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Abstract
To create heterogeneous, multiscale structures with unprecedented functionalities, recent topology optimization approaches 
design either fully aperiodic systems or functionally graded structures, which compete in terms of design freedom and effi-
ciency. We propose to inherit the advantages of both through a data-driven framework for multiclass functionally graded 
structures that mixes several families, i.e., classes, of microstructure topologies to create spatially-varying designs with 
guaranteed feasibility. The key is a new multiclass shape blending scheme that generates smoothly graded microstructures 
without requiring compatible classes or connectivity and feasibility constraints. Moreover, it transforms the microscale 
problem into an efficient, low-dimensional one without confining the design to predefined shapes. Compliance and shape 
matching examples using common truss geometries and diversity-based freeform topologies demonstrate the versatility of 
our framework, while studies on the effect of the number and diversity of classes illustrate the effectiveness. The generality 
of the proposed methods supports future extensions beyond the linear applications presented.

Keywords Topology optimization · Functionally graded structure · Multiscale · Multiclass · Shape interpolation · Data-
driven design

1 Introduction

Multiscale mechanical structures present exciting functionali-
ties and unprecedented performance ranging from global objec-
tives such as light-weighting, thermal conductivity and energy 
absorption (Da et al. 2019; Jia et al. 2021; Da et al. 2021) to 
targeted local behaviors, e.g., shape morphing or pattern recon-
figuration for soft robots (Mirzaali et al. 2018; Boley et al. 2019) 

and active airfoils (Lumpe and Shea 2021). To design such com-
plex structures, multiscale topology optimization (TO) has risen 
to prominence and flourished. While early research focused on 
periodic microstructures, two types of heterogenous designs, in 
which neighboring microstructural topologies differ from each 
other, now surpass them in terms of performance: fully aperiodic 
systems and functionally graded structures (FGS).

In this work, we aim to bridge the freedom of aperiodic 
designs with the efficiency and smooth interfaces of FGS. We 
summarize their pros and cons in this section. Both typically 
follow a homogenization approach where the material proper-
ties of each element in the macroscopic structure are replaced 
by the effective properties of the microstructure at that loca-
tion. This greatly expedites multiscale design as the perfor-
mance can be evaluated at the macroscale, albeit with lowered 
accuracy since heterogeneous structures break the assumption 
of infinite periodicity (Andreassen and Andreasen 2014). The 
two approaches differ in that aperiodic systems can be com-
posed of very different microstructures, whereas the change in 
the topologies and/or volume fractions of neighboring micro-
structures in FGS are deliberately designed to be continuous.

Although aperiodic systems allow immense design free-
dom, they come at the cost of explosive problem sizes. Two 
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avenues of data-driven methods have emerged to counter 
this “curse of dimensionality”. One assembles microstruc-
tures from pre-computed libraries via combinatorial opti-
mization (Schumacher et al. 2015; Panetta et al. 2015), and 
the other accelerates gradient-based design by creating deep 
learning (DL) models from massive datasets for dimension 
reduction and rapid property predictions (Wang et al. 2020a; 
Kumar et al. 2020; Xiao et al. 2021).

These approaches are powerful, but require large over-
head costs to build the datasets and models, and need care-
ful strategies to select reasonably compatible neighboring 
microstructures. Even then, they may not achieve connectiv-
ity on par with FGS. Combined with the use of the effective 
properties, low connectivity can result in the manufactured 
performance deviating greatly from the optimized design. 
These drawbacks mean that, in their current state, data-
driven methods are difficult to scale to large systems with 
complex physics, e.g., nonlinear mechanics. Compared to 
FGS, such approaches are less suitable when stress concen-
trations or expensive property simulations must be avoided.

In contrast, some works have indicated that the con-
tinuous interfaces and more gradual topological change in 
FGS may be able to mitigate the errors from homogeniza-
tion (Schumacher et al. 2015; Garner et al. 2019; Panesar 
et al. 2018). Functional grading can be further catego-
rized into three camps: continuously varying volume frac-
tion (Wang et al. 2018; Li et al. 2019; Jansen and Pierard 
2020), topology (Kumar et al. 2020; Sanders et al. 2021), or 
a hybrid of both (Wang et al. 2020c; Luo et al. 2021; Xiao 
et al. 2021). Recent research is shifting towards the latter 
two, which have demonstrated that expanding the design 
space to include multiple topology types can considerably 
improve the structural performance. Our work belongs to the 
hybrid one, and we define a microstructure class as a family 
of microstructures that possess the same overall topological 
concept but vary individually by volume fraction. Hence, the 
works in the last two categories can be termed multiclass.

Within existing multiclass methods, the prevailing strat-
egy is to treat FGS design as a multi-material TO problem by 
allocating each class to its own region with distinct bounda-
ries. This assumes that the interfaces between classes are 
perfectly connected. As a result, most approaches pre-define 
a few mutually compatible classes (Wang et al. 2020c; Luo 
et al. 2021) or fix their connections (Chu et al. 2019; Zhang 
et al. 2018), which reduces computational cost and complex-
ity but can yield suboptimal solutions.

Similar methods in the general multiscale TO field 
accomplish connected heterogeneous designs without the 
above simplifications by: (1) sharing design variables at 
interfaces (Liu et al. 2019), (2) adding connectivity con-
straints (Du et al. 2018; Garner et al. 2019), (3) controlling 
the change in the properties of intermediate microstruc-
tures (Zhou et al. 2019), (4) creating geometric gradations 

during pre- or post-processing (Sanders et al. 2021; Zhou 
et al. 2019; Zobaer and Sutradhar 2020), and (5) interpolat-
ing random field representations of microstructures (Kumar 
et al. 2020). Of these, Liu et al. (2019), Garner et al. (2019), 
and Sanders et al. (2021) concurrently design the macro-
structure as well as the distributions of multiple microstruc-
tures, and only Luo et al. (2021) also optimized the graded 
volume fractions. Moreover, many do not scale well with 
the number of classes.

Merging the advantages of the two heterogeneous 
approaches, we propose a general TO framework for multi-
class FGS that achieves smooth transitions between multiple 
microstructure classes without additional constraints, even 
if those classes are not compatible initially. The cornerstone 
of our approach is a novel multiclass shape blending scheme 
that generates new microstructures from a small set of prede-
fined basis classes while guaranteeing feasibility. We define 
a design as feasible when the microstructures are not only 
self-connected (i.e., have no disconnected features) but also 
well-connected to their neighbors. In addition, we desire the 
microstructures to meet a minimum feature size, as required 
in some manufacturing techniques. Our framework departs 
from existing heterogeneous design methods in several ways:

• We create a continuous and low-dimensional microstruc-
ture representation using the parameters of our shape 
blending scheme as design variables. This effectively 
transforms the microscale problem into a parametric one. 
While we do require predefined basis classes, this by no 
means restricts our design, as we allow the regions for 
each class and the boundaries between them to be blurred 
so that the microstructures anywhere in the FGS can be 
novel, i.e., not found in the initial basis classes.

• Our blending scheme integrates naturally into existing 
TO methods. In this work, we incorporate it with discrete 
and gradient-based TO, along with a new penalty that 
promotes diverse designs. These significantly reduce the 
cost of concurrent design with any number of microscale 
classes. Thus, through blending, our framework features 
design freedom near that of aperiodic methods while 
inheriting the efficiency of functionally graded design.

• The blending parameters serve as effective inputs for neu-
ral networks that predict the effective properties of new 
microstructures and can be re-used in multiple applica-
tions, further accelerating design.

• Certain feasibility metrics (e.g., self-connectedness and 
minimum feature size) can be built into the blending 
scheme so that they do not need to be included explicitly 
in the TO problem. Furthermore, the flexibility of using 
basis classes permits designers to incorporate expert 
knowledge and eliminates the frustration of choosing 
compatible classes. If desired, manual selection can be 
removed altogether by extracting classes from open-
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source databases, e.g., using diversity metrics (Chan 
et al. 2020).

