arXiv:1803.06675v2 [stat. ME] 8 Jul 2020

Rare Feature Selection in High Dimensions

Xiaohan Yan* Jacob Bien'

July 10, 2020

Abstract

It is common in modern prediction problems for many predictor variables to be
counts of rarely occurring events. This leads to design matrices in which many columns
are highly sparse. The challenge posed by such “rare features” has received little atten-
tion despite its prevalence in diverse areas, ranging from natural language processing
(e.g., rare words) to biology (e.g., rare species). We show, both theoretically and em-
pirically, that not explicitly accounting for the rareness of features can greatly reduce
the effectiveness of an analysis. We next propose a framework for aggregating rare
features into denser features in a flexible manner that creates better predictors of the
response. Our strategy leverages side information in the form of a tree that encodes
feature similarity.

We apply our method to data from TripAdvisor, in which we predict the numerical
rating of a hotel based on the text of the associated review. Our method achieves
high accuracy by making effective use of rare words; by contrast, the lasso is unable
to identify highly predictive words if they are too rare. A companion R package,
called rare, implements our new estimator, using the alternating direction method of
multipliers.

1 Introduction

The assumption of parameter sparsity plays an important simplifying role in high-dimensional
statistics. However, this paper is focused on sparsity in the data itself, which actually makes
estimation more challenging. In many modern prediction problems, the design matrix has
many columns that are highly sparse. This arises when the features record the frequency of
events (or the number of times certain properties hold). While a small number of these events
may be common, there is typically a very large number of rare events, which correspond to
features that are zero for nearly all observations. We call these predictors rare features. Rare
features are in fact extremely common in many modern data sets. For example, consider the
task of predicting user behavior based on past website visits: Only a small number of sites
are visited by a lot of the users; all other sites are visited by only a small proportion of users.

*Data Scientist, Microsoft; email: xy257@cornell.edu
t Associate Professor, Data Sciences and Operations, Marshall School of Business, University of Southern
California; email: jbien@usc.edu

As another example, consider text mining, in which one makes predictions about documents
based on the terms used. A typical approach is to create a document-term matrix in which
each column encodes a term’s frequency across documents. In such domains, it is often the
case that the majority of the terms appear very infrequently across the documents; hence
the corresponding columns in the document-term matrix are very sparse (e.g., Forman 2003;
Huang 2008; Liu et al. 2010; Wang et al. 2010). In Section 6, we study a text dataset with
more than 200 thousand reviews crawled from https://www.tripadvisor.com. Our goal is
to use the adjectives in a review to predict a user’s numerical rating of a hotel. As shown
in the right panel of Figure 7, the distribution of adjective density, defined as the propor-
tion of documents containing an adjective, is extremely right-skewed, with many adjectives
occurring very infrequently in the corpus. In fact, we find that more than 95% of the 7,787
adjectives appear in less than 5% of the reviews. It is common practice to simply discard
rare terms,! which may mean removing most of the terms (e.g., Forman 2003; Huang 2008;
Liu et al. 2010; Wang et al. 2010).

Rare features also arise in various scientific fields. For example, microbiome data measure
the abundances of a large number of microbial species in a given environment. Researchers
use next generation sequencing technologies, clustering these reads into “operational tax-
onomic units” (OTUs), which are roughly thought of as different species of microbe (e.g.,
Schloss et al. 2009; Caporaso et al. 2010). In practice, many OTUs are rare, and researchers
often aggregate the OTUs to genus or higher levels (e.g., Zhang et al. 2012; Chen et al.
2013; Xia et al. 2013; Lin et al. 2014; Randolph et al. 2015; Shi et al. 2016; Cao et al. 2017)
or with unsupervised clustering techniques (e.g. McMurdie and Holmes 2013; Wang and
Zhao 2017b) to create denser features. However, even after this step, a large portion of
these aggregated OTUs are still found to be too sparse and thus are discarded (e.g., Zhang
et al. 2012; Chen et al. 2013; Shi et al. 2016; Wang and Zhao 2017b). The rationale for this
elimination of rare OTUs is that there needs to be enough variation among samples for an
OTU to be successfully estimated in a statistical model (Ridenhour et al., 2017).

The practice of discarding rare features is wasteful: a rare feature should not be inter-
preted as an unimportant one since it can be highly predictive of the response. For instance,
using the word “ghastly” in a hotel review delivers an obvious negative sentiment, but this
adjective appears very infrequently in TripAdvisor reviews. Discarding an informative word
like “ghastly” simply because it is rare clearly seems inadvisable. To throw out over half of
one’s features is to ignore what may be a huge amount of useful information.

Even if rare features are not explicitly discarded, many existing variable selection methods
are unable to select them. The challenge is that with limited examples there is very little
information to identify a rare feature as important. Theorem 1 shows that even a single rare
feature can render ordinary least squares (OLS) inconsistent in the classical limit of infinite
sample size and fixed dimension.

To address the challenge posed by rare features, we propose in this work a method for
forming new aggregated features which are less sparse than the original ones and may be
more relevant to the prediction task. Consider the following features, which represent the
frequency of certain adjectives used in hotel reviews:

!For example, in the R text mining library tm (Feinerer and Hornik, 2017), removeSparseTerms is a
commonly used function for removing any terms with sparsity level above a certain threshold.

L Xworryinga Xdepressing7 R Xtroublinga
L4 Xhorrid7 Xhideou57 ceey Xawful-

While both sets of adjectives express negative sentiments, the first set (which might be
summarized as “worry”) seems more mild than the second set (which might be summarized
as “horrification”). In predicting the rating of a hotel review, we might find the following
two aggregated features more relevant:

Xworry = Xworrying + Xdepressing + -+ Xtroubling
X horrification = Xhorrid + X hideous 1 *** 1 X awful -

The distinction between “horrid” and “hideous” might not matter for predicting the hotel
rating, whereas the distinction between a “worry”-related word versus a “horrification”-
related word may be quite relevant. Thus, not only are these aggregated features less rare
than the original features, but they may also be more relevant to the prediction task. A
method that selects the aggregated feature Xjomification thereby can incorporate the infor-
mation conveyed in the use of “hideous” into the prediction task; this same method may be
unable to otherwise determine the effect of “hideous” by itself since it is too rare.

Indeed, appropriate aggregation of rare features in certain situations can be key to at-
taining consistent estimation and support recovery. In Theorem 2, we consider a setting
where all features are rare and a natural aggregation rule exists among the features. In that
setting, we show that the lasso (Tibshirani, 1996) fails to attain high-probability support
recovery (for all values of its tuning parameter), whereas an oracle-aggregator does attain
this property. Theorem 2 demonstrates the value of proper aggregation for accurate fea-
ture selection when features are rare. This motivates the remainder of the paper, in which
we devise a strategy for determining an effective feature aggregation based on data. Our
aggregation procedure makes use of side information about the features, which we find is
available in many domains. In particular, we assume that a tree is available that represents
the closeness of features. For example, Figure 1 shows a tree for the previous word example
that is generated via hierarchical clustering over Glo Ve (Pennington et al., 2014) embeddings
learned from a different data source. The two contours enclose two subtrees resulting from
a cut at their joint node. Aggregating the counts in these subtrees leads to the new features
Xyorry and Xipomification described above. We give more details of constructing such a tree in
Section 3.1.

In Section 2, we motivate our work by providing theoretical results demonstrating the
difficulty that OLS and the lasso have with rare features. We further show that correct
aggregation of rare features leads to signed support recovery in a setting where the lasso
is unable to attain this property. In Section 3, we introduce a tree-based parametrization
strategy that translates the feature aggregation problem to a sparse modeling problem. Our
main proposal is an estimator formulated as a solution to a convex optimization problem
for which we derive an efficient algorithm. We draw connections between this method and
related approaches and then in Section 4, provide a bound on the prediction error for our
method. Finally, we demonstrate the empirical merits of the proposed framework through
simulation (Section 5) and through the TripAdvisor prediction task (Section 6) described
above. In simulation, we examine our method’s robustness to misspecified side informa-

worrying
dopressing —]

alarming
troubling
r——= " hotid ————M— — —~ — — T T 1
ghastly
I dreadful
I

horrific —_—
horrifying —— |

| terrible —
L awful 1

Figure 1: A tree that relates adjectives on its leaves

tion. Quantitative and qualitative comparisons in the TripAdvisor example highlight the
advantages of aggregating rare features.

Notation: Given a design matrix X € R™? let x; € RP denote the feature vector of
observation 7 and X; € R" denote the jth feature, where « = 1,...,n and j = 1,...,p.
For a vector 3 € RP, let supp(8) C {1,...,p} denote its support (i.e., the set of indices of
nonzero elements). Let Si(8) := (sign(f)),—,. , encode the signed support of the vector
B. Let T be a p-leafed tree with root r, set of leaves L(T) = {1,...,p}, and set of nodes
V(T) of size |T|. Let T, be the subtree of 7 rooted by u for u € V(7). We follow the
commonly-used notions of child, parent, sibling, descendant, and ancestor to describe the
relationships between nodes of a tree. For a matrix A € R™*" and subset B of {1,...,n},
let A € R™¥IBl be the submatrix formed by removing the columns of A not in B. Let
S(Be, A) = sign(Be)-max{|Be| — A, 0} be the soft-thresholding operator applied to 5, € R. We
let e; denote the vector having a one in the jth entry and zero elsewhere. For sequences a,
and b, we write a,, < b, to mean that a, /b, is eventually bounded, and we write a,, = o(b,,)
to mean that a, /b, converges to zero.

2 Rare Features and the Promise of Aggregation

2.1 The Difficulty Posed by Rare Features

Consider the linear model,

y=XpB" +e, e ~ N(0,0%I,). (1)

where y = (y1,...,y,)7 € R™ is a response vector, X € R™ P is a design matrix, B* is

a p-vector of parameters, and € € R” is a vector of independent Gaussian errors having
variance o2. In this paper, we focus on counts data, i.e., X;; records the frequency of an
event j in observation 7. In particular, we will assume throughout that X has non-negative
elements.

The lasso (Tibshirani, 1996) is an estimator that performs variable selection, making it

well-suited to the p > n setting:

Alasso 1
N e argm1n2—|ly—XﬁH%Jr)\HﬁHl. (2)
BERP n

4

When A = 0, this coincides with the OLS estimator, which is uniquely defined when n > p
and X is full rank:)
B () = (XTX) ' X"y,

To better understand the challenge posed by rare features, we begin by considering the effect
of a single rare feature on OLS in the classical p-fixed, n — oo regime. We take the jth
feature to be a binary vector having k& nonzeros, where k is a fixed value not depending on
n. As n increases, the proportion of nonzero elements, k/n, goes to 0. We show in Theorem
1 that B?Ls(n) does not converge in probability to 8j with increasing sample size. This
establishes that OLS is not a consistent estimator of 3* even in a p-fixed asymptotic regime.

Theorem 1. Consider the linear model (1) with X € R"*P having full column rank. Further
suppose that X is a binary vector having (a constant) k nonzeros. It follows that there exists
n > 0 for which

lim inf P (B]OLS(n) — B3

n—0o0

>77)>0.

Proof. The result follows from taking liminf, ., of both sides of (7) in Appendix A and
observing that 2® (—nk'/? /o) does not depend on n. O

The above result highlights the difficulty of estimating the coefficient of a rare feature.
This suggests that even when rare features are not explicitly discarded, variable selection
methods may fail to ever select them regardless of their strength of association with the
response. Other researchers have also acknowledged the difficulty posed by rare features in
different scenarios. For example, in the context of hypothesis testing for high-dimensional
sparse binary regression, Mukherjee et al. (2015) shows that when the design matrix is too
sparse, any test has no power asymptotically, and signals cannot be detected regardless of
their strength. Since the failure is caused by the sparsity of the features, it is therefore
natural to ask if “densifying the features” in an appropriate way would fix the problem. As
discussed above, aggregating the counts of related events may be a reasonable way to allow
a method to make use of the information in rare features.

