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ABSTRACT. We develop the formalism of universal torsors in equi-
variant birational geometry and apply it to produce new examples
of nonbirational but stably birational actions of finite groups.

1. INTRODUCTION

Let k be an algebraically closed field of characteristic zero. Consider
a finite group G, acting regularly on a smooth projective variety X
over k, generically freely from the right. Given two such varieties X
and X’ with G-actions, we say that X and X’ are G-birational, and
write

X ~q X',
if there is a G-equivariant birational map
X -S> X'
We say that X and X' are stably G-birational if there is a G-equivariant
birational map
X xP* -5 X! x PV,

where the action of G on the projective spaces is trivial. The No-Name
Lemma implies that this is equivalent to the existence of G-equivariant
vector bundles £ — X and £’ — X’ that are G-birational to each
other. In particular, faithful linear actions on A" are always stably G-
birational but not always G-birational [RY02], [KT21a]. We say that
the G-action on an n-dimensional variety X is (stably) linearizable if
there exists an (n + 1)-dimensional faithful representation V' of G such
that X is (stably) G-birational to P(V').

There are a number of tools to distinguish G-birational actions, in-
cluding

e existence of fixed points upon restriction to abelian subgroups
of G [RY00];
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e determinant of the action of abelian subgroups in the tangent
bundle at fixed points [RY02];

e Amitsur group and G-linearizability of line bundles [BCDP18,
Section 6];

e group cohomology for induced actions on invariants such as the
Néron-Severi group [BP13];

e equivariant birational rigidity, see, e.g., [CS16];

e cquivariant enhancements of intermediate Jacobians and cycle
invariants [HT21];

e cquivariant Burnside groups [KT20], [KT21a].

Of these, only the fixed point condition for abelian subgroups, the
Amitsur group, and group cohomology — specifically H! (G, Pic(X)) or
higher unramified cohomology — yield stable G-birational invariants.

Nevertheless, nontrivial stable birational equivalences are hard to
come by. In this paper, we adopt the formalism of universal torsors
— developed by Colliot-Thélene, Sansuc, Skorobogatov, and others, in
the context of arithmetic questions like Hasse principle and weak ap-
proximation — to the framework of equivariant birational geometry. As
an application, we exhibit new examples of nonbirational but stably
birational actions. Specifically, we

e show that the linear G,-action on P? and an &,-action on a del
Pezzo surface of degree 6 are not birational but stably birational
(Proposition 15),

e settle the stable linearizability problem for quadric surfaces
(Proposition 16),

e show that the linear 2s-action on P? and the natural 25-action
on a del Pezzo surface of degree 5 are not birational but stably
birational (Proposition 20),

e show that 2s-actions on the Segre cubic threefold, arising from
two nonconjugate embeddings of 5 — Sg, are not birational
but stably birational (Proposition 21).

Here is the roadmap of the paper: In Sections 2 and 3 we extend the
formalism of universal torsors and Cox rings to the context of equivari-
ant geometry over k. In Section 4, we study the (stable) linearization
problem for toric varieties. A key example, del Pezzo surfaces of degree
six, is discussed in Section 5; the related case of Weyl group actions
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for Gy is presented in Section 6. In Section 7 we turn to quadric sur-
faces. In Section 8 we discuss linearization of actions of Weyl groups
on Grassmannians and their quotients by tori.

Acknowledgments: The first author was partially supported by Si-
mons Foundation Award 546235 and NSF grant 1701659, the second
author by NSF grant 2000099.

2. ALGEBRAIC TORI AND TORSORS OVER NONCLOSED FIELDS

Let k£ be a field of characteristic zero and X an d-dimensional ge-
ometrically rational variety over k. Recall that X is called (stably)
k-rational if X is (stably) birational to P¢ over k.

An important class of varieties which was studied from the perspec-
tive of (stable) k-rationality is that of algebraic tori. A classification
of (stably) k-rational tori in dimensions d < 5 can be found in [Vos65],
[Kun87], [HY17].

In this section, we review the main features of the theory of tori
and torsors under tori over nonclosed fields. Our main references are

[CTS77] and [CTS87].

2.1. Characters and Galois actions. Recall that an algebraic torus
T over k is an algebraic group over k such that

T:=T,=G%,

over an algebraic closure k of k. Let M be its character lattice and N
the lattice of cocharacters, which carry actions of the absolute Galois
group Gal(k) of k.

The descent data for a torus T over an arbitrary field k of charac-
teristic zero is encoded by the continuous representation

Gal(k) — GL(M).

2.2. Quasi-trivial tori. There is a tight connection between (stable)
k-rationality of T" and properties of the Galois module M.

Recall that M is called a permutation module if M has a Z-basis
permuted by Gal(k), i.e., M is a direct sum of modules of the form
Z|Gal(k)/H], where H is a closed finite-index subgroup. By defini-
tion, a torus T is quasi-trivial if M is a permutation module. Quasi-
trivial tori are rational over k by Hilbert’s Theorem 90 for general linear
groups.
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Every torus may be expressed as a subtorus or quotient of a quasi-
trivial torus, by expressing the character or cocharacter lattices as quo-
tients of permutation modules.

2.3. Rationality criteria. A fundamental theorem [Vos98]| is that a
torus 7' is stably rational if and only if M is stably permutation, i.e.,
there exist permutation modules P and () such that

M®P~Q.
This condition implies the vanishing of
H'(H, M)
for all closed finite-index subgroups H C Gal(k) (i.e., M is coflabby).

2.4. Torsor formalism. Let X be a smooth projective geometrically
rational variety over k. Since X is rational, Pic(X) — NS(X) is an
isomorphism. Let

Tns(x)
denote the Néron-Severi torus of X, i.e., a torus whose character group
is isomorphic, as a Galois module, to NS(X). Let

P—X

be a universal torsor for Tygx) over k; below we will discuss when it
exists over the ground field. Recall that P — X is a morphism defined
over k, admitting a free action
P x TNS()_() — P
over X with the following geometric property: Choose a basis
Al,...,\ € NS(X) = HOIH(TNS(X), Gm),
so that the associated rank-one bundles L4, ..., L, — X satisfy
)\1:[[/1], izl,...,r.

This determines P uniquely over an algebraic closure k/k; however for
each v € H'(Gal(k), Txs(x)), we can twist the torus action to obtain
another such torsor "P.