With compliance and shape morphing examples, we dem-
onstrate the efficiency and inherent ability of our approach 
in designing multiscale structures with continuous transi-
tions. The benefits of multiclass FGS are verified by utilizing 
both common truss-type and diverse freeform (topology-
optimized) basis classes, and by comparing our results to 
designs in literature.

2  Methodology

In this section, we introduce three crucial components in 
our approach: (1) multiclass shape blending and global 
interpolation schemes (Sect. 2.1), (2) neural networks for 
property prediction (Sect. 2.2), and (3) concurrent multiclass 
data-driven topology optimization (TO), which ties all of the 
methods into one framework (Sect. 2.3).

2.1  Multiclass shape blending and smooth 
interpolation

2.1.1  Background

Our proposed shape blending scheme is heavily inspired by 
the computer graphics field, where morphing one geometric 
model into another has long been studied and utilized in, 
e.g., animation films and video games (Sanchez 2015; Rohra 
and Kulkarni 2019). These methods have also supported 
applications like medical imaging (Carballido-Gamio et al. 
2005) and metal-forming simulations (Thomas et al. 2020). 
In fact, evolving geometries through surface representa-
tions is the foundation of the level-set TO method (van Dijk 
et al. 2013), while combining shapes using distance fields 
is the bedrock of TO algorithms such as movable morphing 
components (Zhang et al. 2015).

Most closely related to the interest of this paper are blend-
ing techniques that use function representations (FReps) 
of shapes, which parametrize any geometric model as a 
series of operations (e.g., unions, differences, and inter-
sections) performed on a set of primitives or basis geom-
etries (Sanchez 2015). It is extremely flexible as it allows 
the bases to be defined by any representation, e.g., meshes 
or voxels, and any resolution. In our case, we represent our 
basis microstructure classes as continuous signed distance 
fields (SDFs), which are implicit function representations 
similar to level sets. That is, whether the material is solid 
or void at any arbitrary point (x, y) within a microstructure, 
!(x, y, t) , is determined by whether the SDF value is positive 
or negative, respectively. The isovalue t controls the iso-
contour of the field and therefore enables us to tune volume 

fractions. With this powerful representation, we can not only 
generate an entire family of microstructures over a continu-
ous range of volume fractions, but also combine multiple 
SDFs to create novel classes.

Blending operations to mix SDFs have been studied for 
decades, beginning with the simple set-theoretic operation 
for the union of the FReps of two shapes, !1 and !2 (Ricci 
1973): !union = max(!1,!2) . Since then, many works have 
improved shape metamorphosis (Sanchez 2015; Eisenberger 
et al. 2019; Oring et al. 2021), but require intensive user-
interaction and computational costs, and are, therefore, 
intractable or unsuitable for multiscale design.

2.1.2  Multiclass shape blending scheme

Our proposed multiclass shape blending scheme is a com-
bination of two simple techniques: (1) a weighted sum of 
basis classes based on cross dissolving, and (2) an activated 
union with the lower feasible bounds of each basis. The 
entire scheme is differentiable and efficient, which fits in 
well with gradient-based optimization algorithms.

Crucial to our scheme are basis microstructure classes, 
which do not need to be mutually compatible. We denote 
the SDF representations of arbitrary basis classes as !B

d
 for 

d = [1,D] , where the shapes !B
d
 and total number of classes 

D are defined by the user. Note that while we use truss-type 
bases in Figs. 1 and 2 as demonstration, our method is appli-
cable to any set of classes.

Prior to blending, we normalize the D basis classes so 
that they can be mixed fairly and also find their lower fea-
sible bounds. The following pre-processing steps only need 
to be performed once per set of bases: 

1. Choose a common volume fraction, v∗ , and find the rep-
resentative SDF for each basis, !∗

d
= !

B
d
+ t∗

d
 , such that 

it has v∗ . We use the well-known bisection algorithm.
2. Find the SDF of the lower feasible bound of each basis, 

!
L
d
= !

B
d
+ tL

d
 , using any desired feasibility metric. In 

this work, we set a minimum feature size of 4 pixels for 
a 50 × 50 microstructure.

After this one-time process, we can use !∗
d
 and !L

d
 repeat-

edly for our proposed multiclass blending. The first step of 
the scheme is based on cross dissolving (Rohra and Kulkarni 
2019), which can be simply defined as a linear interpolation 
between the source and target geometries. This can induce a 
double exposure effect where traces of both shapes co-exist 
in the blended result. While that causes unnatural morphing 
of, e.g., human faces, it organically achieves connected tran-
sitions between neighboring microstructures.

We express multiclass interpolation as a weighted sum 
of the bases:
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where cd ∈ [0, 1] . Although it effectively creates new classes 
of microstructures, this interpolation is agnostic to important 
geometrical features and can lead to broken shapes that have 
disconnected or thin features (see the top row of Fig. 1).

Therefore, to guarantee that the blended microstruc-
tures are sufficiently connected and feasible, we propose 
an additional step that enforces a lower feasible bound 

(1)!
0 =

D∑

d

cd!
∗
d
+ t,

on blending. It also acts as an implicit constraint for sim-
ple manufacturing considerations, e.g., minimum feature 
sizes or volume fractions. This second step is an activated 
soft-max function, a continuous and differentiable exten-
sion of Ricci’s set-theoretic union above:

where ad = H(cd) are the activated weight parameters using 
the Heaviside function:

(2)! =
1

!2
log

[
exp

(
!2!

0
)
+

D∑

d

ad exp
(
!2!

L
d

)]
,

Fig. 1  Illustration of using mul-
ticlass shape blending scheme 
to generate a microstructure 
from truss basis classes. Out-
lined shapes represent classes 
whose weights are zero. Top 
row: Step 1 (Eq. 1), bottom row: 
Step 2 (Eq. 2)

Fig. 2  Demonstration of the integration of multiclass shape blending 
and global interpolation. The basis classes are defined (left). Exam-
ples of M = 2 new classes, !̃ , their distributions, !̂ , and volume frac-

tions, ! , are given (middle). Each microstructure in the FGS (right) is 
generated using Eq. 6
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By setting the threshold !2 > 0 , the activation guarantees 
that at least one—but not all, or else low volume fractions 
would be difficult to attain—of the bases are feasible in each 
blended result. That is, in this step, only weights that are 
greater than !2 are activated to equal one (shaded shapes in 
the second panel of Fig. 1) while others are suppressed to 
zero (outlined shapes). We find that setting !2 to the 75th-
percentile of the weights, ! , works quite well in promoting 
connected transitions.

With the two-step shape blending scheme, the representa-
tion of all possible blended microstructures, including those 
in the original basis classes, can be compactly expressed 
as the weight parameters. We can, therefore, formulate the 
microscale design variables as !(m) for m ∈ [1,M] desired 
optimal classes (set by the user), transforming the typically 
high-dimensional optimization problem into a simple and 
efficient parametric one that can still generate a wide range 
of microstructures.

A final note regarding microstructure design is that, in 
practice, Eq. 1 allows each c(m)

d
∈ [0, 1] and can lead to ∑D

d=1
c
(m)
d

= 0 , which results in completely solid microstruc-
tures and occasional numerical issues. Moreover, it causes 
redundancy in the design space since taking !0 ≥ 0 to obtain 
the solid topology cancels out the least common denomina-
tor of the weights. There are numerous ways to enforce the 
sum of c(m)

d
 to be equal to one. We extend a multi-material 

interpolation schemes from our previous work (Chan et al. 
2019) to normalize the basis class weights as follows:

where !(j) are constant one-hot encoded vectors for each 
basis such that z(j)

i
 equals 1 for i = j and 0 for all i ≠ j . Sub-

sequently, cd in Eqs. 1 and 3 are replaced with c̃d . While 
our shape blending and design methods work well without 
Eq. 4, for increased stability in the optimization process, 
and the added bonus of reducing the microscale design vari-
ables, !(m) , to size [1 × D − 1] , we use it in the remaining 
discussions.

