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Abstract

We study the birational self-maps of the projective plane over finite fields that induce permu-
tations on the set of rational points. As a main result, we prove that no odd permutation arises
over a non-prime finite field of characteristic two, which completes the investigation initiated
by Cantat about which permutations can be realized this way. Main ingredients in our proof
include the invariance of parity under groupoid conjugations by birational maps, and a list of

generators for the group of such maps.
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INTRODUCTION

1 Introduction

We call a birational self-map of a variety a birational permutation if both the map and its inverse
are defined at all rational points on the variety. In particular, such a map induces a bijection on
the set of rational points. Over a finite field, the rational points form a finite set, so such a bijection
induces a permutation in the usual sense. Fixing a variety and a finite ground field, what kind of
permutations on the rational points can be realized this way?

In this paper, we focus on the birational self-maps of a projective space P, that is, the Cremona
transformations. They form a group Cr, (k) where k is the ground field. We say that a Cremona
transformation is bijective if it is a birational permutation. Clearly, bijective elements form a
subgroup BCry, (k) C Cry(k). When k = I, the finite field of ¢ elements, the actions of bijective
elements on the set of [F -points determines a group homomorphism

o4: BCry,(Fy) —— Sym(P"(F,))

where Sym(P"(F,)) is the symmetric group of the set P™(FF,). Let Alt(P"(F,)) C Sym(P"(F,)) be
the alternating subgroup, which consists of even permutations. In the case n = 2, it is known that
the image of o, satisfies

e Im(o,) = Sym(P?(F,)) if ¢ is odd or ¢ = 2,
e Im(o,) D Alt(P%(F,)) if ¢ = 2™ > 4.

This result was mainly proved by Cantat [Can09], but the original proof has a minor gap. In Sec-
tion 2, we review Cantat’s construction and fill in the gap with a theorem by Cohen (Theorem 2.8)
about primitive roots of F.

The main focus of this paper is the case ¢ = 2™ > 4. We prove that:

Theorem 1.1. For ¢ = 2™ > 4, the group BCra(F,) produces only even permutations on P?(F,).
As a result, we have Im(a,) = Alt(P?(F,)).

Our proof for Theorem 1.1 relies on being able to transfer the parity problem from one surface to
another. Let Birg(X) denote the group of birational self-maps of a variety X over a field k. In the
same spirit of the notation BCr,(k), we denote by BBir;(X) C Birg(X) the subgroup of birational
permutations. For surfaces over F,, where ¢ = 2™ > 4, the parity of a birational permutation is
invariant under groupoid conjugations by birational maps in the following sense:

Theorem 1.2. Let X and Y be smooth surfaces over Fy, where ¢ = 2™ > 4, together with two
birational permutations oo € BBirg,(X) and 8 € BBirp, (Y). Suppose that there exists a birational
map h: X --»Y such that o« = h™'h, i.e., the following diagram commutes:

Then the permutations induced by o on X(Fy) and B on Y (F,) have the same parity.
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Throughout the paper, we will call the groupoid conjugation demonstrated in Theorem 1.2
simply as “conjugation”. Our next result studies birational permutations on conic bundles over
P!, del Pezzo surfaces, and bijective Cremona maps on P? of finite order. As an application of
Theorem 1.2, we obtain:

Theorem 1.3. Over F,, ¢ = 2™ > 4, a birational permutation on a smooth surface induces an
even permutation on the set of Fq-points if it is conjugate to

e a birational permutation on a conic bundle over P! preserving the fiber class,
e an automorphism of a rational del Pezzo surface, or

o an element of BCry(F,) of finite order.

To complete the proof of Theorem 1.1, we first produce a list of generators for the bijective
Cremona group, and then show that every generator is a composition of maps described as in
Theorem 1.3. We state the result on the generators below and refer the reader to Lemma 5.4 for
the complete list.

Theorem 1.4. Let k be a perfect field and T C Cra(k) be the set of generators for Cra(k) given by
Iskovskikh [Isk91]. Then T N BCra(k) forms a set of generators for BCra(k).

Remark 1.5. The first version of this paper was announced on the arXiv in 2019, where Theo-
rem 1.1 remained as a conjecture. In that version, we proved that all but the quintic transformations
among the generators in Theorem 1.4 induce only even permutations, and verified with Magma
[BCPI7] that the quintic transformations over F, for ¢ = 4,8,16 are all even. In June 2021, we
communicated with Julia Schneider on the central symmetry of a relation diagram of Sarkisov links,
which allowed us to attack the quintic transformations and prove our conjecture.

In parallel to our work on the quintic transformations, we learned that Genevois, Lonjou, and
Urech [GLU21] also came up with a proof for Theorem 1.1 based on our Theorem 1.3 and the main
theorem of [L.S21] with a more combinatorial approach. In fact, they observed that parity can still
be defined for a birational self-map on a smooth rational surface over Fy, ¢ = 2™ > 4, even if the
map is not bijective, which allowed them to prove Theorem 1.1 not only for P? but also for all
smooth rational surfaces.

Organization of the paper In Section 2, we discuss the realizability of all permutations on the
rational points in the plane over finite fields of odd characteristics and Fo. We study the parity
problem over a non-prime field of characteristic 2 throughout Sections 3-5, where we assume that
k =T, with ¢ = 2™ > 4 unless otherwise specified. In Section 3, we begin with the analysis of the
parities induced by linear transformations and then prove Theorem 1.2. In Section 4, we study the
birational permutations on certain rational surfaces and prove Theorem 1.3. In Section 5, we exhibit
a list of generators for BCra(k) when k is a perfect field and prove Theorem 1.4. Then we analyze
whether each generator induces an even permutation and deduce Theorem 1.1. In Section 6, we
answer a few questions about BCry(k) as a subgroup of Cra(k), which include whether it is finitely
generated, what its index is, and whether it is a normal subgroup.
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paper. We also thank Zinovy Reichstein for a quick proof that BCry(k) is not finitely generated
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2 Realizing arbitrary permutations

Theorem 2.1 ([Can09]). The image of the homomorphism o,: BCra(F,) — Sym(P*(F,)) satisfies

e Im(o,) = Sym(P?(F,)) if q is odd or ¢ = 2, and
e Im(o,) D Alt(P%(F,)) if ¢ = 2™ > 4.

Cantat’s proof of Theorem 2.1 is built upon a property about the subgroups of Sym(P"(FF,))
that contain PSLy41(Fy): The elements in Sym(P"(F,)) which preserve the collinearity, i.e., map
collinear points to collinear points, are called collineations. They form a subgroup

PTL,(F;) C Sym(P"(Fy))
which contains PSL;,1(Fy).

Theorem 2.2 ([Bha81,KM74, Lis75,Pog74]). Let G C Sym(P"(F,)) be a subgroup. If G contains
PSL,,+1(Fy), then either G C PT'L,(F,) or G O Alt(P™(F,)).

Applying this result to the image o,(BCry(F,)), Cantat proved that o4 is surjective by con-
structing an element f € BCry(F,) which

e does not preserve the collinearity on P?(FF,), and
e induces an odd permutation on P%(F,).

Our main goal in this section is to exhibit the construction of f explicitly using input from the
theory of primitive roots by Cohen.

2.1 Special birational maps on a quadric surface

We first recall a key construction in [Can09, §3]. Fix a smooth quadric @ and a line L in P3, both
defined over [, such that L meets @ in a pair of conjugate points over the extension F . /F,. The
projection from L induces a rational map 7r,: Q --+ P! fibered in the conics cut out by the planes
containing L. Assume further that there exists an F,-point P in the base P! over which the fiber
Co := n; ' (Pp) is smooth.

This setting implies that every degenerate fiber over I, is a union of distinct lines L1 U Lo
conjugate to each other over F . /Fg, on which the node P := L N Ly appears as the only F,-point.
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The projection from P defines a birational map 7p: Q --» P2. Let us organize these maps into a
diagram:
Q-2 P
\
7. conic fibration | (21)
3
P!
Cantat’s construction of a desired f € BCra(IF,) can be divided into two parts:

(1) Constructing a birational self-map g on @ that preserves the fiber structure, acts as a pre-
scribed odd permutation on Cy(F,) and as the identity on F4-points of the other fibers.

(2) Descending g down to P2 as f := 7po gowgl, then showing that f induces an odd permutation
on the [Fy-points and does not preserve collinearity.

Example 2.3. Assume that ¢ is odd. Let [z : y : 2z : w] be a system of homogeneous coordinates
on P3. Choose a non-square t € Fy, namely, t # s? for all s € Fy. Then the data

Q = {x2—ty2+z2:w2}CP3, L:={z=w=0}CP3

and P:=[0:0:1:1] € Q provide an example of (2.1). Here the projection map is explicitly given
by 7wr([x:y: 2 : w]) = [z : w], and the degenerate fiber through P is defined as 22 —ty? = 0 on the
plane parametrized by the map,

P2 s P3:fz:y:ulm[z:y:u:u.
For a smooth fiber over F,, one can choose
Co =7 ([0:1]) = {2? —ty* = w?} C Q. (2.2)
Note that Cj lies on the plane {z = 0}.

Let us construct the map ¢ as in (1) in the case of odd characteristics using Example 2.3. (The
case of characteristic 2 will be discussed in §2.3.2.) The process starts by constructing a suitable
automorphism on the smooth fiber Cj in (2.2) and then extend it to (). Consider the automorphism
on the plain {z = 0}:

P2 5P [z:y:w]— [az +tBy: Bz + ay : w],
where the parameter (o, 3) is a point on the affine conic
S°:={a®—tp*> =1} C A%

Note that this is the identity map when («, 8) = (1,0). For each («, 8) € S°, the formula induces
an automorphism go: Cy — Cj as one can verify that

(ax + tBy)? — t(Bz + ay)? = 2° — ty°. (2.3)
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Remark 2.4. The map gy can be expressed as
g0: Co = Co:lz:y:w]— [ax+tBy: Br+ ay : yw]
where [o : 3 : 7] € P? is any F,-point on the (projective) conic
S = {a® —tp% =~*} C P2

Note that every [F -point on S has v # 0 since t € F, is a non-square. Due to this, we assume that
~v =1 for the convenience of computation.

In the following, we exhibit how to extend gg to the whole quadric () as a birational permutation
that fixes the [Fy-points not lying on Cy. The method is built upon the following lemma about
interpolations. Although we only need the case n = 1 for our purposes, we present the proof of the
general case as it is not any harder.

Lemma 2.5. Let F, be a finite field. Fiz any Py € P*(F,) and Py, P> € PY(F,) such that P, # Ps.
Then there exists a rational map h: P --» P! over F, such that

o h(Py) = P,
o W(P) =P, for all P € P*"(F,) \ {FPo}.

Proof. For every P € IFZLH \ {0}, there exists a homogeneous polynomial fp € Fq4zo, ..., z,] such
that for each P’ € Fp+1\ {0},

1 if P'= AP for A€ F}

0 otherwise

fp(P") = {

Indeed, we may assume that P = (1,0, ...,0) after applying a GL,41(F,)-action, in which case the
polynomial

satisfies the desired property. (The function fp serves the role of the Dirac delta function.) Next,
consider the homogeneous polynomial

1
F=1 >, fr
PeFyTt

Then f(P) =1 for every P € FZH \ {0}. In order to prove the lemma, let us write P; = [« : f],
P> = [y: 4], and lift Py € P*(F,) to Pye F7+1. Consider h : P --» P! defined by

R(P) = WF(P) + (o =) 5, (P) : 6f(P) + (8 — ) f5, (P)].
Then h is well-defined, and has the desired interpolation property. ]
Proposition 2.6. For every (o, Bo) € S°(Fy), the automorphism

go: Co = Co : [x 1y : w] = [aox + 6oy : Box + oy : w].

extends to a birational self-map g: Q --» Q that preserves the fibration wr: Q --» P' and satisfies
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L4 g|Co = 4o,
e glc =id for all Fy-fibers C # Cy of mp,.
(This element g can be viewed as the group version of the Dirac delta function.)

Proof. Let ¢ be an affine coordinate on the base P! of the fibration 77,. We identify S° as an open
subset of P! via the stereographic projection from (—1,0) € S°:

_ B
1+ao

S° Pl (a,8) = ¢
Let (o € P! denote the image of (ag, Bp) € S° under this map. Note that (1,0) € S° is mapped to
0 € P!. Note also that we can recover o and 3 by

1+¢?
1t

2¢
1—t¢%

a B = (2.4)
Let Py:=[0:1] = 71(Co) € PL. By Lemma 2.5, there exists a rational function ¢ = h(z,w) on
the base P! over F, such that h(Py) = {p and h(P) = 0 for all P € P(F,) \ {Po}. Substituting it

into (2.4), we obtain two rational functions

1+ th(z,w)?

_ 2h(z,w)
R PR

az,w) = 1= th(z,w)?

which determine a birational self-map on () via the inhomogeneous formula:
g:Q->Q:[r:y:z:w—lax+tBy: fr+ay:z:w.
Note that this is well-defined due to the same computation as (2.3). By construction, we have
o (a(Py), B(Po)) = (a0, Bo),
e (a(P),B(P)) = (1,0) for all P € P\ {Py},
which respectively implies that g|c, = go and that g|¢c = id for all F-fibers C' # C. O

2.2 0Odd permutations on the smooth fiber

Let us retain the notation from the previous section. Our goal here is to find a gy which acts
transitively on Co(F,) and thus induces an odd permutation. Note that, as Cjy = P!, it is not hard
to find an automorphism on Cy which induces an odd permutation on the F,-points. However, it
is not obvious that every such automorphism can be extended to @) while keeping control on the
induced permutation on the other Fy-points. In the following, we identify F 2 = F, & \/FIFQ and
view Cy = P! as the projectivization

Co = P(Fq DV tiqu) = P(Fq2).

Lemma 2.7. Assume that go is not the identity map, that is, a # 1. Then, under a suitable choice
of isomorphism Cy = P(F2), the action of go can be obtained as the multiplication on Fy by the
element

B+ (a—1)Vt L eFp (2.5)
where a, § € Fy satisfy a? —tB% =1.
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Proof. First we identify Cy with P! using the stereographic projection from [~1:0: 1] € Cg. On
the affine chart w = 1, this map can be defined as

Y

. ~, pl . _
0: Co — P .(x,y)b—><’—1+$

where ¢ is an affine coordinate on P!. Its inverse ~1: P! =5 () is

1+t¢? 2
xr = = .
11—tz YT 1 e

We claim that gy := 0o ggo 6~ 1: P! =5 Pl is given by the formula

B+t Ha—1)

Indeed, as go(z,y) = (ax + tPy, Bz + ay) in the affine coordinates, a straightforward computation
shows that

(2.6)

Q)= O+ an©) 5 (i) +o ()
L+azx(C) +tBy(Q) 144 (}j;g;) 18 (1_2542)
B +¢%) + a(20) B¢ +20¢ + 8

(1=t +a(l+t2)+tB(2¢) tla—1)2+2tB¢+ (a+1)

Using the quadratic formula and the fact that o? — ¢3? = 1, the numerator and denominator can
be decomposed into linear terms:

o 1B+ C+ %) B¢+ %5
P T e DS o - D55

which can be further simplified as

B¢+ (a—1) B+ (a—1) B¢+t Ha-1)

ge(C)—t(a_l)ng(a?ﬁl) T tla—-10)C+tB8 T (a—1)C+p8

as claimed. Under the identification P! = P(F, & vt~1F,), formula (2.6) can be rewritten as

g6 = ( fota- 1)> € PGLy(F,).

a—1 15}
This matrix acts on Fp2 = F, © Vt~!F, as the multiplication by £+ (o —1)V¢~1, which completes
the proof. O

Due to this lemma, to find go that acts on Cy(F,) transitively, it is sufficient to find a primitive
root of Fp2 of the form (2.5). To attain this, we use the following result by Cohen:

Theorem 2.8 ([Coh83, Theorem 1.1]). Let {01,602} be a basis of F2 over Fy and let a1 be a non-
zero member of ¥,. Then there erists a primitive root of Fye of the form a101 + az02 for some
as € ]Fq.
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Corollary 2.9. There exists a primitive root of 2 of the form
B+ (a— 1)Vt eF
where «a, € Fy satisfy a? —tp% =1.

Proof. By applying Theorem 2.8 to the basis {1, vt_l}, we find ¢ € F; such that

t
g::C—§Vt716Fq2

is a primitive root of Fj2. We claim that £ ~1 can be expressed as the required form. Let us write

€1 =B+ (a— 1)Vt 1, then

15} a—1

P12 Pl 2

&=

Equating the coefficients of vt~ in the above two expressions for £, we obtain

E_ a—1
2 _52—t—1(a—1)2

which implies that (a — 1) — 3% = —2(a — 1), thus a? — 3% = 1, as required. O

2.3 Induced actions on the projective plane

Here we completes the proof of Theorem 2.1. We will first treat the case when ¢ is odd using what
we have established in the previous sections. The case ¢ = 2 will be treated separately with a
similar strategy, where we will also prove that the image of o, contains Alt(P*(F,)) for ¢ = 2™ > 4.

