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Abstract

To create heterogeneous, multiscale structures with unprecedented functionalities, recent topology optimization approaches
design either fully aperiodic systems or functionally graded structures, which compete in terms of design freedom and effi-
ciency. We propose to inherit the advantages of both through a data-driven framework for multiclass functionally graded
structures that mixes several families, i.e., classes, of microstructure topologies to create spatially-varying designs with
guaranteed feasibility. The key is a new multiclass shape blending scheme that generates smoothly graded microstructures
without requiring compatible classes or connectivity and feasibility constraints. Moreover, it transforms the microscale
problem into an efficient, low-dimensional one without confining the design to predefined shapes. Compliance and shape
matching examples using common truss geometries and diversity-based freeform topologies demonstrate the versatility of
our framework, while studies on the effect of the number and diversity of classes illustrate the effectiveness. The generality
of the proposed methods supports future extensions beyond the linear applications presented.

Keywords Topology optimization - Functionally graded structure - Multiscale - Multiclass - Shape interpolation - Data-
driven design

1 Introduction

Multiscale mechanical structures present exciting functionali-
ties and unprecedented performance ranging from global objec-
tives such as light-weighting, thermal conductivity and energy
absorption (Da et al. 2019; Jia et al. 2021; Da et al. 2021) to
targeted local behaviors, e.g., shape morphing or pattern recon-
figuration for soft robots (Mirzaali et al. 2018; Boley et al. 2019)
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and active airfoils (Lumpe and Shea 2021). To design such com-
plex structures, multiscale topology optimization (TO) has risen
to prominence and flourished. While early research focused on
periodic microstructures, two types of heterogenous designs, in
which neighboring microstructural topologies differ from each
other, now surpass them in terms of performance: fully aperiodic
systems and functionally graded structures (FGS).

In this work, we aim to bridge the freedom of aperiodic
designs with the efficiency and smooth interfaces of FGS. We
summarize their pros and cons in this section. Both typically
follow a homogenization approach where the material proper-
ties of each element in the macroscopic structure are replaced
by the effective properties of the microstructure at that loca-
tion. This greatly expedites multiscale design as the perfor-
mance can be evaluated at the macroscale, albeit with lowered
accuracy since heterogeneous structures break the assumption
of infinite periodicity (Andreassen and Andreasen 2014). The
two approaches differ in that aperiodic systems can be com-
posed of very different microstructures, whereas the change in
the topologies and/or volume fractions of neighboring micro-
structures in FGS are deliberately designed to be continuous.

Although aperiodic systems allow immense design free-
dom, they come at the cost of explosive problem sizes. Two
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avenues of data-driven methods have emerged to counter
this “curse of dimensionality”. One assembles microstruc-
tures from pre-computed libraries via combinatorial opti-
mization (Schumacher et al. 2015; Panetta et al. 2015), and
the other accelerates gradient-based design by creating deep
learning (DL) models from massive datasets for dimension
reduction and rapid property predictions (Wang et al. 2020a;
Kumar et al. 2020; Xiao et al. 2021).

These approaches are powerful, but require large over-
head costs to build the datasets and models, and need care-
ful strategies to select reasonably compatible neighboring
microstructures. Even then, they may not achieve connectiv-
ity on par with FGS. Combined with the use of the effective
properties, low connectivity can result in the manufactured
performance deviating greatly from the optimized design.
These drawbacks mean that, in their current state, data-
driven methods are difficult to scale to large systems with
complex physics, e.g., nonlinear mechanics. Compared to
FGS, such approaches are less suitable when stress concen-
trations or expensive property simulations must be avoided.

In contrast, some works have indicated that the con-
tinuous interfaces and more gradual topological change in
FGS may be able to mitigate the errors from homogeniza-
tion (Schumacher et al. 2015; Garner et al. 2019; Panesar
et al. 2018). Functional grading can be further catego-
rized into three camps: continuously varying volume frac-
tion (Wang et al. 2018; Li et al. 2019; Jansen and Pierard
2020), topology (Kumar et al. 2020; Sanders et al. 2021), or
a hybrid of both (Wang et al. 2020c; Luo et al. 2021; Xiao
et al. 2021). Recent research is shifting towards the latter
two, which have demonstrated that expanding the design
space to include multiple topology types can considerably
improve the structural performance. Our work belongs to the
hybrid one, and we define a microstructure class as a family
of microstructures that possess the same overall topological
concept but vary individually by volume fraction. Hence, the
works in the last two categories can be termed multiclass.

Within existing multiclass methods, the prevailing strat-
egy is to treat FGS design as a multi-material TO problem by
allocating each class to its own region with distinct bounda-
ries. This assumes that the interfaces between classes are
perfectly connected. As a result, most approaches pre-define
a few mutually compatible classes (Wang et al. 2020c; Luo
et al. 2021) or fix their connections (Chu et al. 2019; Zhang
et al. 2018), which reduces computational cost and complex-
ity but can yield suboptimal solutions.

Similar methods in the general multiscale TO field
accomplish connected heterogeneous designs without the
above simplifications by: (1) sharing design variables at
interfaces (Liu et al. 2019), (2) adding connectivity con-
straints (Du et al. 2018; Garner et al. 2019), (3) controlling
the change in the properties of intermediate microstruc-
tures (Zhou et al. 2019), (4) creating geometric gradations
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during pre- or post-processing (Sanders et al. 2021; Zhou
et al. 2019; Zobaer and Sutradhar 2020), and (5) interpolat-
ing random field representations of microstructures (Kumar
et al. 2020). Of these, Liu et al. (2019), Garner et al. (2019),
and Sanders et al. (2021) concurrently design the macro-
structure as well as the distributions of multiple microstruc-
tures, and only Luo et al. (2021) also optimized the graded
volume fractions. Moreover, many do not scale well with
the number of classes.

Merging the advantages of the two heterogeneous
approaches, we propose a general TO framework for multi-
class FGS that achieves smooth transitions between multiple
microstructure classes without additional constraints, even
if those classes are not compatible initially. The cornerstone
of our approach is a novel multiclass shape blending scheme
that generates new microstructures from a small set of prede-
fined basis classes while guaranteeing feasibility. We define
a design as feasible when the microstructures are not only
self-connected (i.e., have no disconnected features) but also
well-connected to their neighbors. In addition, we desire the
microstructures to meet a minimum feature size, as required
in some manufacturing techniques. Our framework departs
from existing heterogeneous design methods in several ways:

e We create a continuous and low-dimensional microstruc-
ture representation using the parameters of our shape
blending scheme as design variables. This effectively
transforms the microscale problem into a parametric one.
While we do require predefined basis classes, this by no
means restricts our design, as we allow the regions for
each class and the boundaries between them to be blurred
so that the microstructures anywhere in the FGS can be
novel, i.e., not found in the initial basis classes.

e Our blending scheme integrates naturally into existing
TO methods. In this work, we incorporate it with discrete
and gradient-based TO, along with a new penalty that
promotes diverse designs. These significantly reduce the
cost of concurrent design with any number of microscale
classes. Thus, through blending, our framework features
design freedom near that of aperiodic methods while
inheriting the efficiency of functionally graded design.

e The blending parameters serve as effective inputs for neu-
ral networks that predict the effective properties of new
microstructures and can be re-used in multiple applica-
tions, further accelerating design.

e Certain feasibility metrics (e.g., self-connectedness and
minimum feature size) can be built into the blending
scheme so that they do not need to be included explicitly
in the TO problem. Furthermore, the flexibility of using
basis classes permits designers to incorporate expert
knowledge and eliminates the frustration of choosing
compatible classes. If desired, manual selection can be
removed altogether by extracting classes from open-
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source databases, e.g., using diversity metrics (Chan
et al. 2020).

With compliance and shape morphing examples, we dem-
onstrate the efficiency and inherent ability of our approach
in designing multiscale structures with continuous transi-
tions. The benefits of multiclass FGS are verified by utilizing
both common truss-type and diverse freeform (topology-
optimized) basis classes, and by comparing our results to
designs in literature.