2.1.3  Integration with multiscale design

In the context of multiscale design, the subscript e is added 
to denote individual microstructures, which each resides in 
one macroscopic quadrilateral 4-node finite element. Instead 
of directly optimizing D weights at each microstructure, we 
reduce the number of design variables by optimizing M 
new classes and interpolating them throughout the global 
structure using the distribution fields !(p) . An example with 

(3)H(cd) =
tanh (!2"2) + tanh (!2(cd − "2))

tanh (!2"2) + tanh (!2(1 − "2))
.

(4)!̃
(m) = "

(1) +

D−1∑

j=1

[
(
"
(j+1) − "

(j)
) j∏

k=1

c
(m)
k

]
,

M = 2 is portrayed by the red and blue classes in the middle 
panel of Fig. 2. For demonstration, we artificially create the 
values of the macro- and micro-scale design variables in the 
middle panel, but during design, these values are optimized 
concurrently.

Similar to multi-material TO (and Eq. 4), we require that 
the sum of the distributions at each element equals one. 
Thus, to obtain each microstructure, e, we can globally inter-
polate the optimal class weights, !̃(m) , with:

where !̂ are the smoothed distribution fields after apply-
ing a radial filter (Sigmund 2007) to encourage functional 
grading.

Therefore, combining Eqs. 1 through 5, our final multi-
class shape blending scheme for a microstructure at element 
e is:

where ae⋅d = H(ĉe⋅d) and te is found using the bisection algo-
rithm to match a given or optimized volume fraction, ve . This 
replaces Eq. 2 during optimization.

2.2  Property prediction with neural networks

The continuous and low-dimensional microstructure repre-
sentation lends itself well to one of the simplest deep learn-
ing (DL) techniques: regression with neural networks. More 
specifically, we can create feedforward neural networks with 
three or fewer hidden layers that predict the components 
of a microstructure’s effective stiffness tensor, !H

e
 , given 

the scalar values of the blending weights and volume frac-
tion as inputs. That is, !H

e
= NN("̂e, v̂e) , where !̂e and v̂e are 

the interpolated class and filtered volume design variables, 
respectively.

After each hidden layer, we use a tanh activation function. 
For training, we use the mean squared error (MSE) loss and 
the Levenberg-Marquardt optimizer (Moré 1978). To include 
all possible microstructures, such as those where only a few 
basis classes have non-zero weights, we use an optimal sliced 
Latin hypercube method (Ba et al. 2015) to sample the weights 
cd , first creating combinatorial “slices”, then 20 space-filling 
samples for each “slice”. To cover volume fractions, we also 
sample 15 microstructures from each resulting SDF (i.e., each 
set of weights) over t ∈ [−1, 1] . We obtain a total of 22, 575 
microstructures for D = 5 basis classes. The effective stiffness 

(5)!̂e = !̃
(1) +

M−1∑

j=1

[
(
!̃
(j+1) − !̃

(j)
) j∏

k=1

#̂(k)
e

]
,

(6)
!e =

1

!2
log

{
exp

[
!2
( D∑

d

ĉe⋅d!
∗
d
+ te

)]

+

D∑

d

ae⋅d exp
(
!2!

L
d

)}
,
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tensors of each are calculated using an energy-based homog-
enization method (Andreassen and Andreasen 2014). We set 
aside 70%, 15%, 15% of the data for training, validation and 
testing.

Once the model is trained, we can use backpropaga-
tion (Hastie et al. 2009) to analytically derive the gradients 
of !H

e
 with respect to the design variables, !̂e and v̂e . This, 

together with the rapid predictions that bypass the cost of 
homogenization, allows the neural networks to significantly 
boost the efficiency of design.

2.3  Concurrent multiclass data-driven topology 
optimization

One challenge in creating a concurrent functionally graded 
design framework that produces realistic results while remain-
ing as general as possible is the different feasible ranges of 
arbitrary microstructure classes. Consider the five truss basis 
classes in Sect. 2.1. For a prescribed minimum feature size of 
4 pixels, the first basis has a minimum feasible volume fraction 
of 0.2, while the second has a minimum of 0.4. The question 
that arises is: when different vmin > 0 are possible for each ele-
ment e, how can we design the distribution of volume fractions 
while also optimizing a clearly defined macrostructure where 
some microstructures are allowed to be void (i.e., ve = 0)?

Regarding this, most existing FGS research have either 
elected to ignore the macroscale design altogether  (Li 
et al. 2019), or adopted a hybridized method that splits the 
macro- and micro-scale designs into two optimization prob-
lems (Wang et al. 2018; Jansen and Pierard 2020; Chu et al. 
2019; Zhang et al. 2018). None of these works incorporate 
multiclass designs where the basis topologies can be drasti-
cally different, however.

We propose to overcome this hurdle by merging parametric 
and non-parametric methods in a framework that utilizes evo-
lutionary TO (BESO (Huang and Xie 2007)) to optimize the 
discrete global structure, ! , and gradient-based TO solved by 
the method of moving asymptotes (MMA) (Svanberg 1987) to 
concurrently design the coefficients of M new classes ! , their 
distributions ! , and volume fractions ! . The approach is simi-
lar to the latter group above, but unlike many, we evolve the 
designs at both scales in the same iteration. This combination 
allows arbitrary sets of basis microstructures to be used rather 
than strict constraints or careful handpicking, and distinguishes 
our framework in terms of generality and efficiency.

Thus, the general optimization problem is:

where fperf is an application-dependent measure of design 
performance, fdiv is a penalty on low class diversity 
(Sect. 2.3.1), Ncon is the number of constraints gj (if any), Nel 
is the number of macroscopic elements or microstructures, 
and M and D are the numbers of new (to be optimized) and 
basis (fixed) classes, respectively. A small number, xmin = 1

e−9 , is used to indicate void microstructures to avoid numer-
ical issues. The minimum volume fraction, vmin , is dependent 
on the chosen set of basis classes, i.e., min(volume(!L

d
)) , 

whereas the upper bound, vmax , is 0.95.
We employ the traditional radial averaging filter (Sig-

mund 2007) on our global-level design variables to avoid 
mesh dependency, resulting in the smoothed fields !̂ , !̂(p) , 
and !̂ . This additionally enforces the interface between 
optimal classes to be functionally graded, and that the 
macrostructure has a minimum feature size of rmin.

To update the designs, we use the default algorithms 
for BESO (Huang and Xie 2007) and MMA (Svanberg 
1987). The only difference is that, to connect the two 
scales, the sensitivity number for BESO are dependent on 
the predicted effective properties of the microstructures. 
The derivations for this and all other sensitivities in our 
problem are shown in Appendix C.

In total, then, our multiclass FGS design framework has 
(D − 1)M + (M + 1)Nel variables, where M ≤ D ≪ Nel . For 
the M = 2 MBB beam example later (Fig. 4a), our method 
has 1928 design variables. The multilattice approach by 
Sanders et al. (2021) uses 3200 variables for the same 
problem without optimizing the graded volume fractions, 
while the latent variable multiclass approach of Wang 
et al. (2020c) has 1920 variables and includes functionally 
graded volumes; both, however require predefined classes 
with manually defined connections. It is important to note 
that although it is possible for other methods to contain 
less design variables, they make simplifications that we 
do not.

(7)

minimize
!,",!,#

f = fperf(!, ", !, #) + kfdiv(!),

subject to $% = &,

gj ≤ 0,

0 ≤ c
(m)
d

≤ 1,

0 ≤ vmin ≤ ve ≤ vmax,

0 ≤ !(p)
e

≤ 1,

xe ∈ {xmin, 1},

j ∈ [1,Ncon], e ∈ [1,Nel],

m ∈ [1,M], d ∈ [1,D − 1],

p ∈ [1,M − 1],
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2.3.1  Penalty to encourage convergence to diverse classes

Our method can enable high design freedom even with a 
low-dimensional microscale representation since blending 
allows the basis classes to mix continuously at both scales. 
Depending on the chosen optimizer, managing such com-
plexity in two-scale design can be a challenge, one that is 
also encountered by existing multiscale methods. However, 
we propose that a cost-effective penalty on the objective 
function can aid the optimizer (in our case, MMA) without 
resorting to user-defined restrictions on the design space.

