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Hyporheic exchange influences hydrologic transport and water quality through tran-
sient storage, which extends solute transit time, and leads to mixing of surface water
and groundwater. Despite its importance, estimating the extent and spatiotemporal
variability of the hyporheic zone remains challenging due to limitations in assessing
the subsurface with discrete point-scale sampling. Analysis of time-lapse electrical
resistivity (ER) data from tracer studies has shown potential to ameliorate such limita-
tions. However, its utility in objectively delimiting hyporheic extent and quantifying
changes in surface-groundwater exchange has been impeded by reliance on qualita-
tive analysis of hyporheic extent or the use of a priori assumptions about data quality
and signal strength. This study applies a novel unsupervised clustering method to
time-lapse ER models derived from a benchmark dataset collected throughout base-
flow recession in a mountain stream. We demonstrate that unsupervised clustering
of inverted ER model time series can delimit hyporheic extent by distinguishing sol-
ute transport signals from noisy background inversions and identify functional zones
defined by unique transport characteristics. We found that the structure of these
zones was stable even as discharge changed by an order of magnitude, likely due to
morphological constraints in this steep, narrow valley. Compared to traditional
methods utilizing a priori thresholds to delimit hyporheic extent, clustering is robust
to unintentional variations in tracer breakthrough curves that are typical of field-
based studies. Therefore, clustering of inverted ER models represents a more robust
and data-driven functional zonation representation of hyporheic exchange than has
been possible with point-scale sampling or transport modelling, which usually

assumes a single well-mixed hyporheic zone.
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1 | INTRODUCTION

The exchange and mixing of surface and groundwater in stream corri-
dors exert a strong control on hydrologic transport, biogeochemical
reactions, and the existence of ecological refugia (Harvey et al., 2018;
Harvey & Bencala, 1993; Lewandowski et al., 2019; Ward, 2016).
Despite decades of research, estimating the extent and spatiotempo-
ral variability of the hyporheic zone remains challenging due to the
structural heterogeneity of the subsurface and the difficulty of making
direct observations beyond a few discrete points (i.e., wells and pie-
zometers; Gonzalez-Pinzén et al, 2015). Numerous studies have
sought to determine how the extent of hyporheic exchange responds
to variable hydrologic conditions, typically with respect to the implica-
tions for which biogeochemical reactions can occur and their reach-
scale significance, but results are often in conflict between sites and
few generalizable behaviours have been identified (Ward, 2016). The
capability for predictive modelling is similarly limited either by overly
simplistic representation of the hyporheic zone as a single well-mixed
storage zone (Marion et al., 2003; Wondzell, 2006) or the rarity of suf-
ficient data needed to inform accurate representation of transport
heterogeneity at scales beyond individual channel features (Schmadel
et al.,, 2017; Ward et al., 2017). Consequently, advances in observing
and modelling the dynamic behaviour of hyporheic exchange will
depend on developing data-driven techniques that can constrain the
spatiotemporal complexity of hyporheic exchange at functionally
meaningful and tractable scales (Magliozzi et al., 2018).

Numerous definitions of the hyporheic zone have been proposed,
with specific criteria reflecting the primary discipline of a given study
(Gooseff, 2010; Knapp et al, 2017; Tonina & Buffington, 2007;
Ward, 2016; White, 1993). A primary challenge in defining the extent
of the hyporheic zone originates from the heterogeneity of nested
hydrological flow paths that govern both reach-scale hydrologic trans-
port and the significance of biogeochemical reactions (Poole
et al., 2008). To incorporate prior studies and promote interdisciplin-
ary synthesis, Ward et al. (2016) suggested that the region encom-
passing the hyporheic zone must (1) be in the saturated subsurface,
(2) include hydrological flow paths that originate from and return to
surface water, and (3) interact with the stream water within a speci-
fied temporal scale related to hydrologic or biogeochemical processes
of interest. While this definition is flexible, it remains practically diffi-
cult to simultaneously delineate both the spatial and temporal bound-
aries implied by this definition in an actual field study.

Interactions between surface water and the hyporheic zone are
most often assessed through conservative-solute tracer injections
(Harvey et al, 1996; Harvey & Bencala, 1993; Kasahara &
Wondzell, 2003; Ward et al., 2019). The resulting solute breakthrough
curves (BTCs) reflect the effects of advection, diffusion, and transient-
storage processes (both surface and subsurface) that are integrated
over space and time (Stream Solute Workshop, 1990). Point-scale
subsurface sampling combined with surface-water data is used for
inverse model tuning to estimate lumped transport and storage
parameters, but the results are often not clearly meaningful (Marion
et al, 2003; Wondzell, 2006). Additionally, main-channel BTC

observations reflect the convolution of multiple transient-storage
zones and their processes, yet these compartments are known to
exhibit distinct biogeochemical functions, especially aerobic versus
anaerobic processes, making the need to parse their effects important
in many studies (Knapp et al., 2018). Despite the computational feasi-
bility of numerically modelling spatially explicit heterogeneity of
coupled transport and biogeochemical reactions (e.g., Marzadri
et al., 2011), it is rarely possible to overcome issues of equifinality in
parameterizing multiple storage-zone models from surface and well
BTC observations alone (e.g., Bottacin-Busolin, 2019), especially for
reactive solutes (e.g., Kelleher et al., 2019).

The use of time-lapse electrical resistivity (ER) imaging of hypor-
heic exchange during tracer injections was introduced over a decade
ago (Singha et al., 2008; Ward et al., 2010b) as a promising method
for characterizing time-varying hyporheic extent. Fundamentally, ER
methods utilize surface measurements of electrical potentials from
induced current flow to estimate subsurface properties that are sensi-
tive to the introduction and transport of electrically conductive solute
tracers (Singha et al., 2008). Since its adaptation to stream tracer stud-
ies, ER imaging has been employed to investigate how hyporheic
exchange, especially its extent, responds to in-channel downed wood
(Doughty et al., 2020), seasonal flow recession (Ward et al., 2012;
2014), flow regulation by dam operation (Cardenas &
Markowski, 2011), and structural variations in bedrock boundaries
(Rucker et al., 2021).