2.3.1 Proof of Theorem 2.1 for odd ¢ Proposition 2.6 and Corollary 2.9 imply the existence
of a birational self-map g: @) --» @) acting transitively on the Fg-points of a smooth fiber Cy and
leaving all the other Fy-fibers fixed. Recall that 7p: Q --» P? is the projection from the node P of
a degenerate fiber of the fibration 7r,: Q --» P'. In particular, it has P as the only indeterminacy
point and contracts the two branches of the degenerate fiber. In particular, it maps the smooth
fiber Cy isomorphically onto a smooth conic C := 7p(Cp) C P2.

Proposition 2.10. The composition f = mp ogOﬂ-];l: P2 -5 P? satisfies the following properties:
1) fe BCTQ(F(]).

2) f fizes all the Fy-points away from the conic C.

3) f acts transitively on C(F,) and thus permutes as a (q + 1)-cycle.

(1)
(2)
(3)
(4) There exists a triple of collinear points Py, Ps, Py € P%(F,) such that f(P1), f(P), f(Ps) are

not collinear.

In particular, the induced permutation on P2 (Fq) by f does not preserve collineation, and moreover,
induces a (q + 1)-cycle, and hence has odd sign as q is odd.
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Proof. Let us prove the statements one-by-one.

(1) We have the commutative diagram:

71 4BlpQ -7 3 BlpQ

Al I

Tp

Note that this diagram factorizes f = rpogo 77131 as f =mpogo %131. The two lines passing
through P in @ become disjoint (—1)-curves on Blp@Q that are Galois conjugate to each other,
and the morphism 7 p is the blow-down of these two lines. Hence 7p and %]_31 are both defined
at all Fg-points.

It suffices to show that g induces a bijection on the Fy-points of BlpQ. Indeed, g induces
a bijection on Q(FF,) and fixes P. Hence g induces a birational self-map, and thus an auto-
morphism, on the exceptional curve over P. As a result, f is defined at all F,-points of P2.
By symmetry, the same argument applies to f~!, and hence f € BCry(F,).

(2) Let A € P%(F,)\ C(F,). Then 75 (A) € Q\ Co, which implies g(75'(A)) = 75" (A). Hence
f(A)=mpogomp'(A) = A

(3) This follows from the relation f = 7pogo 77131 and the fact that g permutes the points of
Co(Fy) as a (¢ + 1)-cycle.

(4) Take an F,-point B on C and consider the tangent line ¢ := TpC C P2. Then £ N C = {B}.
The map f acts as the identity on all the [F -points of £ except for B, and sends B to another
point on C not lying on ¢. Consequently, the map does not preserve collinearity.

O
Theorem 2.1 in the case of odd ¢ is then a consequence of Theorem 2.2 and Proposition 2.10.

Remark 2.11. Recall that @ and L are defined as

Q:={2 -ty +22=w?} CP® L:={z=w=0}CP,
and P=1[0:0:1:1] € Q. Projection from P defines a birational map

mp:Q-—-Piziy 2w [ziy:w— 2]
whose inverse is given by
71'1;1: P? - Q:[x:y:ul — [2uz: 2uy:z? —ty* —u?: 2 —ty? +?].

On the other hand, the map g has the form

i Q- Qiley:ziw] o law+ 18y Br+ay vz yul

where «, /3, v are homogeneous in z, w and satisfy a? — t3? = 72. These expressions allow one to
compute f = Tpogo 7r1§1 explicitly. Also recall that the smooth fiber Cy = wzl([O : 1]) lies on
H := {z = 0}. To compute the action of f on C' = 7p(Cj), one may identify H with the codomain
P2 of mp via [z 1y u] = [z:y:0:

10
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2.3.2 The construction in characteristic 2 We first explain the construction over Fs. Con-
sider the quadric surface given by

Q= {1:2+:ry+y2+22+$(z+w)+y(z—|—w)—|—zw:0} C P3,

As before, let L := {z = w = 0} C P3. We consider the projection P3 --» P! given by [z :y: 2 :
w] — [z : w]. Restricting the map to Q, we get a conic bundle 77, : Q — P!. We analyze the conics
on the three Fo-fibers:

Co=n,([0:1) =2 {[z:y:u): 2> + 2y +y* + 2u+yu =0}
Cr=m;"([L:0) 2{[z:y:u]:2* + 2y +y* + 2° + 22 +yz =0}
Cy=m; ([L:1])2{[z:y:u]:2* + 2y +y* = 0]}

where we used the identification H = {z = 0} = P? with homogeneous coordinates x,y and u
mentioned in Remark 2.11.

One can check that Cy is smooth, while C] and Cs are both union of two F4-lines meeting at a
single Fo-point. In fact,

Consider the map g : P — P3 given by [z : vy : 2 : w] = [y : o : z : w]. By the symmetry of
the defining equation, the quadric @ is preserved under g. It is also evident that g acts as a single
transposition on Cy(F2), and trivially on both C;(F2) and Cy(F2). Using the same argument given
in Proposition 2.10, we see that the induced map f = mpogo 7r1§1 is an element of BCry(F2).
Furthermore, the induced permutation f : P?(Fy) — P?(Fy) is odd, as it transitively permutes
the three points of Cy(F,). It also does not preserve collineation for the same reason explained in
Proposition 2.10 (4). By Theorem 2.2, o2(BCra(F2)) = Sym(P?(F3)).
For g = 2™ > 4, following Cantat, we use the quadric

Q= {2* +roy +sy* + 22 + z(z + w) + y(z + w) + 2w = 0}

where r, s € I, are chosen so that the polynomial X 2+ rX +s = 0 has no roots in the field F q- The
map g :P? = P3 given by [z :y:2z:w]+— [y:z:2z: w] preserves the quadric. It can be checked
that the fiber Cp := 7, *([0 : 1]) is a smooth conic. Using the same argument in Proposition 2.10,
we see that the induced map f = wpogo 7r1§1 is an element of BCry(FF,;). Moreover, the induced
permutation f : P?(F,) — P*(F,) does not preserve collineation by the same argument given in
Proposition 2.10 (4) that involves looking at the tangent line: f fixes all the F4-points on the
tangent line TpC except for P, while P is sent by f to another F,-point away from TpC. By
Theorem 2.2, we deduce that o,(BCra(F,)) D Alt(P%(F,)).

3 Birational invariance of parity

In this section, we prove that automorphisms of P for n > 1 over F,, where ¢ = 2™ > 4, induce
only even permutations on the set of rational points. This result allows us to study the parity

11
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problem without specifying a coordinate system on P". Then we prove Theorem 1.2, namely, the
invariance of parity under conjugations by birational maps. The proof of this theorem is built on
the fact that one can resolve a birational map between surfaces over a perfect field via a sequence
of blow-ups at closed points.

Example 3.1. It is easy to construct a counterexample to Theorem 1.2 for odd ¢ and ¢ = 2.
Consider an element g € PGL3(F,) of the form

g:

S o
[eoRE ST

0
0
1

Note that g fixes p =[0:0: 1]. Let X be the blow-up of P? at p. Then g lifts to an automorphism

on X which acts on the exceptional P! as <CCL ) , and the parity is altered via the lifting if this

d

. . 1 0\ .. ..
matrix acts as an odd permutation on P! (F,). For example, one can choose (0 a) if ¢ is odd,

11
where « is a generator for the multiplicative group Fy, and choose (0 1> if g =2.

3.1 Parities induced by linear transformations

According to Waterhouse [Wat89], the group GL,41(Fy) is generated by two elements A,, and B,
for all ¢ and n > 1, which clearly descend to generators for PGL,,41(F;). Therefore, to prove that
PGL,+1(F,) C Alt(P"(F,)), it is sufficient to verify that A,, and B,, induce even permutations.

The general formulas for A, and B,, depend on whether n =1 or n > 2. Let us denote by I,,+1
the identity matrix of size n + 1, and E; ; the square matrix of size n + 1 with 1 at the (¢, j)-th
entry and zeros elsewhere. In the case n > 2, we can choose a generator « for the multiplicative
group Fy, and let

Ay =Int1+ (a—1)Er2+ Eppa, B, =Fip+ FEa3+---+ Epi11.

For example, when n = 2 we get
100 010
Ay=|0 a 0], Ba=10 0 1
1 0 1 1 00
In the case n = 1 and ¢ > 2, we choose a generator 3 for the multiplicative group F;z, and define
=g s:=Tr(B) =+, r:=-Norm(p) = —pItL.

Then we let A1 = ((1) Z) and B; = ((g (1)) We emphasize that the case n =1 and ¢ = 2 is not

covered by these formulas. In this last case, GLo(IF3) is generated by <(1) 1) and <é }) which

act respectively as a 3-cycle and a 2-cycle on P!(Fy).

12
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Lemma 3.2. Both Ay and By induce even permutations on P(F,) where ¢ = 2™ > 4.

Proof. The element « is a generator for F; = Z/(q — 1)Z, so By fixes [1: 0] and [0 : 1] and acts as
a (¢ — 1)-cycle on P*(F,) \ {[1: 0] U [0 : 1]} = F}, which is even for all ¢ = 2™ > 2. On the other
hand, A; can be factorized as

0 r r 0 1 0 0 1
(1 3>:<0 1) (s 1> (1 o) = Andipdus.

e Aj; has the same parity as B since r = —a = a.

Among the factors:

e Ao fixes [0 : 1] and acts on P*(F,)\ {[0 : 1]} = F, as a translation by s, which is a composition
of ¢/2 transpositions (because char(k) = 2) and thus even for ¢ = 2™ > 4.

e Aj3 is an involution fixing [1 : 1], so it is a composition of ¢/2 transpositions which is even
for g =2™ > 4.

As a result, A acts as a compositions of three even permutations, so Ay is even. O
Lemma 3.3. Assume n > 2. Then A,, induces an even permutation on P™(F,) for ¢ =2" > 2.

Proof. One can verify directly that A,, = T, M,,, where

1 0 --- 0 1 0 - 0

01 0 0 a - 0
Tn = ) Mn:: .

10 - 1 00 - 1

Note that M, has an odd order ¢ — 1, so its action is even. Therefore, it is sufficient to prove that
T, induces an even permutation. First, by writing T;, = I,41 + Ejp41,1, we obtain

T2 =Iny1 +2E00 + Enpy g = Inga,

so Ty, is an involution, thus its action on P"(F,) is a product of disjoint transpositions. Second, T,
acts on the homogeneous coordinates as

[To @1 i@y = [Tt vt Tyt 2 X0 + Ty,

so its fixed locus is the hyperplane {xy = 0}. Hence the number of transpositions in 7T), equals

L) - i) = (L ety (e o)
4 1 2\ ¢—1 g—1 2 g—1

N |

which is even for n > 2 and ¢ = 2™ > 2. O

Lemma 3.4. Assume n > 2. If ¢ = 2™ > 4, then the action of B, on P"(F,) is even. If ¢ = 2,
then the action is odd when n = 2 — 1 for some { and even otherwise.

13
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Proof. We choose a generator b € Gal(Fn+1/Fy) =2 7Z/(n+1)Z and an element 6 € F n+1 such that
{Qi = bl(a) 1=0,... ,n} C Fqn+l

form a normal basis over [F,. This identifies the underlying affine space IFZLH of P" as
Fybo ®Fe01 ® --- ®Fq0, = Fanrl

where a point (xq,...,z,) € IFZL“ corresponds to wofy + - - - + zpbp € Fyni1. Since b(6;) = 0;11 for
i=0,...,n—1 and b(6,) = 6y, we have

b(zoby + 1601 + - - - + xp0p) = b0 + 2001 + - - + Tp—16p,

which identifies the multiplication of B, on IFZILH from the left as the action of b~ on Fyn+1.
Therefore, it is sufficient to compute the parity of the action of b on Fyn+1.

Let us write n 4+ 1 = u2¢ where u is odd. Then the parity of b* is the same as the parity of b
and the cycle decomposition of b* contains only 2"-cycles for r > 0. There is a filtration of F n+1
invariant under the action of b*:

FpuC--- C ]qufl CFpur C--- C Fquzg = Fgnt1.
For each 1 < r < ¢, there are ¢**" — q“2r71 many elements in F uor \Fqu?,l, and the b“-orbit of

each element has size [F uor : Fyu] = 2". Therefore, the number of 2"-cycles in b* equals

q
1

1
§|}Fqu2'r \]Fqu2r—1| - -

T r—1
o (qu2 _ un )

On the quotient space P"(IF,) = P(IF;n+1), which we consider as the set of Fy-lines in F g“ through
the origin, the number of 2"-cycles for the action of b* becomes

T r—1 r—1 r—1
i qu2 _ qu2 _ qu2 qu2 -1 (3 1)
2r qg—1 2r qg—1 ' '

e Suppose ¢ = 2™ > 4. Then m > 2, thus mu2"~' —r >0 for u > 1 and 1 < r < £. Hence

u2" 1 2mu2T’ 1

= =2 (3.2)

q

w2t —1
% is clearly an integer, we conclude that the number of 2"-cycles

in b* when acting on P"(F,) is even for all 1 <1 </, thus the action is even itself.

is even. As the fraction 4

e Suppose ¢ = 2 and n = 2 — 1 for some £. Note that £ > 2 asn > 2. Then m = 1 and u = 1.
In this case, (3.2) equals 1 for » = 1 and is even for 2 < r < ¢. This implies that (3.1) equals
1 for r =1 and is even for 2 < r < /. As a result, the action of " on P"(F,) consists of one
2-cycle and an even number of 2"-cycle for each 2 < r </, thus is an odd action.

e Suppose ¢ = 2 and n # 2¢ — 1 for all £. Then m = 1 and w > 1. This implies that (3.2) is
even for 1 < r < ¢. We conclude that the action of b is even as in the first case.

These cover all the cases, so the proof is done. O

14
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Proposition 3.5. For n > 1 and g = 2™ > 4, the action of PGL,1(F,) on P"(F,) is even.
Proof. The case n =1 (resp. n > 2) follows from Lemma 3.2 (resp. Lemmas 3.3 and 3.4). O

The parity of a permutation is invariant upon raising to an odd power, so we usually assume
the order of a permutation to be a power of 2 when studying the parity. For a permutation induced
by a linear transformation, the following result shows that we can say more about the cycle type if
its order is a power of 2.

Corollary 3.6. Let n > 1 and ¢ = 2™ > 4. Suppose that 0 € PGLy,11(F;) induces a permutation
of order 2" on P"(F,). Define ¢;, where 0 < i < r, to be the number of 2'-cycles in the cycle
decomposition. Then cy is odd and the sum c1 + --- + ¢, is even. In the case n =1, there are only
two possibilities:

(1) co=q+1andc; =0 for all1 <i<r, i.e, o is the identity.

(2) co =1 and ¢; =0 for all but one 1 < i < r. The unique nonzero cj where 1 < j < r equals
q/27 > 1.

Proof. Because a 2'-cycle is odd for all i > 1, the sum ¢; + - - - + ¢, must be even due to Proposi-
tion 3.5. Then the relations

’Pn(Fq)’:qn—i‘+q+1260+261+—|—2’"cT

imply that ¢y is odd. Assume n = 1 and that o is not the identity. Then o fixes at most 2 points,
which implies that ¢g = 1. Let 1 < j < r be the smallest integer such that c¢; # 0. Then %
becomes the identity as it fixes 1 +27¢; > 3 points. It follows that every nontrivial cycle in o has
the same size 27. If 2/ = ¢, then o is a g-cycle thus is odd, which is impossible by Proposition 3.5.
Hence 2/ < g, and the equalities |P}(F,)| = ¢ + 1 = 1+ 2/¢; imply that ¢; = ¢/27 > 1. O
3.2 Projective bundles over finite sets

We define a P"-bundle over a finite set B to be the disjoint union of projective n-spaces:

P = H P, P,=2P" equipped with the map h: P — B: P; — 1.
1€EB

Consider the set P(k) of k-points on P. We are interested in elements o € Sym(P(k)) of the form:

(1) For every i € B, there exists j € B such that o(P;(k)) = Pj(k). Then hoh™! is well-defined
as an element of Sym(B).

(2) Each bijection o: P;(k) — P;j(k) is induced by a linear isomorphism over k.
Note that such elements form a subgroup of Sym(P(k)).

