Impact statement

This article provides a contemporary reimagination
of the classic materials tetrahedron by augmenting
it with parallel notions from information science.
Since the materials fetrahedron (processing, struc-
ture, properties, performance) made ifs first debut,
advances in computational and informational tools
have transformed the landscape and outlook of
materials research and development. Drawing inspi-
ration from the notion of a digital twin, the materi-
als—information twin tetrahedra (MITT) framework
captures a holistic perspective of materials science
and engineering in the presence of modern digital
tools and infrastructures. This high-level framework
incorporates sustainability and FAIR data principles
(Findable, Accessible, Interoperable, Reusable) — fac-
tors that recognize how systems impact and inferact
with other systems—in addition to the data and
information flows that play a pivotal role in knowl-

edge generation. The goal of the MITT framework is
to give stakeholders from academia, industry, and
government a communication tool for focusing efforts
around the design, development, and deployment of
materials in the years ahead.
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For over three decades, the materials tetrahedron has captured the essence of
materials science and engineering with its interdependent elements of processing,
structure, properties, and performance. As modern computational and statistical
techniques usher in a new paradigm of data-intensive scientific research and
discovery, the rate at which the field of materials science and engineering capitalizes
on these advances hinges on collaboration between numerous stakeholders. Here,
we provide a contemporary extension to the classic materials tetrahedron with
a dual framework—adapted from the concept of a “digital twin” —which offers a
nexus joining materials science and information science. We believe this high-
level framework, the materials—information twin tetrahedra (MITT), will provide
stakeholders with a platform to contextualize, translate, and direct efforts in the

pursuit of propelling materials science and technology forward.

Introduction and background

Human technological evolution and inno-
vations in materials share an interwoven
history punctuated by advances in tools,
instrumentation, and the exchange of
knowledge. Today, as digitization and
automation drive down the marginal cost
of collecting, archiving, and sharing data,
methods for extracting value from this
abundance of digital information have
proliferated. With a new paradigm of data-
intensive scientific research and discovery
underway,' the field of materials science
and engineering aims to drastically reduce
the overall time and cost to discover and
develop new materials through efforts such
as the Materials Genome Initiative.> While
an ecosystem of data repositories and e-col-
laboration platforms offers numerous tools
and resources around materials data,>”’
facilitating interoperability and integration

into the typical materials research work-
flow remains an ongoing challenge. To
broaden the cross-fertilization of solutions
across materials sub-fields and information
technologies, a shared conceptual frame-
work would enable experts in various sub-
disciplines to leverage, and contribute to,
their combined abilities in order to solve
challenges in an integrated, interoperable,
open architecture. Fundamentally, we pos-
tulate that such a foundational framework
lies within the complex interplay between
materials and information science. We pro-
pose that an extension of the classic mate-
rials tetrahedron framework—inspired by
the notion of a “digital twin”—provides
such a scaffold as the materials—informa-
tion twin tetrahedra (MITT) (Figure 1).
Here, we deliver a perspective on the con-
vergence of materials and information sci-
ence through the lens of this new MITT
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Figure 1. Materials-information twin tetrahedra (MITT) framework translates foundational concepts in materials science and engi-
neering (from the materials tetrahedron) to parallel notions in information science (the “information tetrahedron”), highlighting the
data and information flows that form a closed-loop for knowledge creation around the discovery, design, development, and deploy-
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Figure 2. A digital twin comprises a virtual representation of a real

system’s life cycle.

system, linked by continual data and information flows throughout the

from processing to performance as well as its inverse “goal/
means” counterpart.”'® In 2008, a depiction of the materials
tetrahedron with characterization as an interstitial element
at its center was added to the public domain by means of
Wikipedia.'! In 2019, Donahue made the case for append-
ing the dimension of sustainability/criticality to the materi-
als tetrahedron for a holistic perspective on the roles that
materials play in the anthroposphere.'> Donahue’s reim-
agination of the materials tetrahedron paradigm extends
beyond individual use cases of materials by recognizing
factors such as raw material supply risk, price volatility, and
the environmental implications of materials in their full life
cycle.+ At its essence, sustainability/criticality addresses
the extent to which our materials systems, throughout their

framework, and in this perspective article we highlight
select works and recent reviews as illustrative examples in
this emerging and evolving space.