Successful application of ER for delimiting and quantifying
changes in hyporheic exchange has been impeded by reliance on qual-
itative analysis of hyporheic extent or a priori assumptions about the
consequences of data quality and inversion decisions on the final
model images when more quantitative analyses are attempted. Prior
studies have relied on the evaluation of time-lapse 2D ER model
images to visually compare hyporheic extent between times of data
collection (e.g., Ward et al., 2010b), largely ignoring well-known sensi-
tivity issues (e.g., Day-Lewis et al., 2005). This approach is flexible but
does not allow for robust quantitative comparison or prediction
between stream reaches or injections. Alternatively, some studies
(e.g., Doughty et al., 2020) have analysed spatially lumped changes in
bulk apparent resistivity data, which provide a basis for quantitatively
describing temporal variations in exchange but do not include the spa-
tially resolved information inherent in the inverted ER models. Finally,
a few studies (e.g., Ward et al., 2010b; 2012) have applied a priori sig-
nal thresholds to delimit and estimate hyporheic extent from model
images. Unfortunately, the resulting estimates of hyporheic extent are
particularly sensitive to the subjectively selected change in resistivity
(Ap) threshold (Ward et al., 2010b), so only relative changes, not the
actual extents, are meaningful. Application of a standard threshold
across multiple datasets (i.e., |Ap| > 2.5%) does not account for actual
differences in either the quality of the data or the relative strength of
tracer injection signals compared to noise.

In order to more objectively evaluate hyporheic extent, this study
introduces a novel method for analysing inverted ER images based on
unsupervised time-series clustering. Our approach simultaneously

addresses the challenges of resolving the extent and spatial
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heterogeneity of hyporheic exchange during tracer injections. Unsu-
pervised clustering is a data-mining technique in which time series are
objectively grouped based on structures within the data rather than a
priori assumptions (e.g., Aghabozorgi et al., 2015; Fu, 2011). We apply
unsupervised clustering to time-lapse ER models from a benchmark
dataset (Ward et al., 2012; 2020) to assess how the extent and het-
erogeneity of hyporheic connectivity changes during baseflow reces-
sion in a headwater stream. Prior work in this steep, highly
constrained valley showed that riparian water-table head gradients,
the extent of tracer transport into riparian zones, and hyporheic trans-
port timescales are quite stable even as streamflow changes by three
orders of magnitude (Voltz et al., 2013, Ward et al., 2016). Yet, other
work suggests that hyporheic flow path geometries change during
recession (Ward et al., 2017). Thus, this dataset provides opportunity
to assess whether the structure of transport heterogeneity—that is
the extent and location of more and less advective regions—within
the hyporheic zone is responsive to seasonal changes in surface
hydrologic forcing. We expect that the influence of constant valley
morphology and steep down-valley gradients in this system will result
in stable structuring of both cross-sectional hyporheic extent and
exchange heterogeneity regardless of changing surface flows.

In this study, we test that unsupervised clustering of inverted ER
model time series from tracer injections can be used to (1) delimit
hyporheic extent by distinguishing solute transport signals from noisy
background inversions (adjacent hillslopes or at depth), and (2) charac-
terize transport heterogeneity within the hyporheic zone in terms of
spatially defined functional zones. Clustering of inverted ER models,
therefore, represents a shift towards a data-driven functional zonation
representation of hyporheic connectivity, which is akin to other facies
frameworks in which complex heterogeneity is simplified by charac-
terizing compartments for which in-group heterogeneity is smaller
than between-group differences (e.g., Delforge et al., 2021; Hermes
et al., 2020; Hou et al., 2019; Sassen et al, 2012; Wainwright
et al.,, 2014).

2 | METHODS

The principles of ER data collection and its application in stream tracer
studies have been described extensively by prior studies (Gonzalez-
Pinzén et al., 2015; McLachlan et al., 2017; Singha et al., 2008; Ward
et al., 2010a; 2010b; 2012; 2014). Briefly, ER measurements are sen-
sitive to lithology, porosity, connectivity of pore spaces, pore fluid
conductivity, subsurface temperature, and subsurface moisture con-
tent. The introduction of an electrically conductive tracer alters pore-
fluid conductivity, thereby allowing detection of solute transport
through the subsurface (Singha et al., 2008). Data are collected by
applying an electric current (I, A) to the ground surface and measuring
the resulting potential difference (V) between two locations to calcu-
late the geometry-dependent resistance (R, Q) by Ohm's Law (R = V/
I). Then, depending on the arrangement of electrodes, a geometric
factor (K) can be calculated for each measurement (see Binley, 2015a)

which is used to convert R to apparent electrical bulk resistivity

(p, @m) as p = KR. Apparent resistivity can, in turn, be converted to
apparent electrical bulk conductivity (s, S/m) as ¢ = 1/p. We present
results for this study in terms of ¢, which is more intuitively related to
fluid conductivity (og) typically measured in surface water or wells

during tracer studies.

21 | Injections and ER collection from a
benchmark dataset

We use ER survey data and main channel o from tracer studies con-
ducted in a forested second-order stream within the H. J. Andrews
Experimental Forest, Oregon (44°13'N, 122°15'W) during the summer
of 2010 (Ward et al., 2020). This dataset has been previously used to
examine hyporheic connectivity throughout baseflow recession (Ward
et al, 2012; 2014) and, therefore, serves as a useful benchmark for
comparison of new methods. We focus our analysis on four 48-h
tracer tests that were conducted in a 50-m reach of a headwater
stream in Watershed 3 (101 ha) for discharges decreasing from 35 to
4 Ls~L. All injection solutions contained only sodium chloride (NaCl)
as a conservative tracer. A two-week recovery period was observed
between injections. ER data were collected using dipole-dipole config-
urations with an IRIS Syscal Pro (Orleans, France) on lateral transects,
each consisting of 12 surface electrodes with ~1 m spacing (Figure 1).
The average stacking error on repeat measurements within this data-
set was 0.2% across all data while the average reciprocal error (col-
lected for 55 of 323 quadripoles) was 1.3% (Ward et al., 2014). While
data were collected from six transects, we consider Transects 2 and
3 as only they have complete data from all four injections. They also
represent different channel morphologies, with Transect 2 crossing a
more constrained section, while Transect 3 crosses a wider portion of

the stream with notably more large boulders.