Lemma 3.7. Let k =F,, ¢ =2™ >4, and o € Sym(P(k)) be an element satisfying (1) and (2).
Then o and op := hoh™' € Sym(B) have the same parity.
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Proof. The parity of a permutation is invariant upon raising it to an odd power, so we can assume
that both ¢ and op consist of disjoint cycles of sizes powers of 2. Suppose that

O:={p1,..p,}CB, r=2'>1,

is one of the orbits of o5. Then the set of k-points in h~1(O) C P is invariant under o. Therefore,
it suffices to prove the statement under the hypothesis O = B. Note that the case r = 1 follows
immediately from Proposition 3.5. Hence we assume that r > 2, in which case op is odd, and so
our goal is to prove that o is also odd.

Fix an element p € O. The assumption O = B implies 05 = id, so 0" acts on the k-points of
h~'(p) = P". Denote this action as o, Observe that, in the cycle decompositions, a u-cycle in oy,
contributes a (ur)-cycle in o, and every cycle in o is obtained this way. Assume that o), consists
of ¢; many 2'-cycles where ¢ > 0. Then o consists of ¢; many (2'r)-cycles, which are all odd since
the assumption r > 2 implies 2'r > 2. By Corollary 3.6 applied to 0,, the sum > >0 Ci» which also

equals the number of cycles in o, is an odd integer. We conclude that ¢ is odd. 0

3.3 Proof of the birational invariance of parity

Let X and Y be smooth surfaces over k = Fom where m > 2. Given a € BBirg(X), 8 € BBirg(Y),
and a birational map h: X — Y over k that satisfy a = h~!h, we prove Theorem 1.2, namely,
that the permutations induced by « and 8 on X (k) and Y (k), respectively, have the same parity.
Note that, if h induces a bijection between X (k) and Y (k), then the relation o = h~!3h implies
immediately that the induced permutations have the same cycle type and thus the same parity.
The main content of Theorem 1.2 consists in that the same conclusion holds even if h is not a
bijection on the sets of rational points.

In the following, we establish Theorem 1.2 from scratch, starting from the case when the bira-
tional map h: X — Y is a blow-up at a set of closed points, then the case when h is a birational
morphism, and finally the full generality.

Lemma 3.8. Let Y be a smooth surface over k = Fom, m > 2, and h: X — Y be a birational
morphism over k that blows up a set B C Y (k) of closed points. Define B := BNY (k) and
E :=h"Y(B) c X. Pick 8 € BBirg(Y) and assume that o := h™'Bh € BBiry(X). Then we have
a(F) = FE and B(B) = B.

Proof. The map « does not contract any curve in F. Indeed, every irreducible component of F
is a rational curve over k, thus contains more than one k-points. If o contracts any of them, we
would have a ¢ BBiry(X), contradiction. It follows that a(E) = h=!8h(E) = h='3(B) is a curve,
so f(B) C B. Since f induces a bijection on Y (k), we have 3(B) = B, and hence a(E) = E. [

Lemma 3.9. Retain the setting from Lemma 3.8. Then the actions of o on X (k) and B on Y (k)
have the same parity.

Proof. Let U := X\ E and V := Y\ B. Note that h|y: U — V, though may not be an isomorphism,
induces a bijection on the sets of k-points. By Lemma 3.8, we have o(U) = U and (V) =V, and
the relation a = h=1gh implies |y = (h|y) "1 (B|v)(h|y). Hence the restrictions of a to U and j3
to V have the same parity when acting on the k-points.
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Now consider the actions of & on F and 8 on B. Note that E is a P!-bundle over B. Restricting
h to E(k) induces the map among finite sets
1 hl gk
E(k) =P (k) x B(k) ———— B(k),
as well as the relation 3|px) = h|g®) o alp@) © (h\E(k))*l. Then the permutations 3|pxy and a| g
have the same parity by Lemma 3.7. This completes the proof.

The following two lemmas will be needed in the proofs of the remaining cases.

Lemma 3.10. Let X and Y be smooth surfaces over a perfect field k and h: X — Y a birational
morphism over k. Then we can factorize h as a sequence of blow-ups at closed points

€p €Er—1 €2

Y,

€1

Y.

h: X=Y, Yy

Moreover, this sequence can be arranged in the way that the points in Y; blown up by €;4+1 lie in the
exceptional locus of ;.

Proof. According to [Man86, Lemma 18.1.3], we can factorize h as a sequence of blow-ups at closed
points. To prove the second statement, assume that there exists a point € Y; blown up by €11
but not in the exceptional locus of €¢;. Consider the commutative diagram

v Sy Sy
i+1 i i—1

o

€i+1 i
Yipi—Yi—— Y
where € is ¢; followed by the blow-up at x, and ¢, blows up the same points as ¢;11 except for
x. Then Y/, ; and Y;;; are canonically isomorphic and we can replace €;e;11 by €€, . Repeating
this process from ¢ =7 — 1 to ¢ = 1 gives us the desired sequence. O

Lemma 3.11. Let Y be a surface, 8 be a birational self-map on Y, and ¢ € Y be a closed point at
which B is well-defined. Let e: Y —'Y be the blow-up at the set {q,5(q)}, and E, be the exceptional
divisor over q. Then the composition € !¢, which is a birational self-map on Y', is well-defined
everywhere on E.

Proof. Let ¢’ :== B(q) and E,; C Y’ be the exceptional divisor over ¢’. Denote 3’ := ¢ !Se. Then
we have the commutative diagram

EfY—Y ——5Y
\ !
|8’ |8
4 v

Ey —Y' ——Y.

The composition fe: Y’ --» Y pulls ¢’ back as the divisor E, while ¢’ is blown up by € as Ey. By
the universal property of blowing up, Se factors through the bottom € uniquely as

Ef—Y ——Y
| |
5;’|qu~ 1357 g

+ v
Ey —Y' ——=Y.
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Note that 8" is well-defined everywhere on E, and 8” = e '8¢ = 8. Hence (' is well-defined
everywhere on E,. O

Now we prove the invariance of parity under conjugations by birational morphisms.

Lemma 3.12. Let X and Y be smooth surfaces over k =Fom, m > 2, and h: X — 'Y a birational
morphism over k. Pick B € BBirg(Y) and assume that o := h™'B8h € BBir,(X). Then the actions
of a on X(k) and B on Y (k) have the same parity.

Proof. By Lemma 3.10, we can factorize h as

€ €r—1 €2

Y1

€1

h: X =Y, Y; Y

such that the points in Y; blown up by ¢;41 lie in the exceptional locus of ¢;. Denote By := 8 and
define inductively that

Bi = e 'Bic1e € Birg(Y;), i=1,...,r. (3.3)
Note that 5, = a. Let us prove that every f; € BBirg(Y;) by induction. The case i = 0 follows
by definition. Suppose that 3;—; € BBirg(Y;—1) and, to the contrary, that 5; ¢ BBirg(Y;). Let
p € Yi(k) be a base-point of 3;. Consider the two points

q=¢€(p) €Yia(k), ¢ = PBi1(q) = Birei(p) € Yio1 (k).
There are three possible situations:

(1) ¢ is not blown up by ¢;. This implies that 3; is well-defined at p due to (3.3), which contradicts
our assumption.

(2) ¢ is blown up by ¢; while ¢ is not. Let Ey C Y; denote the exceptional divisor over ¢’. In
this case, p does not lie in the exceptional locus of ¢;, so it is mapped bijectively to a point
p € X(k) via (€;11---€)" 1. Relations (3.3) imply that ! contracts the proper transform
of Ey to p, so p is a base-point of «, which contradicts the fact that o € BBirg(X).

(3) ¢’ and ¢ are both blown up by ¢;. By Lemma 3.11, the map 3; is well-defined everywhere
on the exceptional divisor F,; C Y; over ¢q. Since p € €; 1(q) = F,, we conclude that 3; is
well-defined at p, contradiction.

Since we get contradictions in all possible cases, we conclude that 3; € BBirg(Y;), hence the claim
is fulfilled by induction. By Lemma 3.9, the permutations induced by g3; for all ¢, including « and
B, have the same parity. O

Before entering the proof of the general case, let us introduce a method about resolving a
birational self-map as a birational permutation. Let X’ be a smooth surface over a finite field k
and €: X — X’ be a birational morphism over k that blows up a set C' C X’ of closed points with
exceptional locus E C X. Pick o/ € BBirg(X’) and define o := ¢ 'a’e. Note that a belongs to
Bir;(X) but may not belong to BBiry(X) in general.

Lemma 3.13. Retain the notation above. Let O, ...,0, C X'(k) be the orbits of o that meet the
center C' nontrivially. Note that the preimages of O; \ C' in X make up the subset

Bi=|J e 0,\0) € X()\ E.
j=1
Consider the blow-up n: Z := BlgX — X. Then the composition n~'an belongs to BBirg(Z).
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Proof. Let O C X'(k) be any of the orbits of o/. Note that, if ONC = (), then « is well-defined on
the subset (¢71(0))(k) C X (k). Assume O N C # (). Then there are two possibilities:

(a) If O C O, then one can show that « is well-defined on (e71(0))(k) Cc X (k) by applying
Lemma 3.11 possibly a multiple of times.

(b) If O ¢ C, then there exists ¢ € O\ C such that o/(¢) € C and
O\ C ={q,d q),.. .,o/_g(q)} for some £ > 0.

Note that O \ C is a finite set as we are working over a finite field. In this case, « is
undefined at efl(q). Blowing up efl(q) will resolve this indeterminacy by Lemma 3.11,
though this will create a new base-point at e~ !(a/~!(g)). By blowing up this point and then
e Ha'72(q)), ..., e 1 (a'~*(q)) subsequently, the base-points in e ~'O will all be resolved.

By applying the above to O, ..., O,, we conclude that n~'an € BBirg(Z). O

Proof of Theorem 1.2. We can eliminate the indeterminacy locus of h by a sequence of blow-ups
at closed points [Kol07, Corollary 1.76]

X, X, 2 X X = X
|
\h
h +
Y

For each ¢; where 1 <i <7, let E; C X; be its exceptional locus and C;_1 := €;(F;) C X;_1 be its
center. We also define C,. := (). By Lemma 3.10, we can assume C; C E; fori =1,...,r — 1. Let
g = « and define inductively that

o = e{lai,lei € Birg(X;), i=1,...,7 (3.4)
Let us prove by induction on ¢ that there exists a birational morphism

T = ni_lamz- € BBiI‘k(Zi)

3.5
its center B; C X; is disjoint from C;. (35)

n;: Z; — X; such that {

For the initial case i = 1, consider the action of ap on X (k) and let Oy,...,0, C X(k) be the
orbits that meet Cp nontrivially. Define

By:=|J &' (0;\Co) € Xi(k)\ By,
j=1

and consider the blow-up
m: Zl = BlBle — Xl.

Then m := 771_1041771 € BBirg(Z1) by Lemma 3.13. Moreover, Bj is disjoint from E; by construction.
As Oy C Eq, we conclude that By N'Cy = (). This completes the initial step.
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Assume that there exists an 7; as in (3.5) for some 1 < ¢ <r — 1. Consider the fiber diagram

/A 2
Xi+1 = Xi+1 X X; Zz E— Zz

€it1
Xiy1 X

€4

where 71 and my are the projections to the components of X/ +1- Note that X! 41 is the blow-up of
X, at the disjoint union B; U C};, and we can identify w9 as the blow-up

9 XZ{+1 = Blnflcl_ZZ- — Z,L
By hypothesis, we have 7; = n{lami € BBirg(Z;), which can be lifted to X; ; as
oy =y tmima € Birg(X[4 ).
By tracking the fiber diagram above, we obtain
a;+1 = 7r2_17’,~7r2 = 7'('2_17]1»_1041'771'7['2 = 7T1_16,L»__~_11ai6i+171’1 = Fl_lai_;,_lﬂ'l. (36)
Let O1,...,0, C Z;(k) be the orbits of the action of 7; that satisfy O; N n{lCi # (). Define
n
) -1 -1
i1 = U Ty (05 \n; Ci) C Xi(k)
j=1
and consider the blow-up
Nig1: Zig1 = BIB,£+1XZ{+1 — X1
Then 7,41 := ngﬂagﬂngﬂ € BBirg(Z;+1) by Lemma 3.13. Define
Nit1 i= T17iy1: Zigr — Xig1.
Using (3.6), we obtain
=17 / o —1_—1 / _ -1
Titl = M1 X141 = i1 ™1 Ci41T1T)5401 = 140 Q1741

Hence n;41 satisfies the first requirement in (3.5). For the second requirement, recall that n;41 is

constructed by subsequently blowing up e;rll B; C X;y1 and Bj | C X/ ;. The set e;LllBi is disjoint

from C;y1 because C;11 C E;y1 and B; N C; = (). On the other hand, the image
nim2(Biy1) = €ip1mi(Bigq) C Xi

is disjoint from Cj, so 71(B; ;) is disjoint from FE;,; and thus from Cj; 1. We conclude that the
center B;1q of n;41 is disjoint from C;yq. This completes the inductive step.
Formula (3.5) with ¢ = r gives a birational morphism

Ny Zr — X, such that 7, := nflarm € BBirg(Z,).
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As a result, we obtain the commutative diagram

where f =¢€1---€n, and g = ?“77‘ are birational morphisms. Moreover,

1

Y= fﬁl@f = (61 o '67“777’)710‘0(61 CEpT)y) = 77;16; o 'el_laoel e Eplly = 77;10‘7’777“ = Tr,

which belongs to BBiry(Z,). Using the relations h = gf ! and 8 = hah™!, we deduce that
v=f"taf =g hahTlg = g7 Bg.

By Lemma 3.12, the actions of « and 3 on the sets of k-points induce the same parity as the action
of 7, which completes the proof. O

4 Birational permutations on rational surfaces

We prove Theorem 1.3 in this section. Using Theorem 1.2, this amounts to showing that over F,
q = 2™ > 4, permutations induced by the following maps are all even:

e Birational permutations on a conic bundle over P! preserving the fiber class.
e Automorphisms of a rational del Pezzo surface.

e Elements of BCra(IF) of finite order.

One may wonder if there exists a surface over Fy, ¢ = 2™ > 4, that admits a birational odd
permutation. Below we exhibit such an example over F.

Example 4.1. Let us write Fy = F5(¢), where £2+&+1 = 0, and let £ denote the Galois conjugate
of £. Consider the elliptic curve defined by the Weierstrass equation

E:y?+oy=a2®+1.

Then j(E) = 1, and the group Aut(F) = Z/27 is generated by og: (z,y) — (z,y + x) [Sil09,
Propositions A.1.1 & A.1.2]. One can verify straightforwardly that

E(F2) = {(1,0),(0,1),(1,1),pc},  E(F4) = E(F2) U{(£,0),(£,0),(&€), (€6}

where po denotes the point at infinity. Moreover, the involution o fixes (0, 1), poo, and exchanges
points in each of the pairs {(1,0),(1,1)}, {(&,0),(&,€)}, {(£,0),(£,€)}. In particular, og acts on
E(F,) as a product of three transpositions and thus is odd. Now consider the P'-bundle

X =P'xE—F

and define ox € Aut(X) by ox(p,q) = (p,0r(q)). Then ox acts on X (F4) as an odd permutation
by Lemma 3.7. In fact, it is not hard to see that this permutation consists of 5 disjoint permutations
of the same type as og.
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4.1 Birational permutations on conic bundles

Over a finite field k, a conic C C ]P’i can only be one of the followings:
(I) C is smooth, which implies that C' = P}.
(IT) C is a double line.

(111)
(Iv)

C = (U /! where £ and ¢ are conjugate over the quadratic extension.

C = (U where £ and ¢ are distinct lines both defined over k.

As an analogue of projective bundles over finite sets (see §3.2), given a finite set B, we define a
conic bundle over B to be a union of conics indexed by B:

C= U C; equipped with the map h:C — B : C; — 1.
1€EB

Consider the set C(k) of k-points on C. We are interested in elements o € Sym(C(k)) of the form:

(1) For every i € B, there exists j € B such that o(C;(k)) = Cj(k). Then hoh™! is well-defined
as an element of Sym(B).

(2) Each bijection o: Cj(k) — Cj(k) is induced by an isomorphism between conics over k.
Note that such elements form a subgroup of Sym(C(k)).

Lemma 4.2. Let k =F,, ¢ =2 > 4, and 0 € Sym(C(k)) be an element satisfying (1) and (2).
Then o and o := hoh™' € Sym(B) have the same parity.

Proof. Since the parity of a permutation is invariant upon raising it to an odd power, we can assume
that both ¢ and op consist of disjoint cycles of sizes powers of 2. In this setting, each nontrivial
cycle is an odd permutation. Suppose that

O:={p1,...,pr} CB, r=2°2>1,

is any orbit of op. Then ¢ acts on the set of k-points on h~1(0O) C C, and it suffices to show that
this action is odd. This reduces the proof to the case O = B.