Since its inception, the materials tetrahedron has remained
an enduring visual icon that illustrates the interdependence of
key concepts in materials science and engineering. Published in
1989 by the National Research Council in its report on materi-
als science and engineering for the 1990s,? the symbolic poly-
hedron depicts four foundational elements of materials science
and engineering while emphasizing the edges that connect them.
These four elements—processing, structure, properties, and
performance—have also been arranged linearly as a three-link
chain to highlight the forward “cause and effect” progression
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life cycle, impact and interact with other systems.

Over the past two decades, a concept has emerged
from the manufacturing community that elegantly bridges
the gap between physical systems and our virtual repre-
sentations of them. Originally described by Grieves in the
early 2000s as product life cycle management (PLM),'? the
term “digital twin” was coined by Vickers et al. in 2010 in
a NASA technology area roadmap for materials, structures,

tWhile Donahue replaces the materials tetrahedron with a square
pyramid depiction, we have taken the artistic license to represent
the aspect of Sustainability/Criticality as an encapsulating sphere
to lend a “global” visual cue and preserve the recognizability of the
classic materials tetrahedron.



THE MATERIALS TETRAHEDRON HAS A “DIGITAL TWIN“

Materials Science

1) Processing

Procedures for synthesizing, forming, or
assembling materials.

2) Structure/composition

Chemical make-up, short- and long-range
order, microstructures, defects, etc.

5) Validation

3) Properties
Observable/measurable characteristics
used to describe a material.

4) Performance (Application)
Capability of a materials system to meet
a given set of application requirements.

5) Characterization (Standards)

Standard methodologies for describing
and quantifying materials behavior.

6) Sustainability/criticality

Holistic view of role and life cycle of
materials within the anthroposphere.

counterparts in information science.

4) Applicability

2) Arrangement

Meta-Framework

Figure 3. An underlying meta-framework captures the elements of the (extended) materials tetrahedron and relates these elements to

Information Science
1) Methods/workflows

Procedures for acquiring, integrating, or
analyzing digitized information.

2) Representations
Data structures, ontologies, spatiotemporal
depictions, models, data visualizations, etc.

3) Attributes
Throughput, accuracy, uncertainty, complexity,
bias, software and hardware requirements, etc.

4) Efficacy (Deployment)

Capability of a chosen stack of digital tools to
meet a set of requirements for deployment.

5) Evaluation (Benchmarks)

Standard methodologies for comparing different
systems across community-driven benchmarks.

6) FAIR data principles

Set of guiding principles for data management
(Findable, Accessible, Interoperable, Reusable).

6) Viability

mechanical systems and manufacturing.'* The digital twin—
a virtual representation of a system that exists alongside
its physical counterpart throughout its life cycle—includes
(1) the sensor-equipped physical object or system itself; (2)
a high-fidelity virtual representation, including historical
data and predicted future performance; and (3) the data and
information flows between the physical world and the digital
twin, often through multi-modal sensing and probabilistic
modeling at the instance and aggregate level (Figure 2).'>'¢
The value proposition of a digital twin stems from its ability
to manage and apply heterogeneous information, and the
concept has gained significant traction in recent years as
evidenced by citations in the literature.'”'® Manifestations
of digital twins have appeared in manufacturing,'*' aero-
space,'>?? healthcare,?3 ™’ transportation,?®° and the built
environment including utilities and smart cities.>*>° The
concept will continue to gain traction as stakeholders adopt
common data standards and models, improve data shar-
ing practices, develop products and services around digital
twins, and establish forums for experts in various disciplines
(including materials science) to meet and collaborate.>
When we refer to a “digital twin” for the materials tet-
rahedron—a purely conceptual framework, as opposed to a
physical system— we describe its interdependent counter-
part in information science, hereby referred to as the “infor-
mation tetrahedron.” Given the data and information flows
that connect these conceptual frameworks and provide
the basis for knowledge creation, the digital twin analogy
remains apropos. For reference, the terms data, information,
and knowledge represent levels in the data-information-
knowledge-wisdom (DIKW) hierarchy.?’