2.2 Aggregating Rare Features Can Help

Given m subsets of {1,...,p}, we can form m aggregated features by summing within each
subset. We can encode these subsets in a binary matrix A € {0,1}"*™ and form a new
design matrix of aggregated features as X = X A. The columns of X are also counts, but
represent the frequency of m different unions of the p original events. For example, if the
first subset is {1, 6,8}, the first column of A would be e; + e + eg and the first aggregated
feature would be 5(/1 = X + X + Xg, recording the number of times any of the first,
sixth, or eighth events occur. A linear model, X 3, based on the aggregated features can be
equivalently expressed as a linear model, X 3, in terms of the original features as long as (3
satisfies a set of linear constraints (ensuring that it is in the column space of A):

XB=(XA)PB=X(AB) =XB.

The vector 3 lies in the column space of A precisely when it is constant within each of the
m subsets. For example,

enforcing B1 = B = Bs & aggregating features: X161+ Xofs+Xsfs = (X1+Xo+Xs)1 = X1 5.
3)

In practice, determining how to aggregate features is a challenging problem, and our proposed

strategy in Section 3 will use side information to guide this aggregation.

For now, to understand the potential gains achievable by aggregation, we consider an
idealized case in which the correct aggregation of features is given to us by an oracle. In the
next theorem, we construct a situation in which (a) the lasso on the original rare features is
unable to correctly recover the support of 8* for any value of the tuning parameter A\, and
(b) an oracle-aggregation of features makes it possible for the lasso to recover the support
of B3*. For simplicity, we take X as a binary matrix, which corresponds to the case in
which every feature has n/p nonzero observations. We take B* to have k blocks of size
p/k, with entries that are constant within each block. The last block is all zeros and the
minimal nonzero [3;] is restricted to lie within a range that is expands with n, p and k. The
oracle approach delivers to the lasso the k aggregated features that match the structure in
B*. These aggregated features have n/k nonzeros, and thus are not rare features. Having
peformed the lasso on these aggregated features, we then duplicate the k elements, p/k times
per group, to get Bf{ade € RP. The lasso with the oracle-aggregator is shown to achieve high-
probability signed support recovery whereas the lasso on the original features fails to achieve
this property for all values of the tuning parameter \.

Theorem 2. Consider the linear model (1) with binary matric X € {0,1}"*?, p < n,
and XTX = (p/p)Ip.'N every column of X has n/p one’s and X1, = 1,. Suppose B* =
B* @ 1, for B = (B],...,Bi_1,0). Suppose k < p/(36logn). Then, the interval T =
(0y/ % log(k2n), o+/L log (2ep/k)] with ¢ = e+ [1 4 1 is nonempty and for min

i=1,....,k—1

gi| e

Z, the following two statements hold:

(a) The lasso fails to get high-probability signed support recovery:

. Alasso * 1
limsup supB (S (3) = 5.(8")) < .

p—oo A>0 €

(b) The lasso with an oracle-aggregation of features succeeds in recovering the correct signed
support for some X > 0:

lim P (S2(B7°") = $2(8") = 1.

n—oo

Proof. See Appendix B. n

Even when the true model does not have a small number of aggregated features (i.e., 3*
does not have k < p distinct values), it may still be beneficial to aggregate. The next result
exhibits a bias-variance tradeoff for feature aggregation.

Theorem 3 (Bias-Variance Tradeoff for Feature Aggregated Least Squares). Consider the
linear model (1) with X having full column rank (n > p) and a general vector 3* € RP.
Let C = {Ci,...,C|} be an arbitrary partition of {1,...,p}. Let B¢ € RP be the estimator
formed by performing least squares subject to the constraint that parameters are constant
within the groups defined by C. Then, the following mean squared estimation result holds:

.) g
~E|| X - X8| = IIXII > (ﬂ —led™) 5)

{=1 jeCyp j'eCy

o’|C|

Proof. See Appendix C. O

The bias term is small when there is a small amount of variability in coefficient values
within groups of the partition C, i.e. when B* is approzimately constant within each group.
Even when 3* in truth has a large k (even k = p), there may still exist a partition C with

IC| < k for which the bias term is small and thus E[| X 8¢ — X 8*||> < E[| X 8°M — X 8*||?> =
a?p.

3 Main Proposal: Tree-Guided Aggregation

In the previous section, we have seen the potential gains achievable through aggregating rare
features. In this section, we propose a tree-guided method for aggregating and selecting rare
features. We discuss this tree in Section 3.1, introduce a tree-based parametrization strategy
in Section 3.2, and propose a new estimator in Section 3.3.

3.1 A Tree to Guide Aggregation

To form aggregated variables, it is infeasible to consider all possible partitions of the features
{1,...,p}. Rather, we will consider a tree T with leaves 1,...,p and restrict ourselves to
partitions that can be expressed as a collection of branches of T (see, e.g., Figure 1). We
sum features within a branch to form our new aggregated features.

We would like to aggregate features that are related, and thus we would like to have T
encode feature similarity information. Such information about the features comes from prior
knowledge and/or data sources external to the current regression problem (i.e., not from
y and X). For example, for microbiome data, 7 could be the phylogenetic tree encoding
evolutionary relationships among the OTUs (e.g., Matsen et al. 2010; Tang et al. 2016;
Wang and Zhao 2017a) or the co-occurrence of OTUs from past data sets. When features
correspond to words, closeness in meaning can be used to form 7 (e.g., in Section 6, we
perform hierarchical clustering on word embeddings that were learned from an enormous
corpus).

In (3), we demonstrated how aggregating a set of features is equivalent to setting these
features’ coefficients to be equal. To perform tree-guided aggregation, we therefore associate
a coefficient 3; with each leaf of 7 and “fuse” (i.e., set equal to each other) any coefficients
within a branch that we wish to aggregate.

Pr B2 B3 Ps Bs d

Figure 2: (Left) An example of 3 € R® and T that relates the corresponding five features.
By (4), we have 3; = v; + v + s for i = 1,2,3 and 5; = v; + 77 + 75 for j = 4,5. (Right)
By zeroing out the ~;’s in the gray nodes, we aggregate (§ into two groups indicated by the
dashed contours: 5y = [y = B3 = 76 + 75 and [, = (5 = 5. Counts data are aggregated for
features sharing the same coefficient: X3 = (X7 + Xs + X3)01 + (X4 + X5) 4.

3.2 A Tree-Based Parametrization

In order to fuse §;’s within a branch, we adopt a tree-based parametrization by assigning a
parameter 7, to each node u in 7 (this includes both leaves and interior nodes). The left
panel of Figure 2 gives an example. Let ancestor(j) U {j} be the set of nodes in the path
from the root of 7 to the jth feature, which is associated with the jth leaf. We express f;
as the sum of all the ~,’s on the path:

B = Z V- (4)

u€ancestor(j)U{j}

This can be written more compactly as 3 = A, where A € {0,1}?*I7! is a binary matrix
with Aji = liucancestor()ufiyy = l{jedescendant(uy)u{ug}}- Lhe descendants of each node u
define a branch 7T,, and zeroing out 7,’s for all v € descendant(u) fuses the coefficients in
this branch, i.e., {8; : 7 € L(T.)}. Thus, Yaescendant(wy = 0 is equivalent to aggregating the
features X; with j € £(7,) (see the right panel of Figure 2).

Another way of viewing this parametrization’s merging of branches is by expressing X3 =
X Ay, where (XA)iy =37 XijAj = ijjedescendam(uk)u{uk} X;; aggregates counts over all
the descendant features of node ug. By aggregating nearby features, we allow rare features to
borrow strength from their neighbors, allowing us to estimate shared coefficient values that
would otherwise be too difficult to estimate. In the next section, we describe an optimization
problem that uses the v parametrization to simultaneously perform feature aggregation and
selection.

3.3 The Optimization Problem

Our proposed estimator B is the solution to the following convex optimization problem:

71 P

1 -

%Hy—Xﬁﬂiﬂ aY wlyl+(1—a)d @8] st B=Ay
=1 j=1

min
BERP ~eRIT|

()

We apply a weighted ¢; penalty to induce sparsity in 4, which in turn induces fusion of
the coefficients in B. In the high-dimensional setting, sparsity in feature coefficients is also
desirable, so we also apply a weighted ¢; penalty on 3. The tuning parameter A controls
the overall penalization level while o determines the trade-off between the two types of
regularization: fusion and sparsity. In practice, both A and « are determined via cross
validation. The choice of weights is left to the user. Our theoretical results (Section 4)
suggest a particular choice of weights, although in our empirical studies (Sections 5 and 6)
we simply take all weights to be 1 except for the root, which we leave unpenalized (w0 = 0).
Choosing w;ot = 0 allows one to apply strong shrinkage of all coefficients towards a common
value other than zero.

When a = 0, (5) reduces to a lasso problem in 8; when a = 1, (5) reduces to a lasso
problem in . Both extreme cases can be efficiently solved with a lasso solver such as glmnet
(Friedman et al., 2010). For o € (0,1), (5) is a generalized lasso problem (Tibshirani and
Taylor, 2011) in 4, and can be solved in principle using preexisting solvers (e.g., Arnold
and Tibshirani 2014). However, better computational performance, in particular in high-
dimensional settings, can be attained using an algorithm specially tailored to our problem.
With weights w, = 0 and {w, = 1,w; = 1}{#,”,]-6[172,]}, we write (5) as a global consensus
problem and solve this using alternating direction method of multipliers (ADMM, Boyd et al.
(2011)). The consensus problem introduces additional copies of 8 and =, which decouples
the various parts of the problem, leading to efficient ADMM updates:

B

7] p
1 2

. Ao (1) (1) _ ny

0 gy 130 = XBO e (@il - D o
and 41 ~(2) ~eRIT] =1 j=1

In particular, our ADMM approach requires performing a singular value decomposition
(SVD) on X, an SVD on (I, : —A) (these are reused for all A and «), and then applying
matrix multiplies and soft-thresholdings until convergence. See Algorithm 1 in Appendix D
for details. Appendix D.1 provides a derivation of Algorithm 1 and Appendix D.2 discusses
a slight modification for including an intercept, which is desirable in practice.

3.4 Connections to Other Work

Before proceeding, we draw some connections to other work. Wang and Zhao (2017b) in-
troduce a penalized regression method with high-dimensional and compositional covariates
that uses a phylogenetic tree. They apply an ¢; penalty on the sum of coefficients within
a subtree, for every possible subtree in the phylogenetic tree. Their penalty is designed to
encourage the sum of coefficients within a subtree to be zero, which naturally detects a sub-
composition of microbiome features. By contrast, our method applies an ¢; penalty on our
latent variables 7,’s, which induces the regression coefficients within subtrees to have equal
values. Thus, their penalty encourages the sum of coefficients within a subtree to be zero,
whereas ours induces equality. For a simple example, suppose ; and 5 form a subtree of
the phylogenetic tree. Their penalty would promote 5, = — [whereas ours would promote
B1 = P2. The basic assumption of their method is that contrasts of species abundances within

a subtree may be predictive, whereas the basic assumption of our method is that average
species abundance within a subtree may be predictive. These different structural assump-
tions will be appropriate in different situations. In this paper’s context of rare features, our
assumption is the relevant one: Consider a subtree containing a large number of species. By
asking for equality of coefficients, our method promotes the aggregation of species counts
across the subtree, leading to denser features; by contrast, asking for coefficients to sum to
zero does not address the problem of feature rarity.

Existing work has also considered the setting in which regression coefficients are thought
to be clustered into a small number of groups of equal coefficient value. For example, She
(2010) and Ke et al. (2015) do this by penalizing coefficient differences. Neither method,
however, is focused specifically on rare features and thus they do not rely on side information
to perform this clustering of coefficients. In our setting, the side information provided by the
tree plays an important role in compensating for the extremely small amount of information
available about rare features.