4 MC EC sensor

— Contour (1 m)
x Electrode 3 Loose Soil & Roots
Large Step B Log

@ Tree [ Boulders

[ Bedrock
Stream Extent
Thalweg
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FIGURE 1 Site location and instrumentation map for WS3 in the
H. J. Andrews Experimental Forest, located in the Cascade Range of
Central Oregon. Main channel electrical conductivity sensors are
identified as A-C from upstream to downstream locations in the text.
Modified from Ward et al. (2012).
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2.2 | ERinversions

We inverted resistance data from surface measurements with R2
(Binley, 2019; v2.7b compiled for Unix), which uses a regularized
objective function and weighted least-squares regression approach to
model and solve current flow in a quadrilateral finite-element mesh
2015b; Binley &

Kemna, 2005). The number of nodes in the inversion meshes for this

for each transect and injection (Binley,
study ranged from 2394-2698 due to differences in transect widths.
Each inversion mesh was generated with 25-cm spacing horizontally
and 20-cm spacing vertically down to a relative depth of 6 m, with
spacing doubling to each node thereafter. In all cases, we extended
the inversion mesh at least 100 m horizontally beyond the outermost
electrode locations and to a depth of about 150 m to reduce bound-
ary effects. Surface topography for the inversion mesh was linearly
interpolated between surveyed electrode locations. The duration of
data collection following the end of each injection varied. Therefore,
for comparability between injections, we limited analysis to data col-
lected between 8 h prior to and 96 h after the beginning of each injec-
tion - a period for which data was available for each transect during
all injections.

For the time-lapse inversions we utilized a difference method
wherein the first timestep data and ER model are used as a starting
model and target dataset to which subsequent inversions are regular-
ized (Binley, 2015b). Changes in conductivity (Ac) from the starting
model are provided for each period of collection (timestep, hereafter)
during the inversion process. For each injection and transect we calcu-
lated the diagonal of the resolution matrix as described by Binley and

Kemna (2005) to quantify nodal sensitivity within the inversion mesh.

We then used that matrix to select nodes with a resolution of at least
1%, meaning that at least 1% of the node's modelled conductivity was
independent of adjacent nodes, for subsequent analyses (Binley &
Kemna, 2005; Ward et al., 2012). Areas with resolution values <1%
were parts of the inverted model for which temporal changes in con-
ductivity could not be meaningfully interpreted.

23 |
models

Unsupervised clustering of time-lapse ER

As an alternative to qualitative assessments of hyporheic extent, spa-
tially lumped analysis, or a priori selection of signal thresholds, we
used unsupervised hierarchical clustering of nodal Ac time series to
identify clusters of nodes for which within-group differences in tracer
response are smaller than between-group differences. In so doing, we
(1) estimated the spatial arrangement of functional zones, (2) identified
characteristic Ac BTCs for each cluster, and (3) estimated total hypor-
heic extent. Applying this method to time-lapse ER models identifies
emergent patterns within the model outputs and retains both spatial
and temporal information but does not require selection of arbitrary

cutoffs in Ao to determine where meaningful changes have occurred.

2.3.1 | Clustering of nodal ER time series
From the time-lapse ER models, we calculated a metric describing the
dissimilarity between pairs of nodal Ac time series (Figure 2a-c). To

do so, we calculated the absolute value of Euclidean distances for all
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FIGURE 2 Conceptual depiction of unsupervised clustering analysis of time-lapse ER models from tracer injections. At each timestep
(a) percent change in modelled conductivity (Ao) relative to the pre-injection condition is generated, then (b) time series of Ac are extracted for
each node in the inversion mesh, (c) Euclidean distances are calculated and summed for each pairwise comparison of nodes to construct a
dissimilarity matrix, which is then used to (d) hierarchically cluster nodes. The resulting clusters can then be analysed for (e) characteristic BTCs

and (f) approximate spatial extent.
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pairwise combinations of the Ac time series, at each timestep, using
the TSclust package in R (Montero & Vilar, 2014; R Core Team, 2019).
The absolute Euclidean distance (d) between the time series for any
two nodes (j and k) with Acj; and Aoy, as their respective percent

change in electrical conductivity at timestep t is:

djt’k = }Aﬂj,t - Aﬁk,t . (1)

We summed these distances for t between 8 h prior to (t;) and
96 h after (t;) the injection commenced to give the individual elements
of the dissimilarity matrix (D):

t;
D=, dis- (2)

We opted to use Euclidean distances to construct a dissimilarity
matrix because they represent the simplest distance metric that
retains the physical meaning of the time-series values (no unit conver-
sion) and are sensitive to both scaling and synchronicity in structure
amongst time series, unlike other metrics used for time-series compar-
isons (e.g., Aghabozorgi et al., 2015; Mueen & Keogh, 2016). Conse-
quently, the resulting distance D; is indicative of the similarity the in
both shape and timing of the two time-series in response to the tracer
transport.

To identify similarities in hyporheic exchange processes within
the subsurface, we then applied the built-in agglomerative hierarchical
clustering algorithm in R (hclust; R Core Team, 2019) to D (Figure 2d).
Individual nodes are first assigned to their own clusters, then at each
subsequent iteration the most similar clusters are merged until a single
cluster is formed. Here we use the default complete-linkage method
to identify the nearest clusters to be merged at each step. The result-
ing dendrogram consists of n—1 branching events, where n is the
number of nodes retained from the ER inversion mesh with resolution
>1%. The value of n will vary depending on electrode configuration in
the field, data quality, and decisions about the discretization of the
differential equations during the inversion process. For this study,
n ranged from 300-408.