We introduce a penalty on low diversity between the M 
new classes, encouraging the microscale design variables, 
!(m) , to converge to values away from each other, so that the 
FGS is more likely to include different basis classes:

where Lij = exp(−0.5 ‖!(i) − !(j)‖2
2
) and i, j ∈ [1,M].

This is based on determinantal point processes (DPPs), 
which measure the diversity of a set of items (e.g., the 
classes !(m) here) using a similarity matrix Lij , whose ele-
ments are the similarities between i-th and j-th pairs of data. 
The diversity can then be defined as the determinant of Lij . 
A larger determinant value indicates that a set contains less 
similar items, spans a larger volume, and hence has greater 
diversity. A deeper dive into the benefits of diversity for 
data-driven multiscale design, can be found in our previous 
work (Chan et al. 2020).

Intuitively, minimizing fdiv is equivalent to maximiz-
ing the diversity of the new classes. Since the value of fdiv 
approaches zero as classes become more diverse, i.e., the 
values of c(i)

d
 and c(j)

d
 grow farther apart, diversity serves as a 

natural penalty function. It needs only a weight k so that its 
value, typically within [0, 1] after the first few iterations, can 
compete with the structural performance, fperf . Moreover, it 
acts similarly to an L2 regularizer that smooths the objec-
tive function as k increases, which may avoid sensitivity to 
initializations and help find an optimum faster in some non-
convex or highly nonlinear problems. Indeed, we find in our 
case studies that adding the penalty help our optimizers to 
find more optimal solutions (Sect. 3.2).

2.3.2  Volume relaxation and adaptive target volume

If any volume constraints are defined in the design problem, 
we must have a way to obtain the continuous gradients of 
volume with respect to the parameters of the shape blending 
scheme. To achieve this, we can approximate the filtered 
volume fraction of a microstructure, v̂e , by transforming its 
SDF into a relaxed grayscale field, similar to that of density-
based TO, using the Sigmoid function

(8)fdiv = − log
[
det(Lij(!

(i), !(j)))
]
,

where !1 is a fixed parameter to control the strength of relax-
ation. Thereafter, the approximate volume is

where nel is the number of elements in the discretized SDF, 
and the sensitivity of !VGlobal∕!!̂e is straightforward to cal-
culate (see Appendix C).

In addition, low volumes are often a goal in multiscale 
design to take advantage of the porosity of the microstruc-
tures. By immediately applying a strict volume fraction con-
straint, however, it is possible to encounter infeasible and 
broken structures early in the optimization process (Chris-
tiansen et al. 2013). To avoid this, and to ensure that our 
macro- (BESO) and micro-scale (MMA) designs evolve at 
approximately the same rate, we use an adaptive scheme to 
lower the target volumes every 10 iterations. The algorithms 
of this scheme as well as our complete concurrent design 
framework can be found in Appendix A.

3  Illustrative examples

Through several linear elastic problems, we test the ability 
of our framework to achieve smooth and feasible functional 
grading of microstructure morhpologies. Namely, we design 
two compliance and one shape morphing examples. For each 
case, we study the effects of two sets of basis classes with 
different morphology types and initial mutual compatibility, 
as well as the number of new optimal classes, M.

3.1  Basis classes and neural networks

To illustrate the framework across a range of microstruc-
ture morhpologies commonly found in literature, we use 
two sets of basis classes: one consisting of trusses, and one 
of topology-optimized freeform shapes. Moreover, to show 
that human bias can be removed from the design without 
sacrificing much performance, we compare handpicking 
the truss basis to automatically selecting the freeform basis 
using diversity metrics.

3.1.1  Handpicked simple trusses

Truss-type microstructures possess both simple definitions 
and satisfactory performance (Panetta et al. 2015; Wang 
et al. 2020c; Luo et al. 2021; Chan et al. 2019). As such, 
they are fitting basis classes to validate the proposed frame-
work. For our examples, we choose a set that can, when 

(9)S(!, !1) =
1

1 + exp (−!1!)
,

(10)v̂a
e
=

1

nel

nel∑

u=1

S(Φe⋅u, "1),
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combined in various ways, cover nearly all of the common 
truss morphologies in literature. Departing from other meth-
ods, we dial up the difficulty by defining the last two bases 
so that they are broken; to obtain feasible designs, these 
classes need to be either well-connected to their neighbors 
or blended with other bases that have self-connectedness. 
The five classes are shown in Fig. 3a, b.

3.1.2  Shape and property diverse freeform subsets

We also assess the efficacy of our blending and interpola-
tion schemes under even more challenging circumstances by 
defining a set of freeform basis classes with complex shapes 
derived from TO (Fig. 3d). They present interesting and 
highly illustrative case studies as their compatibility with 
each other is quite low. If used directly in design without 
our shape blending scheme, the feasibility of the final design 
would be extremely challenging to guarantee.

We collect these freeform classes from a different per-
spective, one where a designer has little prior knowledge 
and wishes to avoid using costly inverse optimization to find 
the basis microstructures. Thus, the five freeform classes 
are chosen by leveraging the open-source 2D metamateri-
als dataset (Wang et al. 2020b) and the automated diverse 
subset selection method (Chan et al. 2020) from our previ-
ous works. The method utilizes the DPPs introduced earlier 
(Sect. 2.3.1) to maximize the shape and property diversity 
of a subset of microstructures. By automatically covering 
a wide range of shapes and properties, we hypothesize that 
diverse basis classes can provide a high return on invest-
ment, attaining competent or even superior performance 
across multiple applications with less effort during the selec-
tion of bases.

We filter out any 50 × 50 microstructures with minimum 
feature sizes less than 4 pixels prior to applying our subset 
selection method. This eliminates some of the most complex 

shapes that provide little benefit for functional grading (e.g., 
microstructures with thin features that would limit the range 
of feasible volume fractions). To convert the selected binary 
microstructures into continuous SDF representations, we use 
the fast marching method (scikit-fmm 2021). The shape and 
property diverse freeform basis classes shown in Fig. 3d, e.

3.1.3  Property prediction models

As discussed in Sect. 2.2, we obtain training datasets of 
22, 575 microstructures using sliced Latin hypercube sam-
pling for each set of basis classes. The respective property 
spaces are depicted in Fig. 3c, f, where samples generated 
from blending are in gray and those from the original basis 
classes are denoted as different color crosses.

We observe that the blended microstructures are able to 
interpolate between—and in some cases, extend slightly 
beyond—basis classes in order to cover the property space. 
Although some sparse areas still exist due to the lower fea-
sible bounds that we impose, this shows that blending is 
a powerful technique to create a large design space even 
with small sets of basis classes. It is also clear from these 
figures that the first basis (red) from both sets possess the 
highest stiffness in diagonal directions and ratios of CH

21
 to 

CH
11

 (equivalent to the effective Poisson’s ratio), as opposed 
to truss bases 4 (purple) and 5 (orange), and freeform basis 
2 (blue), which are stiffest in uniaxial directions.

While the freeform classes are orthotropic, some of the 
truss classes are not. The number of responses, nresp , in the 
neural networks of each set are adjusted accordingly, i.e., 
6 elastic tensor components for trusses and 4 for freeform. 
Table 1 lists the details of the ML model architectures, 
where nnode indicates the neurons of each hidden layer, and 
the R2 and MSE metrics of the trained models.

Since they only need to be built once, the same models 
are used for all examples throughout the paper. The one-time 

Fig. 3  a Truss basis classes 
represented as b SDFs ( !∗

d
 ), 

and c the property space of 
22,575 blended microstructures 
by sampling {!, v} . d Freeform 
basis classes, e their SDFs, and 
f property space



Remixing functionally graded structures: data-driven topology optimization with multiclass…

1 3

Page 9 of 22 135

expense of creating our data and models is reasonable for 
our 2D problems. However, we note that our results show 
overlapping properties in the dataset (Fig. 3c, f), high R2 
values above 0.99 and low MSE (Table 1), suggesting that 
it may not have been necessary to use as many samples as 
we did. There is great potential to develop adaptive sampling 
algorithms that better balance accuracy and efficiency, par-
ticularly for 3D and complex applications. We leave this for 
future works.