By property (2), the fibers over O are mutually isomorphic and thus of the same type. If they
are of type (I), then the statement follows from Lemma 3.7. The case of type (II) is covered by
the previous case by passing to the reduced substructure. If they are of type (III), then the node
in each fiber appears as the only k-point in that fiber. This implies that ¢ and op have the same
cycle type, thus are both odd.

Assume that the fibers are of type (IV), that is, C; = h™1(p;) = ¢; U¥; where ¢; and ¢, are copies
of IP’}C. Let o, denote the action of o on the set of lines

L= {01,0), 0,05, ....0, 0.},

In this case, the nodes ¢; := ¢; N ¢, for i = 1,...,r form a single orbit under the action of o. This
forces o, to be one of the following forms:

(i) L has two orbits of size r. In this case, we can relabel the components of C; as ¢] and ¢;
such that there is a cycle decomposition of, = (¢,..., 60 (¢, ..., 6).

T
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(ii) L forms a single orbit of size 2r. In this case, we can relabel the components of C; as £; and
07 such that o, = (6f ..., 65,07, ...,0).

(A »Yvr o y v r

In both cases, we have the P,lg-bundles
+ _ p* + _hE ot +
Cx=0U---Uly ——O0F 47 ——p;.
where OF = {pr7 ...,pE} are two copies of O. Taking their (disjoint) union gives a conic bundle

C—ctie = oo,

Note that the node §; splits as (5i+ € Ej and 0; €/, foreach 1 < <.
Suppose that case (i) holds. Replacing the cycle (41, ...,d,) in o by the product

(571 007 57)

»Er

defines an element o € Sym(C(k)) that satisfies (1) and (2). Now we have
heh™ = (pf oo ) (D1 s o1y

which is even. Because the fibers of h are smooth, we conclude that & is even by the result for
type (I). Since o has one less odd cycle than o, the parity of o is odd. If case (ii) holds, we can

define ¢ € Sym(C(k)) by replacing (d1,...,d,) in o with the cycle
(0F . 65,07, 60).

yYr o yYr

Then o satisfies (1) and (2), and we have

ha/hil = (pi"_7 "'7p7’<!>7p1_7 "'7p1j)
which is odd. We conclude in a similar way that ¢ is odd, which implies that ¢ is odd. ]

For our applications of the above lemma, we are interested in the case when B is the set of
k-points on a curve. The following corollary is then immediate.

Corollary 4.3. Let C — D be a conic bundle over a curve D over k =Ty, ¢ = 2" > 4. Suppose
that f € BBirg(C) preserves the conic bundle structure, and let p(f) € Aut(D) be the induced
automorphism on D. Then

e the actions of f on C(k) and p(f) on D(k) have the same parity, and

e f induced an even permutation on C(k) if D = P!,

Proof. The fibers of C over D(k) form an example of a conic bundle over a finite set. The action
of f on C(k) satisfies properties (1) and (2). Then the first conclusion follows Lemma 4.2, and the
second statement follows from Proposition 3.5. 0
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4.2 Automorphisms of rational del Pezzo surfaces

Over an arbitrary field k, a del Pezzo surface X is defined to be a smooth projective surface such
that the anticanonical divisor —Kx is ample. The degree of X is defined as the integer d = K%
which takes values from 1 to 9. For example, a del Pezzo surface X of degree 9 is a Severi—Brauer
surface, namely, a surface that satisfies X := X ®;, k = IP’%. Below is a simple observation about
automorphisms of del Pezzo surfaces over finite fields:

Proposition 4.4. Let X be a del Pezzo surface over a finite field k. Then Aut(X) is a finite group.

Proof. The anticanonical class —Kx is ample and thus —r K x becomes very ample for some r > 1.
The linear system | — rK x| defines an embedding X < P". Since every f € Aut(X) preserves Kx,
it extends to an automorphism on P”. This defines an embedding Aut(X) < PGL,41(k). Then
the statement follows as PGL,11(k) is a finite group when £ is finite. O

A surface X over a field k is called rational if there exists a birational map X --» P? defined
over k. In this section, we investigate the parities of the permutations on X(F,) induced by
automorphisms of a rational del Pezzo surface X over F, for ¢ = 2" > 4. Our goal is to prove the
following theorem:

Theorem 4.5. Automorphisms of a rational del Pezzo surface X over Fy for g = 2™ > 4 induce
only even permutations on X (Fy).

We will proceed the proof case-by-case with the degree d going from high to low. As the parity of
a permutation is invariant upon taking an odd power, we will assume the order of a permutation to
be a power of 2 when studying its parity. The following lemma will be useful under this assumption:

Lemma 4.6. Let X be a surface defined over k = Fy, ¢ = 2™ > 4, which is rational over the
algebraic closure, and let o € Sym(X (k)).

(1) Iford(c) =2" for some r > 0, then o has odd number of fixed points.

(2) If ord(c) = 2 and the number of fized points equals 1 modulo 4, then o is even.

Proof. Tt is well-known that | X (k)| = ¢> + ag+ 1 for some non-negative integer a ([Wei56], see also
[Pool7, Proposition 9.3.24]). Since the size of each orbit of ¢ divides ord(c) = 2", we have

¢* +aq + 1 = 2¢ + |{fixpoints of ¢}| for some £ >0

which implies (1). Assume ord(c) = 2, that is, o is an involution. In particular, ¢ is a product of
disjoint 2-cycles. If o has 4b + 1 fixed points, then the amount of 2-cycles equals

1 1
SUX ()|~ (@b + 1)) = S(* + ag — 4b)
which is an even number for ¢ = 2™ > 4. This proves (2). O

Remark 4.7. Over Fy, there exists an automorphism of a rational del Pezzo surfaces X which
induces an odd permutation on X (F3). To construct an example, one can start with a quadratic
transformation f € BCry(F2), that is, f is defined by the linear system of conics passing through
three non-collinear points in P? that form a Gal(Fg/Fs)-orbit. By Lemma 5.6, upon composing f
with a linear transformation, we can assume that f is involutive, so that Bs(f) = Bs(f~!). Blowing
up P? at Bs(f) produces a del Pezzo surface X of degree 6 and resolves f as an automorphism f’
on X. The action of f on P?(Fg) is odd by Lemma 5.7, so the action of f’ on X (Fs) is odd as well
by Theorem 1.2.
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4.2.1 Rational del Pezzo surfaces of degree at least 4 Here we prove that the claim of
Theorem 4.5 holds for rational del Pezzo surfaces of degree d > 4. The case d = 9 is covered by
Proposition 3.5 since a rational Severi-Brauer surface is isomorphic to P? by Chatelet. (See, for
example, [GS17, Theorem 5.1.3].) We prove the remaining cases below:

Proposition 4.8. Automorphisms of a rational del Pezzo surface X over k =Fy, ¢ =2" > 4, of
degree 4 < d < 8 induce only even permutations on X (F,).

Proof. Let g € Aut(X). Because raising to an odd power does not change the parity of a permu-
tation, we can assume the action on X (k) induced by ¢ has order a power of 2. This allows us to
choose a point p € X (k) fixed by g as guaranteed by Lemma 4.6 (1).

Case d =8. If X is not minimal (over k), then there exists a (—1)-curve E C X over k, and
contracting E gives a morphism h: X — P2, Every g € Aut(X) leaves F invariant, thus is
conjugate to an automorphism of P? fixing h(E) € P2. Therefore, g induces an even permutation
on X (k) by Proposition 3.5 and Theorem 1.2.

If X is minimal, then it is a quadric surface obtained by blowing up Pi at a point of degree 2
(resp. two rational points), and then contracting the proper transform of the unique line through
that point (resp. the two rational points). In particular, over the quadratic extension L := F 3,
we have X; = P} x PL. Let X7 be the blow-up of X at the fixed point p and let E be the
exceptional curve. Then the two rulings of X = ]P’jl: X IP’}—J meeting at p lift to disjoint (—1)-curves
Eq, E5 C X7 over L that are conjugate to each other (resp. both rational) over k, and g is conjugate
to ¢’ € Aut(X7) which leaves the set {E1, E2} invariant. Let h: X7 — P2 be the contraction of F;
and Ey. Then hg’h~! is a PGL3(k)-action on P? leaving the set {h(E), h(E>)} invariant. It then
follows from Proposition 3.5 and Theorem 1.2 that g induces an even permutation.

Case d = 7. There is a unique (—1)-curve E on X that is invariant under both Gal(k/k) and g.
Hence contracting FE gives X — Xg where Xg is a del Pezzo surface of degree 8, and ¢ descends to
an automorphism gg on Xg. The result then follows from Theorem 1.2 and Case d = 8.

Case d = 6. Over the algebraic closure, X7 is obtained by blowing up three points a1, as, a3 in IP’%,
and it contains six (—1)-curves Ej, ..., Eg such that, for i # j, we have E; - E; = 1if j=i+1
(mod 6) and E; - E; = 0 otherwise. Note that both Gal(k/k) and g act on this set of (—1)-curves
and preserve the intersection relations.

If p does not lie on any of these (—1)-curves, then the blow-up X5 = Bl,(X) is a del Pezzo
surface of degree 5, and g lifts to an automorphism g5 of X5. Over k, the three lines in IF’% that pass
through p and one of aj, ag, as lift to pairwise disjoint (—1)-curves on X5 that meet three disjoint
members of {E},..., Eg}. Since this configuration is invariant under the action of both Gal(k/k)
and g5, we can contract the three new (—1)-curves to get X5 — Xg, where Xg is a del Pezzo surface
of degree 8, such that g5 descends to an automorphism gg of Xg. By Case d = 8, gg induces an
even permutation on Xg(k), and we finish by applying Theorem 1.2.

Suppose p lies on one of the (—1)-curves, say, Ei. If p does not lie on any other (—1)-curve,
then E) is invariant under both Gal(k/k) and g. We can then blow down F; to get X — X7 where
X~ is a del Pezzo surface of degree 7, and g descends to an automorphism g7 of X7. By Case d =7,
g7 induces an even permutation on X7(k), and we finish by applying Theorem 1.2. Otherwise, p
lies on the intersection of two lines, say, Ej and Es. Then the orbit structure of {Ey, ..., Eg} under
both Gal(k/k) and g is either {E1}U---U{Eg} or {E1, Ex} U{FEs3, Eg} U{FEy, E5}. In either case,
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{E3, Eg} is invariant under both Gal(k/k) and g, so blowing down Es3, Fg yields X — Xg, and g
descends to an automorphism on Xg. We finish by applying Case d = 8 and Theorem 1.2.

Case d = 5. Over the algebraic closure, X7 is obtained by blowing up four points b1, b2, b3, b3 in
IP’%, and it contains ten (—1)-curves, where six of them come from the lines passing through two
of by, ba,bs, b3, and the remaining four are the exceptional curves. Let us denote the (—1)-curve
passing through b; and b; as Dy, where & < [ and {k,i} = {1,2,3,4} \ {4,j}, and denote the
exceptional curve over b; as D;5. In this setting, we have D;; - Dy = 1 if 4,7, k,1 are pairwise
distinct and Dj;; - Dy = 0 otherwise.

If p does not lie on any of the (—1)-curves, then the blow-up X4 = Bl,(X) is a del Pezzo surface
of degree 4, and g lifts to an automorphism g4 on Xy. Let E, C X4 denote the exceptional curve
lying above p. Over k, the lines (resp. the conic) passing through p and one of (resp. all of)
b1, b, bs, by lift to five pairwise disjoint (—1)-curves that intersect E,. These (—1)-curves form a
set invariant under Gal(k/k), so we can blow them down to get X4 — P2, and g4 also descends to
an automorphism on P?. An application of Proposition 3.5 and Theorem 1.2 does the job.

Suppose p lies on a (—1)-curve, say, Di2. If p does not lie on any other D;;, then D15 is invariant
under both Gal(k/k) and g, so we can contract it to get X — Xg, where Xg is a del Pezzo surface
of degree 6, and ¢ descends to an automorphism of Xg. We are then done by Case d = 6 and
Theorem 1.2. If p lies on another (—1)-curve, we can assume this is D34. One can verify that
these are the only two (—1)-curves that contain p. It follows that Do U D3y is defined over k and
invariant under g. The other (—1)-curves that intersect Dio U D3y are Dss, Dys, D15, Das. Hence
the union D35 U Dys U D15 U Doy is defined over k and invariant under g. These four curves are
pairwise disjoint. Contracting them gives X — P2, and g descends to an automorphism of P2. We
are done after applying Proposition 3.5 and Theorem 1.2.

Case d = 4. First assume that p does not lie on a (—1)-curve. Then the blow-up of X at p is
a cubic surface X3 C P3, and the exceptional curve £ C X is a line in P? over k. Each plane
H C P3 containing F intersects X3 in a residual conic, so the pencil of such planes determines a
conic bundle X35 — P! over k. Corollary 4.3 yields the claim in this case.

Suppose that p lies on a (—1)-curve. If it lies on only one such curve, then we can blow this
curve down, and g will descend to an automorphism of a del Pezzo surface of degree 5. Then the
claim follows from Case d = 5 and Theorem 1.2. Otherwise, p lies on exactly two (—1)-curves. This
defines a (singular) conic Q on X. We can then define a conic bundle as follows: The linear system
| — Kx| embeds X into P* as an intersection of two quadrics. Consider the pencil of hyperplanes
containing (). Each hyperplane intersects X at a conic residual to (). This defines a morphism
X — P! where the fibers are conics. Since ¢ preserves Q and extends to an automorphism of P4, it
preserves the conic bundle structure. Hence, it follows from Corollary 4.3 that g induces an even
permutation on X (k). O

4.2.2 Rational del Pezzo surfaces of low degrees To prove Theorem 4.5 for rational del
Pezzo surfaces of degree d = 1,2, 3, we first prove a fact about permutations induced by a double
cover structure that appear in these cases.

Lemma 4.9. LetY = P(ay,...,an) be a weighted projective space, with a; the weights, over k = Fg,
where g = 2™ > 2. Let m: X — Y be a degree two Galois cover where X is given by

w? + fw+g =0,
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for some nonzero homogeneous polynomials f and g in the weighted polynomial ring k[zg, ..., x,)
of degrees d and 2d, respectively. Let 5 € Aut(X) be the deck transformation and B C X be the
ramification locus defined by f = 0. Assume that there is an exact sequence of groups

1—— (B) — Aut(X) —— Aut(Y)

where yh := whr~! for every h € Aut(X), and that B acts as an even permutation on X (k). Then
every h € Aut(X) induces an even permutation on X (k) \ B(k).

Proof. Let h € Aut(X) and denote hg := m.h € Aut(Y'). Since hg fixes the branch locus, h§(f) = cf
for some nonzero constant ¢ € k. Let k(X) be the function field of X, which is a quadratic extension
over k(Y'), so by the Artin—Shreier theory, it is given by

u? +u =z forsome z¢€k(Y).

In our setting, the equation w? 4+ fw 4 ¢ = 0 can be turned into

w?+w' =L where w =-L (4.1)

f? fw
This is our Artin—Shreier extension. Now consider the double cover coming from the composition
hom: X — Y. Under this viewpoint, we can repeat the same calculation to conclude that k(X) is
given by the extension
/

g
2 f2
It is well-known that (4.1) and (4.2) define the same extension if and only if there exists a € k(Y")
such that

w//2 + w// —

where ¢' = h{(g). (4.2)

/

g _ 9

c2 f2 - f2

By comparing the degrees among the terms, we conclude that a € k.
Define an automorphism h’' € Aut(X) by

+a* + a, or equivalently, g =g+ Af3a® +a). (4.3)

x; — hy(zi), w— cw+caf.

Then h™*(f) = c¢f and h'*(g) = ¢/, and one can use (4.3) to verify that this is well-defined. Let us
show that A’ induces an even permutation on X (k) \ B(k) case-by-case:

e (a=0) Let pe n(X(k)) C Y(k), singular or non-singular, and not lying on the branch locus,
and O, be the orbit of p under hg. Let r = |O,| and note that 7=1(0,) consists of 2r many
k-points. The assumption a = 0 implies that 7r*1(Op) breaks into two orbits of the same size
under h/. Hence /' induces an even permutation on 7=(0,). As a consequence, k' induces
an even permutation on X (k) \ B(k).

e (a = 1) The transformation § is defined by *(z;) = z; and f*(w) = w + f, so h'/3 has the
same formula as k' but with a = 0, thus induces an even permutation on X (k) \ B(k) by the
previous case. The fact that 3 fixes every point on B implies that it is an even permutation
on X (k) \ B(k). Therefore, b’ is an even permutation on X (k) \ B(k).
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e (a # 0,1) Keep the notation of p,Op,r as in the case a = 0. Because h( fixes p as a point
inY =P(ay,...,ay), it rescales the coordinates of p by a constant e respecting the weights.
Since h(f) = cf, plugging in p gives f(ho(p)) = cf(p). This implies e? = ¢". As a result, we
get g(h5(p)) = c* g(p). On the other hand, applying h{ inductively on (4.3) gives

W (9) = g+ rla? + ) .
Plugging in p, we get

< g(p) = g(hg(p)) = ¢ g(p) + r(a® + a)c® f(p)?,

so that r(a? 4+ a) = 0, which implies r is even. Hence h/*"(w) = c"w, so both points above p
are fixed by A'". So then 7~1(0,) breaks into two orbits of size r under h’, which shows »/
induces even permutation on X (k) \ B(k).