Given a homomorphism of free Galois modules

Oz:M—)NS(X')

there is a homomorphism of tori Tygxy — T and an induced torsor
P, — X for Ty;.

A sufficient condition for the existence of a universal torsor over k is
the existence of a k-rational point x € X (k): one can define P — X
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over k via evaluation at x. More generally, suppose that Dy,..., D,
is a collection of effective divisors on X that is Galois-invariant and
generates NS(X). Let U denote their complement in X; we have an
exact sequence

0 — R =k[U]"/k* = @&)_,ZD; — NS(X) — 0.
The following conditions are equivalent [CTS87, Prop. 2.2.8]:

e the short exact sequence
(2.1) 1=k — kU] — kU k" — 1
splits; B
e the descent obstruction for P in H*(Gal(k), Tyg(x)) vanishes.
Indeed, each rational point x € U(k) gives a splitting of (2.1).
When can the universal torsor — or more general torsor constructions
— be used to obtain stable rationality results for X over k?

Proposition 1. A smooth projective geometrically rational variety X
over k is stably rational over k under the following conditions:

e its universal torsor P — X is rational over k;

e its Néron-Severi torus Txg k) s stably rational;

e the morphism P — X admits a rational section, i.e., the torsor
splits.

The last two conditions hold [BCTSSD85, Prop. 3] if NS(X) is stably
permutation. Note that there are examples where the relevant coho-
mology vanishes (NS(X) is flabby and coflabby) but NS(X) fails to be
a stable permutation module; these can be found in [CTS77, Remarque
R4] (see also [HY17, Section 1]).

3. EQUIVARIANT FORMALISM

We turn to the equivariant context, working over an algebraically
closed field k£ of characteristic zero. Our goal is to formulate a G-
equivariant version of the torsor formalism in [CTS87], which will be
our main tool in the study of the (stable) linearization problem.

3.1. G-tori. Let T' = G% be an algebraic torus over k. Recall that we
have a split exact sequence

(3.1) 1 — T(k) —» Aff(T) — Aut(T) — 1,

where Aut(7") is the automorphisms of 7" as an algebraic group and

Aff(T) is the associated affine group. Note that Aut(7") acts faithfully
on the character lattice of 7'
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Let G C Aut(T) be a finite group, so that 7" is a group in the category
of G-varieties. We refer to such tori as G-tori. Given G C Aff(7T), the
elements in G N T'(k) will be called translations. This gives rise to a
torsor

PxT— P,

where T is the G-torus associated with the composition G — Aff(T") —
Aut(T).

The (stable) linearization problem for G-tori concerns (stable) bira-
tionality of the G-action on T' and a linear G-action on P?. There are
two extreme cases:

e G C T(k), i.e., G is abelian and the G-action is a translation
action,

e GNT(k)=1.

3.2. Linearizing translation actions. An action of G C T(k) ex-
tends to a linear action; indeed it extends to a linear action on the nat-
ural compactification 7' < P?. Note that these do not have to be equiv-
ariantly birational to each other, for different embeddings G — T'(k);
the determinant condition of [RY02] characterizes such actions up to
equivariant birationality. By the No-Name Lemma, translation actions
are stably equivariantly birational. For nonabelian G containing an
abelian subgroup of rank d, similar examples of nonbirational but sta-
bly birational G-actions on tori can be extracted from [RY02, Prop.
7.2].

3.3. Linearizing translation-free actions. The (stable) lineariza-
tion problem for actions without translations is essentially equivalent
to the well-studied (stable) rationality problem of tori over nonclosed
fields. It is controlled by the G-action on the cocharacters. We record:

Proposition 2. Let T be a G-torus (i.e., GNT (k) = 1) with cochar-
acter module N. Assume that N is a stably permutation G-module.
Then the G-action on T 1is stably linearizable.

Proof. Suppose first that NV is a permutation module. We can realize
our torus

T Cc A% d=dim(T),

as an open subset of affine space twisted by a permutation of the basis
vectors. Any linear twist of affine space is isomorphic to affine space by
Hilbert’s Theorem 90, hence the G-action on T is linearizable as well.
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If N is stably permutation then there exist permutation modules P
and () such that
N®P~Q.

The argument above yields
T % Adim(P) _':’_) Adim(@)

which, combined with the No-Name Lemma, gives that the action is
stably linear. 0

Question 3. Can we effectively compute whether a G-module is stably
permutation?

3.4. G-equivariant torsors. We now turn to general smooth projec-
tive varieties X with a generically free regular action of a finite group
G. We assume that
NS(X) = Pic(X)
is a free abelian group; it inherits the G-action. Let
TNS(X) = HOIH(NS(X), Gm)

denote the Néron-Severi torus, it is a G-torus.

Let T be a G-torus with character module 7. A G-equivariant 7T-
torsor over X consists of a G-equivariant scheme P — X and a G-
equivariant action

PxT—P

over X that is a torsor on the underlying groups and varieties. Let
He (X, T)

denote the group of isomorphism classes of G-equivariant S-torsors over
X. We have an exact sequence

(3.2) 0— HY(G,T) — HL(X,T) = Homg/(T, Pic(X)) 2 HX(G, T).

The middle arrow may be understood as recording the line bundles
arising from characters of T

3.5. Amitsur group. Restricting to G-invariant divisors
Pic(X)% C Pic(X),
we obtain
0 — Hom(G, G,,) — Picg(X) — Pic(X)Y — H*(G, G,,)

where Picg(X) is the group of G-linearized line bundles on X. The
class

a = d([h]),
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where h is G-invariant, is called the Schur multiplier. 1t vanishes if
and only if the G-action lifts to I'(X, Ox(mh)) for each m > 0. The
subgroup

Am(X,G) C H*(G,G,,)
generated by all such classes is called the Amitsur group [BCDP18, §6];

it is a stable G-birational invariant [Sar20, Thm. 2.14]. Note that when
Am(X,G) = 0 there may be subgroups H C G with Am(X, H) # 0.

3.6. Lifting the G-action. Suppose that
P—X

is a wuniversal torsor, i.e., a torsor for T" = Tygx) whose class in

Hom (T, Pic(X)) is the identity. When does the G-action on X lift
to P? This problem is analogous to the problem of descending the
universal torsor to the ground field, in the arithmetic context of Sec-
tion 2.4.