3.2  Compliance minimization

We begin with compliance minimization examples, the first 
of which is the classic MBB beam. The boundary condi-
tions are depicted in 4a, and we follow the same set-up as 
in Xia and Breitkopf (2014) and Wang et al. (2020c) to 
compare our results with those of existing methods. That 
is, the MBB beam is discretized into 40 × 16 microstruc-
tures and an ambitious global volume fraction limit is set as 
V∗
Global

= 0.36 . For the second problem, we pursue a 60 × 30 
bridge structure loaded in three places, as shown in Fig. 4b. 
Due to symmetry, we can cut its size by half into 30 × 30 . 
The target global volume there is V∗

Global
= 0.50.

The two compliance problems can be formulated as:

where fc =
∑Nel

e=1
!T
e
"H
e
(#̂e, v̂e)!e is the compliance with 

element displacements !e and effective stiffness matrices 
!H
e

 , which are predicted via the DL models. The global 
and macroscale volumes are VGlobal =

∑Nel

e=1
xev̂e∕Nel and 

VBESO =
∑Nel

e=1
xe∕Nel , respectively, and the bounds on the 

design variables are the same as described in Eq. 7. The 
sensitivities of this optimization problem are detailed in 
Appendix C.

For both examples, we initialize the volume constraints as 
V∗
Global,0

= 0.95,V∗
BESO,0

=
√
V∗
Global

 , the volumes ! as 0.95, 
the class weights so that !̃(m) are the same, and all distribu-
tion fields, !(p) , so that the classes are distributed equally. 
The penalty parameter (Sect. 2.3.1) is set so that kfdiv = 10 
during later iterations. We find that keeping the penalty 
around this value improves both convergence and design 
performance.

(11)

minimize
!,",!,#

f = fc + kfdiv(!),

subject to $% = &,

g1 = VGlobal∕V
∗
Global

− 1 ≤ 0,

g2 = VBESO∕V
∗
BESO

− 1 ≤ 0,

The fixed parameters in the shape blending scheme are 
!1 = 64 and !2 = 32 . As we suggested in Sect. 2.1.2, the 
threshold !2 is adapts to the design and is equal to the 
75th-percentile of the class weights. The radii of all filters 
on the design variables are the same, rmin = 3.0 , matching 
Xia and Breitkopf (2014). For BESO, the evolutionary 
rate is ER = 0.05 in both problems. Otherwise, all other 
parameters are kept at the default values (Huang and Xie 
2007; Svanberg 1987). Our convergence criteria are when 
the change in design or the mean change in the objective 
over 10 iterations are less than 0.01, or when the number 
of iterations reaches 200. We also use early-stopping if 
the target V∗

Global
 has been met but the objective has not 

improved in 20 iterations.
In the following sections, we present our results in fig-

ures with the same layout: The left sides illustrate how 
the optimized classes are created via blending by break-
ing them down into the individual basis classes. For 
ease of interpretation, we show c̃(m)

d
 from Eq. 4, which 

correspond directly to the weights used during blending 

Table 1  Neural network 
architectures and accuracies nresp nnode Train R2 (MSE) Val. R2 (MSE) Test R2 (MSE)

Truss 6 {16,16,12} 0.9983 (2.34e–4) 0.9984 (2.80e–4) 0.9983 (2.46e–4)
Freeform 4 {12,12,6} 0.9991 (2.91e–4) 0.9990 (2.90e–4) 0.9991 (3.01e–4)

Fig. 4  Problem settings of the compliance minimization examples
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(Eq. 6), instead of the design variables c(m)
d

 . The right-
most sides show the optimal multiclass FGS and their final 
compliance.

For fair comparison between our results and homog-
enization-based methods in literature, and between the 
two types of basis morphologies, all compliance values 
stated in the main paper are calculated using numerical 
homogenization. For further validation, Tables 5 and 6 in 
Appendix B also report the compliance obtained from the 
neural networks and fine mesh analysis.

3.2.1  2-Class results with different basis classes

We first consider the results using M = 2 new classes and 
both sets of basis classes. The optimal designs are shown 
in Figs. 5 and 6 for the MBB beam with truss and freeform 
bases, respectively, and in Figs. 7 and 8 for the bridge. The 
interpretation of the figures is described in the previous 
section.

From the 2-class compliance results, we can see several 
benefits of integrating multiclass shape blending into FGS 
design: 

Fig. 5  Truss MBB, 2-class result. a Optimal new classes each drawn 
in a different color. Left of arrows: optimal weights listed under each 
basis. Lighter colors indicate low weights while outlined shapes rep-

resent weights that are zero. Right of arrows: representative topolo-
gies of new classes. b !̂(1), !̂(2), !̂ from top to bottom, and c multiclass 
FGS

Fig. 6  Freeform MBB, 2-class result: optimal a weights and representatives of new classes, b !̂(1), !̂(2), !̂ from top to bottom, c multiclass FGS

Fig. 7  Truss bridge, 2-class result: optimal a weights and representatives of new classes, b !̂(1), !̂(2), !̂ from top to bottom, c multiclass FGS 
reflected over the symmetry line
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1. The combination of the blending scheme and the radial 
filters on the distribution fields creates smooth transitions 
between classes. Topological functional grading is guaran-
teed and does not depend on the mutual compatibility of the 
basis classes. Although connections may not be ideal for 
our freeform bases, which have low initial connectivity and 
more complex features, neighboring microstructures change 
continuously and are at least connected through the imposed 
lower feasible bounds (Fig. 6).

2. Because of the two-step blending scheme, the micro-
structures at the interfaces of optimized classes are a 
union of the classes being mixed there, and the mini-
mum feature sizes of all microstructures match our pre-
scribed lower limit of 4 pixels.

3. The macroscale distributions, !̂(p) , can be either domi-
nated solely by one class or contain mixtures of multi-
ple classes. For example, the diagonal struts in the truss 
MBB (Fig. 5a) consist predominantly of the second 
new class (blue), while the horizontal bars contain both 
(red and blue), presumably to stiffen the design at those 
locations. On the contrary, the two new classes in the 
freeform bridge intermingle throughout nearly the entire 
structure (Fig. 8).

4. Optimizing c(m)
d

 can automatically determine if an exist-
ing basis class is sufficient to achieve low compliance, 
or if a novel class needs to be created by fusing several 
bases. For example, in the freeform MBB result (Fig. 6), 
the mixture of the second and fifth bases stiffens the 
microstructures, improving the global compliance of the 
FGS.

5. Due to BESO, the global macrostructures are clearly defined 
and change based on the basis classes and optimal micro-
structures, showing that the hybrid framework works well.

Further observations can be made regarding the framework’s 
ability to adapt to spatially varying stress distributions. The 
first and fourth truss-type bases, and the first and second for 

freeform, are the most popular classes by far, agreeing with our 
observation in Sect. 3.1.3 that these are among the strongest 
classes in diagonal and uniaxial directions. In both beam and 
bridge examples, these classes are designed such that the load-
bearing features of the blended microstructures intuitively match 
the load paths.

In particular, our truss-type MBB beam result is akin 
to those in existing multiscale works with the same design 
domain. Xia and Breitkopf (2014) performed an exhaustive 
two-scale TO that optimized every microstructure, resulting in 
horizontal (uniaxial) and diagonal (anisotropic) features that are 
oriented with stress directions, and a compliance of fc = 190 . 
Meanwhile, Wang et al. (2020c) proposed a multiclass design 
with rectangular trusses on the horizontal macro-bars, X’s on 
the diagonal macro-struts, and a compliance of fc = 214.02 . 
Our framework can be thought of as bridging these two meth-
ods. This is indeed reflected in our 2-class truss result, which 
achieves a compliance value between the two existing works, 
fc = 192.47 , and has similar microstructures.