Several other methods assume a relevant undirected graph over the predictors and use a
graph-Laplacian or graph-total-variation penalty to promote equality of coefficients that are
nearby on the graph (Li and Li, 2010; Li et al., 2018). Depending on the setting, this graph
may either be pure side information (Li and Li, 2010) or be a covariance graph estimated
based on X itself (Li et al., 2018). While the above methods use graph information “edge-
by-edge”, Yu and Liu (2016) incorporate graphical information “node-by-node” to promote
joint selection of predictors that are connected on the graph.

Guinot et al. (2017) considers a similar idea of aggregating genomic features with the help
of a hierarchical clustering tree; however, in the tree is learned from the design matrix and the
prediction task is only used to determine the level of tree cut, whereas our method in effect
uses the response to flexibly choose differing aggregation levels across the tree. We consider
a strategy similar to theirs, which we call L1-ag-h in the empirical comparisons. Kim et al.
(2012) propose a tree-guided group lasso approach in the context of multi-response regression.
In their context, the tree relates the different responses and is used to borrow strength across
related prediction tasks. Zhai et al. (2018) propose a variance component selection scheme
that aggregates OTUs to clusters at higher phylogenetic level, and treats the aggregated
taxonomic clusters as multiple random effects in a variance component model. Finally,
Khabbazian et al. (2016) propose a phylogenetic lasso method to study trait evolution from
comparative data and detect past changes in the expected mean trait values.

4 Statistical Theory

In this section, we study the prediction consistency of our method. Since T encodes feature
similarity information, throughout the section we require 7 to be a “full” tree such that each
node is either a leaf or possesses at least two child nodes. We begin with some definitions.

Definition 1. We say that B C V(7)) is an aggregating set with respect to T if {L(T,) :
u € B} forms a partition of L(T).

The black circles in Figure 3 form an aggregating set since their branches’ leaves are a
partition of {1,...,8}. We would like to refer to “the true aggregating set B* with respect

10

Uy
Uy

Uz U3 Us

[13]13][13] [3.5]4.7] [o] [0]
By By By Bi By Bs Br oM

Figure 3: In the above tree, B* = {uy, ug, us, u4, ys} has its nodes labeled with black circles.

to 77 and, to do so, we must first establish that there exists a unique coarsest aggregating
set corresponding to a vector 3*.

Lemma 1. For any 3* € RP, there exists a unique coarsest aggregating set B* :== B(3*,T) C
V(T) (hereafter “the aggregating set”) with respect to the tree T such that (a) B = B; for
gk € L(T,) Yu € B*, (b) |85 — Bg| >0 for j € L(T,) and k € L(T,) for siblings u,v € B*.

The lemma (proved in Appendix E) defines B* as the aggregating set such that further
merging of siblings would mean that £* is not constant within each subset of the partition.

Definition 2. Given the triplet (7, 3*, X), we define (a) X = XAp- € R™IB 6 be the
design matriz of aggregated features, which uses B* = B(8*,T) as the aggregating set, and
(b) B* € RIB"l to be the coefficient vector using these aggregated features: 3* = Ag-B*.

We are now ready to provide a bound on the prediction error of our estimator, which is
proved in Appendix F.

Theorem 4 (Prediction Error Bound). If we take X > 4o/log(2p)/n, w; = || X;||, /v/n for
1<j<pandw,=|XAdl,//n for1 <l<|T|, then

: jw((l—a)zw]w\+azwm)

JEA* leB*

holds with probability at least 1 — 2/p for any o € [0, 1].

This is a slow rate bound for our method. The standard slow rate bound for the lasso
is oy/logp/n||3*|l1. The next corollary establishes that our method, for any choice of «,
achieves this rate.

Corollary 1. Suppose || X;|l2 < /n for 1 < j < p. Then, taking A = 40+/log(2p)/n and
using the weights in Theorem 4,

—HX(B B3 < ov/logp/nl|B*h
holds with probablity at least 1 — 2/p for any o € [0, 1].

11

Proof. See Appendix G. O

The previous corollary establishes that one does not worsen the rate by using our method
over the lasso in a generic setting. But is there an advantage to using our method? Our
method is designed to do well in circumstances in which |B*| is small, that is 8* is mostly
constant with grouping given by the provided tree. The next corollary considers the extreme
case in which 8* is constant (and nonzero).

Corollary 2. Under the conditions of Corollary 1, suppose 87 = ... = p; # 0. Taking
-1
a > [L+ [X1p)2/(pvn)]
logp o 1 X[l
52 g1,
pn

holds with probability at least 1 — 2/p. Thus, this improves the lasso rate when || X1

o(pv/n).
Proof. See Appendix H. m

|x-xp
n

2
So
2

ol

For certain sparse designs, the above condition holds. For example, when n = p and
X = /nl,, | X1,]2 = vn|1.]la = n which is o(py/n) = o(n®?). The next proposition

considers a more general sparse X scenario.

Proposition 1. Suppose each column of X has exactly r nonzero entries chosen at random
and independently of all other columns. Suppose all nonzero entries equal \/n/r so that
1X||2 = v/n for every column 1 < j < p.]f%zﬂ) <L =0, then || X1,|2/(pyv/n) — 0 in
probability.

Proof. See Appendix I. n

Proposition 1 combined with Corollary 2 demonstrates that our method can improve the
prediction error rate over the lasso. While this corollary focuses on the rather extreme case
in which all coefficients are equal, we expect the result to be generalizable to a wider class
of settings. Indeed, the empirical results of the next section suggest that our method can
outperform the lasso in many settings.

5 Simulation Study

We start by forming a tree 7 with p leaves. To do so, we generate p latent points in R
and then apply hierarchical clustering (using hclust in R Core Team (2016) with complete
linkage). We would like the tree to partition the leaves into k clusters of varying sizes and at
differing heights in the tree (which will correspond to the true aggregation of the features).
To do so, we first generate k cluster means pq, ..., € R with u; = 1/i. The first k/2
means have 3p/(2k) associated latent points each, and the remaining k/2 means have p/(2k)
associated latent points each. The latent points associated with p; are drawn independently
from N (p;, 7% min;(u; — p;)?), where 7 = 0.05.

12

Yes
Is the aggregation /
S .
Are features \(/ supervised? \ [Li-ag-h: lasso, aggregated by height]
)

aggregated? %[1 Tosso] lLl—ag—d: lasso, aggregated by cluster densityJ

(L1-dense: lasso on dense features)

Figure 4: A comparison between our method and four other methods

By design, there are k interior nodes in 7 corresponding to these k groups, which we index
by B*. We form A corresponding to this tree and generate 3* = Apg.B*. We zero out k - s
elements of 3* € R* and draw the magnitudes of the remaining elements independently from
a Uniform(1.5,2.5) distribution. We alternate signs of the nonzero coefficients of 3*. The
design matrix X € R™? is simulated from a Poisson(0.02) distribution, and the response
y € R" is simulated from (1) with o = || X 8*||2/v/5n. For every method under consideration,
we average its performance over 100 repetitions in all the following simulations.

We consider both low-dimensional (n = 500, p = 100, s = 0) and high-dimensional
(n =100, p =200, s € {0.2,0.6}) scenarios, in each case taking a sequence of k values up to
p/2. We apply our method with 7 and vary the tuning parameters («, A) along an 8-by-50
grid of values. We take all weights equal to 1 except that of the root node, which we take as
zero (leaving it unpenalized). In the low-dimensional case, we compare our method to oracle
least squares, in which we perform least squares on X Ap+. Oracle least squares represents
the best possible performance of any method that attempts to aggregate features. We also
include least squares on the original design matrix X. In the high-dimensional case, we
compare our method to the oracle lasso, in which the true aggregation X Ag- (but not the
sparsity in B*) is known, and to the lasso and ridge regression, which are each computed
across a grid of 50 values of the tuning parameter.

In addition to the above methods, we compare our method to three other approaches,
meant to represent variations of how the lasso is typically applied when rare features are
present (see Figure 4 for a schematic). The first approach, which we refer to as L1-dense,
applies the lasso after first discarding any features that are in fewer than 1% of observations.
The second and third approaches apply the lasso with features aggregated according to T
in an unsupervised manner. The second approach, L1-ag-h, aggregates features that are in
the same cluster after cutting the tree at a certain height. In addition to the lasso tuning
parameter, the height at which we cut the tree is a second tuning parameter (chosen along
an equally-spaced grid of eight values). The third approach, Li-ag-d, performs merges in
a bottom-up fashion along the tree until all aggregated features have density above some
threshold. This threshold is an additional tuning parameter (chosen along an equally spaced
grid of eight values between 0.01 and 1). The lasso tuning parameter in these methods is
always chosen along a grid of 50 values.

We measure the best mean-squared estimation error, i.e., miny ||B(A) — B*||2/p, where
“best” is with respect to each method’s tuning parameter(s) A. The top two panels of
Figure 5 show the performance of the methods in the low-dimensional and high-dimensional
scenarios, respectively. Given that our method includes least squares and the lasso as special
cases, it is no surprise that our methods have better attainable performance than those

13

(n, p, s) = (500, 100, 0) (n, p, s) = (100, 200, 0.2)

5 5 2
5 81 5 " B
5 7 ~ g —a
c © e ®ia, c | - g2 ¢
S o |¥=r=us g st §: ay S o g
© N « F .
E o least squares E o | TN _ i
» L1-dense G o Lo S
O © | .o Li-ag-h - - 5} * 4 y 7
8 S L1-ag-d Pt 8 0 | 4 P2 e
= —e— our method P = - / s -
8 o | = oracleleastsquares _ = S . P .~ -
- /.
g g g e 9’ Vo - .7 -+ lasso
CI C| - / ar -%- ridge
c 0 < / P L1-dense
o S o w | - o Li-ag-h
E o E o _ L1-ag-d
) k7 -~ —e— our method
[o=] v o - -= oracle lasso
m < A s Qe
o T T T T T T T T T T
10 20 30 40 50 20 40 60 80 100
k k
(n, p, s, k) = (100, 200, 0.2, 40) (n, p, s) = (100, 200, 0.6)
= Q] = Q]
g R R e e lann? Sh-Frey T g @ -4 lasso
o) AP () -%- ridge
c o |[f=.=- PR 4 — — c w L1gdense
S i] =0 -— S i]
-,é e % ©- Ll-ag-h
—_—— —_—— —_. —_——- L1-ag-d
* — — - -k
E o | s - E o | —e— our method
‘uw: [aV) 2 & lasso ‘qw: o -®= oracle lasso
5 7 -%- ridge e
@] // L1-dense 9] Lt
— —
«© <% Li-ag-h ©
S - L1-ag-d > o W o PR SR .
T o |- e T o | ¥ it St
2 > | ur method » 4 = & o= —
I ~ -= oracle lasso |~ | %= - =
c c - ———
@] RS _
"E’ w0 g 0 PRhe - —u
O | # - m e - - - - -8 == = —n o z - _-a=-=
= a— hd I
7] 7] — a--"
g o g o le-
°© T T T T °© T T T T T
0.1 0.2 0.3 0.4 20 40 60 80 100
T k

Figure 5: Estimation error of all methods under (Top Left) (n,p,s) = (500,100,0) ver-
sus varying k € {10,20,30,40,50}; (Top Right) (n,p,s) = (100,200,0.2) versus vary-
ing k € {20,40,60,80,100}; (Bottom Left) (n,p,s, k) = (100,200,0.2,40) versus varying
7 € {0.05,0.15,0.25,0.35,0.45}; (Bottom Right) (n,p,s) = (100,200,0.6) versus varying
k € {20, 40,60, 80, 100}.

14

= (n, p, s, K) = (100, 200, 0.2, 40) = (n, p, s, K) = (100, 200, 0.6, 40)

g & g 8 * e

< o o | 4 lasso

S o o S o | * ridge

§ S . § S \ L1-dense

) * lasso e 2 | o L1-ag-h

8 o * ridge .\ 8 o ‘\ L1-ag-d

£ ® L1-dense o S ® \ * our method

g ¢ L1-ag-h . g \ = oracle lasso
L1-ag-d \ L S|

28 * our method \ 23 ‘(w

€ . ° €

£ oracle lasso \] £ :.