2 Methodology

In this section, we introduce three crucial components in
our approach: (1) multiclass shape blending and global
interpolation schemes (Sect. 2.1), (2) neural networks for
property prediction (Sect. 2.2), and (3) concurrent multiclass
data-driven topology optimization (TO), which ties all of the
methods into one framework (Sect. 2.3).

2.1 Multiclass shape blending and smooth
interpolation

2.1.1 Background

Our proposed shape blending scheme is heavily inspired by
the computer graphics field, where morphing one geometric
model into another has long been studied and utilized in,
e.g., animation films and video games (Sanchez 2015; Rohra
and Kulkarni 2019). These methods have also supported
applications like medical imaging (Carballido-Gamio et al.
2005) and metal-forming simulations (Thomas et al. 2020).
In fact, evolving geometries through surface representa-
tions is the foundation of the level-set TO method (van Dijk
et al. 2013), while combining shapes using distance fields
is the bedrock of TO algorithms such as movable morphing
components (Zhang et al. 2015).

Most closely related to the interest of this paper are blend-
ing techniques that use function representations (FReps)
of shapes, which parametrize any geometric model as a
series of operations (e.g., unions, differences, and inter-
sections) performed on a set of primitives or basis geom-
etries (Sanchez 2015). It is extremely flexible as it allows
the bases to be defined by any representation, e.g., meshes
or voxels, and any resolution. In our case, we represent our
basis microstructure classes as continuous signed distance
fields (SDFs), which are implicit function representations
similar to level sets. That is, whether the material is solid
or void at any arbitrary point (x, y) within a microstructure,
®d(x,y, 1), is determined by whether the SDF value is positive
or negative, respectively. The isovalue ¢ controls the iso-
contour of the field and therefore enables us to tune volume

fractions. With this powerful representation, we can not only
generate an entire family of microstructures over a continu-
ous range of volume fractions, but also combine multiple
SDFs to create novel classes.

Blending operations to mix SDFs have been studied for
decades, beginning with the simple set-theoretic operation
for the union of the FReps of two shapes, @, and ®, (Ricci
1973): @i, = max(P,, P,). Since then, many works have
improved shape metamorphosis (Sanchez 2015; Eisenberger
et al. 2019; Oring et al. 2021), but require intensive user-
interaction and computational costs, and are, therefore,
intractable or unsuitable for multiscale design.

2.1.2 Multiclass shape blending scheme

Our proposed multiclass shape blending scheme is a com-
bination of two simple techniques: (1) a weighted sum of
basis classes based on cross dissolving, and (2) an activated
union with the lower feasible bounds of each basis. The
entire scheme is differentiable and efficient, which fits in
well with gradient-based optimization algorithms.

Crucial to our scheme are basis microstructure classes,
which do not need to be mutually compatible. We denote
the SDF representations of arbitrary basis classes as (I>3 for
d = [1, D], where the shapes d)g and total number of classes
D are defined by the user. Note that while we use truss-type
bases in Figs. 1 and 2 as demonstration, our method is appli-
cable to any set of classes.

Prior to blending, we normalize the D basis classes so
that they can be mixed fairly and also find their lower fea-
sible bounds. The following pre-processing steps only need
to be performed once per set of bases:

1. Choose a common volume fraction, v*, and find the rep-
resentative SDF for each basis, <I); = <I)§ + t;, such that
it has v*. We use the well-known bisection algorithm.

2. Find the SDF of the lower feasible bound of each basis,
@’ = ®” + 1L, using any desired feasibility metric. In
this work, we set a minimum feature size of 4 pixels for
a 50 x 50 microstructure.

After this one-time process, we can use @’ and (Ds repeat-
edly for our proposed multiclass blending. The first step of
the scheme is based on cross dissolving (Rohra and Kulkarni
2019), which can be simply defined as a linear interpolation
between the source and target geometries. This can induce a
double exposure effect where traces of both shapes co-exist
in the blended result. While that causes unnatural morphing
of, e.g., human faces, it organically achieves connected tran-
sitions between neighboring microstructures.

We express multiclass interpolation as a weighted sum
of the bases:
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Fig. 1 Illustration of using mul-
ticlass shape blending scheme
to generate a microstructure
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Fig.2 Demonstration of the integration of multiclass shape blending
and global interpolation. The basis classes are defined (left). Exam-
ples of M =2 new classes, €, their distributions, &, and volume frac-
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d

where c; € [0, 1]. Although it effectively creates new classes
of microstructures, this interpolation is agnostic to important
geometrical features and can lead to broken shapes that have
disconnected or thin features (see the top row of Fig. 1).
Therefore, to guarantee that the blended microstruc-
tures are sufficiently connected and feasible, we propose
an additional step that enforces a lower feasible bound
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Functionally Graded Structure

tions, v, are given (middle). Each microstructure in the FGS (right) is
generated using Eq. 6

on blending. It also acts as an implicit constraint for sim-
ple manufacturing considerations, e.g., minimum feature
sizes or volume fractions. This second step is an activated
soft-max function, a continuous and differentiable exten-
sion of Ricci’s set-theoretic union above:

D
D= ﬂizlog [exP (5, @°) + Z a, exp (ﬂz‘l’s)]’ @)
d

where a; = H(c,) are the activated weight parameters using
the Heaviside function:
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H) = tanh (f,1,) + tanh (f,(c; — 1)) 3
47 tanh (B,1,) + tanh (B,(1 — 1)) ®)

By setting the threshold #, > 0, the activation guarantees
that at least one—but not all, or else low volume fractions
would be difficult to attain—of the bases are feasible in each
blended result. That is, in this step, only weights that are
greater than 7, are activated to equal one (shaded shapes in
the second panel of Fig. 1) while others are suppressed to
zero (outlined shapes). We find that setting #, to the 75th-
percentile of the weights, ¢, works quite well in promoting
connected transitions.

With the two-step shape blending scheme, the representa-
tion of all possible blended microstructures, including those
in the original basis classes, can be compactly expressed
as the weight parameters. We can, therefore, formulate the
microscale design variables as ¢ for m € [1, M] desired
optimal classes (set by the user), transforming the typically
high-dimensional optimization problem into a simple and
efficient parametric one that can still generate a wide range
of microstructures.

A final note regarding microstructure design is that, in
practice, Eq. 1 allows each cfi'") € [0,1] and can lead to

;):1 c(dm) = 0, which results in completely solid microstruc-
tures and occasional numerical issues. Moreover, it causes
redundancy in the design space since taking ®° > 0 to obtain
the solid topology cancels out the least common denomina-
tor of the weights. There are numerous ways to enforce the
sum of c(dm) to be equal to one. We extend a multi-material
interpolation schemes from our previous work (Chan et al.
2019) to normalize the basis class weights as follows:

D-1 j
&m — 4 4 Z [(ZOH) —z¥) ﬁcg")], 4
= k=1

where z0) are constant one-hot encoded vectors for each
basis such that zl@ equals 1 fori =j and O for all i # j. Sub-
sequently, ¢, in Eqs. 1 and 3 are replaced with ¢,. While
our shape blending and design methods work well without
Eq. 4, for increased stability in the optimization process,
and the added bonus of reducing the microscale design vari-
ables, ¢, to size [1 x D — 1], we use it in the remaining
discussions.

2.1.3 Integration with multiscale design

In the context of multiscale design, the subscript e is added
to denote individual microstructures, which each resides in
one macroscopic quadrilateral 4-node finite element. Instead
of directly optimizing D weights at each microstructure, we
reduce the number of design variables by optimizing M
new classes and interpolating them throughout the global
structure using the distribution fields £”). An example with

M = 2 is portrayed by the red and blue classes in the middle
panel of Fig. 2. For demonstration, we artificially create the
values of the macro- and micro-scale design variables in the
middle panel, but during design, these values are optimized
concurrently.