Here are two sufficient conditions:

e X admits a G-fixed point;
e the cocycle
a = 0(I1d) € H*(G, Txs(x))
vanishes (whence all Schur multipliers are trivial).
The latter is necessary by the long exact sequence (3.2). The following

proposition gives a criterion for the vanishing of this cocycle:

Proposition 4. Let X be a smooth projective G-variety. Assume that
Pic(X) is a free abelian group. Fiz a G-invariant open subset ) # U C
X with Pic(U) = 0. The class o € H*(G, Tns(x)) vanishes if and only
if the exact sequence

(3.3) 1= k" = kU] = KU /B — 1

has a G-equivariant splitting.

The proof is completely analogous to the proof of [CTS87, 2.2.8(v)]
with group cohomology replacing Galois cohomology.

3.7. Constructing the torsor. This approach can yield a construc-
tion for the universal torsor. Let Dy, ..., D, be a G-invariant collection
of effective divisors generating Pic(X). The complement

U=X\(D,U...UD,)
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has trivial Picard group. Consider the exact sequence
0— R — &'_,ZD; — Pic(X) — 0,

where R is the module of relations among the D;, and its dual

(3.4) 0— Tns(x)y =M — R—0.
There is a canonical G-homomorphism
R — k[U]* k"

obtained by regarding the relations as rational functions that are in-
vertible on U. The existence of a splitting for (3.3) yields a lift

R — k[U]*,
whence a morphism

U— R.

The sequence (3.4) induces a Txg(x)-torsor over U, which extends to
all of X as in [CTS87, Thm. 2.3.1].

3.8. Properties of torsors. We also have the equivariant version of
[BCTSSDS85, Prop. 3|, an application of Hilbert Theorem 90:

Proposition 5. Suppose NS(X) is stably permutation as a G-module.
If P — X is a universal torsor then there exists a G-equivariant ratio-
nal section X --+ P, whence

P ~G TNS(X) x X.

Corollary 6. The existence of a G-equivariant universal torsor is a
G-birational property.

Proof. Indeed, if X and Y are G-equivariantly birational then we can
exhibit an affine open subset common to both varieties for which Propo-
sition 4 applies. U

In parallel with [CTS87, Prop. 2.9.2], we have:

Proposition 7. The existence of a G-equivariant universal torsor is a
stable G-birational property.

Proof. Let W be a smooth projective G-variety, equivariantly birational
to a linear generically-free action on projective space. Then Pic(W) is
stably a permutation module and each invariant line bundle on W
admits a G linearization. Thus the resulting torus Tnsmw) admits a
torsor @ — W, equivariant under the G action.
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If X admits a universal torsor P — X then the product
Ty QX myP — W x X

is a universal torsor for X x W.

Conversely, suppose that W x X admits a universal torsor. Since
the existence of a universal torsor is a G-birational property, we may
assume that W = P" and G acts linearly and faithfully on P". It
therefore acts on the associated affine space I'(Op»(1))¥ and the uni-
versal subbundle Opn(—1). The No-Name Lemma implies G-birational
equivalences

Opn(—1) x X S5 A x W x X
and

D(Opn(1))Y x X -Z» A" x X
with trivial actions on the affine space factors. Moreover, Opn(—1) is
equal to the blowup of I'(Opx (1)) at the origin, thus W x X is stably
birational to A" x X.

We therefore reduce ourselves to the situation where P*T! x X admits
a universal torsor

Yy Pl x X

where G acts trivially on the first factor. The pullback homomorphism
T : Pic(X) — Pic(X x P

allows us to produce a Tys(x)-torsor R — P+ x X. Choose a section
of P! x X — X and restrict R to this section to get the desired
torsor on X. ]

3.9. Torsors and stable linearization. We record an equivariant
version of Proposition 1.

Proposition 8. Let X be a smooth projective G-variety with Pic(X) =
NS(X). Assume that X admits a G-equivariant universal torsor P such
that

o the G-action on P is stably linearizable,
e the G-action on Tng(x) s stably linearizable,
e P — X admits a G-equivariant rational section.

Then the G-action on X 1is stably linearizable.

There is no harm in assuming merely that P is stably linearizable as
our conclusion on X is a stable property.
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Corollary 9. Let X be a smooth projective G-variety with Pic(X) =
NS(X); assume NS(X) is stably a permutation module. If X admits a
G-equivariant universal torsor P with stably linear G-action then the
G-action on X 1is stably linearizable as well.

Indeed, the last two conditions of Proposition 8 follow if NS(X) is a
stably permutation module by Proposition 5.

3.10. Universal torsors and Cox rings. Suppose X is a smooth
projective variety that has a universal torsor P — X. In some cases,
there is a natural embedding of P into affine space, realizing X is a
subvariety of a toric variety. Specifically, assume that the Cox ring

Cox(X) 1= @repic(x) I'(X, L),

graded by the Picard group and with multiplication induced by tensor
product of line bundles, is finitely generated (see, e.g., [ADHL15] for
definitions and properties). This is the case for Fano varieties, for
example [HK00, BCHM10]. Then there is a natural open embedding

P — Spec(Cox(X)),

compatible with the actions of Txs(x) associated with the torsor struc-
ture and the grading respectively. Fixing a finite set {x, },cx of graded
generators for Cox(X), we obtain an embedding

Spec(Cox(X)) — A*.

Taking a quotient of the codomain by Tns(x) gives a toric variety (see
Section 4.1); choosing a quotient associated with a linearization of an
ample line bundle L on X gives the desired embedding

X — [AZ/TNs(X)]L.

Our focus is the extent to which these constructions can be performed
equivariantly (when X comes with a G-action) or over non-closed fields.
We emphasize that the Cox-ring formulation is equivalent to the uni-
versal torsor framework when the torsor exists.

3.11. General results on linearizable actions. For this last section,
we return to the general question of characterizing group actions that
are birational or stably birational.

Proposition 10. Let X be a smooth projective variety and G a finite
group acting reqularly and generically freely on X. Given an automor-
phism a : G — G, let *X denote the resulting twisted action of G
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on X. If the G-action on X is stably linearizable then *X is stably
equivariantly birational to X, hence stably linearizable as well.