T ° % T Q-

C c

8 T T T T T T g T T T T T T

s 0.5 0.6 0.7 0.8 0.9 1.0 = 0.5 0.6 0.7 0.8 0.9 1.0

Mean Rand Index (Group Recovery) Mean Rand Index (Group Recovery)

Figure 6: Mean Hamming distance versus mean Rand index for various methods’
best estimates under (Left) (n,p,s,k) = (100,200,0.2,40) and (Right) (n,p,s, k) =
(100, 200, 0.6,40). For our method, the eight circles correspond to eight different o values,
varying from 0 to 1. Decreasing circle size corresponds to increasing « value.

methods. These results indicate that our method performs nearly as well as the oracle when
the true number of aggregated features, k, is small and degrades (along with the oracle) as
this quantity increases. The two other methods that use the tree, L1-ag-h and Li-ag-d,
do less well than our method, but still do better than L1-dense, which simply discards rare
features. In the (n,p,s) = (100,200,0.2) case, L1-dense performs almost identically to the
lasso, while L1-ag-h and L1-ag-d degrade to the lasso as k increases. By comparing the
right two panels of Figure 5, we notice our method outperforms the ridge at large k& when s
increases from 0.2 to 0.6, which can be explained by the increased sparsity in 3*.

We also evaluate model performance with respect to group recovery and support recovery.
Recall that our method is computed over eight a values, between 0 and 1, and fifty A values.
At each «, we find the minimizer B()) for [|B()\) — B*||2 over all A values. We measure group
recovery by computing the Rand index (comparing the grouping of B to that of B*), and
measure support recovery by computing the Hamming distance (between the supports of ﬁ
to that of 3*). The closer the Rand index is to one, the better our method recovers the
correct groups. The smaller the Hamming distance is, the better our method recovers the
correct support. For the high-dimensional scenario with k& = 40, we plot eight pairs (one for
each «a value) of Rand index and Hamming distance values for s = 0.2 and s = 0.6 in Figure
6. We also compute the two metrics for the lasso, ridge, L1-dense, L1-ag-h, L1-ag-d, and
oracle lasso. In the left panel of Figure 6, which corresponds to the low-sparsity case in
B3*, our method achieves its best performance at the largest o value. As the sparsity level
increases, we see from the right panel of Figure 6 that the best « shifts towards zero. In
both cases, our method outperforms the lasso, ridge, L1-dense, L1-ag-h, and L1-ag-d.

Clearly, the performance of our method, L1-ag-h and, L1-ag-d will depend on the quality
of the tree being used. In the previous simulations we provided our method with a tree that
is perfectly compatible with the true aggregating set. In practice, the tree used may be only
an approximate representation of how features should be aggregated. We therefore study the

15

sensitivity of our method to misspecification of the tree. We return to the high-dimensional
setting above with k = 40, and we generate a sequence of trees that are increasingly distorted
representations of how the data should in fact be aggregated.

We begin with a true aggregation of the features into k groups as described before. In each
repetition of the simulation, we generate a (random) tree 7 by performing hierarchical clus-
tering on p random variables generated similarly as before except having increasing 7 value,
as a way to control the degradation level of the tree. When 7 is small, the latent variables
will be well-separated by group so that the tree will have an aggregating set that matches the
true aggregation structure (with high probability). As 7 € {0.05,0.15,0.25,0.35,0.45} in-
creases, the between-group variability becomes relatively smaller compared to within-group
variability, and thus the information provided by the tree becomes increasingly weak. The
bottom left panel of Figure 5 shows the degradation of our method as 7 increases when
(n,p,s, k) = (100,200, 0.2,40). Our method, L1-ag-h, and L1-ag-d all suffer from a poor-
quality tree; the latter two degrade more quickly than ours.

6 Application to Hotel Reviews

Wang et al. (2010) crawled TripAdvisor.com to form a dataset? of 235,793 reviews and ratings
of 1,850 hotels by users between February 14, 2009 and March 15, 2009. While there are
several kinds of ratings, we focus on a user’s overall rating of the hotel (on a 1 to 5 scale),
which we take as our response. We form a document-term matrix X in which Xj; is the
number of times the ith review uses the jth adjective.

We begin by converting words to lower case and keeping only adjectives (as determined by
WordNet Fellbaum 1998; Wallace 2007; Feinerer and Hornik 2016). After removing reviews
with missing ratings, we are left with 209,987 reviews and 7,787 distinct adjectives. The
left panel of Figure 7 shows the distribution of ratings in the data: nearly three quarters of
all ratings are above 3 stars. The extremely right-skewed distribution in the right panel of
Figure 7 shows that all but a small number of adjectives are highly rare (e.g., over 90% of
adjectives are used in fewer than 0.5% of reviews).

Rather than discard this large number of rare adjectives, our method aims to make pro-
ductive use of these by leveraging side information about the relationship between adjectives.
We construct a tree capturing adjective similarity as follows. We start with word embed-
dings® in a 100-dimensional space that were pre-trained by GloVe (Pennington et al., 2014)
on the Gigaword5 and Wikipedia2014 corpora. We also obtain a list of adjectives, which the
NRC Emotion Lexicon labels as having either positive or negative sentiments (Mohammad
and Turney, 2013). We use five nearest neighbors classification within the 100-dimensional
space of word embeddings to assign labels to the 5,795 adjectives that have not been labeled
in the NRC Emotion Lexicon. This sentiment separation determines the two main branches
of the tree 7. Within each branch, we perform hierarchical clustering of the word embedding
vectors. Figure 8 depicts such a tree with 2,397 adjectives (as leaves).

We compare our method (with weights all equal to 1 except for the root node, which
is left unpenalized) to four other approaches described in Figure 4. For L1-dense, we first

2Data source: http://times.cs.uiuc.edu/~wang296/Data/
3Data source: http://nlp.stanford.edu/data/glove.6B.zip

16

S
Rating Proportion .ww M
1 0.066 5 2
2 0.085 £ o
3 0.105 Z2 27
4 0.308 o T;
D 0.436 _ T T T T _

0.0 0.2 0.4 0.6 0.8 1.0

% of Reviews Using Adjective

Figure 7: (Left) distribution of TripAdvisor ratings. (Right) only 414 adjectives appear in
more than 1% of reviews; the histogram gives the distribution of usage-percentages for those
adjectives appearing in fewer than 1% of reviews.

Figure 8: Tree T over 2,397 adjectives: the left subtree is for adjectives with negative
sentiment and the right subtree is for adjectives with positive sentiment.

17

discard any adjectives that are in fewer than 0.5% of reviews before applying the lasso. Both
Li-ag-h and Li1-ag-d have an additional tuning parameter to take care of: for L1-ag-h
we vary the height at which we cut the tree along an equally-spaced grid of ten values; for
L1-ag-d we choose the threshold for aggregations’ density along an equally spaced grid of
ten values between 0.001 and 0.1.

Mean Squared Prediction Error

prop. n P n/p | our method L1 Li-dense Li-ag-h Ll-ag-d
1% 1,700 2,397 0.71 0.870 0.894 0.895 0.882 0.971
5% 8,499 3,962 2.15 0.783 0.790 0.805 0.785 0.899
10% 16,999 4,786 3.55 0.758 0.764 0.788 0.764 0.902
20% 33,997 5,621 6.05 0.742 0.749 0.773 0.747 1.173
40% 67,995 6,472 10.51 0.739 0.740 0.768 0.742 1.108
60% 101,992 6,962 14.65 0.733 0.736 0.769 0.734 1.155
80% 135,990 7,294 18.64 0.733 0.733 0.765 0.734 0.886
100% 169,987 7,573 22.45 0.729 0.731 0.765 0.731 0.956

Table 1: Performance of five methods on the held-out test set: L1 is the lasso; L1-dense
is the lasso on only dense features; L1-ag-h is the lasso with features aggregated based on
height; and L1-ag-d is the lasso with features aggregated based on density level.

We hold out 40,000 ratings and reviews as a test set. To observe the performance of these
methods over a range of training set sizes, we consider a nested sequence of training sets,
ranging from 1% to 100% of the reviews not included in the test set. For all methods, we
use five-fold cross validation to select tuning parameters and threshold all predicted ratings
to be within the interval [1,5]. Table 1 displays the mean squared prediction error (MSPE)
on the test set for each method and training set size.

As the size of the training set increases, all methods except for the lasso with aggregation
based on density (L1-ag-d) achieve lower MSPE. Among the four lasso-related methods, L1
and L1-ag-h outperform the other two. As the training set size m increases, the number
of features p also increase but at a relatively slower rate. We notice that when n/p is less
than 10.51, our method outperforms the other four lasso-related methods. As n/p increases
beyond 10.51, i.e., in the statistically easier regimes, L1 and L1-ag-h attain performance
comparable to our method. We conduct paired t-tests between squared prediction errors
from our method and Li-ag-h at every (n,p) pair (i.e., every row of Table 1). Five out of
the eight tests are significant at the 0.005 significance level (See Appendix J Table 4).

To better understand the difference between our method, the lasso, and L1-ag-h, we color
the branches of the tree generated in the n = 1,700 and p = 2,397 case (i.e., proportion
is 1%) according to the sign and magnitude of ,é for the three methods. The bottom tree
in Figure 9 corresponds to our method and has many nearby branches sharing the same
red/blue color, indicating that the corresponding adjective counts have been merged. By
contrast, the top tree in Figure 9, which corresponds to the lasso, shows that the solution
is sparser and does not have branches of similar color. The middle tree in Figure 9 shows
that Li-ag-h produces something between the two, merging some adjectives with strong
signals while keeping the rest as singletons. The strength and pattern of aggregations vary

18

WW ﬂnhwmww WMW@W WW‘ sl Wi WWW\W WWW

ﬁ w = | .

i N% T e WWMWWWMWZ}WWW IR
i

\

fﬁ TRTOMT WWWW WWW

Figure 9: Trees for 2,397 adjectives on the leaves with branches colored based on B estimated
with the lasso (Top), L1-ag-h (Middle) and our method (Bottom), respectively. Red branch,
blue branch and gray branch correspond to negative, positive and zero Bj, respectively.
Darker color indicates larger magnitude of Bj and lighter color indicates smaller magnitude
of Bj. The horizontal line shown in the middle plot corresponds to the height, chosen from
CV, at which L1-ag-h cuts the tree and merges the resulting branches.

j

“ ® Our Method
w A Lasso
pg L1-ag-h
A
©o _| []
e 4
S
[} A °
= ; — o0 AA.
A
y ¥
o |t ' ¢ 0 ‘
o ' ot e ~ ’ °
i, ‘v
; l | i i il “ﬁi«“ ‘
g - Kf 2.
T T T
0.05 0.10 0.20 0.50 1.00 2.00 5.00 10.00 20.00 50.00

% of Reviews Using Adjective

Figure 10: Magnitudes of coefficient, estimates {|;|} versus feature density (on log scale) for
our method (black circles), the lasso (red triangles) and L1-ag-h (green diamond).

19

between our method and Li-ag-h. Inspection of the merged branches from our method
reveals words of similar meaning and sentiment being aggregated. In Figure 10, we plot
{] BJ|} against the percentage of reviews containing an adjective. We find that our method
selects rare words more than the other two methods. The rarest word selected by the lasso
is “filthy”, which appears in 0.47% of reviews. By contrast, our method selects many words
that are far more rare: at the extreme of rarest words, our method selects 797 words that
appear in only 0.059% of reviews; L1-ag-h selects 31 out of these 797 rarest words. Our
method is able to select more rare words through aggregation: it aggregates 2,244 words into
224 clusters, leaving the remaining 153 words as singletons. Over 70% of these singletons
are dense words (where, for this discussion, we call a word “dense” if it appears in at least
1% of reviews and “rare” otherwise). This is four times higher than the percentage of dense
words in the original training data. Of the 224 aggregated clusters, 42% are made up entirely
of rare words. After aggregation, over half of these clusters become dense features. As a
comparison, Li1-ag-h aggregates 1,339 words into 506 clusters while keeping 1,058 words
as singletons. Only 10% of these singletons from Li-ag-h are dense words. Of the 506
aggregated clusters from L1-ag-h, 68% are made by rare words only, among which only 15%
become dense clusters after aggregation.