Similar to multi-material TO (and Eq. 4), we require that
the sum of the distributions at each element equals one.
Thus, to obtain each microstructure, e, we can globally inter-
polate the optimal class weights, €, with:

M-1 j
=+ Y [(éo‘ﬂ) — &) H‘fék)]’ )
j=1

k=1

where & are the smoothed distribution fields after apply-
ing a radial filter (Sigmund 2007) to encourage functional
grading.

Therefore, combining Eqgs. 1 through 5, our final multi-
class shape blending scheme for a microstructure at element
eis:

) D
D, = A log { exp [ﬂz( z g @+ te)]
d

D (6)
+ Z dp.qexp (B, @) },
a

where a,.;, = H(¢,.;) and ¢, is found using the bisection algo-
rithm to match a given or optimized volume fraction, v,. This
replaces Eq. 2 during optimization.

2.2 Property prediction with neural networks

The continuous and low-dimensional microstructure repre-
sentation lends itself well to one of the simplest deep learn-
ing (DL) techniques: regression with neural networks. More
specifically, we can create feedforward neural networks with
three or fewer hidden layers that predict the components
of a microstructure’s effective stiffness tensor, Cg’ , given
the scalar values of the blending weights and volume frac-
tion as inputs. That is, C* = NN(¢,, 9,), where ¢, and 9, are
the interpolated class and filtered volume design variables,
respectively.

After each hidden layer, we use a tanh activation function.
For training, we use the mean squared error (MSE) loss and
the Levenberg-Marquardt optimizer (Moré 1978). To include
all possible microstructures, such as those where only a few
basis classes have non-zero weights, we use an optimal sliced
Latin hypercube method (Ba et al. 2015) to sample the weights
¢, first creating combinatorial “slices”, then 20 space-filling
samples for each “slice”. To cover volume fractions, we also
sample 15 microstructures from each resulting SDF (i.e., each
set of weights) over ¢t € [—1, 1]. We obtain a total of 22, 575
microstructures for D = 5 basis classes. The effective stiffness
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tensors of each are calculated using an energy-based homog-
enization method (Andreassen and Andreasen 2014). We set
aside 70%, 15%, 15% of the data for training, validation and
testing.

Once the model is trained, we can use backpropaga-
tion (Hastie et al. 2009) to analytically derive the gradients
of CZI with respect to the design variables, €, and ¥,. This,
together with the rapid predictions that bypass the cost of
homogenization, allows the neural networks to significantly
boost the efficiency of design.

2.3 Concurrent multiclass data-driven topology
optimization

One challenge in creating a concurrent functionally graded
design framework that produces realistic results while remain-
ing as general as possible is the different feasible ranges of
arbitrary microstructure classes. Consider the five truss basis
classes in Sect. 2.1. For a prescribed minimum feature size of
4 pixels, the first basis has a minimum feasible volume fraction
of 0.2, while the second has a minimum of 0.4. The question
that arises is: when different v,,;, > 0 are possible for each ele-
ment e, how can we design the distribution of volume fractions
while also optimizing a clearly defined macrostructure where
some microstructures are allowed to be void (i.e., v, = 0)?

Regarding this, most existing FGS research have either
elected to ignore the macroscale design altogether (Li
et al. 2019), or adopted a hybridized method that splits the
macro- and micro-scale designs into two optimization prob-
lems (Wang et al. 2018; Jansen and Pierard 2020; Chu et al.
2019; Zhang et al. 2018). None of these works incorporate
multiclass designs where the basis topologies can be drasti-
cally different, however.

‘We propose to overcome this hurdle by merging parametric
and non-parametric methods in a framework that utilizes evo-
lutionary TO (BESO (Huang and Xie 2007)) to optimize the
discrete global structure, x, and gradient-based TO solved by
the method of moving asymptotes (MMA) (Svanberg 1987) to
concurrently design the coefficients of M new classes c¢, their
distributions &, and volume fractions v. The approach is simi-
lar to the latter group above, but unlike many, we evolve the
designs at both scales in the same iteration. This combination
allows arbitrary sets of basis microstructures to be used rather
than strict constraints or careful handpicking, and distinguishes
our framework in terms of generality and efficiency.

Thus, the general optimization problem is:
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mlcn‘}rgnize f =fperf(ca v, 5’ X) + kf;‘iiv(c)’

subjectto KU =F,
8 <0,
(m)
0< ¢, < 1,

0 < Vimin < Ve < Vmax> (7)

0<eP <1,
X, € {Xpin> 1},

JE L Negpl, e € 1Ny,

me([l,M], de[l,D-1],
pellLM~1],

where f,. is an application-dependent measure of design
performance, fy, is a penalty on low class diversity
(Sect. 2.3.1), Ny, is the number of constraints g; (if any), N
is the number of macroscopic elements or microstructures,
and M and D are the numbers of new (to be optimized) and
basis (fixed) classes, respectively. A small number, x,;, = 1
e—9, is used to indicate void microstructures to avoid numer-
ical issues. The minimum volume fraction, v, is dependent
on the chosen set of basis classes, i.e., min(volume(cbg)),
whereas the upper bound, v, is 0.95.

We employ the traditional radial averaging filter (Sig-
mund 2007) on our global-level design variables to avoid
mesh dependency, resulting in the smoothed fields v, é:‘(p),
and X. This additionally enforces the interface between
optimal classes to be functionally graded, and that the
macrostructure has a minimum feature size of r;,.

To update the designs, we use the default algorithms
for BESO (Huang and Xie 2007) and MMA (Svanberg
1987). The only difference is that, to connect the two
scales, the sensitivity number for BESO are dependent on
the predicted effective properties of the microstructures.
The derivations for this and all other sensitivities in our
problem are shown in Appendix C.

In total, then, our multiclass FGS design framework has
(D — 1M + (M + 1)N,, variables, where M < D < N,,. For
the M = 2 MBB beam example later (Fig. 4a), our method
has 1928 design variables. The multilattice approach by
Sanders et al. (2021) uses 3200 variables for the same
problem without optimizing the graded volume fractions,
while the latent variable multiclass approach of Wang
et al. (2020c) has 1920 variables and includes functionally
graded volumes; both, however require predefined classes
with manually defined connections. It is important to note
that although it is possible for other methods to contain
less design variables, they make simplifications that we
do not.
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2.3.1 Penalty to encourage convergence to diverse classes

Our method can enable high design freedom even with a
low-dimensional microscale representation since blending
allows the basis classes to mix continuously at both scales.
Depending on the chosen optimizer, managing such com-
plexity in two-scale design can be a challenge, one that is
also encountered by existing multiscale methods. However,
we propose that a cost-effective penalty on the objective
function can aid the optimizer (in our case, MMA) without
resorting to user-defined restrictions on the design space.

We introduce a penalty on low diversity between the M
new classes, encouraging the microscale design variables,
c™_to converge to values away from each other, so that the
FGS is more likely to include different basis classes:

Jai = —log [ det(Ly(c?, )], 8)

where L; = exp(—0.5 [|c? — ¢?|3) and i,j € [1, M].

This is based on determinantal point processes (DPPs),
which measure the diversity of a set of items (e.g., the
classes ¢ here) using a similarity matrix L;, whose ele-
ments are the similarities between i-th and j-th pairs of data.
The diversity can then be defined as the determinant of L;.
A larger determinant value indicates that a set contains less
similar items, spans a larger volume, and hence has greater
diversity. A deeper dive into the benefits of diversity for
data-driven multiscale design, can be found in our previous
work (Chan et al. 2020).

Intuitively, minimizing fj;, is equivalent to maximiz-
ing the diversity of the new classes. Since the value of fj;,
approaches zero as classes become more diverse, i.e., the
values of cg) and c(d’) grow farther apart, diversity serves as a
natural penalty function. It needs only a weight k so that its
value, typically within [0, 1] after the first few iterations, can
compete with the structural performance, f,.;. Moreover, it
acts similarly to an L, regularizer that smooths the objec-
tive function as k increases, which may avoid sensitivity to
initializations and help find an optimum faster in some non-
convex or highly nonlinear problems. Indeed, we find in our
case studies that adding the penalty help our optimizers to
find more optimal solutions (Sect. 3.2).