2.3.2 | lIdentifying the number of clusters and
characteristic BTCs

There is no best approach to selecting the “correct” number of clus-
ters or how to cut a dendrogram (Warren Liao, 2005) and many differ-
ent cluster-validity indices have been proposed, as summarized in a
decadal review by Aghabozorgi et al. (2015) and in application to
time-lapse ER models by Delforge et al. (2021) or other environmental
phenomena (e.g., Savoy et al., 2019). We pass the dendrogram data
through a non-parametric permutation-based test of within- versus
between-branch variances (Park et al., 2009) to determine whether
each branching event results in the formation of clusters with statisti-

cally different responses to the tracer addition. Significant branching

events are identified if they satisfy a Bonferroni corrected p-value
threshold (p < 0.05/[n—1], where n is the number of nodes). In select-
ing this approach, we base cluster retention on patterns and struc-
tures that exist within the data in a way that allows for an asymmetric
combination of non-significant branching events (Park et al., 2009).
With this method, any number of clusters that is statistically sup-
ported can be retained depending on the end goal or application of
the resulting information. We present results for four statistically
unique clusters for each transect and injection. This decision was
made because objectively parsing the hyporheic zone into a few func-
tional zones signifies an advance beyond representing it as a single
well-mixed compartment while not exceeding the complexity repre-
sented in widely available, computationally inexpensive multiple tran-
sient storage zone models (Briggs et al., 2009; Choi et al., 2000; Kerr
et al., 2013; Knapp et al., 2017; Neilson et al., 2010).

After identifying four statistically unique clusters and the mem-
bership of individual nodes, we determined the characteristic Ac BTC
for each cluster by calculating the mean and standard error (SE) of
individual nodal As values within a cluster by timestep (Figure 2e).
We calculated the SE instead of the standard deviation as the number
of nodes within each cluster can vary largely, with some clusters
potentially including fewer than 10 nodes while others may include

hundreds.

2.3.3 | Identifying and delimiting extent of
hyporheic exchange

Next, we identified which of the retained clusters represent the effec-
tive hyporheic zone - that is, which groups of nodes have time series
that are reflective of tracer transport at the timescale of interest for a
particular injection as informed by the BTC observed in the stream.
We used the dendrogram and cluster-wise characteristic BTCs to dis-
tinguish clusters comprising the effective hyporheic zone and those
that behave as non-responsive “reference” nodes (i.e., “HZ1” and
“HZ2” vs. “Ref” in Figure 2e). Specifically, reference nodes lack BTC
structure related to the tracer injection. However, reference nodes
may exhibit some temporal patterns due to variations in temperature
and soil moisture or the spatial smearing of signals through the mesh
by the inversion algorithm (Day-Lewis et al., 2005). In contrast, we
interpret clusters representing the effective hyporheic zone as exhi-
biting BTCs with systematic increases in ¢ (decreases in p) from the
pre-injection state, which is indicative of conductive solute transport
(Singha et al., 2008; Ward et al., 2010b). If such qualitative distinctions
between BTC shapes for reference and hyporheic clusters were not
obvious, we utilized the branching structure of the dendrogram to
inform decision making.

We then qualitatively categorized the clusters comprising the
effective hyporheic zone based on the speed and magnitude of their
Ac BTC as “fast”, “moderate” or “slow”. These descriptors reflect the
relative Ac BTC behaviours that indicate differences in advective ver-
sus diffusive solute transport amongst the clusters, with “fast” being
the most advective (i.e., “HZ1” in Figure 2e). Ward et al. (2010a)
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discuss characterization and analysis of BTCs spanning the advective-
diffusive continuum and their expression in space throughout a tracer
injection. Since these designations denote relative differences
amongst nodes within a single transect and for a single injection, we
are not required to set a priori criteria (i.e., an exact value or range of
median arrival times) that define each category apart from being sta-
tistically different from one another (see Section 2.3.2). Thus, our
analysis of differences in hyporheic transport is data driven. Finally,
we calculated the approximate extent of the clusters comprising the
effective hyporheic zone based on the location of nodes within the

inversion mesh.

24 | Comparison to threshold-based estimates of
hyporheic extent

Prior studies (e.g., Ward et al., 2010b; 2012) have estimated hyporheic
extent based on a priori selection of Ap (or As) thresholds. Because
the resulting estimates of hyporheic extent are particularly sensitive
to the selected threshold (Ward et al., 2010b), only relative changes,
not the actual extents, are likely meaningful—ignoring issues with out-
of-plane effects (e.g., Bentley & Gharibi, 2004). Therefore, we identi-
fied the nodes for each injection and transect for which Ac 2 2, 3, 4,
5 and 10% for at least one timestep during the injection to compare
patterns across injections as in Ward et al. (2012). We then estimated
the hyporheic extent by calculating the total area within the inversion
mesh represented by the nodes retained by each of these 5 thresh-
olds. We compared the directionality and magnitude of changes in
threshold-based and clustering-based extent estimates in response to
seasonally declining streamflow.

Even if the duration of repeat constant-rate injections is nearly
identical, it is difficult to perfectly replicate the same magnitude of
change in o5, especially when surface discharge changes. Also, plateau

concentrations are not always steady during constant rate injections.
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Therefore, to characterize differences in the overall forcing on o5 over
the entire BTC for each injection, we calculated the zeroth temporal
moment (uS cm™? h) of the oy (nS cm™Y) time series from the sensor

between the two ER transects during each injection as:

t
Mg :J oadt. 3)

ti

Here t is elapsed time (hours) between the injection start time (t;)
and 96 h (t;) that constrained our analysis. Since changes in modelled
ER are sensitive to o5, we anticipated that the magnitude of Mg'ﬂ
would influence threshold-based estimates of hyporheic extent, but
clustering may be more robust to these unintended differences
between individual injection datasets. To evaluate this expectation,
we analysed linear regressions between the estimated hyporheic
extent and Mg'ﬂ for each injection, transect, and method for delinea-

tion (i.e., threshold or clustering).