In this perspective, we offer the MITT framework as a
means to contextualize the interdisciplinary efforts across
various stakeholders in furtherance of a robust infrastructure
and workforce around materials data. In the following sec-
tions, we articulate the meta-framework underpinning MITT,
describe the components of the information tetrahedron, and
illustrate one possible application of the dual framework
with existing and upcoming technologies. We believe that
students, practitioners, educators, and policymakers armed
with this framework can apply modern and future digital
information capabilities to address grand materials chal-
lenges with the high-level perspective that has guided and
benefited the field of materials science and engineering for
more than three decades.

Translating the materials tetrahedron

to information science

In a prototypical implementation of the MITT framework,
materials systems provide data to information systems, which
in turn generate information that guide the further improve-
ment of these materials systems. Iteratively, this cycle aims for
knowledge creation around discovery, design, development,
and deployment of materials systems. Humans necessarily
remain in the loop in terms of strategic guidance and imple-
mentation of this process, but the reciprocal exchange of data
and information should take advantage of available automated
workflows.

To define the information tetrahedron, we identified six
dimensions underpinning the materials tetrahedron and trans-
lated these dimensions to notions from information science
(Figure 3). These dimensions—activities, arrangement,
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Table I. Contextualized examples, including recent progress in materials data and informatics, related to each element of the information
tetrahedron of the MITT framework.

Activities Arrangement Qualities
Methods/ Workflows Representations Attributes
Inverse design* Atomic or molecular data Complexity
Multiphysics structures®®53 Throughput

simulations®’ Spatiotemporal depic- Accuracy
Autonomous tions (pixelated, vox- Bias

experiments*2-44 elated, graph-based)  Uncertainty
Interpretable ML Physical descriptors®*  Usability

methods*®6 Schemas, tax- Software dependencies
Open-source toolkits*~*®  onomies, controlled Hardware requirements
Correlative vocabularies®>% Cost

characterization® Workflow
Mixed-initiative user representations®”

interaction®’ Ontologies®

Low-dimensional
embeddings

Data visualizations

qualities, applicability, validation, and viability—form a gen-
eralizable meta-framework at the heart of the proposed MITT
framework.

The meta-framework classifies the various aspects of these
frameworks broadly, such that the specification and imple-
mentation of instantiations of this meta-framework may fol-
low the best practices of their respective fields. Thus, the
meta-framework enables both the materials tetrahedron and
information tetrahedron to describe individual aspects of each
domain without relying on one-to-one mappings. For example,
the dimension “Arrangement” refers to materials structure and
composition in the materials domain and to digital representa-
tions including data and metadata structures in the informa-
tion domain. The generalizability of this meta-framework may
enable the tetrahedron concept to percolate into other domains,
providing a useful organizational and translational tool. In the
following section, we expound further on the components of
the information tetrahedron of the MITT framework, focusing
on recent progress in materials data and informatics.

Components of the information tetrahedron

Strictly speaking, a digital twin represents a virtual instantia-
tion of a physical system. To translate the essence of a “digi-
tal twin” to the materials tetrahedron—a purely conceptual
framework to begin with—we describe the MITT framework
as a paradigm that considers both materials science and infor-
mation science side-by-side, connected by data and informa-
tion flows. Development of materials data and informatics
systems involves many complex tradeoffs and nuances that
accompany the various strategic and design decisions made
by software architects and engineers.*® Striving for a general-
purpose digital information system while managing scope
to stay within development constraints mirrors many of the
challenges faced by materials engineers in designing or opti-
mizing materials systems. Table I summarizes the following
paragraphs, which relate the information science components
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Applicability Validation Viability
Efficacy Evaluation FAIR Data Principles®
Clearly defined scope and Benchmark data sets and Findable
requirements tasks®*& Accessible
Extent to which system  Objective tests and Interoperable
meets requirements measures for com- Reusable
Suitability of system for parison Al-ready®"
the task at hand Metrics for data “FAIR-  Sustained life cycle
Time and cost savings ness” efficacy
over alternatives UI/UX assessment

Validation of predictions

of the MITT paradigm to recent progress in materials data
and informatics.