2.3.2 Volume relaxation and adaptive target volume

If any volume constraints are defined in the design problem,
we must have a way to obtain the continuous gradients of
volume with respect to the parameters of the shape blending
scheme. To achieve this, we can approximate the filtered
volume fraction of a microstructure, »,, by transforming its
SDF into a relaxed grayscale field, similar to that of density-
based TO, using the Sigmoid function

1

TP e ey ©

where f, is a fixed parameter to control the strength of relax-
ation. Thereafter, the approximate volume is

R l S
=) 5@, ) (10)
1

LS| u=

where n,, is the number of elements in the discretized SDF,
and the sensitivity of 0V ,pa1/0€, is straightforward to cal-
culate (see Appendix C).

In addition, low volumes are often a goal in multiscale
design to take advantage of the porosity of the microstruc-
tures. By immediately applying a strict volume fraction con-
straint, however, it is possible to encounter infeasible and
broken structures early in the optimization process (Chris-
tiansen et al. 2013). To avoid this, and to ensure that our
macro- (BESO) and micro-scale (MMA) designs evolve at
approximately the same rate, we use an adaptive scheme to
lower the target volumes every 10 iterations. The algorithms
of this scheme as well as our complete concurrent design
framework can be found in Appendix A.

3 lllustrative examples

Through several linear elastic problems, we test the ability
of our framework to achieve smooth and feasible functional
grading of microstructure morhpologies. Namely, we design
two compliance and one shape morphing examples. For each
case, we study the effects of two sets of basis classes with
different morphology types and initial mutual compatibility,
as well as the number of new optimal classes, M.

3.1 Basis classes and neural networks

To illustrate the framework across a range of microstruc-
ture morhpologies commonly found in literature, we use
two sets of basis classes: one consisting of trusses, and one
of topology-optimized freeform shapes. Moreover, to show
that human bias can be removed from the design without
sacrificing much performance, we compare handpicking
the truss basis to automatically selecting the freeform basis
using diversity metrics.

3.1.1 Handpicked simple trusses

Truss-type microstructures possess both simple definitions
and satisfactory performance (Panetta et al. 2015; Wang
et al. 2020c; Luo et al. 2021; Chan et al. 2019). As such,
they are fitting basis classes to validate the proposed frame-
work. For our examples, we choose a set that can, when

@ Springer



135 Page8of22

Y.-C. Chan et al.

combined in various ways, cover nearly all of the common
truss morphologies in literature. Departing from other meth-
ods, we dial up the difficulty by defining the last two bases
so that they are broken; to obtain feasible designs, these
classes need to be either well-connected to their neighbors
or blended with other bases that have self-connectedness.
The five classes are shown in Fig. 3a, b.

3.1.2 Shape and property diverse freeform subsets

We also assess the efficacy of our blending and interpola-
tion schemes under even more challenging circumstances by
defining a set of freeform basis classes with complex shapes
derived from TO (Fig. 3d). They present interesting and
highly illustrative case studies as their compatibility with
each other is quite low. If used directly in design without
our shape blending scheme, the feasibility of the final design
would be extremely challenging to guarantee.

We collect these freeform classes from a different per-
spective, one where a designer has little prior knowledge
and wishes to avoid using costly inverse optimization to find
the basis microstructures. Thus, the five freeform classes
are chosen by leveraging the open-source 2D metamateri-
als dataset (Wang et al. 2020b) and the automated diverse
subset selection method (Chan et al. 2020) from our previ-
ous works. The method utilizes the DPPs introduced earlier
(Sect. 2.3.1) to maximize the shape and property diversity
of a subset of microstructures. By automatically covering
a wide range of shapes and properties, we hypothesize that
diverse basis classes can provide a high return on invest-
ment, attaining competent or even superior performance
across multiple applications with less effort during the selec-
tion of bases.

We filter out any 50 X 50 microstructures with minimum
feature sizes less than 4 pixels prior to applying our subset
selection method. This eliminates some of the most complex

Fig.3 a Truss basis classes
represented as b SDFs (®)),
and c the property space of
22,575 blended microstructures
by sampling {c¢, v}. d Freeform
basis classes, e their SDFs, and
f property space (c) 14
1.2
1
0 8
0.6

0.4 2

H
C21/C

0.2 e % X :

XL
-

shapes that provide little benefit for functional grading (e.g.,
microstructures with thin features that would limit the range
of feasible volume fractions). To convert the selected binary
microstructures into continuous SDF representations, we use
the fast marching method (scikit-fmm 2021). The shape and
property diverse freeform basis classes shown in Fig. 3d, e.

3.1.3 Property prediction models

As discussed in Sect. 2.2, we obtain training datasets of
22, 575 microstructures using sliced Latin hypercube sam-
pling for each set of basis classes. The respective property
spaces are depicted in Fig. 3c, f, where samples generated
from blending are in gray and those from the original basis
classes are denoted as different color crosses.

We observe that the blended microstructures are able to
interpolate between—and in some cases, extend slightly
beyond—basis classes in order to cover the property space.
Although some sparse areas still exist due to the lower fea-
sible bounds that we impose, this shows that blending is
a powerful technique to create a large design space even
with small sets of basis classes. It is also clear from these
figures that the first basis (red) from both sets possess the
highest stiffness in diagonal directions and ratios of Cgll to
Cfl (equivalent to the effective Poisson’s ratio), as opposed
to truss bases 4 (purple) and 5 (orange), and freeform basis
2 (blue), which are stiffest in uniaxial directions.

While the freeform classes are orthotropic, some of the
truss classes are not. The number of responses, 7., in the
neural networks of each set are adjusted accordingly, i.e.,
6 elastic tensor components for trusses and 4 for freeform.
Table 1 lists the details of the ML model architectures,
where n,.4. indicates the neurons of each hidden layer, and
the R? and MSE metrics of the trained models.

Since they only need to be built once, the same models
are used for all examples throughout the paper. The one-time
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0
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Table 1 Neural network

architectures and accuracies Mresp "node
Truss 6 {16,16,12}
Freeform 4 {12,12,6}

Train R? (MSE) Val. R? (MSE) Test R2 (MSE)
0.9983 (2.34¢—4) 0.9984 (2.80e—4) 0.9983 (2.46e—4)
0.9991 (2.91e—4) 0.9990 (2.90e—4) 0.9991 (3.01e—4)

expense of creating our data and models is reasonable for
our 2D problems. However, we note that our results show
overlapping properties in the dataset (Fig. 3c, f), high R?
values above 0.99 and low MSE (Table 1), suggesting that
it may not have been necessary to use as many samples as
we did. There is great potential to develop adaptive sampling
algorithms that better balance accuracy and efficiency, par-
ticularly for 3D and complex applications. We leave this for
future works.

3.2 Compliance minimization

We begin with compliance minimization examples, the first
of which is the classic MBB beam. The boundary condi-
tions are depicted in 4a, and we follow the same set-up as
in Xia and Breitkopf (2014) and Wang et al. (2020c) to
compare our results with those of existing methods. That
is, the MBB beam is discretized into 40 X 16 microstruc-
tures and an ambitious global volume fraction limit is set as
Viiopar = 0-36. For the second problem, we pursue a 60 X 30
bridge structure loaded in three places, as shown in Fig. 4b.
Due to symmetry, we can cut its size by half into 30 x 30.
The target global volume there is V' = 0.50.

Global
The two compliance problems can be formulated as:

minimize [ =f, + kfy, (),
c,v,Ex
subjectto KU =F,

21 = Vaiova/ Vigpa = 1 < 0s
8 = VBESO/VEESO -1< 07

an

where f, = 22]:1 u’k"(¢,,9,)u, is the compliance with
element displacements u, and effective stiffness matrices
kf , which are predicted via the DL models. The global
and macro}svcale volumes are Vgopa = Z[Z:‘l x,v,/Ny and
VBESO = ey X/ Nep» Tespectively, and the bounds on the
design variables are the same as described in Eq. 7. The

sensitivities of this optimization problem are detailed in

Appendix C.
For both examples, we initialize the volume constraints as
* _ * _ *
VGlobah0 =0.95, VBESO,O = 1/VGloba], the volumes v as 0.95,

the class weights so that & are the same, and all distribu-
tion fields, €7, so that the classes are distributed equally.
The penalty parameter (Sect. 2.3.1) is set so that kfy;, = 10
during later iterations. We find that keeping the penalty
around this value improves both convergence and design
performance.