Now we finish the proof by showing & is an even permutation on X (k) \ B(k). The composition
hh'~! acts as the identity on Y, so it is either the identity or 3. Because A’ and Sh’ both induce
even permutations on X (k) \ B(k), the result follows. O

Proposition 4.10. Automorphisms of a rational del Pezzo surface X over F,, where ¢ =2" > 4,
of degree d = 2,3 induce only even permutations on X (IF,).

Proof. Case d = 2. The anticanonical model of X is a hypersurface of degree 4 in the weighted
projective space P(w, x,y, z) = P(2,1,1,1), defined by

w? + fw =g,

where f,g € k[z,y, z] have degrees 2, 4 respectively [Kol99, Theorem III.3.5]. The linear system
| — Kx| defines a double cover 7: X — P? sending [w : 2 :y: 2] to [x : y : 2]. The double cover
involution on X is called the Geiser involution, which we denote by . Since Kx is preserved under
any automorphism, we have an exact sequence

0 — () — Aut(X) — Aut(P?).

Let us first prove that v induces an even permutation. By Lemma 4.6 (2), it suffices to show
that the fixed point set Fix()(F,) of v in X (k) has cardinality |Fix(y)(F,)| = 1 mod 4. We have

Yw:x:y:z])=[-w—f:x:y:z] (4.4)

In characteristic 2, the fixed locus is given by f = 0, a conic in P2. This contains ¢ + 1 many
F,-points if it is smooth. If singular, it contains either 1, 2¢ + 1, or ¢ + 1 many F,-points if it
consists respectively of two conjugate F2-lines, two Fy-lines, or a double line. Because ¢ = 2 > 4,
we have |Fix(y)(Fy)| = 1 mod 4, as desired.

Now applying Lemma 4.9, we conclude that every h € Aut(X) induces an even permutation on
X (k) \ B(k) where B = {f = 0}. Hence, to finish the proof for d = 2, it suffices to show h induces
an even permutation on B(k). Since B is a conic in P2, this follows from Lemma 4.2.
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Case d = 3. Let g € Aut(X) and assume that its action on X (k) has order a power of 2. Then
Lemma 4.6 (1) implies that g has a fixed point p € X (k). If p does not lie on any (—1)-curve of
X7, then g lifts to the blow-up Bl,(X) which is a del Pezzo surface of degree 2. Then the result
follows from Case d = 2 proved above and Theorem 1.2.

Suppose p lies on exactly one (—1)-curve L. Then L is defined over k and invariant under g.
Contracting L gives a del Pezzo surface X4 of degree 4, and g descends to an automorphism of Xj.
Then the result follows from Proposition 4.8 and Theorem 1.2.

Suppose p lies on exactly two (—1)-curves Ly, Lo. The linear system | — K x| embeds X as a
cubic surface in P3. The plane containing L, Ly intersects X at a third (—1)-curve L3. Since the
union Ly U L is invariant under both Gal(k/k) and g, the curve Lg is also invariant under Gal(k/k)
and g. Hence we can contract Ls and conclude as in the previous case.

Suppose p lies on three (—1)-curves L, La, Ls. Then p is an Eckardt point, and g lifts to an
automorphism g on the blow-up X; := Bl,(X), which is a weak del Pezzo surface of degree 2.
The strict transforms of Ly, L, L3 give a Gal(k/k)-invariant set of three disjoint (—2)-curves on
Xs. We can contract them to get Xo — Y, and g2 descends to an automorphism on Y. The
morphism X» — P? induced by the projection from p factors through Y — P2, which is a double
cover ramified along a singular quartic curve. (The singular points of Y are above the singular
points of the quartic.) The same argument as in Case d = 2 above shows that every automorphism
of Y induces an even permutation. We finish by applying Theorem 1.2. O

Proposition 4.11. Automorphisms of a rational del Pezzo surface X over Fy, where ¢ = 2™ > 4,
of degree d =1 induce only even permutations on X (F,).

Proof. The anticanonical model of X is a hypersurface of degree 6 in the weighted projective space
P(w, z,z,y) =P(3,2,1,1), defined by

w? +a1wz + azw = 23 + a222 + a4z + ag

where a; € k[z,y] is homogeneous of degree i [Kol99, Theorem III1.3.5]. The linear system | — Kx]|
defines a rational map
p: X P i wizixy s [xy

whose indeterminacy locus consists of the single point O := [1 : 1 : 0 : 0] € X(F,), and its
general fibers are elliptic curves possessing O as the identity elements. Since Kx is fixed under any
automorphism of X, we get an exact sequence

1 — G — Aut(X) — Aut(Ph).

Every element in G has the form [w: z : x : y] — [W(w, z,2,y) : Z(w, z,2,y) : x : y| which preserves
the equation of X. Comparing the degrees in x,y yields that W = w or W = w — a1z — a3, and
73 = z3. Furthermore, if a4 # 0, then Z = 2, which implies that G ~ Z/2Z and is generated by
the Bertini involution

Brlw:z:x:y|—|w—az—ag:z:x:yl. (4.5)

(This involution induces the inverse map under the group law when restricting to a smooth fiber
of the elliptic fibration p: X --» PL.) Suppose that aqs = 0. If ay # 0, then Z? = 22, thus Z = z,
which implies again that G = (). If ag = 0 and there exists a primitive third root of unity J, then
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G is generated by  and the element [w: z:z:y|— [w:dz:x:y|, hence G ~ Z/67Z. If there is
no such §, then G = (3).

We first show that the involution £ induces an even permutation on X (F;). By Lemma 4.6 (2),
it suffices to show that the fixed point set Fix(3)(F,) of 8 in X(F,) has cardinality 1 mod 4. In
characteristic 2, the fixed locus is given by a1(z,y)z + as(z,y) = 0. Note that O =[1:1:0:0] is
a fixed rational point, and is the only such point when x = y = 0. We now proceed by two cases
depending on whether a; = a1 (z,y) is the zero polynomial or not:

e If ay #0, each [z : y] € PL(F,) with a1(z,y) # 0 contributes a fixed Fy-points by setting

z=as(x,y)/a1(z,y),

w? = 23 + as(z,9)2* + as(z,y)z + as(z, y),

which gives ¢ more points. Now let [zg : yo] € P}(F,) be such that ai(zg,y0) = 0. If
az(wo,yo) # 0, then p~1([zg : yo]) has no fixed Fy-point. If az(zo,yo) = 0, then p~1([zo : yo))
is a singular affine curve with ¢g-many Fg-points (unique solution in w for every choice of z)
which are all fixed under 5. Hence, together with O, we have a total of either ¢ +1 or 2¢ + 1
fixed F,-points on X. In particular, |Fix(3)(F,)| = 1 mod 4.

e If a; = 0, then a3 # 0 since X is smooth. Let [z¢ : yo] € P1(FF,) be such that az(xo,yo) = 0.
Then the same argument as above shows that p~!([zo : yo]) has ¢ many fixed F,-points.
Hence, |Fix(8)(Fq)| = ¢+ 1 =1 mod 4.

The involution 3 is also the deck transformation of the double cover X — P(2,1,1) which maps
[w:z:x:y]to[z:x:y]. This double cover is defined by | — 2K x|, which is preserved under any
automorphism of X, so there is an exact sequence

1 — () — Aut(X) — Aut(P(2,1,1)).

By Lemma 4.9, we get that any h € Aut(X) induces an even permutation on X (F,)\ B(F,) where
B :={a1z+ a3 = 0}. It remains to show that h induces an even permutation on B(FF;). Note that
O € B(F,) is the unique base-point of | — Kx/|, so it is fixed under h. Moreover, since we only
care about the rational points, it suffices to consider the reduced subscheme By := B,.q \ {O}. We
proceed by cases:

e If a1 # 0 and a; does not divide as, then By is isomorphic to Al. Hence h|B, induces an even
permutation as a consequence of Proposition 3.5.

e If a1 # 0 and a; divides a3, then By is isomorphic to a union of two copies of A' meeting at
a point, where one copy is a section of the elliptic fibration while the other is a fiber. The
result again follows from Proposition 3.5.

e If a; = 0, then By is isomorphic to a disjoint union of r copies of A! where 0 < r < 3. The
case r = 0 is trivial, and the case r = 1 follows from Proposition 3.5. If » = 2, we can identify
the disjoint union A' UA! as the smooth part of a degenerate conic, so this case is covered by
Lemma 4.2. Suppose that r = 3. If h leaves one A! invariant while switches the other two,
then the claim follows from Proposition 3.5 and Lemma 4.2. If h acts on the three copies
of Al as a 3-cycle, we can first compactify each Al as a P!, which gives us a P!-bundle over
a finite set of 3 elements, and then extend the action of h to this bundle by multiplying it
with a disjoint 3-cycle. This new permutation is even by Lemma 3.7, which implies that the
original permutation is even.

30



NON-EXISTENCE OF ODD PERMUTATIONS

As a result, the actions of h are even on X (F,) \ B(F,) and B(F,), thus is even on X (Fy). O

Proof of Theorem 4.5. Let d = Kg( be the degree of X. The claim follows from Proposition 3.5
for d = 9, from Proposition 4.8 for 4 < d < 8, from Proposition 4.10 for d = 2,3, and from
Proposition 4.11 for d = 1. ]

4.3 Birational self-maps of finite order

Lemma 4.12. Let k be a perfect field. Suppose G C Cra(k) is a finite subgroup. Then there exists a
surface X together with a birational map ¢: X --+ P? such that there is an injective homomorphism

" G — Aut(X): g — ¢ 1go. (4.6)
Moreover, X can be minimal with respect to G in the sense that

(1) X admits a structure of a conic bundle with Pic(X)® = 72, or

(2) X is isomorphic to a del Pezzo surface with Pic(X)% = Z.

Proof. The first statement can be proved by the same argument as in [DI09, Lemma 3.5]. Now
consider G as a subgroup of Aut(X). Assume that X is not minimal with respect to G, i.e., there
exists a surface Y and a birational morphism h: X — Y together with an inclusion

h*: G— Aut(Y):g — h™lgh

such that the rank of Pic(Y)? is strictly less than the rank of Pic(X)“. This process terminates
at either (1) or (2) by [Isk79, Theorem 1G]. O

As a corollary, given f € BCry(k) of finite order, we can always conjugate it to an automorphism
on a minimal surface. This reduces the parity problem for such elements to the problem on the
parities induced by the automorphisms on a conic bundle or a del Pezzo surface.

Proof of Theorem 1.3. The statement for birational permutations on a conic bundle over P! fol-
lows from Corollary 4.3. The statement for automorphisms of del Pezzo surfaces follows from
Theorem 4.5. For birational permutations conjugate to maps of the previous two types, we apply
Theorem 1.2. Note that this covers the elements in BCry(F,) of finite order due to Lemma 4.12. [

5 Non-existence of odd permutations

In this section, we produce a list of generators for BCra(k) where k is a perfect field. Then we
conclude the proof of Theorem 1.1 by showing that the generators in this list induce only even
permutations over k = Fom for m > 2. Throughout this section, we say a smooth zero-dimensional
subscheme of a del Pezzo surface X (resp. a conic bundle X) is in general position if the blow-up
of X at the subscheme is still a del Pezzo surface (resp. a conic bundle over the same base).
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5.1 A list of generators over perfect fields
Lemma 5.1. Let k =F, for ¢ =p™, where p > 2 is a prime and m > 1.

(1) Let p,p',q,q be four points of degree 2 in P? in general position. Then there exvists A €
Aut(P?) that sends p,p’ onto q,q'.

(2) Let p,q be two points of degree 4 in P? in general position. Then there erists A € Aut(P?)
that sends p onto q.

Proof. To prove (1), let p1,p2 (vesp. pl,ph, resp. qi,q2 resp. q},q5) be the geometric components
of p (resp. p' resp. q resp. ¢’). Then each p;, pj, ¢, q; is defined over F 2, i = 1,2, and there exists
a unique F 2-automorphism A of P? that sends p; onto ¢; and p; onto ¢, for i = 1,2. For any
g € Gal(F2/F;) we have

-1 -1 —1
(AIA™N)(q) = A%((] )9 = (Ap] ) = (] ) = a
In particular, A9A~" is the identity map for all g € Gal(F,2/F;). Hence A is defined over F,.

To prove (2), let p1, p2,p3, p4 (resp. q1,42, g3, qs) its geometric components of p (resp. ¢). Then
each p; and ¢; is defined over Fy4, i = 1,2, and over F 2, p (resp. ¢) splits into two orbits, say {p1,p2}
and {p3,ps} (resp. {q1,q2} and {g3,q4}). By (1), there exists a [ 2-automorphism A of P? that
sends p; onto ¢;, i = 1,...,4. As analogously to above, we obtain that A4~ 1¢; = (Apfil)g =g
for any g € Gal(F2/F,) and for i = 1,...,4; hence A is defined over F,. O

Let S be a smooth projective surface over a perfect field k, B a point or a curve defined over
k, and m: S — B a surjective morphism over k. We say that S/B is a Mori fibre surface if m has
connected fibres, the relative Picard rank p(S/B) of S over B is p(S/B) = 1 and —Kg is m-ample,
that is —Kg-C > 0 for all curves C contracted by w. A Sarkisov link is a birational map ¢: S --+ S’
between two Mori fibre spaces 7: S — B and 7’: S’ — B’ that is one of the following four types:

Type 1. B is a point, B’ is a curve and ¢ is the blow-up of a point.

Type II. B ~ B’ and ¢ = nan1, where 1 is the blow-up of a point p = {p1,...,pq} of degree
d with those p; in general position, and 7, is the contraction of an orbit of (—1)-curves of size e.
We write ¢ = fg. if we want to emphasize the degree of the base-point of ¢.

Type III. the inverse of a link of type I, i.e. B is a curve, B’ is a point and ¢ is the contraction
of a Galois-orbit of disjoint (—1)-curves defined over the algberaic closure of k.

Type IV. S = S and B, B’ are both curves. If S is rational, then B = B’ ~ P! and the ¢ is
the exchange of the two fibrations.

Proposition 5.2. Let X — B and X' — B’ be Mori fibre surfaces and v: X --+ X' a birational
map. Then there is a decomposition ¥ = ¢, --- @1 into Sarkisov links and isomorphism of Mori
fibre surfaces such that

(1) fori=1,...,7 =1, ¢iy1¢; is not an automorphism,
(2) fori=1,...,r, every base-point of ¢; is a base-point of ¢y - - ¢;.

Proof. The claim follows from the proof of [Isk96, Theorem 2.5], see also [BM14, Proposition 2.7].
U
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Remark 5.3. In particular, if ¢ induces a map X (k) — X'(k), then the link ¢; does not have
any rational base-points. Moreover, the rational base-points of ¥)(¢1)™! = ¢, - - - ¢2 are exactly the
base-points of (¢1)~!. Since ¢o¢1 is not an automorphism, ¢ does not have a rational base-point.

The proof of the following proposition is similar to the proof of [BM14, Theorem 1.2], which
shows that BCra(R) is generated by Aut(P?) and elements of BCra(R) of degree 5; the latter are in
family (1) and they are the only non-linear maps in the generating set from Lemma 5.4 that exist
over k = R.

A surface X4, X/, denote del Pezzo surfaces of degree d and @, Q" del Pezzo surfaces of degree

8 with p(Q) = (@) = 1.

Lemma 5.4. Let k be a perfect field. Then BCra(k) is generated by Aut(P?) and the set of elements
f in the list below that exist over k.

(1) f sends the pencil of conics passing through two points of degree 2 in general position onto a
pencil of conics passing through two points of degree 2 in general position.
If k is finite, we can choose the two pencils to pass through the same points.

(2) f sends the pencil of conics passing through one point of degree 4 in general position onto a
pencil of conics passing through a point of degree 4 in general position.
If k is finite, we can choose the two pencils to pass through the same points.