Methods/workflows

Acceleration of materials discovery and development presup-
poses the accompanying digital methods and workflows for
collecting, curating, integrating, and analyzing data. Methods
and workflows may include algorithms for achieving “inverse
design” of processing parameters given a set of performance
goals,*” multiphysics simulations,*! high-throughput meth-
ods that automate or semi-automate experimentation and data
collection,*>** interpretable machine learning methods,*>*¢
retrieval and management of large data sets facilitated by
open-source toolkits,*’** methods for bridging length scales
and imaging modalities via correlative characterization,™ or
mixed-initiative user interfaces that leverage automation to
support better decision-making through human—computer
interaction.’! When applying the MITT paradigm to a materi-
als data and informatics, one should consider how these meth-
ods and workflows combine to transform fragmented data into
actionable information.

Representations

As symbolic representations of information, data derive
their utility only when placed within broader models or
contexts that impart meaning. In the absence of a preexist-
ing model of the world, machines do not have the innate
capacity to interpret data without some form of metadata
(“data describing the data”), necessitating efforts from
the community to develop and adopt common standards
around digital representations for materials data and meta-
data. These representations may include: data structures
for atomic or molecular arrangements;*>3 pixelated, vox-
elated, or graph-based spatiotemporal depictions at vari-
ous hierarchical scales; quantitative physical descriptors;>*
schemas, taxonomies, and controlled vocabularies;*>>° or



standardized representations of materials processing or com-
putational workflows.’” Metadata structures include ontolo-
gies,”® which comprise machine-interpretable networks of
linked concepts, as well as structured representations of data
provenance. Data that are inherently uninterpretable (e.g., a
trained neural network model) may have metadata describ-
ing their inputs and outputs or low-dimensional embeddings
serving as representations. To display collected or analyzed
data, advances in interactive data visualization can provide
an interface between these systems and human decision-
makers. When applying the MITT framework, one should
carefully consider (meta)data representations as they relate
to deployment requirements, with a preference for repre-
sentations aligned with the FAIR data principles (findable,
accessible, interoperable, reusable).39

Attributes

The attributes of a digital information system should provide
an objective view of the system and its standing among com-
parable systems. These attributes include technical specifica-
tions of the software and hardware, as well as software librar-
ies or data corpora that these systems rely on. Complexity,
throughput, accuracy, bias, uncertainty, usability, and other
relevant system attributes should be accompanied by com-
munity-driven benchmarks that enable researchers to objec-
tively measure them so that system architects and end users
can select the best stack of digital tools given their budget and
scope. In the context of MITT, attributes reflect the various
tradeoffs of particular methods, workflows, and representa-
tions at the individual and systems level.

Efficacy

The efficacy of an information system rests on its architecture,
integration, and environment in the context of a given deploy-
ment setting. In addition to the system’s internal ability to
process and analyze data, efficacy dictates how well the system
can interface with the real world by incorporating new data
from external signals and presenting actionable information to
decision-makers. Tradeoffs between system components must
be considered when optimizing system efficacy.

Evaluation

Community-driven standards and procedures for objective
validation of digital information systems lie at the heart of
the information tetrahedron. Benchmark data sets and tasks
facilitate consistent and systematic evaluation of the myriad
digital information methods and systems that will emerge in
the coming years.>*" Evaluation protocols and benchmarks
for FAIR data management as well as human usability should
be considered among these assessments.

FAIR data principles
Conversations around the life cycle and impact of data and
information remain pivotal in order to ensure continual growth

THE MATERIALS TETRAHEDRON HAS A “DIGITAL TWIN“

and reuse of information resources. The four guiding prin-
ciples for data management and stewardship that comprise
FAIR (findable, accessible, interoperable, reusable) recognize
the need among stakeholders in academia, industry, funding
agencies, and publishers for an infrastructure that maintains
the value of data beyond initial publication.’® Ongoing,
community-wide commitments to FAIR data and metadata
standards aim to reduce the labor-intensive data pre-process-
ing and cleaning steps that historically kick off data science
projects, making data “Al-ready.”®' Some data may remain
proprietary or confidential, but any data advertised as “open”
should contain adequate metadata. In addition to mandates or
incentive structures,®? the prevalence of FAIR data depends
on automated methods and workflows that enable researchers
to seamlessly manage and share their data. As a supplement
to the FAIR principles for data, materials data and informat-
ics platforms should incorporate configuration management
activities to maintain continued efficacy and integrity through-
out the projected life cycle of the platform. When consider-
ing an information system’s viability, one must also take into
account internal factors such as reliance on specific software
and hardware infrastructures in addition to external factors
such as funding agency mandates and new expectations driven
by transformations in data culture.