(a) MBB beam (40 x 16)

L/2 L/2

F=1 F=1

\
2F =2

(b) Bridge (30 x 30)

Fig.4 Problem settings of the compliance minimization examples

The fixed parameters in the shape blending scheme are
p, = 64 and B, = 32. As we suggested in Sect. 2.1.2, the
threshold #, is adapts to the design and is equal to the
75th-percentile of the class weights. The radii of all filters
on the design variables are the same, r,;, = 3.0, matching
Xia and Breitkopf (2014). For BESO, the evolutionary
rate is ER = 0.05 in both problems. Otherwise, all other
parameters are kept at the default values (Huang and Xie
2007; Svanberg 1987). Our convergence criteria are when
the change in design or the mean change in the objective
over 10 iterations are less than 0.01, or when the number
of iterations reaches 200. We also use early-stopping if
the target V¢, . . has been met but the objective has not
improved in 20 iterations.

In the following sections, we present our results in fig-
ures with the same layout: The left sides illustrate how
the optimized classes are created via blending by break-
ing them down into the individual basis classes. For
ease of interpretation, we show Z’flm) from Eq. 4, which
correspond directly to the weights used during blending
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(Eq. 6), instead of the design variables c(dm). The right-
most sides show the optimal multiclass FGS and their final
compliance.

For fair comparison between our results and homog-
enization-based methods in literature, and between the
two types of basis morphologies, all compliance values
stated in the main paper are calculated using numerical
homogenization. For further validation, Tables 5 and 6 in
Appendix B also report the compliance obtained from the
neural networks and fine mesh analysis.

@z & & o @ (D)
! 2 ! mmm 0

L __ _ | |
0.00 0.00 0.00 1.00 0.00 Class1

0
X X S 3
0.91 0.09 0.00 0.00 0.00 Class 2 0 | 5
0.5
, fe =192.47, Vgiopar = 0.36, VBrso = 0.49

Fig.5 Truss MBB, 2-class result. a Optimal new classes each drawn
in a different color. Left of arrows: optimal weights listed under each
basis. Lighter colors indicate low weights while outlined shapes rep-
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Fig. 6 Freeform MBB, 2-class result: optimal a weights and representatives of new classes, b é(l), é
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—

—
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0.00 0.00 0.00 1.00 0.00 Class1

reflected over the symmetry line
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Fig.7 Truss bridge, 2-class result: optimal a weights and representatives of new classes, b 3(1),5

3.2.1 2-Class results with different basis classes

We first consider the results using M = 2 new classes and
both sets of basis classes. The optimal designs are shown
in Figs. 5 and 6 for the MBB beam with truss and freeform
bases, respectively, and in Figs. 7 and 8 for the bridge. The
interpretation of the figures is described in the previous
section.

From the 2-class compliance results, we can see several
benefits of integrating multiclass shape blending into FGS
design:

x’x“x
::

resent weights that are &f:ro(.z)Right of arrows: representative topolo-
gies of new classes. b & ", &,V

FGS

, V from top to bottom, and ¢ multiclass

fc = 223.13, Vaiobal = 0.36, VeEso = 0.50

A2 .
¢ ), ¥ from top to bottom, ¢ multiclass FGS

fe =92.22, Vaiopar = 0.50, VpEso = 0.65

~Q) . .
¢ ), v from top to bottom, ¢ multiclass FGS
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—

= 5 H“’h%
0.00 1.00 0.00 0.00 0.00 Class1

0.97 0.00 0.03 0.00 0.00 Class2

Fig.8 Freeform bridge, 2-class result: optimal a weights and representatives of new classes, b 2( €

reflected over the symmetry line

1. The combination of the blending scheme and the radial
filters on the distribution fields creates smooth transitions
between classes. Topological functional grading is guaran-
teed and does not depend on the mutual compatibility of the
basis classes. Although connections may not be ideal for
our freeform bases, which have low initial connectivity and
more complex features, neighboring microstructures change
continuously and are at least connected through the imposed
lower feasible bounds (Fig. 6).

2. Because of the two-step blending scheme, the micro-
structures at the interfaces of optimized classes are a
union of the classes being mixed there, and the mini-
mum feature sizes of all microstructures match our pre-
scribed lower limit of 4 pixels.

3. The macroscale distributions, E(p), can be either domi-
nated solely by one class or contain mixtures of multi-
ple classes. For example, the diagonal struts in the truss
MBB (Fig. 5a) consist predominantly of the second
new class (blue), while the horizontal bars contain both
(red and blue), presumably to stiffen the design at those
locations. On the contrary, the two new classes in the
freeform bridge intermingle throughout nearly the entire
structure (Fig. 8).

4. Optimizing cflm) can automatically determine if an exist-
ing basis class is sufficient to achieve low compliance,
or if a novel class needs to be created by fusing several
bases. For example, in the freeform MBB result (Fig. 6),
the mixture of the second and fifth bases stiffens the
microstructures, improving the global compliance of the
FGS.

5. Due to BESO, the global macrostructures are clearly defined
and change based on the basis classes and optimal micro-
structures, showing that the hybrid framework works well.

Further observations can be made regarding the framework’s
ability to adapt to spatially varying stress distributions. The
first and fourth truss-type bases, and the first and second for

(0
05

0

1

2T
3T

05

D| fo = 10015, Varopar = 0.50, Vpso = 0.65

) A2 .
) & ), ¥ from top to bottom, ¢ multiclass FGS

freeform, are the most popular classes by far, agreeing with our
observation in Sect. 3.1.3 that these are among the strongest
classes in diagonal and uniaxial directions. In both beam and
bridge examples, these classes are designed such that the load-
bearing features of the blended microstructures intuitively match
the load paths.

In particular, our truss-type MBB beam result is akin
to those in existing multiscale works with the same design
domain. Xia and Breitkopf (2014) performed an exhaustive
two-scale TO that optimized every microstructure, resulting in
horizontal (uniaxial) and diagonal (anisotropic) features that are
oriented with stress directions, and a compliance of f, = 190.
Meanwhile, Wang et al. (2020c) proposed a multiclass design
with rectangular trusses on the horizontal macro-bars, X’s on
the diagonal macro-struts, and a compliance of f. = 214.02.
Our framework can be thought of as bridging these two meth-
ods. This is indeed reflected in our 2-class truss result, which
achieves a compliance value between the two existing works,
f. = 192.47, and has similar microstructures.

In terms of performance, truss basis classes outshine
the freeform basis in both problems. We theorize that our
freeform bases do not perform as well for two reasons. (1)
They were automatically chosen to maximize diversity, i.e.,
coverage, in shapes and properties, which undoubtedly can
skip microstructures with properties that are more optimal
for these specific problems. (2) They contain complex, thin
features that force their lower feasible bounds to have high
volume fractions (v,,;, = 0.28), which clashes with the low
target volume of 0.36 in the MBB problem.

Despite these disadvantages, however, the compliance
attained using freeform basis classes is decent across both exam-
ples and near those of existing works, confirming the versatil-
ity of diverse bases and our design framework. A deeper look
into the MBB example also reveals that the multiclass freeform
FGS (Fig. 6) still surpasses single-class designs that vary only
in volume fraction (Table 2).
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Table 2 Single-class MBB beam results using one freeform basis
class each

Basis 1 2 3 4 5

f. 476.26 247.57 384.89 399.29 290.75

3.2.2 Effect of the number of new classes

With the effectiveness of the proposed framework estab-
lished, we now study whether increasing the number of new
classes to M = 3 can impact the designs and their perfor-
mances. The problem definitions remain the same as before.
For the MBB beam, the 3-class results are given in Figs. 9
and 10 with the truss and freeform bases, respectively. The
bridge results for both sets of bases are combined in Fig. 11,
where they are shown in black-and-white and with zoomed-
in views of the functionally graded topologies and volume
fractions.