Proof. Our assumption implies the existence of linear representations
G x A" — A", G x AT — AT d = dim(X),

such that
X x A" ~g AT
Twisting by a, we find that
ax x GA™ ~G aAd—i-n.
It follows that
X X AT~ X x AT
The No-Name Lemma implies that these are birational to

X x AT aX x AT

where the actions on the affine spaces are trivial. This gives the stable
birational equivalence. O

4. STABLE LINEARIZATION OF ACTIONS ON TORIC VARIETIES

4.1. Toric varieties. Let X = Xy be a T-equivariant compactifica-
tion of T, where ¥ is a fan, i.e., a collection ¥ = {o} of cones in
the cocharacter group N := X, (T) of T (see, e.g., [Ful93] for termi-
nology regarding toric varieties). Let X(i) C X be the collection of
i-dimensional cones. A complete determination of the automorphism
group Aut(X) can be found in [SMS18]. Conversely, given a finite
group G C Aut(7T) there exists a smooth projective T-equivariant com-
pactification of T, with regular G action.

Suppose T is a G-torus. We say that X is a T-toric variety if there
exists a G-equivariant action X x T" — X such that X has a dense
T-orbit with trivial generic stabilizer. Note that X need not have G-
fixed points but does admit a distinguished Zariski-open subset that is
a torsor for T

We record a corollary of Proposition 10:

Corollary 11. Let X denote a T-toric variety that is stably lineariz-
able. Given an element a € Aut(X)Y, the twist *X is stably linearizable
as well and G-birational of X.
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If the cocharacter module N of T is stably permutation then a
smooth projective T-equivariant compactification T" C X has Picard
group Pic(X) that is also stably a permutation module.

Indeed, we have an exact sequence

(4.1) 0 — M — Picp(X) — Pic(X),— 0,

where the central term is a permutation module indexed by vectors
generating the one-skeleton of the fan. The exact sequence (4.1) shows
that M is stably permutation if and only if Pic(X) is stably permuta-
tion.

4.2. Universal torsors for toric varieties. Let X xT — X denote a
T-toric variety, where X is smooth and projective. Ignoring the action
of G, Cox(X) is a polynomial ring k[z,],c € (1), indexed by the 1-
skeleton, i.e., generators of the one-dimensional cones in the fan of X.
Of course, the group G permutes the elements of (1) and if X admits
a T-fixed point — invariant under G — then Spec(Cox(X)) is the affine
space A1) with the induced permutation action of G.

However, when the dense open orbit of X is a nontrivial principal
homogeneous space

UxT—=U

it may not be possible to lift the G-action compatibly to Spec(Cox(X)).
We can identify the cohomology class governing the existence a lifting.
Dualizing (4.1) gives

1— Tnsxy = GV — T — 1,

encoded by a class € Extg (T, Tns(x))- The principal homogeneous
space is classified by

U] € HY(G,T)
and its image under the connecting homomorphism
a([U]) = £[U] — n € H*(G, Txs(x))
is the obstruction to finding a cocycle in H'(G, Gy ") lifting [U].

4.3. Actions on P!. The presence of translations marks an essential
discrepancy in the analogy between the rationality problem over non-
closed fields and the linearizability problem of actions of finite groups
over closed fields, as can be seen from the following example:

Let

G = <L1,L2> = €2 X @2
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and T a one-dimensional torus with G action
bt=t""Y 1yt =—t.

Consider an action
TxPl — P!
t-lzy] = Jto,yl

Let G act on P! by

u- vyl =y, 2], -yl =[-,9]

which is well-defined. However, this action does not lift to a linear
action of G on A? because

o)l 5)=-6 %0 )

The Amitsur invariant is
Am(P', G) =7Z/2,

so that this action is not stably linearizable. Alternatively, one may
observe that G has no fixed points on P!, which is also an obstruction
to stable linearizability.

On the other hand, let

G := <L,0‘ =00 = 1,LO‘L=U_1> ~ B;.
We continue to have ¢ act as ¢; did above. Let
o-lx,y] = wr,y], w= i3,

This does lift to a linear action of G on A2, e.g., by expressing

o- [:E,y] - [C%C‘ly], C _ 627”'/6‘

Again, G has no fixed points on P!, but this is not an obstruction to
linearizability, for nonabelian groups.

4.4. Linearizing actions with translations.
Proposition 12. Let T be a G-equivariant torus and X xT — X a
smooth projective T-toric variety. Assume that

e M=Tisa stably permutation G-module;
e the obstruction o = d(I1d) € H*(G, Tns(x)) vanishes.

Then the G-action on X s stably linearizable.
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Proof. The vanishing assumption shows that X admits a universal tor-
sor P — X with G-action. Moreover, we have an open embedding

P s A"

where A" is an affine space with permutation structure given by the
action of GG on the 1-skeleton of X.

By Proposition 5 we have P ~¢g Tng(x) X X; the first factor is stably
linearizable by Proposition 2. Since P is linearizable we conclude X is
stably linearizable. O

Question 13. Let G be a finite group, 7" a G-torus, and X a T-toric
variety. Consider the following conditions:

e the obstruction 9(Id) € H?(Tys(x)) to the existence of a univer-
sal torsor vanishes;

e for each T-orbit closure Y C X and subgroup H C G leaving Y
invariant, the Amitsur invariant Am(Y, H/K) vanishes, where
K is the subgroup acting trivially on Y.

Are they equivalent?
Clearly the first implies the second. Recall that the restriction
Pic(X) — Pic(Y)
can be made to be surjective on a suitable G-equivariant smooth pro-
jective model of X, with induced T-closure Y C X. See, e.g., Sections
2.3-2.5 of [KT21b].
5. SEXTIC DEL PEZZO SURFACES
Here we consider actions on the toric surface
X c P! x P! x P!,
given by
(5.1) X1 Xo X3 = Wi IWoWs.
It has distinguished loci
Ly ={X3 =Wy =0}, Ly ={X; = W3 =0}, Ly = {Xy = W; =0},
Eip ={X; =Wy =0}, E13 ={X3 =W, =0}, Eas = {Xy = W3 =0}.

