and testing, respectively.
The ij-entry of the document-cluster matrix has the number occurrences of the jth cluster
in the ith review. Each cluster represents a collection of occurrences of adjectives used
in a similar context within a review. We next generate a tree by performing hierarchical
clustering on the cluster centroids. The tree and document-cluster matrix is then used in
fitting our model along with others such as L1-ag-h and L1-ag-d.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden,
P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale
machine learning on heterogeneous systems. Software available from tensorflow.org.

5http://www.statmt.org/lm-benchmark/

38



Arnold, T. B. and Tibshirani, R. J. (2014). genlasso: Path algorithm for generalized lasso
problems. R package version 1.3.

Bernstein, D. S. (2009). Matrix Mathematics: Theory, Facts, and Formulas (Second Edition).
Princeton University Press.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found. Trends
Mach. Learn., 3(1):1–122.

Bühlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Methods,
Theory and Applications. Springer Publishing Company, Incorporated, 1st edition.

Cao, Y., Zhang, A., and Li, H. (2017). Microbial Composition Estimation from Sparse Count
Data. ArXiv e-prints.

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello,
E. K., Fierer, N., Pena, A. G., Goodrich, J. K., Gordon, J. I., Huttley, G. A., Kelley, S. T.,
Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D.,
Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann,
J., Yatsunenko, T., Zaneveld, J., and Knight, R. (2010). QIIME allows analysis of high-
throughput community sequencing data. Nat. Methods, 7(5):335–336.

Chen, J., Bushman, F. D., Lewis, J. D., Wu, G. D., and Li, H. (2013). Structure-constrained
sparse canonical correlation analysis with an application to microbiome data analysis.
Biostatistics, 14(2):244–258.

Côté, F. D., Psaromiligkos, I. N., and Gross, W. J. (2012). A Chernoff-type Lower Bound
for the Gaussian Q-function. ArXiv e-prints.

Feinerer, I. and Hornik, K. (2016). wordnet: WordNet Interface. R package version 0.1-11.

Feinerer, I. and Hornik, K. (2017). tm: Text Mining Package. R package version 0.7-1.

Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. Bradford Books.

Forman, G. (2003). An extensive empirical study of feature selection metrics for text classi-
fication. J. Mach. Learn. Res., 3:1289–1305.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33(1):1–22.

Guinot, F., Szafranski, M., Ambroise, C., and Samson, F. (2017). Learning the optimal scale
for GWAS through hierarchical SNP aggregation. ArXiv e-prints.

Huang, A. (2008). Similarity measures for text document clustering. In Proceedings of
the sixth new zealand computer science research student conference (NZCSRSC2008),
Christchurch, New Zealand, pages 49–56.

39



Ke, T., Fan, J., and Wu, Y. (2015). Homogeneity Pursuit. J Am Stat Assoc, 110(509):175–
194.

Khabbazian, M., Kriebel, R., Rohe, K., and An, C. (2016). Fast and accurate detection
of evolutionary shifts in ornsteinuhlenbeck models. Methods in Ecology and Evolution,
7(7):811–824.

Kim, S., Xing, E. P., et al. (2012). Tree-guided group lasso for multi-response regression with
structured sparsity, with an application to eqtl mapping. The Annals of Applied Statistics,
6(3):1095–1117.

Li, C. and Li, H. (2010). Variable selection and regression analysis for graph-structured
covariates with an application to genomics. Ann. Appl. Stat., 4(3):1498–1516.

Li, Y., Raskutti, G., and Willett, R. (2018). Graph-based regularization for regression
problems with highly-correlated designs. ArXiv e-prints.

Lin, W., Shi, P., Feng, R., and Li, H. (2014). Variable selection in regression with composi-
tional covariates. Biometrika, 101:785–797.

Liu, X., Yu, S., Janssens, F., Glänzel, W., Moreau, Y., and De Moor, B. (2010). Weighted
hybrid clustering by combining text mining and bibliometrics on a large-scale journal
database. J. Am. Soc. Inf. Sci. Technol., 61(6):1105–1119.

Lou, Y., Bien, J., Caruana, R., and Gehrke, J. (2016). Sparse partially linear additive
models. Journal of Computational and Graphical Statistics, 25(4):1126–1140.

Matsen, F. A., Kodner, R. B., and Armbrust, E. V. (2010). pplacer: linear time maximum-
likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree.
BMC Bioinformatics, 11:538.

McMurdie, P. J. and Holmes, S. (2013). phyloseq: An r package for reproducible interactive
analysis and graphics of microbiome census data. PLOS ONE, 8(4):1–11.

Mohammad, S. M. and Turney, P. D. (2013). Crowdsourcing a word–emotion association
lexicon. Computational Intelligence, 29(3):436–465.

Mukherjee, R., Pillai, N. S., and Lin, X. (2015). Hypothesis testing for high-dimensional
sparse binary regression. Ann. Statist., 43(1):352–381.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532–1543.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer,
L. (2018). Deep contextualized word representations. In Proc. of NAACL.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria.