(3) f is one of the following compositions, where Xq is a del Pezzo surface of degree d = (Kx,)?
and fqp 18 a Sarkisov link of type II blowing up a point of degree a and its inverse blowing up
a point of degree b:

Xe Xo X1 X3 (5.1)
e N Pd N e N e N
[P)Q 77]073%7» ]P)2 IP)Q 777f7737 [P)Q P2 777f§§7$ ]P)2 [P)Q 777@§7+ P2

or

X7 Xs—a X7 d € {7,6} (5.2)

2/f21\ /fdd\ /f12\ 9 ,
P ---=-- > Q - > Q =~ > P* p'= fap)
or
X7 v X3 X5_4 X3 o X7 de {3,4}
/fz1\A /fsz\ < faa ™~ ‘/f_l\A /f12\ (53)
52 —
P2 -2 > Q == > X5 "5 > X5 -7~ Q ------ > P2 p = 5 faafs2 ()
or
X7 X3 y X4 ,
SN LN TN P = [52(p) (5.4)
P2 - 2, Q __ds2 | X5 LA p2
or
X7 X3 XY . X7 .
Ve \p Ve AW Ve N Py N P = fa5f52(p) (5.5)
p2 gt x, ImoL g T2 po
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or
X7 X ¢ . X7 P = f1(p)
oo N v N R N e N (56)
LS B NN N £ SN LR 110
or
X7 X5 Xo_4 Xt X d e {2,3,4,5)
< fo1 \p /f31 \I / fda \fdd(T)/ fi3 ~ p/ fi2 ~ (5'7)
p2 -2 > Q --21s > Xg ----4 - > X§ --=-=- > Q- > P2 p' = fisfaafs(p)
or
X} Xsoa . X de{4,3)
R N N (5.8)

]P)2 777f75}7+ X5 ***’ffdgff» X5 *”f’l:rs** ]P)2 p/ = fdd(p)

Moreover, all links of the form faq can be chosen to be involutions, except possibly fegg in
(5.1), f33 and faog in (5.7).

Since the proof of Lemma 5.4 is quite long, we will check afterwards in Lemma 5.5 that the
generators (5.5) and (5.6), (5.7, d = 2) and (5.8, d = 4) are redundant.

Proof. First note that any element in (3) is contained in BCra(k) as they only contract curves not
defined over the ground field k. The list of involutions is from [Isk96, Theorem 2.6]. For (1) and
(2), the claim over a finite field k& follows from Lemma 5.1.

Let ¢» € BCrg(k). There is a decomposition into Sarkisov links ) = ¢, ---¢; as in Proposi-
tion 5.2. We do induction on r, the case r = 0 corresponding to ¢ € Aut(P?). Let » > 1. Then ¢
is a link of type I or II, and its base-point is a base-point of 1, so is of degree > 2. By [Isk96, The-
orem 2.6(i,ii)], ¢1 a link of type I with a base-point of degree 4 or a link of type II of the form
fss, fr7, fee, f33, fo1 or fs1. We are going to look at these cases separately.

(a) If ¢ : P2 ——» X is a link of type I, then it is the the blow-up of a point of degree di = 4;
X /P! is a conic bundle whose fibres are the strict transforms of conics through the four points, and
K)Z{ = 5. Now ¢ is either a link of type II of conic bundles, a link of type III [Isk96, Theorem 2.6(i-
iv)], or an isomorphism. As ¢o¢1 ¢ Aut(P?) by hypothesis (see Proposition 5.2 (1)), ¢2 is a link of
type II of conic bundles or an isomorphism. Moreover, @bqﬁfl = ¢y - Po is well-defined on X (k),
so ¢2 is well-defined on X (k) as well by Remark 5.3. Let r —1 > s > 2 be the maximal index such
that ¢; is an isomorphism over P! or a link of type II over P! without a rational base-point for any
2 < i < s. The map ¢, ---¢; is a birational map over P! from X to a Mori fibre surface X’/IP’I.
We now look at two cases

If ¢s11 is a link of type III, then v/ := ¢s 165 - - - p2¢b1 is as in (2). Note that v = ¢, - - dsio
is as in Proposition 5.2.

If ¢s11 is not a link of type III, then the map v := ¢ s - dahy € BCro(k) is as in (2) and
the map Yv~! = ¢, - -- o411 is as in Proposition 5.2 since the base-point of ¢; is a base-point of
¢r - - Ps+1 by construction.

(b) Suppose that ¢, is a link of type II, i.e. one of the forms fs3, fes, f77, fss, f21, or f51. In
the first four cases it is of the form (5.1) and we proceed by induction with wgbl_l =y pa. If ¢1
is of the form fo; (case (b1)) or f51 (case (b2)), then ¢; ' has a rational base-point p, which is the
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unique base-point of ¢¢f1 = ¢ -+ - 2. Since ¢o¢1 is not an automorphism by hypothesis, p is not
a base-point of ¢o. Then ¢2(p) is the unique rational base-point of wq§1_1q52_ - ¢r - -+ Pp3. It may or
may not be a base-point of ¢s3.

(b1) Suppose that ¢y = for: P2 -—» Q. Then ¢5 is a link of type I (case (b1.1)) or II
[Isk96, Theorem 2.6]. If ¢ is a link of II, then it is of the form f77, fes, f14 (case (b1.2)) or fso
(case (b1.3)) or f3; (case (b1.4)) by [Isk96, Theorem 2.6(ii)]. The option ¢2 = f12 does not occur
since it forces ¢y € Auty(PP?), which is not allowed by hypothesis.

(b1.1) Suppose that ¢2: @ --+ X is a link of type I. Then it is the inverse of blowing-up a point
t of degree 2 [Isk96, Theorem 2.6(i)]. Then K% = 6 and X — P! is a Mori fibre space whose fibres
are the images by ¢2¢1 of conics in P? passing through p and d)l_l(t). Now, ¢3 is an isomorphism
or a link ¢3 of type II or III. We will assume that ¢3 is not an isomorphism, as otherwise we can
assume that ¢4 is not an isomorphism and continue the argument below with ¢4 instead of ¢3.
Since ¢3¢ is not an automorphism by hypothesis, ¢3: X --» X is a link of type II over P!.

(b1.1.i) If ¢35 has a rational base-point ¢, then ¢ = ¢2(p), where p is the base-point of qﬁl_l,
as it is the unique rational base-point of ¢, ---¢3 by hypothesis, see (b). There exists a link
¢h: X' — Q' of type III to a quadric surface . Let ¢’ € X’ be the base-point of ¢3'. Tt is a
rational point, so there exists a link fi2: Q" --+ P? of type II with base-point ¢5(q’). The map
v = fladhpspadr € BCra(k) sends the pencil of conics through p, gbfl(t) onto the pencil of conics
through the base-point of f1_21 and the image by fi2 of the base-point of ¢, ! hence belongs to the
family (1). The map yv=t = ¢, - - - pa) ff21 is a decomposition as in Proposition 5.2 and we can
proceed by induction.

(b1.1.ii) Suppose that ¢3 has no rational base-point. Let 3 < s < r — 1 be the maximal index
such that ¢; is an isomorphism over P! or a link of type II with no rational base-points for all
3 < i < s and consider the map ¢s---¢3: X --» X'. The map ¢sy1 is a link of type III or a
link of type II with a rational base-point. If ¢s11 is a link of type II, we proceed as in (bl.1.i)
with ¢si1¢s- - ¢3 instead of ¢3. If ¢sy1 is a link of type III, then ¢sy1 is a contraction X' — @’
to a quadric surface @’. Recall from (b) that ¢2(p) is the unique rational base-point of ¢, - - - ¢3,
where p is the base-point of ¢1_1. There exists a link fio: Q' --» P? of type II with base-point
(pst1¢s - P3¢2)(p). The map v := fia¢sy1 - ¢1 sends the pencil of conics through p, ;' (¢) onto
the pencil of conics through the base-point of f1_21 and the image by fio of the base-point of <Z>S__&1.
We proceed as in (bl.1.Q).

(b1.2) If ¢o € {fr7, fos}, then ¢2 is, up to an automorphism of @, a birational involution of
Q [Isk96, Theorem 2.6(ii)]. Recall from (b) that ¢! has a rational base-point p € Q, which is the
unique rational base-point of ¢, - - - ¢o. There exists a link fi2: Q --» P? of type II with base-point

#2(p). Then fiagady € BCra(k) and is as in (5.2). Furthermore, ¥(fia¢2¢1)™! = ¢, - ~-<b3f1_21 is
a decomposition as in Proposition 5.2 as the base-point of fﬁl is a base-point of ¢, - - - 3 ff21 by
construction.

If po = faa: Q ——» Q', let fio: Q" --» P? be the link of type II with ¢2(p) as base-point and
¢, ¢’ the base-point of ¢g, 5 1, respectively. Then fio¢o¢; sends the pencil of conics through (;Sl_l(q)
onto the pencil of conics through f12(¢’), so it is a member of (2).

(b1.3) Suppose that ¢ = fs2: Q --» X5, where X5 is a del Pezzo surface of degree 5. Then
@3 is one of fs3, faa, f15, fo5 [Isk96, Theorem 2.6].

If ¢3 € {f33, faa}, then it is a birational self-map of X5 [Isk96, Theorem 2.6(ii)]. Let fi2: Q --»
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P2 be a link of type II with base-point (gb;lgbggbg)(p), where p is the (rational) base-point of qbfl
according to (b). Then v := fiady 'd3¢a¢ is in the family (5.3) and Yv~=! = ¢, - papafry is a
decomposition as in Propostion 5.2.

If ¢35 = f15, then its base-point is ¢ = ¢2(p) by (b) and so ¢3pa¢; is as in (5.4).

If ¢3 = fo5, then it is a map to a quadric surface Q’. Let fia: Q' --» P? be a link of type II
whose base-point is ¢3¢p2(p), where p is the (rational) base-point of gbfl according to (b). Then

fi203p201 € BCra(k) is as in (5.5), and ¥(fiad3pa¢1) ™t = ¢, - -- <Z>4f1_21 is a decomposition as in
Proposition 5.2.

(b1.4) If ¢po = f31: Q --» X¢, then ¢¢1—1¢2—1 = ¢, - - - ¢3 has two rational base-points, namely
¢2(p) and the base-point t of ¢5 1 Furthermore, ¢3 is a link of type II of the form fss, fa, f33, fo2
or fi3 or a link of type III to a quadric surface [Isk96, Theorem 2.6]. The latter forces ¢3¢2 to be
an automorphism, which contradicts our hypothesis, see Proposition 5.2(1).

Suppose that ¢3 = fi13: Xg --» Q' is a link to a quadric surface Q’. As ¢¢1_1<z52_1 = ¢, - - - ¢3 has
exactly two rational base-points, namely ¢2(p) and ¢, and the base-point of ¢ of ¢3 is a base-point
of ¢ -+ ¢3 by hypothesis (see Proposition 5.2(2)), it follows that ¢ = ¢2(p) or ¢ = t. The latter
forces ¢3¢2 to be an automorphism, which contradicts our hypothesis (see Proposition 5.2(1)), so
q = ¢2(p). Let fio: Q' --» P? be a link of type II with base-point ¢3¢2(t). Then v := fiadspagy is
of the form (5.6) and Yv~! = ¢, - - ~¢4f131 is as in Proposition 5.2.

Suppose that ¢3: Xg --+» X is one of fss, faa, f33, f2o. There is a link fi3: X --» Q" of
type II with base-point ¢3(t), and fi2: Q' --» P? a link of type II with base-point fi3¢3p2(p).
Then v := fi12f13¢3 - - - ¢1 is of the form (5.7) and r=! = ¢, - -- ¢4f1_31f1_21 is a decomposition as in
Proposition 5.2. By [Isk96, Theorem 2.6], f55 and fy4 can be taken to be birational involutions.

(b2) Finally, suppose that ¢1 = f51: @ --» X5. Then, as ¢ has no rational base-point by (b),
it is a link of type II and hence of the form f44, f33, fo5 [Isk96, Theorem 2.6]. We proceed as in case
(b1.3) with ¢, instead of ¢3 and construct a map as in (5.8) if ¢po = fy4, d = 3,4, or the inverse of
a map of type (5.4) if ¢o = fos. O

Lemma 5.5. In the list in Lemma 5.4, the generators (5.5) and (5.6), (5.7, d = 2) and (5.8,
d =4) are redundant.

Proof. (5.5): Consider a map ¥ := f12fo5f52f21 as in (5.5) and denote by g5 (resp. ¢2) the base-
point of fso (resp. fo5) and ¢y (resp. ¢5) the base-point of f5_21 (resp. f2_51). We complete the
blow-up diagram of ¢ given in Lemma 5.4 (5.5) as follows:

g5 Xl q
/, qz\\
X6 . X3 32 y X3 y X
5 2 2 5

N e N s
qg\ /f5 f25 q2

Q- x5 2l

Thus 1 sends the pencil of conics through the base-point of fo; and fz_ll(qé) onto the pencil of
conics through the base-point of fﬁl and f12(q2), and is hence in the family (1).

(5.6): Consider a map 9 := fi2f13f31f21 as in (5.6) and denote by ¢2, g3, ¢4, ¢5 the base-point
of fo1, f31, ff31, fol respectively. We complete the blow-up diagram of v given in Lemma 5.4 (5.6)
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as follows:

where p’ = f31(p) and ¢’ = fi3(t). Let r1,r2 (resp. si,S2,53) be the geometric components of ¢
(resp. fa1'(g3)). On Xy, there are exactly sixteen (—1)-curves over the algebraic closure k of k:

e The exceptional divisor of rq,r9; they make up an orbit of length 2.

e The exceptional divisor of s1, s9, s3; they make up an orbit of length 3.

e The strict transform of the conic through ry, 79, s1, s2, 3, which is rational.

e The strict transform of the line through 71, 9, which is rational.

e The strict transform of the line through s;, sj, ¢ # j; they make up an orbit of length 3.

e The strict transform of the line through r;,s;; they make up an orbit of length 6 whose
members are not disjoint.

It follows that the blow-up of g2, ¢5 is redundant and ¢ = f33.

(5.7, d = 2): Consider a map v := fi2fi3f22/f31f21 as in (5.7) and denote by g3, g2, ¢, ¢4 the
base-points of f31, fa2, f2_21, f1_31 respectively. We complete the blow-up of ¢ given in Lemma 5.4 (5.7)
as follows:

!

q3

X & X3 X}
4 v q/\A / /
X7 @ X5 . Xy q/2 X5 .| X7
t 2 2t 3
]PQ/ A \X/ \X’/ Ny \IPQ
T @ Thn 0 T TR T @ e

where p’ = (f13f22f31)(p) and ' = fao(t). Thus ¢ belongs to the family (1).

(5.8, d = 4): Consider a map ¢ := fi5f1af51 as in (5.8). Let ¢4, ¢}, g5, ¢5 be the base-point of
faa, f;ll, fs1, f15, respectively. We complete the blow-up of ¥ given in Lemma 5.4 (5.8) as follows,
where Y is the blow-up of X7 at the point p, and is not a del Pezzo surface:

where p' = f44(p). With Lemma 5.1, we obtain that ¢ is in the family (2). O

Proof of Theorem 1.4. We compare the list of generators in [Isk91] contained in BCrg(k) with the
list of generators in Lemma 5.4, and see that the two lists coincide, if we replace “preserving the
pencil of conics through a point of degree 4 (resp. two points of degree 2)” by “sending the pencil
of conics trough a point of degree 4 (resp. two points of degree 2) onto a pencil of conics of the
same kind” in [Isk91]:
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Lemma 54 | (1) | (2) | (5.1) | (52) | (53)
[Isk91] A11 | (15),(20) | (7),(8),(19"),(15™") | (10),(11) | (12),(13)
Lemma 5.4 | (5.4) | (5.5) | (5.6) | (5 7) | (5 8)
[Isk91] AT | (14) | (19) | (1 ,(117),(18) | (2

while type (9), (9), (117), (15%), (15”), (19) from [Isk91] are not contained in BCra(k). Note that
(5.6) is covered by (19’) by Lemma 5.5. O

5.2 Revisiting the parity problem

Now let us prove that all generators given in Lemma 5.4 induce even permutations when the ground
field is k = Fom for m > 2.

5.2.1 Parities of f33, f77, and fsg in (5.1) Up to automorphisms of P2, the maps fr7 and fsg
are Geiser and Bertini involutions respectively given by equations (4.4) and (4.5). By Theorem 4.5,
they induce even permutations on IP’2(IFq) for ¢ = 2™ > 4. On the other hand, the map f33 is a
quadratic transformation, that is, a Cremona map defined by the linear system of conics passing
through three non-collinear points in P?.

Lemma 5.6. Let k be any field, f € BCra(k) be a quadratic transformation and T € Cra(k) be the
standard quadratic involution [x : vy : z] — [yz : xz : zy].

(1) There exists g € PGL3(k) such that the composition gf is involutive.
(2) If f is involutive, then there exists h € PGL3(k) such that 7 = h=!fh.

Proof. There exists an extension k'/k of degree 3 and a generator o € Gal(k’/k) = Z/37Z such that
Bs(f) = {a,a",a”2} for some a € P2(K).