Recall that the universal torsor may be realized as an open subset of
AS with variables

A1, A2, Az, M2, M13, 123,
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where
X1 = X2, Wi = Asmis,
Xo = Asta3, Wa = Ainia,
Xs = Mz, Ws = Aanps.
Write

Pic(X) = ZH + ZE, + Z.E, + ZE;

with associated torus

+1 £1 £1 _+1
SpeCk[SO 51,827,853 ]

acting via
—-1_,-1
)\i — 82‘)\@', Nij = So0S; 8]- Nij-

5.1. Action by toric automorphisms. Consider the automorphisms
of X fixing the distinguished point

(1,1,1):{X1:X2:X3:W1:W2:W3:1}.
Equivalently, these are induced from automorphisms of the torus
T:X\(L1UE12ULQUEQgULgUElg).

These are isomorphic to G, X &3 — we can exchange the X and W
variables or permute the indices {1,2,3}. The induced action on the
six-cycle of (—1)-curves may be interpreted as the dihedral group of
order 12.

Note that the associated exact sequence of Gy x &3-modules

0— M — Z{(—1)-curves} — Pic(X) — 0
splits.

Remark 14. If M and P are stably permutation G-modules then
Extg (P, M) = 0. This is Lemma 1 in [CTS77], which says that if M is
coflabby and P is permutation then Ext/,(P, M) = 0. However, stably
permutation modules are flabby and coflabby [CTS77, p. 179].

The G5 x G3 action lifts to the Cox ring: For example, let &3 act
via permutation on the indices and S5 by

)\i = Nk, Mk — )‘i> {iaja k} = {17273}
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5.2. Sextic del Pezzo surface with an & -action. Assume that G
contains nontrivial translations of the torus T'= G? C X. In [Sar20]
it is shown that, on minimal sextic Del Pezzo surfaces, such G-actions
are not linearizable.

As an example, consider G := G, acting on X via G3-permutations
of the factors

T = Xl/Wl, To i— XQ/WQ, T3 i — Xg/Wg,
and additional involutions (translations)
ot (T, @2, 23) (=21, T2, —x3), L2t (01, T, X3) > (=21, —T2, T3).

Here we have G NT(k) = € x &, with G acting on Aut(N) via Ss.
The six exceptional curves form a single G-orbit, each curve has generic
stabilizer €, and a nontrivial €5-action.

Using the theory of versal G-covers, Bannai-Tokunaga showed that
the G-actions on P? = P(V'), where V is the standard 3-dimensional
representation of &4, and on (5.1), as described above, are not bira-
tional [BT07]. Alternative proofs, using the equivariant Minimal Model
Program for surfaces, respectively, the Burnside group formalism, can
be found in [Sar20, Section 3.4], respectively [KT21c, Section 9]. These
approaches cannot be used to study stable linearizability.

Proposition 15. The G4-action is stably linearizable.

Proof. We will apply Proposition 8, the equivariant version of Propo-
sition 1.
We use the split sequence

1—>€2X€2—>64—>63%1

induced by (3.1) on the 2-torsion of 7T

First, note the action of G on Tyg(x) — which factors through the
homomorphism &, — G5 — is stably linearizable.

It suffices then to lift the G-action to the Cox ring. The action of
G3 is clear by the indexing of our variables. For the involutions ¢; and
Ly, we take

L1<)\2) = —)\2
and
Lz()\:),) = -3,

with trivial action on the remaining variables. The gives the desired
lifting. O
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There is also an action of G = G3x G5 on X, with GNT'(k) = 1, that
is not linearizable, but is stably linearizable. We discuss it in Section 6.

6. WEYL GROUP OF Gy ACTIONS

We start with an example presented in [LPRO6, § 9] and motivated
by the following question: is the Weyl group action on a maximal torus
in a Lie group equivariantly birational to the induced action on the Lie
algebra of the torus? The authors study the action of

G :=W(Gy) ~ 63 x Gy,
the Weyl group of the exceptional Lie group Gs: Consider the torus
T ={(z1, %9, 23) : T17273 = 1}
and its Lie algebra
t={(y1,92,53) 1 y1 + 42 + y3 = 0},

with &3 acting on both varieties by permuting the coordinates, and
S, = (€) acting via

€ (‘Tla Za, x3> = (xfl7 $517 x:;l)
and
€ (Y1,y2,¥3) = (—y1, —Y2, —Y3)-
We now describe good projective models of both varieties, i.e., such

that the complement of the free locus is normal crossings so that all
stabilizers are abelian.

6.1. Multiplicative action. This case builds on section 5.1; we retain
the notation introduced there.

While the sextic del Pezzo surface is a fine model for our group
action, it is often most natural to blow up to eliminate points with
nonabelian stabilizers cf. [KT20, §2]. Let S(;1,1) denote the blowup at
(1,1,1). We identify distinguished loci in S(;,1,1) as proper transforms
of loci in the sextic del Pezzo surface. In addition to the six curves
listed above, we have

e D; from {(X; — W;)(—1)""' =0} for i = 1,2, 3;
e F exceptional divisor over (1,1, 1).

The nonzero intersections are

FEioly = E19lo = Eozlo = Eo3ly = E3L3 = B30, =1
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and
DLy =DEyy;=DF =1,
DyLy = DyE3 = Dy E =1,
D3Ls = D3Ey = DsE = 1.
All self-intersections are —1.

To compute the Cox ring, we introduce new variables ; and 7 asso-
ciated with D; and E. The resulting relations are

o1n = X1 — Wi = Aamiz — A3,
09 = —Xo + Wa = — A3z + A2,
03n = Xz — W3 = Az — Aams.
Reassigning
i = Dia, Nij = Dks 0i = Pjks 1 = D5
we obtain three Pliicker relations. The remaining relations
P12P34 — P13P24 + P14P23 = P12P3s — P13P2s + P1spas = 0
are also valid.
The group &3 x G, may be interpreted as permutations of the sets
{1,2,3} and {4,5}. In the natural induced action,
(ij) - Pij = —Dijs € Pas = —Das
but the actions on the original six variables are compatible.
The elements

(€,¢,0) () eT, (=P,
are fixed by G3. The curves in the sextic del Pezzo surface
Fig = {XiWy — W1 X, = 0},
Fig = {XiW3 — W1 X3 = 0},
F23 = {XgWg - W2X3 - O}
meet at the three diagonal points and have intersections
F122 = F123 = F223 =2, FioFi3 = Fioky = Fi3lF3 = 3.
Let Sx — S(1,1,1) denote the blowup at these points, a cubic surface.
Iskovskikh [Isk08] presents an equivariant birational morphism
Sainy — Q = {30* =zy + 2z +yz} C P

obtained by double projection of the sextic del Pezzo from (1,1,1).
This blows down the proper transforms of Dy, D, and D3. Here &3
acts by permutation of {z,y, 2z} and €-w = —w. Indeed, the proper



20 BRENDAN HASSETT AND YURI TSCHINKEL

transforms of Ly, Lo, L3 are in one ruling; the proper transforms of
FEs3, E13, F5 are in the other ruling.