The most notable result is the 3-class truss MBB, which
achieves a compliance even lower than the fully optimized
design of (Xia and Breitkopf 2014) at f, = 188.85. More

@ & & & & &

0.00 1.00 0.00 0.00 0.00 Class1
— —

—

L _ | I
0.00 0.01 0.00 0.99 0.00 Class2

—

1.00 0.00 0.00 0.00 0.00 Class3

Fig.9 Truss MBB, 3-class result: optimal a weights and representatives of new classes,b& ,& ', &

@& & & & & (b)

0.00 0.00 2e-3 0.995 2e-3 Class 1
| T—

—

0.00 1.00 0.00 0.00 0.00 Class2

0.85 0.00 0.15 0.00 0.00 Class3

Fig. 10 Freeform MBB, 3-class result: optimal a weights and representatives of new classes, b § .f 5

FGS
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apparent than in the 2-class result above, it exhibits direc-
tional load-bearing features (Fig. 9) such as the left-to-
right diagonal microstructures (red) and the near-uniaxial
microstructures (blue). In addition, the X-shaped class
(green) appears mainly in the middle macro-strut. Over-
all, our result distinguishes itself from the existing with
the mix of isotropic and anisotropic microstructures that
are all well-connected. A similar blend of directional and
uniaxial classes can be found in our 3-class truss bridge
(Fig. 11a—d).

With the exception of the truss-type MBB, however, all
3-class results could not overtake the compliance of their
2-class counterparts. We suspect this is because, for simple
compliance problems, additional classes are not necessary
to achieve optimal performance. Our hypothesis is supported
by the new classes of the M = 2 examples: for the most part,
they are each monopolized by just one basis class. This sug-
gests that, in most cases, only two basis classes are needed
throughout the entire FGS; if more are required, they can
be incorporated into a single optimal class by adjusting the
values of ¢™ without increasing M, like in the 2-class free-
form MBB (Fig. 6). Another reason could be that we force

fe = 188.85, Viiobar = 0.36, VpEso = 0.50

2 22 203) 4

, V from top to bottom, ¢ multiclass FGS

3 .
3 ), V from top to bottom, ¢ multiclass
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Fig. 11 Results of 3-class (a)
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the third class to be different from the others through the
penalty on low diversity, which can lead to the addition of
a sub-optimal class. This scenario may have occurred in the
3-class freeform MBB, where the first new class (red) is
hardly present in the FGS. Nevertheless, the penalty does
not significantly worsen the compliance and can, in some
cases improve it. An intriguing possibility that bears further
investigation is whether a larger variety of microstructures
are needed in problems with finer discretization or more
complex objectives.

Finally, we compare the computational efficiency of our
proposed framework against others, with the caveat that each
method was run on different computers. The 40 X 16 MBB
design is reported to require 200 hours in Xia and Breitkopf
(2014), and 5 minutes in the data-driven method of Wang
et al. (2020c). For our proposed method, the same design
using M = 3 new classes takes under 12 minutes. However,
we note that the majority of this time is consumed by the
bisection algorithm (Sect. 2.1.2), which ensures that the
microstructures have the optimized volume fractions when
converted from SDFs (Eq. 9). Improving this aspect of our
blending scheme is next in our future goals.

3.2.3 Effect of the low-diversity penalty

The function that penalizes new classes with low diversity
(Eq. 8, Sect. 8) can affect performance, although whether
that effect is positive or negative depends on the problem

or basis classes. In this section, we show concrete examples
why the penalty is still recommended by running the same
compliance problems without the penalty, i.e., by setting
k = 0. The results are listed in Tables 3 and 4. Immediately,
we can see that although the truss basis classes can still
achieve satisfactory compliance values lower than the exist-
ing baselines (Xia and Breitkopf 2014; Wang et al. 2020c),
none of these can beat our results above.

In the tables, we write the highest weight values of each
new class, €,,, in bold. From this, we observe that each result
is often overshadowed by one basis class (see the bold values

Table3 MBB beam results without penalty on low class diversity
(k=0

Basis M ¢, fe Vaiova  VBESo
Truss 2 €, =1[0.00,0.39,0.00,0.27,0.33] 205.77 0.36  0.50
¢, =[0.00,0.05,0.11,0.84,0.00]
3 & =10.00,0.36,0.22,0.12,0.30] 212.83 0.36 0.54
¢, =[0.12,0.12,0.09, 0.66,0.01]
¢; =10.23,0.08,0.16,0.53,0.01]
Free- 2 € =1[0.00,0.09,0.00,0.00,0.91] 252.02 0.36  0.51
form
¢, =[0.04,0.14,0.39,0.01,0.43
3 & =10.01,0.00,0.53,0.00,0.46] 248.84 0.36  0.50

¢, =[0.00,0.45,0.00,0.00,0.55
¢; = [0.00, 0.00, 0.00, 0.00,1.00

—_ =

The dominant weights of each new class, €,,, are in bold
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Table 4 Bridge results without penalty on low diversity (k = 0)

Basis M &, 1 Vaioba VBESO
Truss 2 ¢, =[0.00,0.22,0.00,0.73,0.05] 96.59 0.50 0.65
¢, =[0.00,0.41, 0.00,0.09, 0.51]
3 ¢, =1[0.00,0.18,0.00,0.82,0.00] 96.34 0.50 0.65
¢, =[0.00,0.28,0.00,0.21, 0.51]
¢; =[0.00,0.45,0.00,0.00, 0.54]
Free- 2 & =[0.00,0.00,0.13,0.87,0.00] 105.90 0.50 0.65
form

¢, =[0.03,0.00,0.06,0.91, 0.00
3 ¢ =1[0.00,0.00,0.10,0.90,0.00
¢, =[0.00,0.00,0.09,0.91, 0.00
¢; =[0.02,0.00,0.02,0.96,0.00

]
] 105.46 0.50 0.65
]
]

The dominant weights of each new class, €,,, are in bold

in the same column). For the 3-class designs in particular,
the second and third new classes are always dominated by
the same basis, confirming our earlier suspicion that M = 2
is enough to produce optimal results. We also note that there
are numerous low values of ¢, signifying that multiple basis
classes are being blended into the FGS without improving
the design performance. These results additionally imply
that greater diversity amongst the microstructure classes
improves performance. A more meticulous study on the
impact of diversity on the generality and performance of
design methods is an intriguing path for future works.

Furthermore, it takes significantly longer for the class
design variables to converge without penalization. In the
2-class truss bridge example without the penalty, they often
fluctuate and need more than 100 iterations to start converg-
ing, whereas they are already converged in under 30 itera-
tions with penalization. These studies validate the benefits
that our proposed low-diversity penalty function supply to
MMA, helping it to stabilize, escape local minima, and find
more optimal solutions. In Appendix B, we provide the con-
vergence plots of the M = 3 MBB beam examples, along
with additional discussion.

3.3 Shape matching

Heterogeneous structures show great potential for appli-
cations where a specific deformation pattern is desired
upon actuation, e.g., in form-fitting wearables and soft
robots (Mirzaali et al. 2018; Lumpe and Shea 2021; Boley
et al. 2019). Motivated by these applications, we optimize
two shape matching structures: (1) the target sine-wave
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(a) Target sine wave (30 x 4)

(b) Target bump profile (40 x 8)

Fig. 12 Problem settings of the shape matching examples

deformation profile shown in Fig. 12a, and (2) the bump
profile in Fig. 12b. The first is a cantilever discretized into
30 X 4 microstructures, fixed at its left side and loaded
with displacement boundary conditions on the right—the
same example we tested in (Chan et al. 2020). The second
is similar, but discretized into 40 x 8. Like the compliance
examples, we will also use the truss and freeform basis
classes with M = {2,3}.