3 | RESULTS AND DISCUSSION

3.1 | Spatial arrangement and transport
characteristics of hyporheic clusters

The total number of nodes with resolution >1% varied for each set of
inverted ER data, with fewer nodes retained (n) for Transect 2 than
3. Over the four injections, n ranged from 300-324 for Transect
2 and 318-408 for Transect 3. In all instances, a permutational test
(Park et al., 2009) of inter- versus intra-cluster variances identified
>50 significant branching events such that there are more statistically
unique clusters than can be individually interpreted. Therefore, we
analysed the four clusters resulting from the four highest branching
events for each transect and injection (Figure 3), which are signifi-

cantly different (p < 0.001) from each other and represent a highly

Injection 3 Injection 4
(7Ls™) (4Ls™)
1 (d)
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FIGURE 3 Individual injection dendrograms based of hierarchical clustering of nodal As time series for Transect 2 (a-d) and Transect 3 (e-h).
Clusters are labelled by qualitative descriptors of characteristic BTCs (Figure 5). “Ref1” indicates the zone that is unresponsive (no BTC) to the
tracer addition. “Ref2” only appears in panel b and is indicative of an inversion anomaly.
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conservative evaluation of hyporheic transport heterogeneity. The
designation of these four clusters would not change unless the p-
value thresholds (all <1.7 x 104 set by a Bonferroni correction
based on the number of values in each test were decreased even fur-
ther by multiple orders of magnitude. Of course, the delineation of
these four clusters would also remain unchanged if the p-value
threshold was raised or uncorrected (i.e., p < 0.05), that would simply
identify even more potential clusters with ever fewer nodes in each
cluster. While our approach of interpreting the four most unique
zones joins smaller clusters formed by subsequent branching events
that exhibit significantly different Ac responses to the tracer
(b < 0.001), all the within-cluster differences are significantly smaller
than those between clusters and no clusters from non-significant
branching events are retained. Given the ill-determined nature of
inverse modelling from surface ER data and resolution limitations, we
chose to avoid retaining large numbers of clusters (>50), wherein the
size of some clusters would potentially become too small to generate
valid statistical comparisons or meaningful hydrological interpreta-
tions. Moreover, evaluation of four clusters (only some of which will
represent regions with active exchange) is also well aligned with
numerous readily available multiple storage zone models that are fre-
quently and successfully used to represent transport and biogeochem-
ical phenomena in streams (e.g., Briggs et al., 2009; Choi et al., 2000;
Kerr et al., 2013; Knapp et al., 2017; Neilson et al., 2010).

In general, the hillslopes to either side of the stream were joined
into one cluster with additional clusters forming in a radial pattern
within the valley bottom (Figure 4). Based on relative differences in
the characteristic Ac BTCs (Figure 5), we found that the clusters with
the most advective signatures (“fast”) occurred nearest to the surface.
These regions were ringed by the cluster which exhibited moderately
(“mod”) advective behaviour, while the least advective (“slow”) clus-

ters were located at even greater depths and lateral distances within

the subsurface. We again emphasize that these designations are quali-
tative descriptors based on relative differences for a particular injec-
tion and that further quantitative descriptions (or even set definitions)
are possible, but beyond the scope of this particular study. This spatial
organization matches both conceptual expectations of hyporheic
exchange and prior visualizations of ER data from tracer studies in
streams (e.g., Doughty et al., 2020; Ward et al., 2010a; 2010b; 2012).
However, it is notable that this pattern is neither explicitly defined by
nor provided as an input in either the inversion or the cluster-
identification algorithms.

While the nodal membership and spatial arrangement of clusters
shifted over the four injections, we observed persistent patterns in
the organization of functional zones. For Transect 2, the primary pat-
tern is the assignment of two spatially separated regions on either
side of the valley bottom to the same cluster (i.e., “fast” cluster for
injections 1 and 2, shifting to “slow” for injections 3 and 4). In con-
trast, a singular radial clustering pattern was exhibited in Transect
3 throughout all four injections. This difference highlights the ability
of hierarchical clustering to parse the effective hyporheic area into
functional zones with spatial arrangements that reflect connectivity to
surface water at a particular transect, but that are not necessarily con-
tiguous. Additionally, the location and extent of certain functional
zones (i.e., “fast” for Transect 3) change very little even as flow
changes suggesting that this functional zonation approach based on
clustering is sensitive to spatial differences in hyporheic exchange that
reflect stable physical properties. This result is consistent with prior
findings from this site that riparian water table gradients and the
extent of tracer transport into riparian zones are quite stable and pre-
dominantly down-valley even as streamflow changes by three orders
of magnitude throughout summer (Voltz et al., 2013) and reflects the
predominant understanding that in this highly constrained valley bot-

tom, advective hyporheic transport is principally influenced by steep

FIGURE 4

Lateral Distance (m)

Injection 1 Injection 2 Injection 3 Injection 4
(35Ls™) (14 Ls™) (7Ls™) (4Ls™
490 4 @ .(b) (c) (d)
_‘
489 - I ®
o}
488 @
Q
. 487 5
g 486 Cluster
\é/ Fast
T 4004 © @ © (h) Mod
B =
W 489 - 5 Msow
486 - 2 Erer
5 5 L Q.
487 o M Ref2
486
] T ] T T T T T T T T T T T T T
3 6 9 12 3 9 120 3 6 120 3 6 9 12

Inversion mesh cross-sections with individual node regions coloured by cluster membership for Transect 2 (a-d) and Transect

3 (e-h) across each of the four injections. Vertical relief is exaggerated two-fold. Clusters are labelled by qualitative descriptors of characteristic
BTCs (Figure 5). “Ref1” indicates the zone that is unresponsive (no BTC) to the tracer addition. “Ref2” only appears in panel b and is indicative of
an inversion anomaly. Stream water surfaces and cross sections are not highlighted due to the shallow nature of the stream relative to riparian

vertical relief and depth of ER modelling.

d ‘01 “TTOT S8016601

1Tuo//:sdny woiy

//:sdny) suonipuo) pue sua | 3y 92§ “[7z0g/11/10] uo Areiqr autuo AdIA “[IH [2dey) 18 eurjore) yuOoN Jo Ausioatun Aq €11 dAU/z001 0 1/10p/wod Kafim:

10)/W0d" K[ I A

-pue-

QSUQOI'T SUOWWO)) 9ANEAI) d[qedrjdde ayy Aq paurdA0S aIe sa[onIe YO oSN JO sa[nI 10§ AIeIqr duruQ AS[IA\ UO (suony



o4 | WILEY.

SINGLEY ET AL.