40



Randolph, T. W., Zhao, S., Copeland, W., Hullar, M., and Shojaie, A. (2015). Kernel-
Penalized Regression for Analysis of Microbiome Data. ArXiv e-prints.

Ridenhour, B. J., Brooker, S. L., Williams, J. E., Van Leuven, J. T., Miller, A. W., Dearing,
M. D., and Remien, C. H. (2017). Modeling time-series data from microbial communities.
ISME J, 11(11):2526–2537.

Schloss, P., L Westcott, S., Ryabin, T., R Hall, J., Hartmann, M., Hollister, E., Lesniewski,
R., Oakley, B., Parks, D., Robinson, C., W Sahl, J., Stres, B., G Thallinger, G., Van Horn,
D., and Weber, C. (2009). Introducing mothur: Open-source, platform-independent,
community-supported software for describing and comparing microbial communities. Ap-
plied and environmental microbiology, 75(23):7537–41.

Sculley, D. (2010). Web-scale k-means clustering. In Proceedings of the 19th International
Conference on World Wide Web, WWW 10, page 11771178, New York, NY, USA. Asso-
ciation for Computing Machinery.

She, Y. (2010). Sparse regression with exact clustering. Electron. J. Statist., 4:1055–1096.

Shi, P., Zhang, A., and Li, H. (2016). Regression analysis for microbiome compositional
data. Ann. Appl. Stat., 10(2):1019–1040.

Tang, Y., Li, M., and Niclolae, D. L. (2016). Phylogenetic Dirichlet-multinomial model for
microbiome data. ArXiv e-prints.

Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., and Kappas, A. (2010). Sentiment in
short strength detection informal text. J. Am. Soc. Inf. Sci. Technol., 61(12):2544–2558.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267–288.

Tibshirani, R. J. and Taylor, J. (2011). The solution path of the generalized lasso. Ann.
Statist., 39(3):1335–1371.

Tropp, J. A. (2015). An introduction to matrix concentration inequalities. Foundations and
Trends in Machine Learning, 8(1-2):1–230.

Wallace, M. (2007). Jawbone Java WordNet API.

Wang, H., Lu, Y., and Zhai, C. (2010). Latent aspect rating analysis on review text data:
A rating regression approach. In Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD ’10, pages 783–792, New
York, NY, USA. ACM.

Wang, J., Shen, X., Sun, Y., and Qu, A. (2016). Classification with unstructured predictors
and an application to sentiment analysis. Journal of the American Statistical Association,
111(515):1242–1253.

Wang, T. and Zhao, H. (2017a). A Dirichlet-tree multinomial regression model for associating
dietary nutrients with gut microorganisms. Biometrics, 73(3):792–801.

41



Wang, T. and Zhao, H. (2017b). Structured subcomposition selection in regression and its
application to microbiome data analysis. Ann. Appl. Stat., 11(2):771–791.

Xia, F., Chen, J., Fung, W. K., and Li, H. (2013). A logistic normal multinomial regression
model for microbiome compositional data analysis. Biometrics, 69(4):1053–1063.

Yu, G. and Liu, Y. (2016). Sparse regression incorporating graphical structure among pre-
dictors. Journal of the American Statistical Association, 111(514):707–720.

Zhai, J., Kim, J., Knox, K. S., Twigg, H. L., Zhou, H., and Zhou, J. J. (2018). Vari-
ance component selection with applications to microbiome taxonomic data. Frontiers in
Microbiology, 9:509.

Zhang, T., Shao, M.-F., and Ye, L. (2012). 454 pyrosequencing reveals bacterial diversity of
activated sludge from 14 sewage treatment plants. The ISME Journal, 6(6):1137–1147.

42


	1 Introduction
	2 Rare Features and the Promise of Aggregation
	2.1 The Difficulty Posed by Rare Features
	2.2 Aggregating Rare Features Can Help

	3 Main Proposal: Tree-Guided Aggregation
	3.1 A Tree to Guide Aggregation
	3.2 A Tree-Based Parametrization
	3.3 The Optimization Problem
	3.4 Connections to Other Work

	4 Statistical Theory
	5 Simulation Study
	6 Application to Hotel Reviews
	7 Conclusion
	Appendices
	Appendices
	A Failure of OLS in the Presence of A Rare Feature
	B Proof of Theorem 2
	C Proof of Theorem 3
	D Consensus ADMM for Solving Problem (5)
	D.1 Derivation of Algorithm 1
	D.2 Treatment of Intercept in Problem (5)

	E Proof of Lemma 1
	F Proof of Theorem 4
	G Proof of Corollary 1
	H Proof of Corollary 2
	I Proof of Proposition 1
	J Paired t-tests between our method and L1-ag-h
	K Hierarchical Clustering Tree with ELMo