Highlighting recent progress and reviews

The topics of informatics, data science, and machine learn-
ing have appeared with increasing prevalence in materials-
related works in the academic literature—most notably in
the past decade—as reflected in the quantity of publications
and citations (Figure 4). This exponential growth persists
even when normalized by the steady annual growth of all
materials-related publications. The progression shows the
extent to which the field of materials science has evolved in
the three decades since the initial conception of the materi-
als tetrahedron in 1989 and the impact of integration and
digitization on the landscape of materials research and
development. For example, the availability and capability
of computational tools initiated the discipline of integrated
computational materials engineering (ICME),* combinato-
rial materials synthesis and rapid characterization techniques
led to high-throughput experimental (HTE) methodolo-
gies,® and model-based concurrent design, development,
and deployment for materials and systems form the basis of
NASA’s recent “Vision 2040” roadmap.®’

Systems for autonomous experimentation (AE) exemplify
the closed-loop coupling of materials science and informa-
tion science as laid out in a recent community perspective
article by Stach et al.®® Owing to advances in mechanical
automation and robotics, rote tasks that often consume
researcher time and effort can be delegated to machines that
prepare, characterize, and test samples. Aided by machine
learning, collected data inform future hypothesis testing for
efficient navigation of complex, high-dimensional design
spaces. Researchers may instead focus on higher-level
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Figure 4. Bibliometric data from Web of Science show the count of publications (blue bars) and citations (red line) at the intersec-
tion of the topic of “materials” with any of the topics of “informatics,” “data science,” or “machine learning” in the years 1990-2020.
The timeline highlights select examples from this progression toward increased integration and digitization in materials research and
development.

guidance such as providing insights, context, and objec-
tives to the AE campaign. Stach et al. describe the benefits
of AE in terms of multiplying the productivity of individual
researchers in addition to network effects when these dis-
tributed systems share learned insights. Importantly, they
present areas for investment in hardware, software, data
management, and workforce education in the coming years
to realize the potential of AE systems for materials research
and development. Similar opportunities and challenges for
closed-loop automation exist outside the field of materials
science as well, such as drug discovery,®” healthcare,*® sup-
ply chain management,®® architecture,’® and chemistry.”!"’?

Although an exhaustive review falls outside the scope
of this perspective, we urge the interested reader to con-
sult recent review articles and perspectives that explore the
intersection of materials science with one or more of the
topics in information science outlined in this perspective.
These resources include discussions of data ecosystems and
infrastructures for metadata management;’>~’> high-through-
put library generation and characterization;”®’” successes
and challenges of Materials Genome Initiative research,
machine learning methods, and computational materials
databases;”® % methods for linking materials characteriza-
tion and computation across length scales;*""%? methods,
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representations, and applications in the field of polymer
informatics;®* materials discovery for energy applications;**
and integrated systems for next-generation microscopy.®

Demonstrating the value of materials data

and informatics

Just as the classic materials tetrahedron does not fully cap-
ture, for example, the subtleties of precipitation hardening
of aluminum alloys, the MITT framework does not claim to
solve the challenges ahead in creating a robust infrastructure
around materials data and informatics. Instead, the framework
presents a holistic view of certain high-level, interdependent
elements such that experts across disciplines can make this
infrastructure a reality. The broader materials community will
accept and adopt materials data and informatics resources as
these resources demonstrate more efficient digital representa-
tions and methods, offer robust cyber-physical infrastructures
that establish trust, and provide training of the workforce in
the utilization of these tools.*® Making these systems and tools
relevant to the broader materials community will require clear
articulation of the value proposition of these resources, contin-
ued investment in the areas laid out in the MITT framework,
and the refinement of shared visions for the future of materials
research and development.