This can be obtained as follows: Choose a basis for the forms van-
ishing to order two at (1,1,1):

r = (X + W) (Xe — Wa) (X35 — Ws)
y = (X1 — W) (Xo + Wo) (X5 — W3)
2= (X7 — W) (Xy — Wo) (X3 + W)
w= (X1 — Wh)(Xs — Wa)(Xs — W)

so we have
xy +xz+ Yz = w(2(X1X2X3 — W1W2W3) —+ w) = U}2.
We use (5.1) to get the last equivalence on our degree-six del Pezzo

surface.

6.2. Additive action. We turn to the action on the Lie algebra: The
representation of t is linear and admits a compactification

tC Pt k).

Write y; = Y1 /Z and y, = Y3/Z so that the induced action on P? has
fixed point [0, 0, 1] and distinguished loci

Ap={M =Y}, Ap={Yi=-Y1-Ye}, Ap={Yo=-Y Y5}
and
By ={Yo=-Y1}, Biz={Y2=0}, By ={Y1=0}

Blowing up the origin Y} = Y5 = 0 yields a smooth projective surface
~ [, with abelian stabilizers.
The Cox ring is given by

k[Ca 6137 6237 77]7

with Z = (, Y1 = nfa3, Yo = nfi3. One lift of the G35 x Sq-action has
G35 acting with the standard two-dimension representation on (i3, 523
and Gs-action via € - = —n. The two-dimensional torus acts via

(0, Bis, Bas, Q) > (tem, tsBis, tyPas, tutsC).
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6.3. On the Lemire-Reichstein-Popov stable equivalence [LPR06].
Consider the rational map

t --» P(t)
Y, 2) — [Y,Z].

Taking Cartesian products, we obtain

txt~ At -5 P(t) x P(t)
(Yth;}/Z:ZZ) = ([Yi,ZIL[Yé,ZQ]).

This induces a rank-two vector bundle

BI{Y1:Z1:0}U{Y2:Z2:0} (A4> — ]P<t)2

We take the product as an &3 x G,-variety, where the first factor acts
diagonally and the second factor interchanges the two factors. Thus
P(t)* ~ Q as &3 x Gy-varieties.

On the other hand, there is a morphism

At — ¢t
(}/17217Y2722) = (YI_Y27ZI_ZQ)
which is also a rank-two vector bundle over t.
Applying the No-Name Lemma twice, we conclude that t x A% and

T x A? — with trivial actions on the A? factors — are G-equivariantly
birational to each other.

Question: Is the affine quadric threefold
w? =y + a2y + Yz

G-equivariantly birational equivalent to t x A'?

7. QUADRIC SURFACES

We are now in a position to settle the stable linearizability problem

for quadric surfaces
X =P x P!,

completing the results in [Sar20, Thm. 3.25], which identifies lineariz-
able actions.

Let G act generically freely and minimally on P! x P!. In partic-
ular, there exist elements exchanging the two factors. Let Gy be the
intersection of G with the identity component of

Aut(P')? C Aut(P! x P),
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so we have an exact sequence
1—-Gy—>G— 6y — 1.

Each element ¢« € G\ Gy acts via conjugation Gy. Let D denote the
intersection of Gy with the diagonal subgroup and A; the image of Gg
under the projection 7;. Conjugation by ¢ takes the kernel of Gy — A;
to the kernel of Gy — A, and thus induces an isomorphism

¢L:A1:>A2

restricting to the identity on D.
Sarikyan shows that G is linearizable if and only if A ~ &,, the cyclic
group [Sar20, Lemma 3.24]. Moreover,
e the only linearizable actions of A on P! are by €, or D, the
dihedral group of order 2n, with n > 1 odd;
e the remaining group actions on P! cannot be linearized due to
the Amitsur obstruction.
Thus the only possible candidate for stably linearizable but nonlineariz-
able actions on P! x P! are when A ~®,,, n > 1 odd.

Proposition 16. Under the assumptions above, G-actions on P! x P!
with A ~3,,, withn > 1 odd, are always stably linearizable.

Proof. Suppose that P! xP! = P(V}) xP(V3), where V; and V5, are repre-
sentations of A; and As, along with an isomorphism of D-representations

Vi|D = VA|D.

Using the quotient Gy — A, we can regard V] as a representation of
Gy. Take the induced representation

Indg, (V)

which has dimension four. Mackey’s induced character formula implies
that the restriction of this representation back down to G is of the
form

Viel,,

where V3 is regarded as a G representation via Gy — As.
Now V; @ Vs, as a variety, is the product V; x V5. The rational maps
Vi --» P(V;) induce

Vi x Vo ==+ P(V}) x P(Vy),

resolved by blowing up {0} x V5 and V4 x {0}. This has the structure of
a rank-two G-equivariant vector bundle. The No-Name Lemma implies
that V; x V4 is birational to A% x P(V}) x P(V;) where the first factor
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has trivial G-action. Hence the G-action on P(V}) x P(V4) is stably
linearizable. U

For G = W(Gy) = G4 x G3 this is precisely the result of [LPR06, §9]
presented in Section 6.3.

7.1. Generalizations. The same argument gives:

Proposition 17. Let G be a finite group acting generically freely on
(P™). Write Go C G for the intersection of G with the identity com-
ponent of Aut((P™)"). Suppose that

o (G acts transitively on the r factors;
e the image A; of m; : Go — Aut(IP™), the projection to the i-th
factor, has a linearizable action on P™.

Then the action of G on (P™)" is stably linearizable.

Proposition 18. Let G be a finite group. Let G act generically freely
on smooth projective varieties X, and Xo with Pic(X;) = NS(X;). Sup-
pose there exist universal torsors P; — X; with compatible G actions.
Then
U = 7'1'1< 7)1 X X1 % Xo 7'(';< 7)2 — Xl X X2

15 a universal torsor as well.