Injection 1 Injection 2 Injection 3 Injection 4
(35Ls™) (14Ls™) (7Ls™) (4Ls™
€) (b) (© (d) MC Sensor
200 A
- - A
€
o 100 4 — B
3
= = C
)
) 0 -
f h
IC (f) C)] (h)
o 207 3
X =
= 10 A @
®] Ia)
T T e i a1
0 - m N Cluster
-10 7 Fast
Mod
50 1 (i) ) (k) U — Siow
20 A 5 = Ref1
S /\ 2 Ref2
= 10 1 D -
-10 1

0 25 50 75 100 O 25 50 75 100 O

25 50 75 100 O 25 50 75 100

Elapsed Time (hr)

FIGURE 5 Observed specific conductivity BTCs for main channel sensors (a-d) and cluster-wise A¢ BTCs for Transect 2 (e-h) and Transect
3 (i-1). The Ao traces (e-1) are presented as ribbon plots (mean * SE) representing Ac values for nodes within each cluster at each timestep. Errors
are relatively small compared to line width in most cases. Clusters are labelled by qualitative descriptors of characteristic BTCs. “Refl” indicates
the zone that is unresponsive (no BTC) to the tracer addition. “Ref2” only appears in panel b and is indicative of an inversion anomaly.

down-valley gradients and large morphological features (i.e., Ward
et al., 2014, 2017). As expected, this results in stable spatial pattern-
ing of functional zonation that is relatively insensitive to multiple
orders of magnitude change in streamflow at seasonal timescales. In
other systems, hyporheic exchange and riparian water-table head gra-
dients are not seasonally stable (e.g., Burt et al., 2002; Vidon &
Hill, 2004; Wroblicky et al., 1998) and event fluctuations in surface
and groundwater conditions alter hyporheic exchange at shorter time-
scales (e.g., Malzone et al, 2016; Ward et al., 2013; Wondzell &
Swanson, 1996; Zimmer & Lautz, 2013). However, the clustering
method does not rely on assumptions about such behaviour and
would, therefore, be responsive to site-specific dynamics.

As noted in prior studies of this watershed (e.g., Ward
et al, 2012), the main-channel fluid-conductivity BTCs from each
injection reached a plateau quickly (<1 h) and returned to background
levels over slightly longer, but still fairly rapid time spans (<2 h) after
the injection ended (Figure 5a-d). In contrast, characteristic Ac BTCs
for each cluster show a much more gradual shift from background
conditions and most do not reach a fully plateaued state (Figure 5e-I),
especially for injection 4 at the lowest flows. While many clusters
show an initially rapid response to the end of the injection, the rate at

which characteristic A¢ BTCs return to their pre-injection state

generally slows after a few hours, and most do not return to the initial
state even 48 h later. These behaviours reflect the sensitivity of ER to
low concentrations of solute that are retained in and slowly released
from relatively immobile pore spaces and diluted below detection
levels of in-stream fluid electrical conductivity sensors (Singha
et al., 2008; Ward et al., 2010a). Notably, the “fast” clusters load and
unload with tracer the most rapidly and exhibit the greatest change in
o, reflecting more advective transport and greater dominance by
mobile domains. In contrast, the “slow” clusters show the smallest
and most gradual ¢ responses, indicative of less advective transport
and more immobile pore spaces. Clustering of inverted ER data,
therefore, categorizes portions of the subsurface in terms of BTC
behaviour that emerges from distinctive combinations of transport
phenomena (i.e., advection vs. diffusion vs. transient storage) and rel-
ative density of mobile versus immobile domains within the
subsurface.

By providing a means to quantify how these behaviours differ at
each timestep for spatially defined sets of nodes, clustering improves
upon approaches that either lump all surface ER data together
(i.e., bulk apparent-conductivity time series; Doughty et al., 2020) or
characterize spatial trends within modelled cross-sections for only a

small subset of times (i.e., Ap cross-sectional images at a few selected
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timesteps; Ward et al., 2012). Thus, this application illustrates how
functional zones defined by their transport characteristics can be
identified and approximately mapped in space by hierarchical cluster-
ing of inverted ER data.

We interpreted reference clusters across injections and transects
that did not exhibit an obvious BTC response to the tracer addition
(“Ref1”; Figure 5) and were mostly located within adjacent hillslopes
above the streambed where exchange is unlikely (Figure 4). Generally,
this reference cluster was the largest across all injections and exhib-
ited mean Aoc traces that were flat and near zero (< £5%) as would be
expected. Notably, however, for Transect 2 injection 2, cluster “Ref2”
showed a flat Ac response during the injection but had a large nega-
tive Ac step change in the post-injection period. Such a negative Ac
response is likely an artefact of the second-derivative smoothing
incorporated into the inversion process. Detection of this artefact,
along with the notably different spatial arrangement of functional
zones, demonstrates that clustering may be a useful tool in identifying
datasets and inversions with errors than can impact subsequent ana-
lyses. Altogether, these examples demonstrate that hierarchical clus-
tering is useful for identifying spatial organization of distinct tracer
transport signals in the subsurface, distinguishing unresponsive nodes
from those in the effective hyporheic zone and detecting inversion-
process artefacts.

While main-channel fluid conductivity BTCs vary between injec-
tions (Figure 5a-d), some notable patterns reflective of seasonally
evolving subsurface solute transport emerge across the injections.
Specifically, cluster-wise Ac BTC shapes (particularly the “fast” clus-
ters) shift temporally towards slower loading and weaker plateauing.
That change in the “fast” cluster behaviour is most apparent for
Transect 2 and to lesser extent for Transect 3. This difference
between transects is suggestive of subsurface advective transport
declining more substantially for Transect 2 as surface flow (35 L s™!
at injection 1 to 4 L s* during injection 4). Temporal moment analy-
sis on nodal BTCs for this dataset by Ward et al. (2014) similarly
reported larger changes in first-arrival time, mean-arrival time, and
skewness for Transect 2 than Transect 3. That analysis required
lumping data for all nodes identified as part of the effective hypor-

heic zone, while our analysis parses this into spatially defined func-

3.2 | Comparison of methods for estimating
effective hyporheic extent

We compared the total effective hyporheic extent amongst injections
with different streamflow rates estimated by hierarchical clustering
with Ac thresholds (Figure 6). We limit analysis of relative differences
in extent to a single significant digit due to the imprecise nature of
models resulting from inversion of field data. Based on the clustering
method, we found that total effective hyporheic extent for Transect
2 decreased by ~40% (10 to 6 m?) between the highest and lowest
flows. In contrast, for Transect 3 cluster-based analysis resulted in a
~30% increase (6 to 8 m?). For Transect 2, threshold-based estimates
of hyporheic extent were relatively stable for flows of 35 and
14 L s, with decreasing extents observed as flow fell from 14 to
7 and then 4 Ls 2, except for Ac 2 2%. For Transect 3, estimated
hyporheic extent increased as flow fell from 35 to 14 Ls ! then
declined thereafter.