Since f is given by blowing up {a,a?, a”Q} and then contracting the three lines passing through
these points, the indeterminacy locus of f~! is a Galois orbit for the same extension k’/k, namely,

Bs(ffl) = {b, b",b"z} for some b€ ]P’Z(k’).
For every point = = [z, 21, 72] € P2, we define

2

To TG T
P o 2

ggj — 561 $1 ZEl
o 2

i) .7}2 .7,‘2

to be a linear map that sends the coordinate points [1: 0 : 0], [0:1:0], [0: O 1] to the Galois
orbit points x, z°, x"Q, respectively. Note that g, is invertible when x, ¢ :L'" are not collinear.
Let g = gag, 1 which can be easily verified to be defined over k. Then g f is involutive as the
indeterminacy loci of this map and its inverse both coincide with {a,a’, a”2}. This proves (1).
Assume that f is involutive, or equivalently, that Bs(f) = {a,a?, a"Q} = Bs(f™!). Let h = g,.
Then the indeterminacy loci of h~! fh and its inverse both consist of the three coordinate points.
This implies that 7 = h~! fh and thus proves (2). O
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Recall that, for every n > 1, the standard involution 7: P™ --» P" is defined by

T(xo: - :ay))=[r0:+: 7, where 7= H:):j.
J#i
In terms of the affine coordinates (&1, ...,&,) where & = x;/x¢, this map is written as

(€1, &) = (&7 6.

From this expression, one can deduce that the fixed locus of 7 consists of points of the form
[£1 : --- : £1]. Note that these are the same point in characteristic 2. In the following, we
prove a general fact about bijective Cremona transformations of P" that are conjugate to 7 by
automorphisms, then use it to compute the parity induced by fs3.

Lemma 5.7. Letn > 1, k =Fom, and f € BCr,, (k) be an involutive quadratic transformation. If
there exists h € PGLyy1(k) such that h=' fh equals the standard involution T, then the permutation
induced by f on P"(k) is odd when m =1 and even when m > 2.

Proof. The relation 7 = h~! fh implies that a point = € P*(k) is fixed by 7 if and only if h(x) is
fixed by f. Because the fixed locus of 7 consists of a single point [1 : --- : 1], the fixed locus of f

consists of a single point y € P"(k) as well. If y ¢ P"(k), then f acts on P"(k) as an involution
without a fixed point. This implies that the number of rational points

[P (k)| = [P"(Fom)| = (2™)" + -+ 2™+ 1
is even, contradiction. Hence y € P"(k), and the action of f on P"(k) is a composition of
1 n 1 myn m
SIPM(R) — 1) = (@) 4o+ 2™)

many transpositions. The last integer is odd if m = 1 and even if m > 2, so the result follows. [

Proposition 5.8. Let k = Fom with m > 2. Assume that f € BCra(k) is of type fs3. Then f acts
on P2(k) as an even permutation.

Proof. By Lemma 5.6, there exists g € PGL3(k) and h € PGL3(k) such that h='gfh is the standard
quadratic involution. It follows from Lemma 5.7 that gf acts on P?(k) as an even permutation.
Since g acts on P?(k) evenly by Proposition 3.5, the result follows. O

5.2.2 Parities of the generators (5.2) to (5.8) Any birational map f € BCry(k) which
over k is a Geiser involution (resp. Bertini involution) up to an element of PGL3(k) lifts to an
automorphism of a del Pezzo surface of degree 2 (resp. degree 1). In fact, the geometric description
of f is analogous to the one of the Geiser involution (resp. Bertini involution) over k and to the
Geiser involution (resp. Bertini involution) over k with only one base-point. It yields directly that
f lifts to an automorphism of a del Pezzo surface of degree 2 (resp. degree 1). Hence, f induces
an even permutation by Theorem 4.5.

Generator (5.2), (5.3), or (5.7, d = 4,5): Let f be the corresponding birational map. Note that
we can take fgg in the respective generator to be an involution, so that geometrically fyq is either a
Geiser or Bertini involution, which induces an even permutation. Upon applying an automorphism
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of P? or Q, we can assume that f is conjugate to fzq. Hence, f also induces an even permutation
by Theorem 1.2.

Generator (5.4): Let ga be a point of degree 2 and g5 a point of degree 5, both in general
positions. Over k there are exactly two cubic curves passing through gs, go with a double point at
one of the points of g2, and we call Cs its orbit over k. Similarly, there are exactly five cubic curves
with a double point at one of the points of g5, and we call C5 its orbit over k. We complete the
blow-up diagram of f = fi5fs2f21. By abuse of notation we write p for fo1(L), f52(p) and their
image in X3. In X3 there are exactly two curves which over k are orbits of disjoint (—1)-curves of
length 2 and 5, namely the strict transforms of Cy and C5, denoted by C5 and Cs.

X X3 = 4 =

C:

@, P 6, \C'z P, N
P2 BRI Q BELCEN X5 REAEEN P2

The blow-up diagram of f shows that f has the same geometric description as a Geiser involution
over k with base-points g2 and g5. Thus, up to composition by an element of PGL3(k), f lifts to
an automorphism of the del Pezzo surface Xo. Now Theorem 4.5 and Proposition 3.5 imply that f
induces en even permutation over k = [Fy,q = 2™ > 4.
Generator (5.5) By Lemma 5.5, this map is, up to an automorphism of P?, a member of the
family (1) and hence induces an even permutation for k = Fam, m > 2 by Corollary 4.3.
Generator (5.6) By Lemma 5.5, this generator is equal to fs3, so is treated in Proposition 5.8.
Generator (5.7, d = 3) We can complete the blow-up diagram as in Lemma 5.5 to get

q’
é/ a3 X2 3 Xé”
R e,
X7 b3 X5 X3 p/3 , X5 | X7
SN g N N e N SN
2 > () ---—--—-—- > Xg ———-—-- > A > L S > P?
P fa1 f31 Xo f33 X6 f13 Q fi2 P

where g3, p3, ¢4, ps are the base-points of fsy, fas, fis, f:%l respectively. Hence, the composition
f13f33 f31 is geometrically a Geiser involution. Hence the permutation induced on @ --+ @) is even.
Since f = fiafi3f33f31f21 is conjugate to fi3f33f31 (upon applying automorphism of P2?), f also
induces an even permutation by Theorem 1.2.

Generator (5.8) The case d = 4 follows from Lemma 5.5. If d = 3, we have the blow-up diagram,

X1
P
X4 X, % Xy,
a5 P g3 a3 p a5

where ¢3, 5, 5, ¢5 are the base-points of f33, f3_31, f51, fis respectively. Hence, f = fi5f33f51 is a
Bertini involution, so f induces an even permutation.
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5.2.3 Parity of the generator fs in (5.1) We finally prove that the remaining generator,
namely fes: P? --» P2, induces a permutation of even parity on P?(Fgm) for m > 2.

Lemma 5.9 ([LS21, Lemma 4.20]). Let p1,...,ps be a point of degree 6 in P? over F, such that
P1s ..., pe are in general position. Then at least ¢> + q rational points of P? are in general position
with P1y.--,D6-

Proof. Let o be the generator of Gal(F/F,;) and suppose that ol(p1) = p; for i = 1,...,6. Let
L;;j be the line through p;, p;, and let r be a rational point of P? that is not on the intersection of
L14, Los, L3g. The lines through the p1, ..., pg make up three orbits, namely the orbit of Lio, L13
and Li4. We check that r is not contained in one of these three lines, from which it follows that
r is not on any of the L;;. If r € Lig, then Log = o(Li2) contains r,py, so Lgg = Li2, which is
impossible. If r € L3, then 7, p3 are both contained in 0?(L13) = Lss, which is again impossible. If
r € Ly4, then r is also contained in o(L14) = Los and 0?(L14) = L3g, which contradicts our choice
of r. Finally, if p1,..,ps,r lie on a conic C, then o(C) and C contain 5 common points and hence
are equal, which is impossible. ]

Lemma 5.10. Suppose p1,...,ps make up a point of degree 6 in P2 over F, such that no three are
collinear and let L be the line through p1 and pa. Under the action of Gal(F s /IF,), there is at most
one point r € L whose orbit in P? is of length 2. In this case, r and its Galois conjugate form the
only point of degree 2 contained in the orbit of L.

Proof. Consider i as an integer modulo 6 and let
e o to be the generator of Gal(Fs/F,) such that o(p1) = pi41, and
® Ly, to be the line through p; and p;y1 so that L = L, ,,.

Suppose that there exists r € Ly, such that {r,(r)} form a point of degree 2 in P2. Then
7€ Lpipy N Lpsp, N Lpsps  and  0(r) € Lpyps N Lp,ps N Lipg py -

In particular, {r,o(r)} is contained in the orbit of Ly, ,,. If L, ,, contains another point s whose
orbit is of length 2. Then Ly, , N Ly,p, contains both r and s, thus L,,,, = Lp,p,, which contradicts
the hypothesis that no three of the p;’s are collinear. O

Lemma 5.11. Let C C P? be a singular cubic over an arbitrary field k. Then C is rational, that
is, its normalization C' is isomorphic to P' over k.

Proof. By Chatelet’s theorem, C =~ P! over k if and only if C contains a k-point. This is always
the case when C is a cuspidal cubic. Suppose that C' is a nodal cubic and let p € C be the node.
The linear system of lines passing through p is isomorphic to P! over k. Note that [P'(k)| > 3 for
any field k. Since the tangent cone at p contributes at most two elements to P!(k), there exists a
line ¢ € P*(k) such that £NC = {p,p'} for some k-point p’ # p. The point p’ induces a k-point on
the normalization C, so the proof is done. O

Lemma 5.12. Let ¢ = 2™ > 2 and suppose pi, . ..,ps make up a point of degree 6 in P? over I,
contained in a singular cubic C'. Then there are at least %(q2 —2q —2) points of degree 2 on C' that
are not on a conic with p1,pa, P4, Ps-
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Proof. There is an involution ¢ on C' which maps a general z € C(F,) to the residual intersection of
the conic passing through p1, p2, p4, p5, © with C. Let z € C be the singular point and 7: C = C be
the normalization. Then ¢ lifts to an involution & on C which preserves the set 7—1(z) C C. Notice
that C =~ P! by Lemma 5.11. Then an elementary computation shows that o, up to conjugation
over Fg6, acts on C as x — x + a for some a € Fs.

If C is a nodal cubic, the total number of points of degree 2 on C'is given by

(¢®—q) if 771(2) consists of two F,-points,

iwmw\amn={

[T e

(> —q—2) if 771(2) is a point of degree 2 over F,.

If C is a cuspidal cubic, the total number of points of degree 2 on C' is given by

1 1,
SICEL)\ O = 5 o).

Pick any z € C(F;2) \ C(Fy). Then z and its conjugate x? lie on a conic with p1,p2,ps, ps if and

only if 7 = x+a. The last equation has at most ¢ distinct solutions in x, so the number of degree-2

points on C' lying on a conic with pi, ps, p4, p5 is at most %q. As a consequence, at least

1, 11,
(P —qg—2)— —qg= (2 —2q—2
2(q q—2) 54 2(q q—2)

many points of degree 2 on C' do not lie on a conic with p1, p2, p4, ps. 0

Lemma 5.13. Let ¢ = 2™ > 4. Let p be a point of degree 6 in P? over Fy such that its blow-up is
a del Pezzo surface. Then there exists at least one point r of degree 2 in P? such that the blow-up
at p,r is still a del Pezzo surface (i.e. p,r are in general position).

Proof. Choose a generator o for Gal(FF,6/IF,) and let p1,...,ps be the orbit making up p such that
o(pi) = pi+1 for each ¢ modulo 6. In the following, we prove that there exists a point r = {ry,ra}
of degree 2 in P? such that

e no three of the eight points p1,...,pgs, 71,72 are on a line,
e 1o six of them are on a conic, and
e 1o eight of them are on a nodal cubic with one being the double point.

Let » = {r1,72} be a point of degree 2 in P? such that r; (resp. 73) is not collinear with any
two consecutive p;’s. Let L;; be the line through p;,p;. The lines through the p1,...,ps make up
three orbits, namely the orbit of Lis, L1z and Ly4. By Lemma 5.10 there is at most one point of
degree 2 in the orbit of Li2, and we choose r to be outside of the orbit of Li2. Note that the line
through r is rational, so it cannot contain any p;. Suppose that 71 € Li3. Then r; € 0?(L13) = L3s
and thus 0(L13) N L13 contains p3,r;. This implies o(L13) = L13, which is against our hypothesis.
Suppose that 71 € Lis. Then ro € 03(L14) = L14 and hence L1y = 03(L14) is the line through 7,
which is impossible as we have already explained.

Suppose that pi,...,p4, 71,72 are on a conic C. Then o(C) N C contains pa, ps, p4, r1, T2, hence
C = 0(C), that is, C is invariant under Gal(F/F,). This implies that C' contains p, which is
against our hypothesis. Suppose that pi,...,ps,71 are on a conic C. Then ¢%(C) passes through
P3, P4, P5, P6, P1, 1. We have C N o?(C) contains pr, p3, pa, ps, 71 and hence 0?(C) = C, which is
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impossible as C does not contain pg. To finish the conic case, recall from Lemma 5.9 that there is
a rational point s in P? such that s, p1,...,pe are in general position. There exists a singular cubic
containing p1, ..., ps with s its singular point. By Lemma 5.12, there are at least %(q2 —-2¢—2)>3
points of degree 2 not on a conic with p1, po, ps, p5. We can choose r1, 73 to be one of them.
Finally, if there is a nodal cubic C through the eight points p1,...,ps, 1,72 with one of them
its double point, then o(C) # C and C - o(C) > 10, which is impossible. O

Remark 5.14. Let p,r be points in P? of degree 6 and 2 such that their blow-up is a del Pezzo
surface. On can describe the Bertini involution on this surface in a very nice way: Let S be the
blow-up of p and view it as cubic surface in P2>. We now can view r as a point of P3, and denote by
L C P? the line passing through 7. We claim that L is not a (—1)-curve on S. Indeed, the 27 lines
on S are the six exceptional divisors of the components p1,...,ps of p, the 15 strict transforms of
the lines through two of the p;, and the 6 strict transforms of the conics passing through five of the
p;- None of these curves is defined over [, while L is defined over F,. So, the line L intersects S
transversely in 7 and a rational point s. The planes in P? containing L induces an elliptic fibration
on S, or more precisely, on the blow-up of S at r, s, where the exceptional curve of r defines a zero
section. In particular, the Bertini involution can be defined as it is the multiplication by —1 using
the group law on the generic fiber.

Proposition 5.15 ([LS21, Lemma 4.12 (2)]). Assume that m > 2 and g = 2™ > 4. Then any link
fe6: P% —-» P? induces an even permutation on P%(F,).

Proof. Let p be the base-point of degree 6 of fgs. By Lemma 5.13, there exists a point r of degree 2
such that the blow-up at r, p is a del Pezzo surface T'. Denote respectively by Ey, Es and E, ..., Ej
the geometric components of their exceptional divisors. Let L be the pullback of the class of a line
in P2, Then the only orbits of (—1)-curves in T of length at most 8 with pairwise disjoint members
are as follows:

F = {El,EQ},
E :={Ei,...,Eg},
¢ ZZ{L—El—EQ},

B B '
C = {2L Zje{l,.“,ﬁ}\{i} Ea

¢:1,...,6},

F o= {4L 2y 2By 20 =Y B 1,...,6},
— 6 /

D={s0-Bi-E-2()_ E)}.
P— 6 / > —

S = {6L—3Ei—2E3_i—2<§ jzlEj) ‘1_1,2},

I _ _ _ r_ ! —
S = {GL 9F), — 2Ey — 3E] 2(2],6{17”“6}\{1_}EJ> i 1,...,6}.

Drawing all possible blow-downs from 7" over F,, we obtain the following commutative diagram,
where the arrows are denoted by the set of (—1)-curves they contract.
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P2 o P2
N
N
i 2 , ig
B N
Q NG Y1 Yll Ylll *;

T iEA/C E o

]P>2 7777777777777777 > P2
fe6

The Bertini involution 5 € Aut(T) acts on the set {E,E’,¢,C,F,D,S,S’}, and it does not
preserve any of them. It is thus a rotation of order 2, and it exchanges the rational curves ¢, D.
So, f3 is the birational map corresponding to the path of arrows from the lower left P? to the upper
right P2, that is,

B=cory,togorofes for some ¢ & PGL3(F,).