If NS(X1) @& NS(X32) is a stably permutation module then Xy x Xy is
stably birational to U.

Moreover, if the X; are T;-toric varieties then X; X Xy is stably
linearizable.

8. QUOTIENTS OF FLAG VARIETIES BY TORI

8.1. Weyl group actions on Grassmannians. Consider the Grass-
mannian Gr(m, n) of m-dimensional subspaces of an n-dimensional vec-
tor space. Once we fix a basis for the underlying vector space, the
symmetric group &,, acts naturally on Gr(m,n).

Every element of Gr(m,n) may be interpreted as the span of the
rows of an m x n matrix A with full rank. Let A™" denote the affine
space parametrizing these and U C A™" the open subset satisfying the
rank condition. Then

Gr(m,n) = GL,,\U,
where the linear group acts via multiplication from the left. Let

S — Gr(m,n)
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denote the universal subbundle of rank m, End(S) = §* ® S, and
GL(S) ¢ End(S) the associated frame/principal GL,, bundle. We
write the induced GL,,-action on GL(S) from the left. Note that

dim GL(S) = dim Gr(m, n) + 1k(S)? = m(n — m) + m?;

indeed, we may identify GL(S) with U, equivariantly with respect to
the natural left GL,, actions.

Returning to the &,,-action: It acts on the m xn matrices by permut-
ing the columns, which commutes with the GL,,-action given above.
In particular the action is linear on A™". This action coincides with
the natural induced action on S, End(S), and GL(S). The No-Name
Lemma says that the &,-action on End(S) — regarded as a vector bun-
dle over Gr(m,n) — is equivalent to the action on A™ x Gr(m,n) with
trivial action on the first factor. We conclude:

Proposition 19. The action of &,, on Gr(m,n) is stably linearizable.

8.2. Del Pezzo surface of degree 5. It is well-known that a del
Pezzo surface of degree 5 can be viewed as the moduli space Mob of
5 points on P! and thus carries a natural action of 25, induced from
the action of &5 on the points (see, e.g., [Sar20, Section 1]). It is also
known that this 25-action is not linearizable (see e.g., [BT07] or [CS16,
Theorem 6.6.1]). Again, this should be contrasted with the situation
over nonclosed fields, where all degree 5 del Pezzo surfaces are rational.
Consider a three-dimensional irreducible faithful representation

0: A5 — GL(V).

There are two such representations, which are dual to each other. This
gives rise to a generically free (linear!) action of 25 on P2. The two
linear actions on P? are not conjugated in PGLs, but are equivariantly
birational [CS16, Remark 6.3.9].

As an application of Proposition 19, we obtain:

Proposition 20. The s-actions on P? and ﬂ% are not birational
but stably birational.

Proof. Tt suffices to show that the action of 25 on M 5 is stably linear.
We have seen already that the action on the Grassmannian Gr(2,5)
is stably linear. We are using that the Néron-Severi torus acts on the
cone over Gr(2,5) with quotient M 5. Proposition 5 gives the desired
result once we check that NS(WO,E)) is stably permutation. We may
write

M :=NS(Mos) = ZL + ZE, + ZEy + ZE3 + ZE,
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so that the &4-action is clear. The transposition (45) may be realized
by the Cremona map acting by:
Lw— 2L —FE, — Ey — Ej
Ei— L—FE,— Fj
Ey— L —FE,— FEjs
Es— L—FE —FE,
Ey— B,
Introducing the auxiliary Q-basis
Ls=1,
Ly=2L— FE, — Ey — Ejs,
L3 =2L— FE, — Ey — Ey,
Lo =2L— FE, — E35— Ey,
Ly =2L — Ey — E5 — Ey,
we see immediately that this submodule (L1, Lo, L3, Ly, Ls) is a permu-
tation module.
Consider the direct sum M & (ZF, & ZF5) where the action on the
second factor is trivial. This decomposes over Z into summands
(Li—Fy—Fy, Lo—F1—Fy, Ls—F1 —Fy, Ly— F1 — F5, Ls— F1 — F5)
and
(3L—Fy\—Fy—F3—FE,—F\—2F3L—Ey—Ey—Es—E,—2F— F3) .

The first is a permutation module and the second is trivial. O

8.3. Segre cubic threefold. There are two nonconjugate embeddings
of s into G, differing by the nontrivial outer automorphism of Gg
[HMSVO08S, §1]. Thus we obtain two actions of G' := 5 on the Segre
cubic threefold X3, hence on Mo,ﬁ- It is known that one of the actions
(the nonstandard one) is G-equivariant to a linear action on P* [CS16,
Ex. 1.3.4], and that the other is birationally superrigid, in particular,
not linearizable [Avil8, Theorem 4.8].

Regarding NS(Mj) as a G-module for the nonstandard action, we
see that it is stably a permutation module — since this action is lineariz-
able. However, for any finite group GG' and automorphism a : G — G,
precomposing by a yields an action on G-modules; this respects permu-
tation and stably permutation modules. It follows that the “standard”
action on NS(Mjg) is also a stably permutation module.
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Consider the class group Cl(X3) and NS(MOﬁ) as Gg-modules. These
differ by a permutation module, namely, partitions of {1,2,3,4,5,6}
into unordered pairs of subsets of size three. Recall that X3 is a quo-
tient of Gr(2,6) by the maximal torus 7' C GLg. The torus acting on
the cone over Gr(2,6) is not the Néron-Severi torus for Mgg; it is the
Néron-Severi torus for small resolutions of X3 — or even for X5 itself
if we allow Weil divisors on X3. The standard action of G4, and thus
also of s, on Gr(2,6) is stably linearizable by Proposition 19. We
conclude:

Proposition 21. The standard and the nonstandard actions of s on
the Segre cubic threefold are not birational but stably birational.

Remark 22. Florence and Reichstein [FR18| consider, over nonclosed
fields, the rationality of twists of My, arising from automorphisms
associated with permutations of the marked points. These are always
rational for odd n but may be irrational when n is even.

REFERENCES

[ADHL15] 1. Arzhantsev, U. Derenthal, J. Hausen, and A. Laface. Coz rings, vol-
ume 144 of Cambridge Studies in Advanced Mathematics. Cambridge
University Press, Cambridge, 2015.