Table 2 shows the density and estimated coefficient values for eight words falling in a
particular subtree of 7. The words “heard” and “loud” occur far more commonly than the
other six words. We see that the lasso only selects these two words whereas our method
selects all eight words (assigning them negative coefficient values). In contrast, L1-ag-h,
while also aggregating the two densest words in this branch into a group, does not select the
six rare words. Examining the six rare words, it seems quite reasonable that they should
receive negative coefficient values. This suggests to us that the lasso’s exclusion of these
words has to do with their rareness in the dataset rather than their irrelevance to predicting
the hotel rating.

adjectives | heard loud yelled shouted screaming crying blaring banging
density * | 0.0300 0.0235 0.0006 0.0006 0.0029 0.0006 0.0006 0.0041

Blesse | -0.057 -0.147 0 0 0 0 0 0
B | 0174 0174 0 0 0 0 0 0
Qurs 1 -0.128 -0.128 -0.039 -0.039 -0.039 -0.039 -0.039 -0.039

Table 2: Term density and estimated coefficient for adjectives in the selected group

Existing work in sentiment analysis uses side information in other ways to improve pre-
dictive performance (Thelwall et al., 2010). For example, Wang et al. (2016), working in an
SVM framework, forms a directed graph over words that expresses their “sentiment strength”
and then requires that the coefficients corresponding to these words honor the ordering that
is implied by the directed graph. For example if word A is stronger (in expressing a certain
sentiment) than word B, which in turn is stronger than word C, then their method enforces
Ba > B > PBc. Such constraints can in some situations have a regularizing effect that
may be of use in rare feature settings: for example, if f4 ~ ¢ and B is a rare word, this

4The term density is computed over the training set.

20

constraint would help pin down (g’s value. However, if 84 and (o are very different from
each other, the constraint may offer little help in reducing the variance of the estimate of
Bp. Another difference is that the method uses hard constraints that are not controlled by
a tuning parameter, so that even when there is strong evidence in the data that a constraint
should be violated, this will not be allowed. By contrast, our method shrinks toward the
constant-on-subtrees structure without forcing this to be the case.

Mean Squared Prediction Error

tree setting | our method L1 Ll-dense Ll-ag-h Ll-ag-d
GloVe-50d 0.748 0.749 0.773 0.752 0.775
GloVe-100d 0.742 0.749 0.773 0.747 1.173
GloVe-200d 0.741 0.749 0.773 0.747 1.140
ELMo 0.669 0.676 0.732 0.685 0.783

Table 3: Performance of five methods under various tree settings on the held-out test set.
Among the tree settings, GloVe-50d, GloVe-100d and Glo Ve-200d correspond to hierarchical
clustering trees generated with GloVe embeddings of differing dimensions. We collapse over
two million ELMo embedding vectors of adjectives into 6,001 clusters using mini-batch K-
Means clustering (Sculley, 2010), then generate a hierarchical tree upon the 6,001 cluster
centroids. The performance is based on 33,997 training reviews (i.e., corresponding to the
20% row of Table 1).

Section 5 investigated the effect of using a distorted tree (see the bottom left panel of
Figure 5). In the context of words there are multiple choices of trees one could use. Table
3 shows the effect of applying our method to different types of trees. Here we focus on one
situation with 33,997 training reviews. We first consider the effect of changing the dimension
of the GloVe embedding. One might suppose that as the embedding dimension increases the
tree becomes more informative. Indeed, one finds that our method and Li-ag-h achieve
improved performance as this dimension increases. The last method, L1-ag-d, has more
variability in its performance as the GloVe tree varies, making it the poorest performing
method. Both L1 and L1-dense do not make use of the tree and thus they are unaffected by
changes to the embedding dimension. But a limitation of the methods is that they all are
based on the bag-of-words model, and therefore do not take word context into consideration.
For example, the models do not differentiate between the use of “bad” in “the hotel is bad”
versus “the hotel is not that bad”. To bring context into consideration, we leverage deep
contextualized word representations from ELMo (Peters et al., 2018) to generate an auxiliary
tree (See Appendix K for details). Unlike traditional word embeddings such as GloVe that
associate one embedding per word, deep word embeddings can capture the meaning of each
word based on the surrounding context. From Table 3 we find test errors improve substan-
tially with the ELMo tree for our method, L1 and Li-ag-h. Among all methods and all tree
settings, our method with the ELMo tree performs the best. This suggests our method can
better leverage the power of contextualized word embeddings than competing methods.

21

7 Conclusion

In this paper, we focus on the challenge posed by highly sparse data matrices, which have
become increasingly common in many areas, including biology and text mining. While much
work has focused on addressing the challenges of high dimensional data, relatively little at-
tention has been given to the challenges of sparsity in the data. We show, both theoretically
and empirically, that not explicitly accounting for the sparsity in the data hurts one’s pre-
diction errors and one’s ability to perform feature selection. Our proposed method is able to
make productive use of highly sparse features by creating new aggregated features based on
side information about the original features. In contrast to simpler tree-based aggregation
strategies that are occasionally used as a pre-processing step in biological applications, our
method adaptively learns the feature aggregation in a supervised manner. In doing so, our
methodology not only overcomes the challenges of data sparsity but also produces features
that may be of greater relevance to the particular prediction task of interest.

Acknowledgments

The authors thank Andy Clark for calling our attention to the challenge of rare features.
This work was supported by NSF CAREER grant, DMS-1653017.

Appendices
A Failure of OLS in the Presence of A Rare Feature

Theorem 5. Consider the linear model (1) with X € R™*P having full column rank. Further
suppose that X is a binary vector having k nonzeros. It follows that

P

where ®(+) is the cumulative distribution function of a standard normal variable.

B (n) — B;

> n) > 20 (—nk'/? /o) for any n > 0, (7)

Proof. The distribution of the OLS estimator is S9™(n) ~ N(8;,02[(XTX) ;). By
applying blockwise inversion (see, e.g., Bernstein 2009), with the jth row/column of X7 X
in its own “block”, we get

(1117 = 1(XT X)X X7

(XTX) =X X; — X[X (XD, X)" XD, X!
> || X572 =k

Thus,
A % Ui 1/2
IP’(BQLS(n)—ﬁ- >77> =20 (—) > 20 (—nk'/?/0)
o XX,
where ®(+) is the distribution function of a standard normal variable. O

22

B Proof of Theorem 2

In the setting of Theorem 2, we have X 3* = X 3*, where X = X (Iy ® 1,,) € R™*. The

two estimators, the oracle lasso on the aggregated data (X) and the lasso on the original
data (X)), are defined below.

e Oracle lasso estimator 337 = B37%* @ 1, ;, where 857% is the unique solution to
. 1) ot
min ——|ly — X85 + A8l
BeRF 2N

e Lasso estimator 31%5%° is defined in (2).

We begin by establishing that the interval Z is nonempty, which is ensured by the con-
straint k < p/(36logn). In particular, the lower bound of the interval is below the upper
bound if

12k log(k*n) < plog(2ép/k)

Now, log(k*n) < 3logn and log(2¢p/k) > 1 as long as 2¢p/k > e. Now, 2¢ > 0.6, so if
p/k > 5 then it would suffice to show that

36klogn < p.

And this constraint does imply that p/k > 5. The two parts of the theorem follow from the

following two propositions.
B > o/ 2 Jog(k?n).

With A = o4/ %, the oracle lasso recovers the correct signed support successfully:

Proposition 2 (Support recovery of oracle lasso). Suppose - 11111%)

,,,,,

lim P (S2(B77°") = 52(8") = 1.

n—oo
Proof. The scaled matrix \/%ij is orthogonal since
XX n
XTX = (I, ® 1) " XTX (I, ® 1,3,) = g . %Ik _ EI’“'

Orthogonality implies that

Bgrede = g ((@fﬂ (\/§y> ,)Jc) =S (SYTy, Ak) (8)

where %ny = %X/TYB* + %}TE =B+ %}Te ~ Nu(B*, "%QI;C) By the Chernoff bound
for normal variables, for any ¢ > 0,

t2
< ——) =1,...,k.
IP’(> t) < 2exp (2k02/n> forj=1,...,k

23

b~)
~(X;)"y — 5;

n

Choosing t = o

P (HEXT
n

Hence, with probability at least 1 — \/lﬁ, we have H%} T

to our choice of A\ = o4/ %. Under HEYT’!J - B
e By B,’; =0 and

and applying a union bound yields

2 2 2
-y klog(k?n) < 2 exp _o’klog(k*n)/n _ i
n 2ko?/n NZD

* ga,/M = \k, due
[e @]

< Ak, the following results hold.

klog(k2n)
n

o0

LTy = | S®Ty - | < | Xy - <
we have Ayl = 5 (L(Xp) Ty, k) = 0 and B = B = Bp = g7 for al
> %n
e For j =1,...,k — 1, since ’%()/ZJ)Ty—B;‘ _min Br| > 2X\k, we
must have (})Ty and 3* share the same sign. Moreover, we eitl;er have
5 ALY
n
or %()E)Ty’ < 5]* in which case ‘%()E)Ty— T = %()?;)Ty‘— N;-‘ T —

E(X;)Ty| < Ak and therefore

ko~
E(Xj)Ty > — Ak > 2k — Mk = Mk
Thus, %()?;)Ty‘ > Mk for j = 1,...,k — 1. By definition of B;’\mcze and (8), for
%n <l < %n,
k —~ k —~ Ak
oracle ﬁoracle _ (_(Xj>Ty,)\k?) — —(X])Ty 1— -
" " ‘%(XJ)T'Q‘

which is of the same sign as B;‘ (and the same sign as f;).

In the above two bullet points, we have shown Sy (8¢%¢) = S.(8*) holds with probability
at least 1 — \/—ﬁ Hence,

2
lim inf P (Si(oracley _ Si(ﬁ*)> > Jim 11— —= = 1

Since limsup,_,., P (si(ﬁgmde) - Si(ﬂ*)> — 1, the limit for P (Si(BKWCle) - Si(ﬁ*)> is
1. UJ

24

Lemma 2. Suppose € ~ N,(0,0%I,) and ¢ = %e(“/”m_l + L. Then

1
4

n 1\?
P XTel <20,/ — log(2¢ <(1-=) .
<£ga><p! el <20, [og(cp>)_(p)

.....

Proof. Let Z be a standard Gaussian variable. Theorem 2.1 of C6té et al. (2012) provides a
lower bound for the Gaussian Q function (i.e., P(Z > z)). Choosing £ = 3 in their Theorem
2.1 yields

P(Z>z)> le(w/2+2)*1 1+1 e_%
3 4

~~
C

%e(w/zw)*l 1 + < is independent of z. Given that X, has n/p one’s and X1, =
1,, we have X[e w N(0, %02) for £ =1,...,p. By expressing X{e = \/%O'Z, we have for

any n > 0,

where ¢ =

2
P(X{e>n)>ée 1t = P(|X[el>n) > 2ce 1oz
Moreover,
392

p
P (grriaxp\XﬁTd < n) — (B(XTe| <)’ = (1—PB(XTe| >) < (1 _ 25642%) |

Plugging in n = 20, /3- log (2¢p) in the above inequality yields
P(max |X/e| <20 2o (2¢p)) < 1_1 ’
{=1,....p ¢ - 3p & p - D ’
0
Br| < o/ log (22p/k)

where ¢ = %e(“/2+2)71 % + % The lasso fails to get high-probability signed support recovery:

Proposition 3 (Failure of support recovery of lasso). Suppose 1mu%)
i1

.....