Data and informatics have the potential to transform the
conventional landscape of materials research and develop-
ment. By extrapolating from existing technologies, one can
speculate on manifestations of the materials research land-
scape in the near future:

...A researcher monitors the incoming data on her tab-
let. In the background, an autonomous research sys-
tem chirps and hums as it passes cassettes of samples
between preparation stages for characterization. She,
along with a geographically distributed network of col-
leagues, designs and develops materials systems for
electrically insulating coatings—her materials system
of choice features functional molecules tethered to nano-
scopic ceramic particles and dispersed in self-healing
polymers. The boundless configurations of possible
materials components make exploration of the design
space both invigorating and daunting. To manage the
complex design tradeoffs, she and her team develop
methods that consolidate computational and experi-
mental research—augmented with troves of data from
several online data repositories through APIs—to pre-
dict the electrical, mechanical, thermal, and degrada-
tion behavior of these materials systems. To validate and
improve model predictions along the Pareto frontier, she
runs combinatorial experiments with gradient libraries
that vary mix ratios and process parameters to reveal
and quantify the effects on nanoparticle dispersion in
these composite systems. On some days, carrying out
an experiment involves a few simple gestures on her
tablet—unified data formats enable the autonomous
research system to interoperate with the workflow plan-
ning system, lab inventory, characterization and image
analysis tools, and her team’s Bayesian models—and
each material sample receives a globally unique identi-
fier with semantic links to its detailed processing his-
tory and characterization results. As the data populate
her customized dashboard of interactive charts in real-
time, she recalls stories of data antiquity—misplaced
USB drives, critical experimental parameters scrawled
in the margins of laboratory notebooks, and hours spent
manually aggregating data from PDF files into spread-
sheets. When she considers how she cites and publishes
work today, everything just feels a lot more—what'’s the
right word? Natural, she mutters to herself. With a few
touches on her tablet, she pushes the newly acquired
data to her team’s shared knowledge base and alerts
the subscribers to her data streams who may review
and independently verify the results. If this particular
materials system shows promise as a viable electrical
insulator—and even if it does not—the data collected
today will contribute to the growing online research
data repositories from which her team developed their
first model, a small act of solidarity in the modern sci-
entific endeavor-...

THE MATERIALS TETRAHEDRON HAS A “DIGITAL TWIN“

Table II elaborates upon this hypothetical scenario in
the context of the MITT framework. Achieving such visions
will require persistent, well-coordinated efforts among a
variety of stakeholders including materials researchers,
software developers, original equipment manufacturers, and
funding agencies. As a prerequisite, connecting systems-
level expertise across disciplines requires shared language
and communication tools. Domain-specific terminology
and jargon tend to form lexical barriers that hinder cross-
disciplinary collaboration and may obscure higher-level
interdisciplinary commonalities. The classic materials tet-
rahedron paradigm presents a cogent visual depiction of
the field of materials science, and revealing the underlying
meta-framework enables the translation of this paradigm to
information science.

As a general approach, the meta-framework could apply to
other systems-focused disciplines that couple with materials
science to form closed feedback loops. For example, one can
consider the coupling of materials science and bioengineering
that occurs in bio-integrated materials.?” At a high-level, the
systems-level meta-framework would apply to biomaterials
engineering through consideration of activities (e.g., path-
ways), arrangement (e.g., geometry, organization), qualities
(e.g., characteristics, traits), applicability (e.g., goodness of
fit), validation (e.g., bioanalysis), and viability (e.g., longev-
ity, compatibility) in terms of the biological system of interest.
Instead of digital data and information flows, these interfaces
might be mediated by sensing and modulation via biophysical
or biochemical signals and actuation. However, we concen-
trate here on the convergence of materials and information
science, leaving other combinatorial examples of joint frame-
works open to future discussions.

With its high-level vantage point on materials and infor-
mation science, the MITT framework provides a pedagogical
launchpad and a groundwork for cross-disciplinary communi-
cation pertaining to infrastructure built around materials data.
Faced with troves of data to potentially analyze, the challenge
becomes how to organize researcher attention and computa-
tional resources around extraction of high-value information
and the ultimate translation of this information into lasting
solutions. The MITT framework extends the systems-oriented
paradigm of the classic materials tetrahedron to encourage
proficiency in tools that augment and accelerate materials dis-
covery, design, development, and deployment through data
science and informatics. By applying this framework to con-
textualize, translate, and direct various efforts in materials data
and informatics, present and future generations of materials
scientists and engineers will find themselves well-equipped
to tackle the multifold challenges that arise in an increasingly
complex, data-driven world.
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