In past works (Chan et al. 2020; Wang et al. 2020a), we
found that these target displacement problems are simi-
lar to compliant mechanism design and most effectively
solved via a two-stage “top-down” approach that first uti-
lizes inverse TO to find the target effective properties for
each microstructure. Departing from previous works, we
use the proposed multiclass blending framework in the
second stage to optimize the new classes, ¢, their distri-
butions, .’;(”), and the volume fractions, v, until the target
properties are matched.

To find the target properties, i.e., the effective stiffness
matrices CIH , that achieve a desired displacement profile,
the first stage follows the method in Wang et al. (2020b)
with following problem:

C 1 5
minimize  —|ju—u]|7,
cH n

KU=F, (12)

—-¢(ChH <0,

subject to

where u is the displacement vector of n nodes located on
the horizontal centerline of the structure, u, is the vector
of target displacements of the same nodes, K is the global
stiffness matrix, and U and F are global displacement and
loading vectors, respectively. This inverse problem uses the
stiffness matrices of each microstructure as design variables.
To ensure that these are within the bounds attainable by
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shape blending, they are constrained by the signed L, dis-
tance field ¢ of the properties of the training data for the
neural networks (Sect. 2.2 and Fig. 3c, f).

After this, the multiclass FGS is optimized to meet
the effective property targets by leveraging our proposed
blending scheme. Since we do not aim for a target volume
here, there is no global volume constraint and the macro-
structure defined by x remains fixed. The second stage is
thus:

minimize —||CH(C v, &) — CH|I3 + kfy, (0,
C,V, Nel (13)

subjectto KU =F,

where the bounds on the design variables are the same as
in the previous examples. Due to the omission of x, it can
be solved with just MMA. The penalization parameter is set

MSE = 0.0784, RRMSE = 0.0253
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Fig. 13 Results of the target sine wave problem
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Fig. 14 Results of the target bump shape example

such that kfy;, = 4 for the 2-class study and 9 for 3-class,
respectively. The filter radius is r,,;, = 1.2 and 2.5 for the
sine and bump problems. The volume fractions are initial-
ized at v = 0.5, and all other parameters are the same as in
the compliance examples.
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The final multiclass FGS and their achieved displacement
profiles (solid blue) are gathered in Fig. 13 for the sine wave
and Fig. 14 for the bump problem. In the plots of the dis-
placements, we also show the initial target profile, u,, used
in stage one in dashed green lines, along with profile realized
by the optimized properties (dashed red), which serves as an
indirect target profile in the second stage.

We performed the same sine wave study in Chan et al.
(2020), but with a combinatorial method for aperiodic
designs, i.e., without functional grading. There, the lowest
MSE that we achieved was 0.1146, which most of our pro-
posed multiclass FGS surpass. Interestingly, the freeform
basis classes perform considerably better than the truss-
types. The freeform designs are composed mostly of the first
basis, which we noted in Sect. 3.1.3 has one of the greatest
effective Poisson’s ratios, as well as the fifth freeform basis,
which has both high stiffness and medium Poisson’s ratio.

Conversely, the truss-type FGS match the target bump
profile more closely than the freeform ones by utilizing
the fourth (horizontal) truss basis. By inspecting the tar-
get properties for each problem, we find that the sine wave
requires middling values of both Poisson’s ratio and stiff-
ness throughout the FGS, which the freeform classes provide
more easily, whereas the bump profile needs distinct regions
of either large x-directional stiffness or high Poisson’s ratio,
which the first and fourth truss classes meet exception-
ally well (Fig. 3c, f). This observation portends a possible
extension of our work where the most efficient basis classes
can be chosen to match the initial distribution of principal
macroscale stresses for specific problems, similar to Xu and
Cheng (2018).

Another intriguing note is that, by blending the last two
truss basis classes, we can form square microstructures that
are not found in the original set (Fig. 13b ). Moreover, com-
bining those two with the ‘X’ basis creates microstructures
with star-shaped voids that are not strictly trusses. These are
direct results of the weighted sum of SDFs in our proposed
blending scheme (Eq. 1), which can non-intuitively morph
the basis classes to achieve optimal performance.

4 Conclusions

We proposed in this work a novel multiclass shape blend-
ing scheme that provides a low-dimensional representation
of microstructures for both design and DL, and a data-
driven multiscale design method that utilizes a hybrid of
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TO algorithms along with a new penalty on low diversity
designs. By integrating these, we created a multiclass FGS
design framework that encapsulates the freedom of fully
aperiodic structures while featuring efficiency greater than
that of typical multiscale methods. The key is the ability
of shape blending to blur the lines between classes, creat-
ing graded designs with novel microstructures beyond the
initial basis classes. Even with classes that have complex
features or are not mutually compatible, continuous transi-
tions between neighboring microstructures are guaranteed.

Furthermore, feasibility constraints are incorporated
into the scheme to ensure that they are naturally met. In
this work, we use a simple measure—minimum feature
size. However, defining the lower feasible bounds of each
basis class outside of the optimization process means there
is potential for future works to incorporate other feasibil-
ity, or even quality, metrics, such as those without cheap or
tractable gradients.

We demonstrated these advantages through compliance
and shape matching examples, in which blending empow-
ered our FGS to surpass designs in literature. Our results
revealed that truss-type classes consistently achieve low
compliance, and that diverse freeform classes reach satis-
factory performance across multiple applications despite
being automatically chosen without considering their com-
patibility. We also discovered that more is not always bet-
ter when it comes to classes. By encouraging the design
to converge to a smaller number of diverse classes, as few
as two can be blended to obtain optimal designs. This
outcome merits deeper exploration in the future on how
diversity metrics can benefit structural design.

Our framework is general in that it is not tied to the
specific DL and TO methods shown in this work. It is also
not limited to our 2D classes, since multiclass blending
is independent of the topology, representation, dimension
and resolution of the basis shapes. This modularity is an
especially welcome feature as more advanced prediction
models and TO algorithms emerge to solve complex mul-
tiphysics and nonlinear mechanics problems, including 3D
ones. Beyond the examples presented, our framework can
be extended to sought-after functionalities like thermoe-
lasticity, fracture resistance and energy absorption, and
adapted to applications such as customized user products
and architectural design. We believe these are all excit-
ing avenues for future works enabled by multiclass shape
blending.
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Appendix A: Algorithms

Algorithm 1 Adaptive scheme to decrease vol-
ume fraction limits during concurrent multiscale
design. ¢ denotes the number of the current itera-

ton.

Require: Viy,pa1-1,VBES0,i—1) Véiobal, VBESO;

1:

2:

if (1 mod 10) =0 and Vspari—1 > Véiobal
then
Vélobal,i
0.025;
end if
if ( mod 10) =0 and Vggso < VBEKESO,ZFI
then
Vepso,i < Vrso,i-1 — 0.005;
end if
return updated volume constraints.

— min(VGlobalvaézobaz,iﬂ) -

Algorithm 2 Concurrent design framework for
multiclass functionally graded structures. If there
are no volume constraints, ignore Line 10. If the
macrostructure is fixed, ignore Line 12.

1:

S T kW

3

10:

11:

12:
13:
14:
15:

Initialize:
design variables ¢, v, &, X;
volume constraints

Vélobal,O’ V§Eso,o?
weight on low-diversity penalty k;

: while change in design > tol do

i — 1+ 1; > iteration counter
for each macro-element e do
obtain ¢, (Egs. 4, 5);
find ®, and t. so that unit cell has
volume 9, (Eq. 6);
approximate ¢ (Egs. 9, 10);

predict effective stiffness CHZ =
NN(C.,¥.) and obtain kg;
end for

update volume fraction constraint limits
(Algorithm 1);

compute objective, constraints and sensi-
tivities (Appendix C);

update macroscale design x with BESO;

update other variables c, v, & with MMA;
end while
return optimal multiclass functionally graded
design.