: 3lasso * 1
limsup supP (Si(lesso) — S, (B)) < -

pP—00 A>0 €

Proof. The lasso solution can be simplified to Bf\‘“s" =9 (%XTy,)\p). Since 3; # 0 for

(< %p and 3; = 0 for £ > %p, the following is a necessary condition for Bf\asso to recover
the correct signed support:

-1 —1
I Ast. [Xyl > Mpfor £ < kTp and | X/ y| < \p for £ > kT

=

min |X[y| > max | X[yl
e<Elp e>klp

25

Furthermore, we have
n *
Xly=X/ <§ X[—|—€> = Eﬁﬁ + X/e

Define 7 := arg min ‘BNZ*‘ and A := { max | X[e|l <20 gplog(%p/l{)}. Then

>kC1ly

lasso) SQ,@*))

]P’(min | X[y| > rnax \Xg y[)
£<k lp

P

IA

Xg y| > max |X£Ty\
Z>%p

|
k p

<P | X[e| > max |X[e|
k p<£<'p Z>%p
=P | X[e| > max ‘Xe gl and A°
lp<e<ip
+P | X[e| > max |X[el|lA]-P(A)
p<€<'p Z>%p

| X[e|l > 20 Sﬁplog(zep/k)) +P(A)

<€< wp

IP’ (|XT6| > 20, /3— log(2¢p/k) — »

P (|X1Ts| >0 3ﬁp1og(25p/k)>] ' L P(A) (by

ay >] ' +P(A) (by X[e being i.i.d.)

IN

% log(2cp/ k))

p

[p o’n . k E* ,
2exp | =55 5 log (2cp/k) +(1— » (by Chernoff ineq and Lemma 2)

% L

>3
b

IN

<2% exp (——log (2¢p/k))
» [2Cp o k
:2 _—
(7))
ép —% &
Y 1
) " (-3)

which holds for all A > 0. In particular,

asso * ép ok k
P (a0 =0um) < () (1)

26

Taking lim sup on both side yields

limsup supP <Si(ls50) = Si(ﬁ*)> < lim (%) + lim (1 - E)

p—oo A>0 p—o0

11
—0+-=-.
(& e

C Proof of Theorem 3

Let A € {0,1}7*I°l denote the aggregation matrix corresponding to the partition C. Ag-
gregated least squares uses the design matrix X = X A, where each column is the sum of
features in a group of C. Left-multiplication by A maps this back to p-dimensional space:

B¢ =AX"y.

Its fitted values are

X3 =XXty=XX"(XB" +e).
Now, X is full-rank and

XB°~ N(XXTXB, o’ X[X" X' XT).
Now,
E[Xf% = XX X3

= XXTXAATB + XX X(I,— AA)B

= XAATB + XXX (I, — AAY)B*
since X AAT3* is in the column space of X , and

E[X3% - X8 = X(AAT —L)B" + XXX (I, - AA")3"*
= (XXT-1,)X(I,— AA")B*

E| XA — XB? = (XX - L)X(I, - AA")B|* + o*r(X [XTX] 1 XT)
= (XXt - L)X(L, - AAT)B|* + o?|C|
< | X|2,I1(T, — AAT)B|? + o?|C]

since ||(X X+ — L.)|lop = 1 and the trace of a projection matrix is the rank of the target
space. Finally, observe that

1T, — AA)B"|” = f:Z(B —lc” 125)

(=1 jeC, j'€Ce

27

D Consensus ADMM for Solving Problem (5)

The ADMM algorithm is given in Algorithm 1. Let X = SVDcompact(ﬁ,ﬁ,‘N/) be the
compact singular value decomposition of X, where D € Rmin(np)xmin(np) js 5 diagonal matrix
with non-zero singular values on the diagonal, and U € R™™in(»P) and V ¢ Rpxmin(np)
contain the left and right singular vectors in columns corresponding to non-zero singular
values, respectively. Similarly, we have (I, : —A) = SVDcompact (* ,Q) where Q e ReHTD»
contains p right singular vectors correponding to non-zero singular values.

Algorithm 1 Consensus ADMM for Solving Problem (5)

Input: y, X, A, n,p,|T|,\ «, p, e, € maxite.

1:

10:

11:

12:

13:
14:
15:
16:
17:

18:
19:
20:

2
3
4
5
6:
7
8
9

X = SVDcompact('7 ﬁa ‘7)

- (I : —A) = SVDeompacr (+, - Q)

: B0« B0 0 RP Vi=1,2,3

c A0 e A0 00 0 e RITT W5 =12

: continue < true

k<0

: while k£ < maxite and continue do
k+—k+1
Bk [‘N/diag <m> Vvi4+ L (I - VVT)] (XTy + npBF~! — noWk-1)
B 5 (B = L ;”“—1,%) Vi=1,....p
% S (7t = Tuf 2) iy > 0

75_1 — %uél)k ! ifw, =0
B ~. g1) k-1
22) s (£) (25
B (B 4+ Bk + B /3
AP = (yF 4B /2
vOF k=1 4 p(30k _ Bk) Vi =1,23
wF R (4 DF k) j =12,
if /52, 1808 - pR13 + 23, [70% — 4[] < e VEp T ET e max {\ /T2, 180813 + £3_, |74, /5 1I8RE + 2 [2* 1 }
and /8185 = BB + 207k —AF 13 < e B R AT+ S O3 + 57, w3 then
continue < false
end if
end while

Output: 3% ~*

28

D.1 Derivation of Algorithm 1

The ADMM updates involve minimizing the augmented Lagrangian of the global consensus
problem (6),

L,(BD, 82,89 41 A0 8 550 5@ 3 41 @)

p
(1—a) Z
3 2)

£ (2789 —8) + 5189 — BI3) + 3 (w7 ()~) + G).

i=1 g=1

[T]
- inHy—Xﬁ(l)Hz+)\ Oézwe‘%gl) +1oo{5(3) :A’Y(Z)}
=1

1. Update B,
p
B+ . — arg min {— ||y xa4 H2 + <v(1 B — /Bk)> + 5“:8(1) - ﬂ'“ll%} .
B eRrp

Let X = SVD(U, D, V) be the singular value decomposition of X, where U € R"*"
contains left singular vectors in columns, V' € RP*P contains right singular vectors
in columns, and D € R"*? is a rectangular diagonal matrix with decreasing singular
values on the diagonal. First order condition to the above problem gives us:

(XTX + npL,) B! = Xy + nppt — noW*
= V(D"D + npI, YWIBWEL — XTy 4 npBF — no*
= B = Vidiag (D" D)y +np) ") VT (XTy + npB" — no™*).

When n > p, we have
BWE — Vdiag (([ﬁTﬁ]“ + np)’1> VT (XTy 4+ nppt — noWF) | (9)

When n < p, the SVD can be expressed in a compact form: D = (15 : 0) and
V = (V VL) where D € R and V € RP*" are from the compact SVD of X, and
V|, € RPx(=n) Thys,

Vdiag (({DTD]“ + np)—l) vT = <‘7 : ‘7J_> diag (([DTD]ZZ + np)—l) (g;)

= Vdiag (([ﬁTﬁ]ﬁ + np)*l) VT4 ViV (np)
— Vdiag (([f)Tﬁ]m- + np)—l) VT 4+ (I, — VVT)/(np).
So when n < p,

Bk — [Vdmg (([ﬁTﬁ]w + np)_1> v+ (I, — ‘N/‘N/T)/(np)] (XTy +npB" — n'v(l)k) :
N (10)
Since V.=V when n > p and VV7T = I, we have (10) boil to (9) in that case.

29

2. Update 3.

| 2
BOFH . are min {g H'B(2) _ (5k _ _,0(2)k)
B cRrp Y 2

The solution is simply elementwise soft-thresholding:

1 A1 — a)w;
6](2)k+1 _g (B]k _ ;v§2)7%> Vi=1,...,p.

p
+AL—)Yy |8
j=1

} |

3. Update v,

Tl

—l—)\ang)w ‘

INOTISRp— H,Y(l) N (,yk _ lu(l)k>
~(DeRIT] p

Since sometimes we will choose to wy, = 0 for the root, we break the solution into cases:

¢ 1 (l)k

k daw .
fy(l)k+1: S(’Yg—% ()7)\[)18) 1fU)g>0
vE— U if w, = 0.

4. Joint update of B4 and v®

3)k+1 .]
(ﬁ(2)k+1> ‘= argmin {H5(3) — <5k _ _,U(3)k)
v B3RP ~(2) RIT] P

®3)
st. (I, : —A) (fy’(z)) ~0.

2 1
+ H,y(z) _ (,Yk _ _u(2)k:)
2

3)k

(
Y 2)k) onto the null space of (I, : —A).

(
u
Let (I, : —A) = SVD(-,,Q) where Q = (Q : QL) € REHTD:HTD contains all the
right singular vectors in columns. So I, 7 = QQT = QQT + Q. Q7. Since Q
corresponds to non-zero singular values of (I, : —A) by construction, we have Q

corresponds to the zero singular values, making itself an orthonormal basis for the null
space of (I, : —A). Thus,

() = @ut@ 144! [(Bk> -5 (i)
—@.ql Kg) ; (k)} @k
= (pii7] — QQ) KS) - % (v(z)kﬂ

30

k
The solution is the projection of (ﬁ) — % (

5. Update global variables 3 and ~.

Bl .= argmin Z

BERP =1
2
~F+1 = arg min v — (’y(J e+l 4 u(J)

BLELB@ELZEE 1 (D k(B _p

where B¥ :=

6. Update dual variables.

PO+ — Ok 4 (gDk+1

OLE OIS

()

3 y U7 2= 3 V=

1
ﬁk’-ﬁ-l k: (11)
P
1
g Zab (12)
P
~(DE 2k and @F = wrru®r

2 : 2

— B fori=1,2,3,
— 4" forj=1,2.

Similarly, averaging the updates for u and the udpates for v gives

B = gF 4 (B!

@l — @k o p(;ykﬂ N

Substituting (11) and (12) into (13) and (14) yields that v**!

first iteration.

_ /BkJrl)

k+1)

= aFt = 0 after the

Using B* = B* and ~* = 4* in the above updates, the updates become Lines 9-16 of
Algorithm 1. Next, we follow Section 3.3.1 in Boyd et al. (2011) to determine the termination
criteria. We first write Problem (6) in the same form as Problem (3.1) in Boyd et al. (2011)

which is presented below in typewriter font:

min {f(x) + g(z) s.t. Ax+Bz =

X,z

c}

where
I, 0 ﬁili
I, O 2
B p B B B(g) _ ,3
A =TIz, 97,B= I, 0 |,c=0,x=]|p8 and z = ~)
0 Iy A
0 Iy v
The primal and dual residuals are
g g
BT — gt gt -
rF = AxH B o = | AR _ gL | and skt = paTB(2M —2h) = p | BF1 — B
A DI+ k] ARk
AL kL ALk

By Condition (3.12) in Boyd et al. (2011), the ADMM algorithm stops when both resid-
uals are small. In our case, the termination criteria are the following.

31

1. The primal residual is small:

3 2

. , 2
D Bk — B3+ D Iy =~k
i=1

J=1

3 2
<V 27T e e omax | ST IBOHE + 3 VO, /318412 + 2 v
i=1 j=1
2. The dual residual is small:

3 2
p-\/SHﬁ’“ — B3+ 20k — AR YB < VBp+ 2T e e | D Io@F3 4+ > luk|3,
i=1 j=1

D.2 Treatment of Intercept in Problem (5)

When an intercept f3y is included in the least squares, Problem (5) becomes:

7] ,

min X L+ A) welyl+ (1 —a))y w, . (15

BoeR,BeRpé,yaRm Hy B =P H2 ; ¢ |vel Z_: 7 18] (15)
s.t. =A~y =

First-order coniditon of the solution (5’0, ﬁ) yields that
O3 ly — XB = foLull;

~

= (G~ (y— XB) =+ (nfo— 11y~ XA) -

0] -
Po (B0,8)=(B0,B)
So By = 15y XB) Plugging /3 in Problem (15) and letting H = I,, — %17115 yields
7]
min oo ||Hy HX B3+ A @Y welyl+(1-a ij Bl ¢
BERP ~eRITI =1 I
s.t. B=Avy Jj=

which can now be solved using our consensus ADMM algorithm.