[Avilg] A. Avilov. Automorphisms of singular three-dimensional cubic hyper-
surfaces. Eur. J. Math., 4(3):761-777, 2018.

[BCDP18]  J. Blanc, I. Cheltsov, A. Duncan, and Yu. Prokhorov. Finite qua-
sisimple groups acting on rationally connected threefolds, 2018.
arXiv:1809.09226.

[BCHM10] C. Birkar, P. Cascini, Chr. D. Hacon, and J. McKernan. Existence
of minimal models for varieties of log general type. J. Amer. Math.
Soc., 23(2):405-468, 2010.

[BCTSSD8&5] A. Beauville, J.-L. Colliot-Théléne, J.-J. Sansuc, and P. Swinnerton-
Dyer. Variétés stablement rationnelles non rationnelles. Ann. of Math.
(2), 121(2):283-318, 1985.

[BP13] F. Bogomolov and Yu. Prokhorov. On stable conjugacy of finite
subgroups of the plane Cremona group, 1. Cent. Eur. J. Math.,
11(12):2099-2105, 2013.

[BT07) Sh. Bannai and H. Tokunaga. A note on embeddings of Sy and Aj;
into the two-dimensional Cremona group and versal Galois covers.
Publ. Res. Inst. Math. Sci., 43(4):1111-1123, 2007.

[CS16] I. Cheltsov and C. Shramov. Cremona groups and the icosahedron.
Monographs and Research Notes in Mathematics. CRC Press, Boca
Raton, FL, 2016.

[CTST77] J.-L. Colliot-Thélene and J.-J. Sansuc. La R-équivalence sur les tores.
Ann. Sci. Ecole Norm. Sup. (4), 10(2):175-229, 1977.



TORSORS AND STABLE EQUIVARIANT BIRATIONAL GEOMETRY 27

[CTS87] J.-L. Colliot-Thélene and J.-J. Sansuc. La descente sur les variétés
rationnelles. II. Duke Math. J., 54(2):375-492, 1987.

[FR18] M. Florence and Z. Reichstein. The rationality problem for forms of
Mo . Bull. Lond. Math. Soc., 50(1):148-158, 2018.

[Ful93] W. Fulton. Introduction to toric varieties, volume 131 of Annals

of Mathematics Studies. Princeton University Press, Princeton, NJ,
1993. The William H. Roever Lectures in Geometry.

[HK00] Y. Hu and S. Keel. Mori dream spaces and GIT. Michigan Math. J.,
48:331-348, 2000. Dedicated to William Fulton on the occasion of his
60th birthday.

[HMSV08] B. Howard, J. Millson, A. Snowden, and R. Vakil. A description of
the outer automorphism of Sg, and the invariants of six points in
projective space. J. Combin. Theory Ser. A, 115(7):1296-1303, 2008.

[HT21] B. Hassett and Yu. Tschinkel. Equivariant geometry of odd-
dimensional complete intersections of two quadrics. Pure Appl. Math.
Q@., to appear, 2021. arXiv:2107.14319.

HY17] A. Hoshi and A. Yamasaki. Rationality problem for algebraic tori.
Mem. Amer. Math. Soc., 248(1176):v+215, 2017.
[Isk08] V. A. Iskovskikh. Two non-conjugate embeddings of S3 x Z into

the Cremona group. II. In Algebraic geometry in East Asia—Hanoi
2005, volume 50 of Adv. Stud. Pure Math., pages 251-267. Math. Soc.
Japan, Tokyo, 2008.

[KT20] A. Kresch and Yu. Tschinkel. Equivariant birational types and Burn-
side volume, 2020. arXiv:2007.12538.

[KT21a] A. Kresch and Yu. Tschinkel. Equivariant Burnside groups and rep-
resentation theory, 2021. arXiv:2108.00518.

[KT21b] A. Kresch and Yu. Tschinkel. Equivariant Burnside groups and toric
varieties, 2021. arXiv:2112.05123.

[KT21c] A. Kresch and Yu. Tschinkel. Equivariant Burnside groups: structure
and operations, 2021. arXiv:2105.02929.

[Kung7] B. E. Kunyavskif. Three-dimensional algebraic tori. In Investigations

in number theory (Russian), pages 90-111. Saratov. Gos. Univ., Sara-
tov, 1987. Translated in Selecta Math. Soviet. 9 (1990), no. 1, 1-21.

[LPRO6] N. Lemire, V. L. Popov, and Z. Reichstein. Cayley groups. J. Amer.
Math. Soc., 19(4):921-967, 2006.
[RY00] Z. Reichstein and B. Youssin. Essential dimensions of algebraic

groups and a resolution theorem for G-varieties. Canad. J. Math.,
52(5):1018-1056, 2000. With an appendix by Jdnos Kollar and Endre

Szabé.

[RY02] Z. Reichstein and B. Youssin. A birational invariant for algebraic
group actions. Pacific J. Math., 204(1):223-246, 2002.

[Sar20] A. Sarikyan. On linearization problems in the plane Cremona group,
2020. arXiv:2009.05761.

[SMS18] M. T. Sancho, J. P. Moreno, and C. Sancho. Automorphism group of

a toric variety, 2018. arXiv:1809.09070.



28 BRENDAN HASSETT AND YURI TSCHINKEL

[Vos65] V. E. Voskresenskii. On two-dimensional algebraic tori. lzv. Akad.
Nauk SSSR Ser. Mat., 29:239-244, 1965.
[Vos98] V. E. Voskresenskil. Algebraic groups and their birational invariants,

volume 179 of Translations of Mathematical Monographs. American
Mathematical Society, Providence, RI, 1998. Translated from the
Russian manuscript by Boris Kunyavski [Boris E. Kunyavskii].

DEPARTMENT OF MATHEMATICS, BROWN UNIVERSITY, BOX 1917 151 THAYER
STREET PROVIDENCE, RI 02912, USA
FEmail address: brendan_hassett@brown.edu

COURANT INSTITUTE, NEW YORK UNIVERSITY, NEW YORK, NY 10012, USA
Email address: tschinkel@cims.nyu.edu

SIMONS FOUNDATION, 160 FiFTH AVENUE, NEW YORK, NY 10010, USA