Interestingly, the cluster-based estimates of total effective hypor-
heic extent are relatively more stable at the three lowest streamflow
conditions and most align with estimates from different threshold
values depending on the injection and transect. For the lowest flow
conditions, cluster-based extent estimates for both Transect 2 and
Transect 3 are very similar to those generated by a Ac threshold of
5%, while this shifts to 10% for the 14 L s~ injection. At the highest-
flow condition, the cluster-based extent estimate for Transect 2 was
again more similar to a 5% threshold while Transect 3 was more simi-
lar to that based on a 10% threshold. Thus, applying a single Ac
threshold across multiple datasets does not replicate the way in which
clustering distinguishes reference from responsive signals to delimit
hyporheic extent, likely because clustering is a more robust method
than threshold-based analysis of hyporheic extent when comparing
inverse model results amongst injections.

We also compared the estimated hyporheic extent for each
method against the integral of the main channel conductivity BTCs
(Mg'f') of each injection. We found that, for As threshold-based
methods, the estimated hyporheic extent had a strong positive linear
correlation with M3" while clustering was less directionally sensitive

to Mg'ﬂ (Figure 7). In conjunction with the relations between discharge

tional zones. and hyporheic extent by method (Figure 6), this analysis demonstrates
“(a b
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FIGURE 6 Total effective hyporheic extent by method versus surface discharge for (a) Transect 2 and (b) Transect 3.
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(a) Transect 2 and (b) Transect 3. Transparent

Method ° ; . ]
ribbons depict 95% confidence intervals on
Ao =2% linear regressions.
Ao > 3%
AC > 4%

—- A0 >5%
- Ac>10%

—+— clustering

1.0x10* 1.4x10* 1.0x10* 1.4x10*

M2" (pS e hr)

that changes in the hyporheic estimate obtained by threshold analyses
are more sensitive to differences in the tracer injection than to
changes in exchange resulting from an order of magnitude variation in
discharge. Conversely, cluster-based estimates of hyporheic extent
are more directionally related to differences in discharge between
injections than to Mg*ﬂ. This is a very important finding, especially
given the near impossibility of performing multiple injections at differ-
ent discharge conditions with exactly the same BTC integral. Beyond
methodological considerations, the relatively consistent extents
across injections resulting from clustering analysis aligns with observa-
tions from wells that exchange and water table gradients in this sys-
tem are relatively stable throughout baseflow recession (Voltz et al.,
2013). Clustering, therefore, provides a method for estimating the
spatial extent of hyporheic exchange from time-lapse ER models that
is more robust to unintended variations in BTCs that occur during
field-based tracer experiments.

Finally, it is notable that the total hyporheic extents that we esti-
mate (as well as the depth to which nodes are retained) are smaller
than those reported for prior analysis of the surface ER data (Ward
et al., 2012; 2014). This highlights an additional sensitivity not just to
the method used to delimit hyporheic extent, but also to small differ-
ences in the inversion mesh, models used for regularization, and inver-
sion settings as the underlying data are the same. We tested
clustering on those original inversions and, just as with this study, the
lower boundaries of clusters interpreted as representing the effective
hyporheic zone were all defined by resolution limitations. In other
words, the reference clusters did not extend completely and contigu-
ously beneath the hyporheic clusters due to insufficient resolution
beyond the depth of probable tracer penetration. The spatial structure
and arrangement of clusters within the hyporheic zone, however, are
not obviously subject to this issue.

Due to the ill-determined nature of the inverse problem and reso-
lution limitations, neither the ER models nor our calculated hyporheic
extents represent a precise quantification of the system. Rather, they
are simply estimates based on a smoothed approximation of subsur-
face properties, from which we more objectively, but imprecisely, map

patterns via hierarchical clustering.

We thus emphasize that it is essential to recognize that such
issues with insufficient resolution at depth, combined with the
smoothing inherent in the inversions, means that the extent estimates

should be cautiously interpreted.

3.3 | Potential extensions

While the analyses we introduce are useful for characterizing trans-
port heterogeneity within the effective hyporheic zone, they also
have the potential to improve model representation of hyporheic pro-
cesses. For instance, utilizing our proposed method to identify the
extent and characteristic BTCs for regions within the hyporheic zone
could be used to parameterize cross-sectional areas prior to inversely
tuning exchange coefficients in reactive transport models. This possi-
bility is especially important as physical parameters such as the extent
of hyporheic exchange cannot be uniquely determined solely by
observing surface-water BTCs (Bottacin-Busolin, 2019). Similar pro-
gress has been achieved using the hydrologic facies frameworks to
parameterize reduced-complexity models based on sediment property
observations (Hou et al., 2019).

The utility of clustering could also be further extended through
changes to the inversion process. Most obviously, for streams that
have a large enough cross-sectional area, the stream itself could be
included as a specified domain in the inversion mesh and subsequent
clustering. The resulting model components representing surface
water conductivity could be directly compared to field data from in-
stream conductivity sensors, rather than comparing observed surface
water conductivities to modelled bulk subsurface conductivity as in
this study (Figure 5). Post-inversion clustering could also employ con-
strained inversion techniques beyond standard regularization with
smoothing as used here. For example, using Ensemble Kalman Inver-
sions (e.g., Tso et al.,, 2021) would allow for improved uncertainty
quantification and the identification of sharp zone boundaries where
regularization is not applied. This may improve both estimation of
total hyporheic extent and delineation of boundaries within the

hyporheic zone. Identifying zones of interest may also be
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accomplished by extending alternative inversion techniques that can
solve for specific, albeit simple, shapes reflective of hydrologic pro-
cesses and limited artefacts using geometric moments (e.g., Pidlisecky
et al., 2011). Future implementation of alternative inversion tech-
niques must be carefully guided by the ability of the practitioner to
evaluate the specific suitability, limitations, and need for prior infor-
mation (or conceptualization) about a particular site or their study pur-
pose. The method we have introduced here focuses on applications
for hydrologic scientists who may not be pushing the envelope in
terms of geophysical inversion methods.