E Proof of Lemma 1

We first show existence of such B* by providing a feasible procedure to find B*. Suppose
B* has at least two distinct values (otherwise B* = {r} trivially). Start with B = £(T) so
that the first constraint is satisfied. If for siblings u, v in B such that the second constraint
is violated, by construction 8; = g for j € L(7,) and k € L(7,). So we replace u,v in B
with their parent node. We repeat the above steps until the second constraint is satisfied,
while holding the first constraint. Thus, B satisfies the two requirements for B*.

Suppose B* and B* are different aggregating sets for 8*. Without loss of generality,
suppose there exists © € B* but u ¢ B*. Then u is a descendant or an ancestor of some
nodes in B*; for either case the second constraint will be violated. Thus, such u does not
exist and B* = B*.

The existence and uniqueness of A* follow from the definition of support of 3*.

32

F Proof of Theorem 4

Denote our penalty by Q(8,7) = « Ze LW |vel + (1 —) Z§:1 w; |B;|. We follow the proof

strategy used in Theorem 1 of Lou et al. (2016) to prove this theorem. If (3,4) is a solution
to Problem (5), then we have

- 1
(B.%) < o ly = XBIl; + 2B, v)

for any (3,7) such that 8 = A~. Let (8*,+*) be such that

— Ap.B3 and A =
p 5B e 0 otherwise.

{B,; if ¢ € B*

Plugging in y = X3* + e and (3,~v) = (8*,~*), with some algebra we have

2 2 * * 1 A (B*
(B,9) <AUB" ") + —e" X AP (16)

where A®) = 3 — 3*. By 8= A% and 8" = A~* (and writing A =4 —),

lngA(ﬁ*) — lETXAA(’Y*)'
n n

We next bound n~'e” X AP = (1—a)n 'e" X AP) +an~'e” X AAO") in absolute value.
Define V; := nfl/QXjTe forj=1,...,pand Uy :=n"2A' XTe for ¢ = 1,...,|T|. With the
choice of weights w; = || X, /v/n for 1 < j < pand w, = [| X A, //n for 1 < <|T],

1

~ * 1 ~ * 1 ~ *
—e"XAP)| = |(1-a)-e"XAP) + a—e"XAAY)
n n

IT]
Xie Xl A AjXTe [XAdls ;)
A] +OCZ AZ
\/_||X o vn — Wnl XAl Vn

= (1=)

Mﬁz

_ Mi{ G}y (e nar)
Xl — XAl
p
Vil } { U] A YY) }
<(1-a ‘ +a 7
|);{Hxa‘\b Z XAl I
7]
Vil N~ A Ul AG)
1 A Al
<(1-a)mpax 12X]2 ;w] ’ 1e<i7] || X Al Z:W ‘
(17)

where the second to last inequality follows from the triangle inequality.

33

Since € ~ N,(0,02L,), V; ~ N (0, || X;||30%/n) for j = 1,...,pand U, ~ N (0, || X A/||30%/n)
for ¢ =1,...,|T|. By Lemma 6.2 of Bithlmann and van de Geer (2011), we have for z > 0

Vi 2 1
P(max Vil >0 w)g%‘“” and

1<5<p || X |2 n

U] \/2($+10g\7!) _
P| ma > — | <2e7%
(1<z<7’ | X A2 o n = e

By the union bound,

\4 - 2(z + log p) |U¢| >U\/2(:c—|—10g|7'!)>§46_1,'

v (r“ XLV e B XAl "

By the construction of T, each internal node has at least 2 child nodes. To go up to the next
level from the leaf nodes, only one node “survives” among its siblings. For 7 with p leaf
nodes, there must be at most p — 1 internal nodes where the maximum number is achieved
when 7 is a full binary tree. So |7| < 2p. Choosing = = log(2p), we have that the following
results hold with probability at least 1 — 2/p:

14 log(2p) U log(2p)
max —— < 20 and max —— < 20 .
1<% |1 X2 n 1<e<i7] || X Al ~ n

Plugging these upper bounds into (17), we have the following inequality holding with high
probability:

u
! 7y A6 log(2p) ~ o [AEY A7)
€ XAB)| <20 — (1—(1)ij Aj —|—aZwZ A
90y /1P (A Ay (18)
n

Let A > 404/log(2p)/n and 0 < a < 1. By (16) and (18), the following holds with
probability at least 1 — 2/p:

* QS%)\Q(A LAY —XQ(B,4) + 285, Y
< % ()\Q(B + AQ(B*, " >)+ AQ(B", ") (by triangle inequality)
171
3
<SAB) = A ((L-a nglﬁ !+a2wem
3 .
=) ((1 —a) Yyl +a) we\ﬁﬂ)
jEA* teB*

where A* is the support of B*.

34

G Proof of Corollary 1

With || X||2 < +/n the weights in Theorem 4 become:

0FOI'1§j§p7wj:”i(/jﬁ”2<1.

XA

The inequality in wy, is by the triangle inequality and the definition of A: the ¢th column
Ay encodes the descendant leaves of the node wy, ie., Ay = lyjcdescendant(us)ufus}}- BY

construction of 3*, all coefficients in the branch rooted by an aggregating node wu, share the
same value, i.e., 87 = 3} for all j € L(T,,) where £ € B*. Thus, for { € B*,

. HIBZ(TW) = HBZ(T“Z) *
=T < 2wl D eman Tyt | =18

LeB* teB*

Plugging the choice of A and the above upper bounds into Theorem (4) yields

* < 129/ E) ((1) Yol ey w@vézo

JEA* teB*

!Jxa-x

log(2p)
n

<120 (1T=a) 8%, + «llB7[l,)

logp .
So - 18%l; (by log(2p) =log2+ logp < 2logp)

which holds up to a multiplicative constant with probablity at least 1 — 2/p.

H Proof of Corollary 2

With gf = ... = 3 the aggregating set consists of the root, i.e., B* = {r}. Thus, Br =
Br = 18*Il1/p and w, = | X1,||2/+/n. With || X;|l2 < /n, we have w; = || X|]2//n < 1 for
l<j<p

Plugging A = 40+/log(2p)/n into Theorem (4) yields

i xs

2 1 2 ~
<12 Ogi P) ((1 —a) Y @5 +awr|ﬁ,’f|>

JEA*

log (2 X1
<120 ngl) ((1 —a) |87, +oz||p\/%H1 ||B*||1>
lo

gp | X 1p||2
<0 F* 1—a a

35

which holds up to a multiplicative constant with probablity at least 1 — 2/p. Now, if o >

1+ | X112/ (py/m)] ", then
|x1

ol

pvn

l—a<a

and so

log ”le”2

187l e =G

It follows that if | X 1,|l2 = o(py/n), then our method achieves a better rate than the lasso

rate of ov/logp/n||B*;.

I Proof of Proposition 1

Let XM, ..., X® € {0,1}" be iid copies of the random vector X/E {0,1}" with 17X = r
and P(X; =1)=r/n¥Vi=1,...,n. By construction/{X(l), ..., X®Y each has r nonzero
entries. For the jth column of X, let X; = \/n/rX) so that its nonzero entries equal
vn/r and | X2 = v/n. /
For the random vector X, its expectation and covariance (X) diagonal entries are
EX = Zln and % = Var(X;) = L (1 — f) =77
n n n

Suppose | X —EX|, < L for some L > 0. Let Z := > X and v(Z) := max{||E[(Z —

EZ)(Z —EZ)"]|.p, E[||Z —EZ]3]}. Corollary 6.1.2 of Tropp (2015) gives the concentration
inequality for Z: Vt > 0,

P(|Z-EZ|;>1t) < (n+1)-exp <ﬁ) (19)

First, we derive a closed form for L. By construction of X (in particular 17X = r),

=== D412 = (- o) =nr,

i il 2
X -x], -
2

So choose L = || X —EX]||, = y/n7. Next, we simplify the two components of v(Z):

IE[(Z —EZ)(Z - EZ)T]Hop = [[Cov(Z)lop = PlIZ]op,

E[|Z —EZ|3] ZV(IT‘ tr(Cov(Z)) =p-tr(X%).

Furthermore, max{||X||,, tr(2)} = tr(X) since X is positive semidefinite. Combining the
above yields
v(Z)=p-tr()=p-n-1° = pL>

Substituting v(Z) and EZ = pr/n - 1, into (19) yields

2215) S(n+1)~exp<i) vt > 0.

Z — —1
(H pL?+ Lt/3

36

Since X; = /n/rX @ we have X1, =+/n/rZ and Vt > 0,

P <HX1P —p\/gln E \/ét) —P (HZ - 1%% = t) < (n+1)-exp (M) — F(1).

p+(t/L)/3
Choosing t = pr/y/n and by the triangle inequality,

IX1lls < X1, — pv/r/n- Lulls + Ipv/r/n - Lalla < V/nfr -t + pv/r = 2pv/r

holds with probability at least 1 — F(pr/y/n). Also t/L = pr/(nt). We next simplify
F(pr/vn).

/
<log(n+1) — L plr/n) <by % < 1>

1
2 1+3
3 pr
=log(n+1)—<-—.
g(n+1) — 2=
So, P(| X 1,[]2 < 2py/r) > 1 — exp (log(n + 1) — %). Note that = > %}T:H) ensures the
exponent converges to negative infinity as n and p increase. Thus, if r > %ﬁfﬂ), then

X1 r
||X1PH2 = Op(p\/;) g ” p\/%HQ = Op (E) .

SO, we have ||X1p||2 = Op(p\/ﬁ) ifr = O(n) and r > %;n—’—l)

J Paired t-tests between our method and Li-ag-h

To compare the test errors in the first two columns of Table 1 in the main paper, we perform
a two-sample t-test for each row. For each of the n = 40,000 reviews, a pair of squared
prediction errors is calculated, one from each method. Conditional on the training set, these
n pairs can be thought of as independent. Table 4 shows the resulting p-values.

prop. 1% 5% 10% 20% 0% 60% 80% 100%
p-value | 3.95 x 107 0.086 7.21 x 107 7.56 x 10° 2.2 x 10-® 0.056 0.105 0.001

Table 4: Paired t-tests between squared prediction errors from our method and L1-ag-h on
the held-out test set. The prop. values correspond to different training sizes in Table 1.

37

K Hierarchical Clustering Tree with ELMo

Embeddings from Language Models (ELMo) is a state-of-the-art natural language processing
framework for representing words with deep contextualized embeddings (Peters et al., 2018).
ELMo leverages a deep neural network that is pre-trained on a large text corpus and has
multiple attractive properties. For our purpose, the most relevant property of ELMo is that
its word embeddings account for the context in which the words appear. In particular, the
ELMo embedding assigned to a word is a function of the entire sentence containing that
word. This means that the same word in different contexts will have different embeddings.
This is a great advantage over traditional word embeddings such as Glo Ve (Pennington et al.,
2014).

Among the training sets listed in Table 1, we focus on one scenario when n = 33,997 and
p = 5,621 (which corresponds to 20% of the entire training reviews). We use TensorFlow
(Abadi et al., 2015) and an ELMo model pre-trained on the One Billion World Language
Model Benchmark® to get 1,024-dimensional embeddings for all words in the 33,997 training
reviews and the 40,000 held-out testing reviews. To establish a fair comparison with existing
experimentation, we keep only adjective embeddings in the reviews, which leaves us 952,974
adjective embeddings for training and 1,122,030 adjective embeddings for testing. Again,
the same adjective in various sentences has different ELMo embeddings whose proximities
encode how the word is used in each context.