By Proposition 3.5, € induces even parity on P?(F,). By Theorem 4.5, the automorphism 3 induces
an even permutation on T'(F,), and by Theorem 1.2, it induces an even permutation on P?(F,).
The map 7, ! 0 g o7y is a generator of BCra(F,) of the form (5.2), and we showed in Section 5.2.2
that it induces an even permutation on P? (Fq). As a consequence, fgs induces an even permutation
on P?(F,). O

The Bertini involution acting on the commutative diagram in the above proof is a tool used in
[LS21] to show that the Cremona group of rank 2 over an arbitrary perfect field is generated by
involutions, where it is called central symmetry [LS21, Corollary 4.4].

Proof of Theorem 1.1. By Corollary 4.3, the results proved in §5.2.1 and §5.2.2, and Proposi-
tion 5.15, it follows that all generators of BCr(FF,) induce even permutations on P?(F,). O

6 Basic properties on the bijective Cremona group

In this section, we prove that the group BCra(k) is not finitely generated in most situations and is
of infinite index as a subgroup of Cra(k). We also show that BCra(k) is not a normal subgroup of
Cra(k), and discuss whether the kernel of the homomorphism BCr,, (k) — Sym(P"(k)) is a normal
subgroup of Cry (k) or not.

6.1 Non-finite generation

The Cremona group Cro(k) itself is not finitely-generated over any field k. (See [Canl2, Proposi-
tion 3.3] and [Canl8, Proposition 3.6].) Here we prove that the same property holds for BCra(k)
under the situations described below.

Proposition 6.1. Let k be a field and let k® be a separable closure. The group BCro(k) is not
finitely generated provided that

(1) the field k is uncountable,
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(2) the degree [k® : k| is finite, or
(3) the degree [k* : k] is infinite and k admits a separable quadratic extension T'/k.

We will prove the three statements in Proposition 6.1 separately. The proofs for (1) and (2)
will come first as they are relatively shorter comparing to (3).

Proof of Proposition 6.1 (1). If k is uncountable, then PGL3(k) C BCry(k) is uncountable, thus
BCra(k) cannot be a finitely generated group. (This proof was pointed out to us by Zinovy Reich-
stein.) O

Proof of Proposition 6.1 (2). Let ko be the prime field of k, which is either Q or [F,, depending on
the characteristic. For each f € BCra(k), let Bs(f) C P? denote the base scheme of f, and let k¢ /ko
be the minimal field extension over which every geometric point of Bs(f) and Bs(f~!) (including
the infinitely near ones) is defined. Note that f is defined over k; by definition, and k; may not
contain k in general.

Assume that BCra(k) is generated by a finite subset I' and let kr be the composite of ks for
all f € I'. Since every g € BCry(k) is a composition of elements of I', we have k; C kp. For every
a € k, the map g: [z : y : 2] = [z 4+ ay : y : z]| belongs to PGL3(k), and thus BCra(k). Hence
kg = ko(a) C kp. This implies k¥ C kr as a € k is arbitrary. Now we obtain a tower of field
extensions

ko C k C kr

where kr is finitely-generated over ko and [kr : k] is finite. By the Artin-Tate lemma [AT51, Theo-
rem 1], k is finitely-generated over ko. Hence [k : ko] is finite. (See, e.g., [AM69, Proposition 7.9].)
As [k® : K] is finite by hypothesis, we conclude that [k® : k¢ is finite, contradiction. O

When k°/k is an infinite extension, our strategy is to construct a sequence of elements in
BCra(k) whose indeterminacy loci contain points of arbitrarily large degrees. The construction
requires careful selections of the candidates for the indeterminacy points in P2. Let us start with
a few lemmas that help us deal with the positioning problem.

Lemma 6.2. Suppose that k is a field with [k* : k] = oo and let T/k be a separable quadratic
extension. Then there exists four points {a1,as,by,ba} in P2(T) such that {a1,as} and {by,bs}
form Gal(T/k)-orbits, and no three of them are collinear.

Proof. Since T/k is separable, there exists a point in P2 of degree 2 that is reduced: we may take
ap =Ja:1:0] and az = [@' : 1: 0], where a,a’ € T \ k are the distinct roots of an irreducible
quadratic polynomial over k. Take 3 C P? to be any k-line not spanned by a; and as. Since 3 = P!
over k, we can find a pair of Galois-conjugate points {b;, b2} on § in a similar way as before. Then
{a1,as} and {b1, by} satisfy the requirements. O

As a consequence of Lemma 6.2, there exists a unique conic C, through {a1,as, by, be,x} for
every z € P2\ {a1, as, b1, b}, which degenerates if and only if « lies on the line spanned by any two
of the four points [BKT08, Theorem 1]. All but three of these conics are smooth, and the three
degenerate ones are

Co = span(ay, az) Uspan(by, ba),
C = span(aq, b1) Uspan(asg, b2), (6.1)
Cy = span(ay, b2) Uspan(ag, by).
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Note that these curves are defined over k.

Lemma 6.3. Retain the notation from Lemma 6.2. Let {1 C P? be a line over T passing through ay,
but not ag, by, by, and let Uy be its Gal(T'/k)-conjugate. Let Ko/k be a non-trivial Galois extension
different from T and let K = KoT be the composite field. Then there exists a closed point x € {4
defined over K/k but not over any proper subfield, such that

(1) Let r =[K : T]. Then r of the Gal(K/k)-conjugates of x lie on {1 (resp. {2).

(2) Let x = x1,...,x9, be the Gal(K/k)-conjugates of x. For each 1 < i < 2r, the unique conic
passing through {ai,as,b1,be,z;} is smooth.

(3) If x4, x5 are any two distinct conjugates of x, the six points a1, az, b1, ba, x;, x; do not lie on
a conic.

Proof. Consider the P! that parametrizes the conics passing through ap, as, by, by. By the primitive
element theorem, K = k(z) for some z € K, which can be seen as a K-point z € P1(K) = KU{pt}.
Let {#z = 21, ..., z2,} be the Galois orbit of z in the base P!, and let Fy, ..., Fy, be the conics in P?
corresponding to these orbit points. Here we index the points in a way that the action of Gal(K/T)
preserves the parities of the indices. In particular, the conic F; with odd i (resp. even i) intersects
{1 (resp. f3) at aj (resp. at ag), and it cannot be tangent to ¢; (resp. to ¢3) since otherwise it
would be defined over T'.

Let x; be the residual intersection of F; with ¢; (resp. with ¢3) for odd i (resp. for even i)
and let x = 1. By construction, these points are all distinct, form an orbit under the action of
Gal(K/k), and equally distribute on /3 and Iz, which proves (1). Property (2) holds since each
F; is defined over K but not over any proper subfield, while the three degenerate conics Cp, Cf,
Cy are defined over k. Finally, if the set {a1,as,b1,bo, x;, 2} where ¢ # j lies on a conic C, then
C = F; = Fj, which contradicts the construction. This proves (3). O

Lemma 6.4. Retain the notation from Lemma 6.5. Then there exists f € BCra(k) whose indeter-
minacy locus contains a point of degree [K : k| over k.

Proof. The construction is accomplished via the following steps:

(1) Pick four points a1, az, b1, by € P? as in Lemma 6.2. blow-up P? along {a1,az, b1, ba} to obtain
a conic bundle C — P! fibered in the conics passing through {ai, as, b1, b2}. Recall that only
three of the fibers are degenerate, namely, C, C1, Cs defined in (6.1). The exceptional divisors
A1, Ao, By, By over a1, aq, by, ba, respectively, form four sections of the bundle. Moreover, the
Gal(K/k)-action exchanges the irreducible components of the two singular fibres Cy and Cs.

(2) Let x be the point obtained in Lemma 6.3 and consider it as a point on C. blow-up C along
the Gal(K/k)-orbit of = to obtain a map X — C. The strict transform of the fibers of
C — P! containing z is a Gal(K/k)-orbit of (—1)-curves Fi,..., Fy, by Lemma 6.3(2). Using
Castelnuovo’s contractibility criterion in positive characteristics [Bad01, Theorem 3.30], blow
down F1, ..., Fy, to get X — C’, and C’ is a conic fibration over P!. The induced birational
map ¢: C --+ C' preserves the conic fibrations.

(3) The birational map ¢ is regular around the singular fibers of C — P!, so ¢(Cj), #(C1), $(Cs)
are the singular fibres of C' and the Gal(K/k)-action exchanges the irreducible components of
¢(C1) and ¢(Cy). Hence K2 = 5. Sine C’ has a k-point, it follows from [Sch20, Lemma 6.5]
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that there is a birational morphism C’ — P? contracting a Gal(K/k)-orbit O of four points.
Since C" — P! has three singular fibres, one of which has Gal(K/k)-invariant components, it
follows that O is the union of two Gal(K/k)-orbits {a}, ab} and {b},5}.

The desired Cremona map f is then obtained from the composition

X
contracting El"s/ \C‘ontracting Fy’s
¢ /
C———-C (6.2)

The map f belongs to Cry(k) since it is composed from maps defined over k. As for the indetermi-
nacy loci, we have

BS(f) = {a17a27b17b27:1:17 v 7x21"}7 Bs(fil) = {a/17a/27bllvb/27y17 .. waT}

where 41, ...,y are the images of F1, ..., F, in the final P?. This shows that f € BCry(k), and
Bs(f) contains the Gal(K/k)-orbit {z1,...,xe,} of size 2r = [K : k. O

Proof of Proposition 6.1 (3). Let k:} /k be the be the minimal field extension over which every
geometric point of Bs(f) and Bs(f~!) (including the infinitely near ones) is defined. If BCra(k)
is finitely-generated by fi, fa,..., fr, then for each f € BCry(k), k} would be contained in the
composite of k}l, ey k}w and so

Ky k] < H[k}i k],

which implies that the set of integers {[k} : k] : f € BCra(k)} is bounded. The assumption
[k® : k] = co guarantees that k admits a Galois extension K¢/k such that K = KT has arbitrarily
large degree d over k. By Lemma 6.4, there exists h € BCry(k) whose indeterminacy locus contains
a point of degree d over k and hence d < [k}, : k|, contradiction. O

6.2 The infinite index

The construction of the Cremona maps in Lemma 6.4 can be used to show that BCra(k) is of
infinite index as a subgroup of Cry(k). Before proving this statement, let us remark that the
transformation between conic bundles C --» C’ in the proof of Lemma 6.4 is a Sarkisov link of
type II. The discovery of the induced Cremona maps can date back to 1877 by Ruffini, whose
homaloidal type, as computed in the following lemma, is documented in [Hud24, page 234].

Lemma 6.5. Consider the Cremona map (6.2). Let M € Pic(X) be the pullback of a line class
from the right P%2. Then

n
M=(2n+1)L -2 E;—n(A + Ay + Bi + By)
=1

where n = 2r is the cardinality of the large Galois orbit.
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Proof. The fiber class F' corresponds to a conic in the right P? passing through af, a, b}, b}, so the
class in Pic(X) corresponding to a conic from the right P? equals

OM =F + Ay + Ay + B{ + By=F + Ay + Ay + B1 + By + 2nF — 4> E;

=1
n
=(@2n+1)2L - A — Ay — B — By) —4) E;
=1
n
= (4n+2)L —2n(A1 + A2+ Bi+ By) — 4> E;.
=1
Divide both sides by 2 to get the result. O

Proposition 6.6. Let k be any field. Then BCra(k) C Cra(k) is a subgroup of infinite indez.

Proof. First assume that k is infinite. Let us construct inductively an infinite sequence of maps
f1, f2, f3,... in Cra(k) as follows: Let fi be the identity map. Suppose that f; is constructed and
let U C P? be the open subset such that f;|;y is an isomorphism. As k is infinite, we can take three
non-collinear points {a,b,c} C U(k). Define f;11 := 7 o f; where 7 is the quadratic transformation
with Bs(7) = {fi(a), fi(b), fi(c)}. Then we have

[Bs(firn)(k)| > [Bs(fi)] + 3.

Note that the left cosets fiBCra(k), foBCra(k),... are all pairwise disjoint because the elements
in BCry(k) cannot increase the indeterminacy points of f; in P?(k).

Now assume that k = I, is a finite field. The same idea as in the proof of Lemma 6.2 produces
four points ai,as, by, by € ]P’Q(Fq) such that no three are collinear. The main construction of the
Cremona map carried out in Lemma 6.4 still works, and for each even integer n = 2r, we get
a map f, € Cry(F,) such that Bs(f,) supports at a1, a2,b,bs with multiplicity 2r (Lemma 6.5).
We obtain an infinite sequence {f1, f2, f3,...} of elements in Cry(F,) such that the left cosets
fiBCra(Fy), faBCra(Fy),. .. are all pairwise disjoint. Indeed, for any g € BCra(k) the multiplicity
of f.g at a1, a9, b1, by is equal to 2r. O

6.3 On the non-normality

Over an algebraically closed field k, Blanc [Blal0, Theorem 4.2] proved that Cra(k) has no non-
trivial closed normal subgroup with respect to its natural topology. On the other hand, Cantat
and Lamy [CL13] proved that Cry(k) is not simple as an abstract group, and Lonjou generalized
this result to any field & [Lon16]. Here we prove that BCra(k) is not a normal subgroup of Cra(k).
For the kernel of the homomorphism BCr, (k) — Sym(P"(k)), we prove that it is not a normal
subgroup of Cr, (k) when k is finite and that it is trivial when k is infinite.

Proposition 6.7. For any field k, the group BCra(k) is not a normal subgroup of Cra(k).

Proof. Let f € Cra(k) be the standard quadratic involution f : [z : y : 2] — [yz : za : zy] and
g € PGL3(k) C BCry(k) be any map sending [1:0:0] to [1:1:1]. Then f~'gf contracts the line
{z = 0} to the point

Flaf(0:y:2) =flg(1:0:0)=fY([1:1:1])=[1:1:1].
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Therefore, (f~'gf)™' = f~1g~'f possesses a k-point in its indeterminacy locus, and thus cannot
be an element of BCry(k). O

Proposition 6.8. Let k be a finite field. Then the kernel of BCry (k) — Sym(P™(k)), where n > 2,
is not a normal subgroup of Cry, (k).

Proof. Let N denote the kernel of BCr, (k) — Sym(P%(k)). Suppose, to the contrary, that N is a
normal subgroup of Cry, (k). Let ¢ € k[za,...,2,] be a linear homogeneous polynomial. Consider
the birational map
frlwo: - xp) = (28 w1l 2ozt - 1 2oLy
and its inverse
fl o s an] = [fwo s x1wo w2l syl
A straightforward computation shows that both f and f~! contract two and only two hypersurfaces,

namely, the hyperplanes {zo = 0} and {¢ = 0}. Moreover, f and f~!, respectively, contracts the
union {zg = 0} U {¢ =0} onto

Bs(f H={f=20=0}U{f=2,=0}, Bs(f)={zo=21=0}U{xg=1¢=0}.
For every g € N, we claim that
g({zo = 0} U {£ = 0}) = {wo = 0} U {£ = 0}. (6.3)

First note that g({xo = 0} U{¢ = 0}) is a hypersurface due to the facts that g is bijective and that
{zo = 0}U{¢ = 0} contains k-points. Since N is normal, we have fg = hf for some h € N. Suppose
that g({xzo = 0} U {¢ = 0}) is not contained in {zg = 0} U{¢ =0}. Then fg({zo =0} U{l =0}) is
a hypersurface while hf({zo = 0} U{¢ = 0}) is not, contradiction. Therefore, we have

g({wo =0} U{l =0}) C {xo = 0} U{l =0}

1

The same argument with g replaced by ¢~ implies that

{20 =0} U{l =0} C g({zo =0} U{¢=0}).

Hence (6.3) follows. By applying the same argument with f replaced by afa~! for any o € Aut(P"),
we conclude that (6.3) holds for any union of two distinct rational hyperplanes. This implies that
g preserves any rational hyperplane of P".

Write g € N as g([xo : --+ : xp]) = [go : -+ : gn] where g; € Ek[xo,...,z,] are homogeneous
polynomials without a common factor. As g preserves each coordinate hyperplane {z; = 0}, we
have g; = z;g; for some g/ € k[zg,...,7n]. The fact that g=! also preserves each {z; = 0} then

implies that

97 ({zi = 0}) = {g; = 0} = {ig} = 0} = {z; = 0}
hence z;g} = a;x; for some a; € k*. Therefore g} = a; € k* for all ¢ and so g is linear. Since g € N,
it fixes [P*"(k)| = ¢" + ¢ ' +---+q+1>n+2 points in P", and thus equal to the identity map.
We conclude that N = {Id}, which is a contradiction because BCry, (k) is infinite by Lemma 6.4
and N is never trivial as it is of finite index in BCry, (k). O

Proposition 6.9. If k is an infinite field, then BCr, (k) — Sym(P"(k)), where n > 1, is injective.

Proof. Every element in the kernel of BCr, (k) — Sym(P"(k)) fixes P"(k), which is a Zariski dense
subset of P™. This forces such an element to be the identity map. O
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