In terms of performance, truss basis classes outshine 
the freeform basis in both problems. We theorize that our 
freeform bases do not perform as well for two reasons. (1) 
They were automatically chosen to maximize diversity, i.e., 
coverage, in shapes and properties, which undoubtedly can 
skip microstructures with properties that are more optimal 
for these specific problems. (2) They contain complex, thin 
features that force their lower feasible bounds to have high 
volume fractions ( vmin = 0.28 ), which clashes with the low 
target volume of 0.36 in the MBB problem.

Despite these disadvantages, however, the compliance 
attained using freeform basis classes is decent across both exam-
ples and near those of existing works, confirming the versatil-
ity of diverse bases and our design framework. A deeper look 
into the MBB example also reveals that the multiclass freeform 
FGS (Fig. 6) still surpasses single-class designs that vary only 
in volume fraction (Table 2).

Fig. 8  Freeform bridge, 2-class result: optimal a weights and representatives of new classes, b !̂(1), !̂(2), !̂ from top to bottom, c multiclass FGS 
reflected over the symmetry line
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3.2.2  Effect of the number of new classes

With the effectiveness of the proposed framework estab-
lished, we now study whether increasing the number of new 
classes to M = 3 can impact the designs and their perfor-
mances. The problem definitions remain the same as before. 
For the MBB beam, the 3-class results are given in Figs. 9 
and 10 with the truss and freeform bases, respectively. The 
bridge results for both sets of bases are combined in Fig. 11, 
where they are shown in black-and-white and with zoomed-
in views of the functionally graded topologies and volume 
fractions.

The most notable result is the 3-class truss MBB, which 
achieves a compliance even lower than the fully optimized 
design of (Xia and Breitkopf 2014) at fc = 188.85 . More 

apparent than in the 2-class result above, it exhibits direc-
tional load-bearing features (Fig. 9) such as the left-to-
right diagonal microstructures (red) and the near-uniaxial 
microstructures (blue). In addition, the X-shaped class 
(green) appears mainly in the middle macro-strut. Over-
all, our result distinguishes itself from the existing with 
the mix of isotropic and anisotropic microstructures that 
are all well-connected. A similar blend of directional and 
uniaxial classes can be found in our 3-class truss bridge 
(Fig. 11a–d).

With the exception of the truss-type MBB, however, all 
3-class results could not overtake the compliance of their 
2-class counterparts. We suspect this is because, for simple 
compliance problems, additional classes are not necessary 
to achieve optimal performance. Our hypothesis is supported 
by the new classes of the M = 2 examples: for the most part, 
they are each monopolized by just one basis class. This sug-
gests that, in most cases, only two basis classes are needed 
throughout the entire FGS; if more are required, they can 
be incorporated into a single optimal class by adjusting the 
values of !(m) without increasing M, like in the 2-class free-
form MBB (Fig. 6). Another reason could be that we force 

Table 2  Single-class MBB beam results using one freeform basis 
class each

Basis 1 2 3 4 5

fc 476.26 247.57 384.89 399.29 290.75

Fig. 9  Truss MBB, 3-class result: optimal a weights and representatives of new classes, b !̂(1), !̂(2), !̂(3), !̂ from top to bottom, c multiclass FGS

Fig. 10  Freeform MBB, 3-class result: optimal a weights and representatives of new classes, b !̂(1), !̂(2), !̂(3), !̂ from top to bottom, c multiclass 
FGS
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the third class to be different from the others through the 
penalty on low diversity, which can lead to the addition of 
a sub-optimal class. This scenario may have occurred in the 
3-class freeform MBB, where the first new class (red) is 
hardly present in the FGS. Nevertheless, the penalty does 
not significantly worsen the compliance and can, in some 
cases improve it. An intriguing possibility that bears further 
investigation is whether a larger variety of microstructures 
are needed in problems with finer discretization or more 
complex objectives.

Finally, we compare the computational efficiency of our 
proposed framework against others, with the caveat that each 
method was run on different computers. The 40 × 16 MBB 
design is reported to require 200 hours in Xia and Breitkopf 
(2014), and 5 minutes in the data-driven method of Wang 
et al. (2020c). For our proposed method, the same design 
using M = 3 new classes takes under 12 minutes. However, 
we note that the majority of this time is consumed by the 
bisection algorithm (Sect. 2.1.2), which ensures that the 
microstructures have the optimized volume fractions when 
converted from SDFs (Eq. 9). Improving this aspect of our 
blending scheme is next in our future goals.

3.2.3  Effect of the low-diversity penalty

The function that penalizes new classes with low diversity 
(Eq. 8, Sect. 8) can affect performance, although whether 
that effect is positive or negative depends on the problem 

or basis classes. In this section, we show concrete examples 
why the penalty is still recommended by running the same 
compliance problems without the penalty, i.e., by setting 
k = 0 . The results are listed in Tables 3 and 4. Immediately, 
we can see that although the truss basis classes can still 
achieve satisfactory compliance values lower than the exist-
ing baselines (Xia and Breitkopf 2014; Wang et al. 2020c), 
none of these can beat our results above.

In the tables, we write the highest weight values of each 
new class, !̃m , in bold. From this, we observe that each result 
is often overshadowed by one basis class (see the bold values 

Fig. 11  Results of 3-class 
bridge in black-and-white. For 
truss bases: a optimal classes, 
b FGS, and c, d zoom-in views. 
For freeform bases: e optimal 
classes, f FGS, and g, h zoom-
in views

Table 3  MBB beam results without penalty on low class diversity 
( k = 0)

The dominant weights of each new class, !̃m , are in bold

Basis M !̃m fc VGlobal VBESO

Truss 2 !̃1 = [0.00, ".#$, 0.00, 0.27, 0.33] 205.77 0.36 0.50
!̃2 = [0.00, 0.05, 0.11, ".#$, 0.00]

3 !̃1 = [0.00, ".#$, 0.22, 0.12, 0.30] 212.83 0.36 0.54
!̃2 = [0.12, 0.12, 0.09, ".##, 0.01]

!̃3 = [0.23, 0.08, 0.16, ".#$, 0.01]

Free-
form

2 !̃1 = [0.00, 0.09, 0.00, 0.00, ".#$] 252.02 0.36 0.51

!̃2 = [0.04, 0.14, 0.39, 0.01, ".#$]

3 !̃1 = [0.01, 0.00, ".#$, 0.00, 0.46] 248.84 0.36 0.50
!̃2 = [0.00, 0.45, 0.00, 0.00, ".##]

!̃3 = [0.00, 0.00, 0.00, 0.00, ".##]
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in the same column). For the 3-class designs in particular, 
the second and third new classes are always dominated by 
the same basis, confirming our earlier suspicion that M = 2 
is enough to produce optimal results. We also note that there 
are numerous low values of !̃m , signifying that multiple basis 
classes are being blended into the FGS without improving 
the design performance. These results additionally imply 
that greater diversity amongst the microstructure classes 
improves performance. A more meticulous study on the 
impact of diversity on the generality and performance of 
design methods is an intriguing path for future works.

Furthermore, it takes significantly longer for the class 
design variables to converge without penalization. In the 
2-class truss bridge example without the penalty, they often 
fluctuate and need more than 100 iterations to start converg-
ing, whereas they are already converged in under 30 itera-
tions with penalization. These studies validate the benefits 
that our proposed low-diversity penalty function supply to 
MMA, helping it to stabilize, escape local minima, and find 
more optimal solutions. In Appendix B, we provide the con-
vergence plots of the M = 3 MBB beam examples, along 
with additional discussion.

3.3  Shape matching

Heterogeneous structures show great potential for appli-
cations where a specific deformation pattern is desired 
upon actuation, e.g., in form-fitting wearables and soft 
robots (Mirzaali et al. 2018; Lumpe and Shea 2021; Boley 
et al. 2019). Motivated by these applications, we optimize 
two shape matching structures: (1) the target sine-wave 

deformation profile shown in Fig. 12a, and (2) the bump 
profile in Fig. 12b. The first is a cantilever discretized into 
30 × 4 microstructures, fixed at its left side and loaded 
with displacement boundary conditions on the right—the 
same example we tested in (Chan et al. 2020). The second 
is similar, but discretized into 40 × 8 . Like the compliance 
examples, we will also use the truss and freeform basis 
classes with M = {2, 3}.