Appendix B: Additional results

Further examples of blending

To help visualize blending between pairs of basis classes,
we illustrate several examples in Fig. 15. In particular, we
select pairs that have not appeared in our design results.
No matter how simple, complex or incompatible the basis
classes, our multiclass blending scheme is able to provide
feasible, i.e., well-connected, intermediate microstructures.
This is the benefit of (1) the interpolation between the SDFs
of basis classes, and (2) the imposition of the lower feasible
bounds of each basis through Eqgs. 1 and 2.

Compliance validation

In Sect. 3.2, we presented the compliance as calculated by
numerical homogenization to directly compare our results to
those in literature. In Tables 5 and 6, we additionally report
the compliance of our designs performed using: (1) neural
networks (same as during design), (2) numerical homog-
enization (as shown in the main paper), and (3) fine mesh
analysis using the multigrid method (Amir et al. 2013) (for
validation).

For MBB in particular, the homogenization-based com-
pliance agree reasonably well with the fine mesh analysis. In
general, the numerical homogenization-based results, f, om»
are slightly closer to the fine analysis values, f, g, than the
ones using the neural networks, fC,NN, which is expected.
However, the differences between f, vy and f, g, are not
large, validating the use of our predictive models to acceler-
ate the design process.

Comparison of convergence
with and without penalty

To demonstrate the effect of the low-diversity penalty
(Sect. 2.3.1) on convergence, we compare the 3-class MBB
examples using both the freeform and truss basis classes
(Sect. 3.2.2). This problem had the most difficulty converg-
ing to low compliance values. The histories of the class
design variables (which are the only variables used to com-
pute the penalty) are plotted in Fig. 16.

The penalty on low class diversity has a significant impact
on the convergence behavior of the class design variables.
They confirm our statement in Sect. 3.2.3 that applying the
penalty can help the weights of the class design variables
to converge more quickly, as well as alleviate possible local
minima (e.g., compare Figs. 16a, b).
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Fig. 15 Examples of blending pairs of basis classes. The first and last
microstructures are from basis classes, and those in between are pro-
duced by linearly interpolating the weights in the blending scheme.

Appendix C: Sensitivity analysis

The derivations of the sensitivity analysis for gradient-based
topology optimization (TO) are detailed in this section. The
nomenclature are the same as in the main text. All deriva-
tions were verified using the finite difference method.

For the global multiclass shape blending scheme (Eq. 6),
which is used to obtain the microscale topology at e, the
gradient is

Table5 Comparison of the compliance of our MBB results in
Sect. 3.2.1 calculated by: neural network models f, yy, numerical
homogenization f, y,,, fine mesh analysis f, g,

Basis M Jenn S Hom JeFine
Truss 2 187.41 192.47 216.50
(—13.44%) (=11.10%)
3 199.74 188.85 209.28
(~4.56%) (=9.76%)
Freeform 2 210.52 223.13 265.28
(=20.64%) (~15.89%)
3 212.68 229.15 274.60
(=22.55%) (=16.55%)

For the homogenization-based values, we also report the percent error

Between truss classes (left column): a 1 and 5, b 2 and 4, and ¢ 4 and
5. Between freeform classes (right column): d 2 and 3, e 2 and 4, and
f4and5

aq)e 0 *
o ,6 (I)’ [ﬂ2 exp (ﬂsz ) (OX 1)
(€1
0H(C,.4 Pr, 1)
i M) o (00|
where
D
@) =exp (/,@0) + ) agexp (5,PY), (C2)
d
D
D0 =) ¢, D +1,, (C3)
d
OH(@,,) B[l —tanh?(By(2,.q —m))] 4
0¢,,  tanh(B,n,) + tanh (B, (1 — 1))’

and © indicates element-wise multiplication.

The sensitivities for the the class interpolation schemes
(Egs. 4 and 5) with respect to the class design variables is
as follows:

. a~(m)
from f g, in parentheses d ¢y c5
M-1 a(E(]+l) Z.(/)) j az.(m) ( )
+ d d H 2(k) d
4 a~(m) ¢ 0 (m)
. . . j=1 Cd k=1 Cd
Table 6 Compliance of our bridge results in Sect. 3.2.2 calculated
three different ways, including the percent error from f, g;,. in paren- where
theses
Basis M fNN f Hom f Fine aE(m) Ea i i ]
o . cFi d G+ () (m)
mh) [(Zd -z) I & ] (C6)
Truss 2 90.00 92.22 138.29 oc, j=d k=1ktd
(—34.92%) (=33.31%)
3 92.59 94.74 135,57  With respect to the macroscale distribution fields, it is:
(=31.70%) (=30.12%) . M—1 j 20
Freeform 2 95.65 100.15 144.01 0Ceq — Z [( ~(+D) _ ~(/) H (k)] (CT)
(~33.58%) (=30.46%) e = K=l kkp
3 93.12 102.24 146.66
(=36.51%) (—=30.29%)
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Fig. 16 For the 3-class MBB example, convergence plots of the class design variables with the proposed penalty (left column) and without (right

column)

We also need the sensitivities of the radial filters. This
follows the density filters of traditional TO methods
closely (Sigmund 2007), and so we do not repeat it here for
brevity.

For compliance (Eq. 11), the adjoint method (Bendsge
and Sigmund 2004) and chain rule allow us to derive the
following with respect to the design variables:

o, _[

aCe-d

N, "

5 0k, 0¢,,

un PN un 1)
ac,. ac,.,

(C8)
n—1

N,

of. 4 ok, 109,
Ye _ _ Ze C
v, [Z_;“ , | av, ©9)
and
N A

of. [ o ok, ]gg”>

=—| Y u —Lu,|. (C10)
oE? Zl A 1

The derivatives of the element effective stiffness matrices
are
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ok, ok, oC,

3., aC, e, (C1h
ok, 0k, oC,

3, aC, o, (C12)
and

ok, 0k [ dC, ¢

(3o
08P 0C, | 7 0C.q 92!

Here, due to our data-driven framework, the gradients of the
effective properties 0C,/d¢,.; and 0C, /07, are obtained by
backpropagating through the layers of the fully connected
neural network (Hastie et al. 2009).

To obtain the sensitivities of the global volume fraction
constraint, we can use Eq. C1 and the Sigmoid function (Eq. 9
in Sect. 2.3.2), which gives us a continuous approximation of
a volume fraction (f/‘g‘ from Eq. 10). First, the derivative of the
Sigmoid applied to a microstructure’s SDF (®,) is

9S(®,, 1)

s = AS@p)(1 - S(@. 5).

(C14)

e

Therefore, the sensitivity of the global volume fraction can
be decomposed as

WViioba O, 05 0D,
ac, %3S 0, ¢,

X (1 & 95 0P,
© Ny \ny “od, ) oe,,

e

0 VGlobal _

(C15)

and the sensitivities of the constraint itself with respect to
the design variables are:

0g, _ 1 9Vgiobal 9Cey (C16)
0Cq  Viowa 9ca 0Coq

o8 __1 (C17)
e Viiobal

and

0g; _ 1 Viiobal 9C..q ©18)
0”7 Viipa ea &P

We note that these approximations of the microstructural
volume fractions do introduce some error into the sensitivi-
ties but, in our experience, are minor.

Since we use the default algorithm for BESO devel-
oped by Huang and Xie (2007) to update x, the filtering
of the macroscale sensitivity numbers for the compliance
problems can be found in the original paper. The only
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difference is that we use the effective stiffness predicted
by the data-driven models. Thus, our sensitivity numbers
are modified to be

a, = w k@, 9,)u,. (C19)

For the low-diversity penalty function, the sensitivity can
be derived using chain rule by taking the gradient of the
log-determinant (Boyd and Vandenberghe 2004), then the
Gaussian kernel and Euclidean distance between the class
design variables, ¢,

Finally, for the derivations of the first stage of the shape
matching problem (Eq. 12), we refer the reader to our
previous work (Wang et al. 2020a). For the second stage
(Eq. 13) the derivations are straightforward to calculate
by following the same steps above, substituting compli-
ance for the mean squared error (MSE) between target and
designed effective properties.
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