We use mini-batch K-Means clustering (Sculley, 2010) to cluster the 952,974 adjectives
from training into 6,001 clusters. The choice of the number of K-Means clusters ensures
that the comparison between ELMo and GloVe (which is based on p=>5,621) is roughly on
the same scale of features. After mini-batch K-Means clustering, we update each cluster
centroid to the averaged embeddings for training adjectives assigned to the cluster. We also
associate testing adjectives to the clusters by Euclidean distance. After associating adjectives
to clusters, we construct a document-cluster matrix for training and testing, respectively.
The ij-entry of the document-cluster matrix has the number occurrences of the jth cluster
in the ith review. Each cluster represents a collection of occurrences of adjectives used
in a similar context within a review. We next generate a tree by performing hierarchical
clustering on the cluster centroids. The tree and document-cluster matrix is then used in
fitting our model along with others such as L1-ag-h and L1-ag-d.

References

Abadi, M., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., Corrado, G. S.,
Davis, A., Dean, J., Devin, M., Ghemawat, S., Goodfellow, I., Harp, A., Irving, G., Isard,
M., Jia, Y., Jozefowicz, R., Kaiser, L., Kudlur, M., Levenberg, J., Mané, D., Monga,
R., Moore, S., Murray, D., Olah, C., Schuster, M., Shlens, J., Steiner, B., Sutskever, I.,
Talwar, K., Tucker, P., Vanhoucke, V., Vasudevan, V., Viégas, F., Vinyals, O., Warden,
P., Wattenberg, M., Wicke, M., Yu, Y., and Zheng, X. (2015). TensorFlow: Large-scale
machine learning on heterogeneous systems. Software available from tensorflow.org.

Shttp://www.statmt.org/lm-benchmark/

38

Arnold, T. B. and Tibshirani, R. J. (2014). genlasso: Path algorithm for generalized lasso
problems. R package version 1.3.

Bernstein, D. S. (2009). Matriz Mathematics: Theory, Facts, and Formulas (Second Edition,).
Princeton University Press.

Boyd, S., Parikh, N., Chu, E., Peleato, B., and Eckstein, J. (2011). Distributed optimization
and statistical learning via the alternating direction method of multipliers. Found. Trends
Mach. Learn., 3(1):1-122.

Biithlmann, P. and van de Geer, S. (2011). Statistics for High-Dimensional Data: Methods,
Theory and Applications. Springer Publishing Company, Incorporated, 1st edition.

Cao, Y., Zhang, A., and Li, H. (2017). Microbial Composition Estimation from Sparse Count
Data. ArXiv e-prints.

Caporaso, J. G., Kuczynski, J., Stombaugh, J., Bittinger, K., Bushman, F. D., Costello,
E. K., Fierer, N., Pena, A. G., Goodrich, J. K., Gordon, J. 1., Huttley, G. A., Kelley, S. T.,
Knights, D., Koenig, J. E., Ley, R. E., Lozupone, C. A., McDonald, D., Muegge, B. D.,
Pirrung, M., Reeder, J., Sevinsky, J. R., Turnbaugh, P. J., Walters, W. A., Widmann,
J., Yatsunenko, T., Zaneveld, J., and Knight, R. (2010). QIIME allows analysis of high-
throughput community sequencing data. Nat. Methods, 7(5):335-336.

Chen, J., Bushman, F. D., Lewis, J. D., Wu, G. D., and Li, H. (2013). Structure-constrained
sparse canonical correlation analysis with an application to microbiome data analysis.
Biostatistics, 14(2):244-258.

Coté, F. D., Psaromiligkos, I. N., and Gross, W. J. (2012). A Chernoff-type Lower Bound
for the Gaussian Q-function. ArXiv e-prints.

Feinerer, 1. and Hornik, K. (2016). wordnet: WordNet Interface. R package version 0.1-11.
Feinerer, 1. and Hornik, K. (2017). tm: Text Mining Package. R package version 0.7-1.
Fellbaum, C. (1998). WordNet: An Electronic Lexical Database. Bradford Books.

Forman, G. (2003). An extensive empirical study of feature selection metrics for text classi-
fication. J. Mach. Learn. Res., 3:1289-1305.

Friedman, J., Hastie, T., and Tibshirani, R. (2010). Regularization paths for generalized
linear models via coordinate descent. Journal of Statistical Software, 33(1):1-22.

Guinot, F., Szafranski, M., Ambroise, C., and Samson, F. (2017). Learning the optimal scale
for GWAS through hierarchical SNP aggregation. ArXiv e-prints.

Huang, A. (2008). Similarity measures for text document clustering. In Proceedings of
the sizth new zealand computer science research student conference (NZCSRSC2008),
Christchurch, New Zealand, pages 49-56.

39

Ke, T., Fan, J., and Wu, Y. (2015). Homogeneity Pursuit. J Am Stat Assoc, 110(509):175—
194.

Khabbazian, M., Kriebel, R., Rohe, K., and An, C. (2016). Fast and accurate detection
of evolutionary shifts in ornsteinuhlenbeck models. Methods in Ecology and FEvolution,

7(7):811-824.

Kim, S., Xing, E. P., et al. (2012). Tree-guided group lasso for multi-response regression with
structured sparsity, with an application to eqtl mapping. The Annals of Applied Statistics,
6(3):1095-1117.

Li, C. and Li, H. (2010). Variable selection and regression analysis for graph-structured
covariates with an application to genomics. Ann. Appl. Stat., 4(3):1498-1516.

Li, Y., Raskutti, G., and Willett, R. (2018). Graph-based regularization for regression
problems with highly-correlated designs. ArXiv e-prints.

Lin, W., Shi, P., Feng, R., and Li, H. (2014). Variable selection in regression with composi-
tional covariates. Biometrika, 101:785-797.

Liu, X., Yu, S., Janssens, F., Glanzel, W., Moreau, Y., and De Moor, B. (2010). Weighted
hybrid clustering by combining text mining and bibliometrics on a large-scale journal
database. J. Am. Soc. Inf. Sci. Technol., 61(6):1105-1119.

Lou, Y., Bien, J., Caruana, R., and Gehrke, J. (2016). Sparse partially linear additive
models. Journal of Computational and Graphical Statistics, 25(4):1126-1140.

Matsen, F. A., Kodner, R. B., and Armbrust, E. V. (2010). pplacer: linear time maximum-
likelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree.
BMC' Bioinformatics, 11:538.

McMurdie, P. J. and Holmes, S. (2013). phyloseq: An r package for reproducible interactive
analysis and graphics of microbiome census data. PLOS ONE, 8(4):1-11.

Mohammad, S. M. and Turney, P. D. (2013). Crowdsourcing a word-emotion association
lexicon. Computational Intelligence, 29(3):436—465.

Mukherjee, R., Pillai, N. S.; and Lin, X. (2015). Hypothesis testing for high-dimensional
sparse binary regression. Ann. Statist., 43(1):352-381.

Pennington, J., Socher, R., and Manning, C. D. (2014). Glove: Global vectors for word
representation. In Empirical Methods in Natural Language Processing (EMNLP), pages
1532-1543.

Peters, M. E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K., and Zettlemoyer,
L. (2018). Deep contextualized word representations. In Proc. of NAACL.

R Core Team (2016). R: A Language and Environment for Statistical Computing. R Foun-
dation for Statistical Computing, Vienna, Austria.

40

Randolph, T. W., Zhao, S., Copeland, W., Hullar, M., and Shojaie, A. (2015). Kernel-
Penalized Regression for Analysis of Microbiome Data. ArXiv e-prints.

Ridenhour, B. J., Brooker, S. L., Williams, J. E., Van Leuven, J. T., Miller, A. W., Dearing,
M. D., and Remien, C. H. (2017). Modeling time-series data from microbial communities.
ISME J, 11(11):2526-2537.

Schloss, P., L Westcott, S., Ryabin, T., R Hall, J., Hartmann, M., Hollister, E., Lesniewski,
R., Oakley, B., Parks, D., Robinson, C., W Sahl, J., Stres, B., G Thallinger, G., Van Horn,
D., and Weber, C. (2009). Introducing mothur: Open-source, platform-independent,
community-supported software for describing and comparing microbial communities. Ap-
plied and environmental microbiology, 75(23):7537-41.

Sculley, D. (2010). Web-scale k-means clustering. In Proceedings of the 19th International
Conference on World Wide Web, WWW 10, page 11771178, New York, NY, USA. Asso-
ciation for Computing Machinery.

She, Y. (2010). Sparse regression with exact clustering. FElectron. J. Statist., 4:1055-1096.

Shi, P., Zhang, A., and Li, H. (2016). Regression analysis for microbiome compositional
data. Ann. Appl. Stat., 10(2):1019-1040.

Tang, Y., Li, M., and Niclolae, D. L. (2016). Phylogenetic Dirichlet-multinomial model for
microbiome data. ArXiv e-prints.

Thelwall, M., Buckley, K., Paltoglou, G., Cai, D., and Kappas, A. (2010). Sentiment in
short strength detection informal text. J. Am. Soc. Inf. Sci. Technol., 61(12):2544-2558.

Tibshirani, R. (1996). Regression shrinkage and selection via the lasso. Journal of the Royal
Statistical Society, Series B, 58:267-288.

Tibshirani, R. J. and Taylor, J. (2011). The solution path of the generalized lasso. Ann.
Statist., 39(3):1335-1371.

Tropp, J. A. (2015). An introduction to matrix concentration inequalities. Foundations and
Trends in Machine Learning, 8(1-2):1-230.

Wallace, M. (2007). Jawbone Java WordNet API.

Wang, H., Lu, Y., and Zhai, C. (2010). Latent aspect rating analysis on review text data:
A rating regression approach. In Proceedings of the 16th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining, KDD 10, pages 783-792, New
York, NY, USA. ACM.

Wang, J., Shen, X., Sun, Y., and Qu, A. (2016). Classification with unstructured predictors
and an application to sentiment analysis. Journal of the American Statistical Association,
111(515):1242-1253.

Wang, T. and Zhao, H. (2017a). A Dirichlet-tree multinomial regression model for associating
dietary nutrients with gut microorganisms. Biometrics, 73(3):792-801.

41

Wang, T. and Zhao, H. (2017b). Structured subcomposition selection in regression and its
application to microbiome data analysis. Ann. Appl. Stat., 11(2):771-791.

Xia, F., Chen, J., Fung, W. K., and Li, H. (2013). A logistic normal multinomial regression
model for microbiome compositional data analysis. Biometrics, 69(4):1053-1063.

Yu, G. and Liu, Y. (2016). Sparse regression incorporating graphical structure among pre-
dictors. Journal of the American Statistical Association, 111(514):707-720.

Zhai, J., Kim, J., Knox, K. S., Twigg, H. L., Zhou, H., and Zhou, J. J. (2018). Vari-
ance component selection with applications to microbiome taxonomic data. Frontiers in
Microbiology, 9:509.

Zhang, T., Shao, M.-F., and Ye, L. (2012). 454 pyrosequencing reveals bacterial diversity of
activated sludge from 14 sewage treatment plants. The ISME Journal, 6(6):1137-1147.

42

	1 Introduction
	2 Rare Features and the Promise of Aggregation
	2.1 The Difficulty Posed by Rare Features
	2.2 Aggregating Rare Features Can Help

	3 Main Proposal: Tree-Guided Aggregation
	3.1 A Tree to Guide Aggregation
	3.2 A Tree-Based Parametrization
	3.3 The Optimization Problem
	3.4 Connections to Other Work

	4 Statistical Theory
	5 Simulation Study
	6 Application to Hotel Reviews
	7 Conclusion
	Appendices
	Appendices
	A Failure of OLS in the Presence of A Rare Feature
	B Proof of Theorem 2
	C Proof of Theorem 3
	D Consensus ADMM for Solving Problem (5)
	D.1 Derivation of Algorithm 1
	D.2 Treatment of Intercept in Problem (5)

	E Proof of Lemma 1
	F Proof of Theorem 4
	G Proof of Corollary 1
	H Proof of Corollary 2
	I Proof of Proposition 1
	J Paired t-tests between our method and L1-ag-h
	K Hierarchical Clustering Tree with ELMo