In past works (Chan et al. 2020; Wang et al. 2020a), we 
found that these target displacement problems are simi-
lar to compliant mechanism design and most effectively 
solved via a two-stage “top-down” approach that first uti-
lizes inverse TO to find the target effective properties for 
each microstructure. Departing from previous works, we 
use the proposed multiclass blending framework in the 
second stage to optimize the new classes, !(m) , their distri-
butions, !(p) , and the volume fractions, ! , until the target 
properties are matched.

To find the target properties, i.e., the effective stiffness 
matrices !H

t
 , that achieve a desired displacement profile, 

the first stage follows the method in Wang et al. (2020b) 
with following problem:

where ! is the displacement vector of n nodes located on 
the horizontal centerline of the structure, !t is the vector 
of target displacements of the same nodes, ! is the global 
stiffness matrix, and ! and ! are global displacement and 
loading vectors, respectively. This inverse problem uses the 
stiffness matrices of each microstructure as design variables. 
To ensure that these are within the bounds attainable by 

(12)
minimize

!H
t

1

n
‖" − "t‖

2
2
,

subject to #$ = %,

−!(!H
t
) ≤ 0,

Table 4  Bridge results without penalty on low diversity ( k = 0)

The dominant weights of each new class, !̃m , are in bold

Basis M !̃m fc VGlobal VBESO

Truss 2 !̃1 = [0.00, 0.22, 0.00, ".#$, 0.05] 96.59 0.50 0.65
!̃2 = [0.00, 0.41, 0.00, 0.09, ".#$]

3 !̃1 = [0.00, 0.18, 0.00, ".#$, 0.00] 96.34 0.50 0.65
!̃2 = [0.00, 0.28, 0.00, 0.21, ".#$]

!̃3 = [0.00, 0.45, 0.00, 0.00, ".#$]

Free-
form

2 !̃1 = [0.00, 0.00, 0.13, ".#$, 0.00] 105.90 0.50 0.65

!̃2 = [0.03, 0.00, 0.06, ".#$, 0.00]

3 !̃1 = [0.00, 0.00, 0.10, ".#", 0.00] 105.46 0.50 0.65
!̃2 = [0.00, 0.00, 0.09, ".#$, 0.00]

!̃3 = [0.02, 0.00, 0.02, ".#$, 0.00]

(a) Target sine wave (30 × 4)

(b) Target bump profile (40× 8)

Fig. 12  Problem settings of the shape matching examples
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shape blending, they are constrained by the signed L2 dis-
tance field ! of the properties of the training data for the 
neural networks (Sect. 2.2 and Fig. 3c, f).

After this, the multiclass FGS is optimized to meet 
the effective property targets by leveraging our proposed 
blending scheme. Since we do not aim for a target volume 
here, there is no global volume constraint and the macro-
structure defined by ! remains fixed. The second stage is 
thus:

where the bounds on the design variables are the same as 
in the previous examples. Due to the omission of ! , it can 
be solved with just MMA. The penalization parameter is set 

(13)
minimize

!,",!

1

Nel

‖#H(!, ", !) − #
H
t
‖2
2
+ kfdiv(!),

subject to $% = &,

(a)

(b)

(c)

(d)

Fig. 13  Results of the target sine wave problem

Fig. 14  Results of the target bump shape example

such that kfdiv = 4 for the 2-class study and 9 for 3-class, 
respectively. The filter radius is rmin = 1.2 and 2.5 for the 
sine and bump problems. The volume fractions are initial-
ized at ! = 0.5 , and all other parameters are the same as in 
the compliance examples.
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The final multiclass FGS and their achieved displacement 
profiles (solid blue) are gathered in Fig. 13 for the sine wave 
and Fig. 14 for the bump problem. In the plots of the dis-
placements, we also show the initial target profile, !t , used 
in stage one in dashed green lines, along with profile realized 
by the optimized properties (dashed red), which serves as an 
indirect target profile in the second stage.

We performed the same sine wave study in Chan et al. 
(2020), but with a combinatorial method for aperiodic 
designs, i.e., without functional grading. There, the lowest 
MSE that we achieved was 0.1146, which most of our pro-
posed multiclass FGS surpass. Interestingly, the freeform 
basis classes perform considerably better than the truss-
types. The freeform designs are composed mostly of the first 
basis, which we noted in Sect. 3.1.3 has one of the greatest 
effective Poisson’s ratios, as well as the fifth freeform basis, 
which has both high stiffness and medium Poisson’s ratio.

Conversely, the truss-type FGS match the target bump 
profile more closely than the freeform ones by utilizing 
the fourth (horizontal) truss basis. By inspecting the tar-
get properties for each problem, we find that the sine wave 
requires middling values of both Poisson’s ratio and stiff-
ness throughout the FGS, which the freeform classes provide 
more easily, whereas the bump profile needs distinct regions 
of either large x-directional stiffness or high Poisson’s ratio, 
which the first and fourth truss classes meet exception-
ally well (Fig. 3c, f). This observation portends a possible 
extension of our work where the most efficient basis classes 
can be chosen to match the initial distribution of principal 
macroscale stresses for specific problems, similar to Xu and 
Cheng (2018).

Another intriguing note is that, by blending the last two 
truss basis classes, we can form square microstructures that 
are not found in the original set (Fig. 13b ). Moreover, com-
bining those two with the ‘X’ basis creates microstructures 
with star-shaped voids that are not strictly trusses. These are 
direct results of the weighted sum of SDFs in our proposed 
blending scheme (Eq. 1), which can non-intuitively morph 
the basis classes to achieve optimal performance.

4  Conclusions

We proposed in this work a novel multiclass shape blend-
ing scheme that provides a low-dimensional representation 
of microstructures for both design and DL, and a data-
driven multiscale design method that utilizes a hybrid of 

TO algorithms along with a new penalty on low diversity 
designs. By integrating these, we created a multiclass FGS 
design framework that encapsulates the freedom of fully 
aperiodic structures while featuring efficiency greater than 
that of typical multiscale methods. The key is the ability 
of shape blending to blur the lines between classes, creat-
ing graded designs with novel microstructures beyond the 
initial basis classes. Even with classes that have complex 
features or are not mutually compatible, continuous transi-
tions between neighboring microstructures are guaranteed.

Furthermore, feasibility constraints are incorporated 
into the scheme to ensure that they are naturally met. In 
this work, we use a simple measure—minimum feature 
size. However, defining the lower feasible bounds of each 
basis class outside of the optimization process means there 
is potential for future works to incorporate other feasibil-
ity, or even quality, metrics, such as those without cheap or 
tractable gradients.

We demonstrated these advantages through compliance 
and shape matching examples, in which blending empow-
ered our FGS to surpass designs in literature. Our results 
revealed that truss-type classes consistently achieve low 
compliance, and that diverse freeform classes reach satis-
factory performance across multiple applications despite 
being automatically chosen without considering their com-
patibility. We also discovered that more is not always bet-
ter when it comes to classes. By encouraging the design 
to converge to a smaller number of diverse classes, as few 
as two can be blended to obtain optimal designs. This 
outcome merits deeper exploration in the future on how 
diversity metrics can benefit structural design.

Our framework is general in that it is not tied to the 
specific DL and TO methods shown in this work. It is also 
not limited to our 2D classes, since multiclass blending 
is independent of the topology, representation, dimension 
and resolution of the basis shapes. This modularity is an 
especially welcome feature as more advanced prediction 
models and TO algorithms emerge to solve complex mul-
tiphysics and nonlinear mechanics problems, including 3D 
ones. Beyond the examples presented, our framework can 
be extended to sought-after functionalities like thermoe-
lasticity, fracture resistance and energy absorption, and 
adapted to applications such as customized user products 
and architectural design. We believe these are all excit-
ing avenues for future works enabled by multiclass shape 
blending.
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Appendix A: Algorithms

Algorithm 1 Adaptive scheme to decrease vol-
ume fraction limits during concurrent multiscale
design. i denotes the number of the current itera-
ton.
Require: V ∗

Global,i−1, V
∗
BESO,i−1, VGlobal, VBESO;

1: if (i mod 10) = 0 and V ∗
Global,i−1 > V ∗

Global
then

2: V ∗
Global,i ← min(VGlobal, V ∗

Global,i−1) −
0.025;

3: end if
4: if (i mod 10) = 0 and VBESO ≤ V ∗

BESO,i−1
then

5: V ∗
BESO,i ← V ∗

BESO,i−1 − 0.005;
6: end if
7: return updated volume constraints.