Our approach may also be extended to identify the region over
which point-scale sampling (i.e., from wells, piezometers or mini-point
samplers) may provide representative information. This information is
potentially most useful in the context of reactive-tracer studies,
wherein metrics of reactivity or the balance of transport and reaction
timescales from particular points could be extrapolated in space based
on ER-informed functional-zone mapping. Alternatively, such
functional-zone mapping could be used to develop testable hypothe-
ses about the spatial structure of biogeochemical activity
(i.e., occurrence of redox reactions, relative reaction completion, etc.)
or microbial diversity that could then be tested by point sampling. For
instance, denitrification in the hyporheic zone plays an important role
in the attenuation of excess nutrient fluxes by streams (Gomez-Velez
et al.,, 2015) and techniques exist to predict net hyporheic dynamics
(e.g., Zarnetske et al, 2012), but not where denitrification occurs
throughout a particular study site without costly and intensive point-
scale sampling (e.g., Harvey et al., 2013). The weaker advective
transport that characterizes “slow” zones is likely to be associated
with slower flow paths (longer transit time) and oxygen depletion,
such that this zonation might be used to generate site-specific predic-
tions of where denitrification is more probable. Such extensions
would represent a major development in linking heterogeneity of
coupled transport and biogeochemical processes occurring at the
scale of a few metres to their aggregate significance over entire
reaches (e.g., Harvey et al., 2018).

Beyond identifying functional zones representing distinct trans-
port and connectivity signals within the hyporheic zone, there are also
potential extensions for this method that could advance synthesis
across time (injections) and space (transects or sites). It is possible to
develop methods that form clusters across merged datasets or match
clusters across datasets through post-hoc comparisons so that the
persistence and spatial evolution of functional zones can be investi-
gated. The greatest challenge to this approach will be in determining
how to normalize data given differences in forcing from separate sol-
ute injections. It is difficult, if not impossible, to perform multiple
tracer additions that generate BTCs with the same relative change in
stream water fluid conductivities, as is apparent even in this dataset
(Figure 5a-d). Importantly, this new clustering approach is less sensi-
tive (though not entirely immune) to such variations than traditional
threshold-based analyses of ER models (Figure 7), thereby offering a
method that is better suited to the inevitable complexity of conduct-
ing field-based tracer injections. Determining how to quantitatively

handle such differences amongst injections will be necessary to

differentiate changes due to the tracer input itself or subsurface trans-
port processes when examining clustering between datasets.

Another intriguing potential extension exists around supervised
clustering or similar machine-learning techniques in which cluster
characteristics are defined based on an initial training dataset contain-
ing time-lapse ER and more easily obtained ancillary measurements to
allow for prediction elsewhere. Such methods have been applied to
classify and then predict spatiotemporal evolution of other hydrologic
patterns such as seasonal soil moisture (Hermes et al.,, 2020) and
hydrologically homogeneous regions within catchments (Nadoushani
et al., 2018) based on topographic indices, but not, to our knowledge,
for hyporheic exchange. For instance, exploring whether high-
resolution topography data from within the river corridor (rather than
the whole catchment) could be used to predict hyporheic zonation
patterns beyond discrete transects is an intriguing possibility. Doing
so could support reduced-complexity modelling that still represents
spatial variations in functionally distinct zones at finer resolution along
stream reaches than is currently possible. The primary challenge to
this extension will be in determining which combination of metrics are
obtainable over entire reaches (at least compared to discrete ER tran-
sects) and can provide predictive power of subsurface functional

zonation.

4 | CONCLUSIONS

With the goal of developing a more objective approach to evaluating
hyporheic extent, we present a method to analyse inverted ER models
using unsupervised hierarchical clustering to delimit the extent of
hyporheic exchange and to characterize functional zones with distinct
transport behaviours within the subsurface. We used this method to
show that total hyporheic extent and the spatial structure of hetero-
geneity of exchange were predominantly stable throughout seasonal
baseflow recession (4 < Q <35 Ls %) for adjacent (<10 m longitudi-
nally separated) transects in a highly constrained, steep mountain
stream. While prior research at this site showed that the variability of
hyporheic transport processes increases with declining streamflow
(i.e., Ward et al, 2014) and individual flow path geometries shift
(Ward et al., 2017), our findings reveal that such changes occur within
the larger-scale context of relatively unchanging cross-sectional pat-
terning of functional zonation, defined by relative transport character-
istics. This result suggests that for this site, stable morphological and
alluvial characteristics set a characteristic pattern of hyporheic
exchange heterogeneity, while forcing from surface water changes
result in smaller within zone changes to transport during baseflow
recession. We also found that the application of a single signal thresh-
old to delimit hyporheic extent across ER datasets cannot replicate
statistically supported parsing of active hyporheic and inactive refer-
ence regions in the subsurface. While clustering does not overcome
the inevitable issues of blurring in inverse models of the subsurface, it
provides a more objective approach to distinguishing where and to
what degree stream tracers may be exchanged with the subsurface

from geophysical datasets. Clustering also helps distinguish the spatial
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structure of zones with distinctive combinations of transport phenom-
ena (i.e., advection vs. diffusion vs. transient storage) and relative den-
sity of mobile versus immobile domains within the subsurface, as well
as how these structures persist or change temporally. To our knowl-
edge, this represents the first application of machine learning to statis-
tically classify spatial patterning of hyporheic exchange during tracer
studies. Additionally, this approach has the potential to inform data-
driven reduced-complexity modelling that could address known short-
falls of representing the hyporheic zone as a single well-mixed

compartment.
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