Algorithm 2 Concurrent design framework for
multiclass functionally graded structures. If there
are no volume constraints, ignore Line 10. If the
macrostructure is fixed, ignore Line 12.
1: Initialize:

design variables c,v, ξ,x;
volume constraints
V ∗
Global,0, V

∗
BESO,0;

weight on low-diversity penalty k;
2: while change in design > tol do
3: i ← i+ 1; iteration counter
4: for each macro-element e do
5: obtain ĉe (Eqs. 4, 5);
6: find Φe and te so that unit cell has

volume v̂e (Eq. 6);
7: approximate v̂ae (Eqs. 9, 10);
8: predict effective stiffness CH

e =
NN(c̄e, v̂e) and obtain ke;

9: end for
10: update volume fraction constraint limits

(Algorithm 1);
11: compute objective, constraints and sensi-

tivities (Appendix C);
12: update macroscale design x with BESO;
13: update other variables c,v, ξ with MMA;
14: end while
15: return optimal multiclass functionally graded

design.

Appendix B: Additional results

Further examples of blending

To help visualize blending between pairs of basis classes, 
we illustrate several examples in Fig. 15. In particular, we 
select pairs that have not appeared in our design results. 
No matter how simple, complex or incompatible the basis 
classes, our multiclass blending scheme is able to provide 
feasible, i.e., well-connected, intermediate microstructures. 
This is the benefit of (1) the interpolation between the SDFs 
of basis classes, and (2) the imposition of the lower feasible 
bounds of each basis through Eqs. 1 and 2.

Compliance validation

In Sect. 3.2, we presented the compliance as calculated by 
numerical homogenization to directly compare our results to 
those in literature. In Tables 5 and 6, we additionally report 
the compliance of our designs performed using: (1) neural 
networks (same as during design), (2) numerical homog-
enization (as shown in the main paper), and (3) fine mesh 
analysis using the multigrid method (Amir et al. 2013) (for 
validation).

For MBB in particular, the homogenization-based com-
pliance agree reasonably well with the fine mesh analysis. In 
general, the numerical homogenization-based results, fc,Hom , 
are slightly closer to the fine analysis values, fc,Fine , than the 
ones using the neural networks, fc,NN , which is expected. 
However, the differences between fc,NN and fc,Hom are not 
large, validating the use of our predictive models to acceler-
ate the design process.

Comparison of convergence 
with and without penalty

To demonstrate the effect of the low-diversity penalty 
(Sect. 2.3.1) on convergence, we compare the 3-class MBB 
examples using both the freeform and truss basis classes 
(Sect. 3.2.2). This problem had the most difficulty converg-
ing to low compliance values. The histories of the class 
design variables (which are the only variables used to com-
pute the penalty) are plotted in Fig. 16.

The penalty on low class diversity has a significant impact 
on the convergence behavior of the class design variables. 
They confirm our statement in Sect. 3.2.3 that applying the 
penalty can help the weights of the class design variables 
to converge more quickly, as well as alleviate possible local 
minima (e.g., compare Figs. 16a, b).
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Appendix C: Sensitivity analysis

The derivations of the sensitivity analysis for gradient-based 
topology optimization (TO) are detailed in this section. The 
nomenclature are the same as in the main text. All deriva-
tions were verified using the finite difference method.

For the global multiclass shape blending scheme (Eq. 6), 
which is used to obtain the microscale topology at e, the 
gradient is

where

and ⊙ indicates element-wise multiplication.
The sensitivities for the the class interpolation schemes 

(Eqs. 4 and 5) with respect to the class design variables is 
as follows:

where

With respect to the macroscale distribution fields, it is:
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Fig. 15  Examples of blending pairs of basis classes. The first and last 
microstructures are from basis classes, and those in between are pro-
duced by linearly interpolating the weights in the blending scheme. 

Between truss classes (left column): a 1 and 5, b 2 and 4, and c 4 and 
5. Between freeform classes (right column): d 2 and 3, e 2 and 4, and 
f 4 and 5

Table 5  Comparison of the compliance of our MBB results in 
Sect.  3.2.1 calculated by: neural network models fc,NN , numerical 
homogenization fc,Hom , fine mesh analysis fc,Fine

For the homogenization-based values, we also report the percent error 
from fc,Fine in parentheses

Basis M fc,NN fc,Hom fc,Fine

Truss 2 187.41 192.47 216.50
(−13.44%) (−11.10%)

3 199.74 188.85 209.28
(−4.56%) (−9.76%)

Freeform 2 210.52 223.13 265.28
(−20.64%) (−15.89%)

3 212.68 229.15 274.60
(−22.55%) (−16.55%)

Table 6  Compliance of our bridge results in Sect.  3.2.2 calculated 
three different ways, including the percent error from fc,Fine in paren-
theses

Basis M fc,NN fc,Hom fc,Fine

Truss 2 90.00 92.22 138.29
(−34.92%) (−33.31%)

3 92.59 94.74 135.57
(−31.70%) (−30.12%)

Freeform 2 95.65 100.15 144.01
(−33.58%) (−30.46%)

3 93.12 102.24 146.66
(−36.51%) (−30.29%)
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We also need the sensitivities of the radial filters. This 
follows the density filters of traditional TO methods 
closely (Sigmund 2007), and so we do not repeat it here for 
brevity.

For compliance (Eq. 11), the adjoint method (Bendsøe 
and Sigmund 2004) and chain rule allow us to derive the 
following with respect to the design variables:
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[ Nel∑
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T
n

!"n
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The derivatives of the element effective stiffness matrices 
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(a) (b)

(c) (d)

Fig. 16  For the 3-class MBB example, convergence plots of the class design variables with the proposed penalty (left column) and without (right 
column)
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and

Here, due to our data-driven framework, the gradients of the 
effective properties !!e∕!ĉe⋅d and !!e∕!v̂e are obtained by 
backpropagating through the layers of the fully connected 
neural network (Hastie et al. 2009).

To obtain the sensitivities of the global volume fraction 
constraint, we can use Eq. C1 and the Sigmoid function (Eq. 9 
in Sect. 2.3.2), which gives us a continuous approximation of 
a volume fraction ( ̂va

e
 from Eq. 10). First, the derivative of the 

Sigmoid applied to a microstructure’s SDF ( !e ) is

Therefore, the sensitivity of the global volume fraction can 
be decomposed as

and the sensitivities of the constraint itself with respect to 
the design variables are:

and

We note that these approximations of the microstructural 
volume fractions do introduce some error into the sensitivi-
ties but, in our experience, are minor.

Since we use the default algorithm for BESO devel-
oped by Huang and Xie (2007) to update ! , the filtering 
of the macroscale sensitivity numbers for the compliance 
problems can be found in the original paper. The only 
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difference is that we use the effective stiffness predicted 
by the data-driven models. Thus, our sensitivity numbers 
are modified to be

For the low-diversity penalty function, the sensitivity can 
be derived using chain rule by taking the gradient of the 
log-determinant (Boyd and Vandenberghe 2004), then the 
Gaussian kernel and Euclidean distance between the class 
design variables, !(m).

Finally, for the derivations of the first stage of the shape 
matching problem (Eq. 12), we refer the reader to our 
previous work (Wang et al. 2020a). For the second stage 
(Eq. 13) the derivations are straightforward to calculate 
by following the same steps above, substituting compli-
ance for the mean squared error (MSE) between target and 
designed effective properties.
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