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ABSTRACT  
 
If model identifiability is not confirmed, inferences from infectious disease transmission models 

may not be reliable, so they might lead to misleading recommendations. Structural 

identifiability analysis characterizes whether it is possible to obtain unique solutions for all 

unknown model parameters, given the model structure.  

In this work, we studied the structural identifiability of some typical deterministic 

compartmental models for infectious disease transmission, focusing on the influence of the 

data type considered as model output on the identifiability of unknown model parameters, 

including initial conditions.  

We defined 26 model versions, each having a unique combination of underlying 

compartmental structure and data type(s) considered as model output(s). Four compartmental 

model structures and three common data types in disease surveillance (incidence, prevalence 

and detected vector counts) were studied.  

The structural identifiability of some parameters varied depending on the type of model output. 

In general, models with multiple data types as outputs had more structurally identifiable 

parameters, than did models with a single data type as output.  

This study highlights the importance of a careful consideration of data types as an integral part 

of the inference process with compartmental infectious disease transmission models. 

 

Keywords: structural identifiability, infectious disease transmission, compartmental models, 

data types 
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1.1 INTRODUCTION 
 
Goals of infectious disease transmission modelling often include making inferences about the 

underlying transmission process, predicting the future course of an epidemic given a range of 

interventions, or estimating what would have happened in a counterfactual scenario. A defined 

model is fitted to a given data set (frequently an incidence time series generated by passive 

surveillance). This model-fitting process is parameter estimation, where one determines 

parameter values or distributions corresponding to model outputs that best fit (or at least, 

approximate) the observed data. Parameter estimation however can only produce robust 

results if the model is identifiable (Audoly et al., 2001; Castro and de Boer, 2020; Cobelli and 

Distefano III, 1980; Kao and Eisenberg, 2018; Ljung and Glad, 1994; Villaverde et al., 2016; 

Wieland et al., 2021): that is, if it is possible, in principle, to obtain unique solutions for all 

unknown model parameters, given the model structure and available data. We note that other 

properties such as predictability (Castro et al., 2020; Scarpino and Petri, 2019) and uncertainty 

quantification (Capaldi et al., 2012; McCabe et al., 2021) also affect the reliability of model 

inferences (Massonis et al., 2021a); these are not treated here, however. 

Although the subject of identifiability has received considerable attention in the systems 

biology and control literature (see (Wieland et al., 2021) for a recent review), it is inconsistently 

applied in the infectious disease modelling literature. Relatively few studies exist on the 

identifiability analysis of infectious disease models, e.g., (Brouwer et al., 2018; Eisenberg et 

al., 2013; Evans et al., 2005; Kao and Eisenberg, 2018; Massonis et al., 2021a; Tuncer et al., 

2016; Tuncer and Le, 2018), and the practice of routinely checking the identifiability of these 

models before parameter estimation is not widespread. Nevertheless, identifiability is required 

to make meaningful inferences on model parameters and, consequently, to provide reliable 

evidence to inform public health policymaking.  

In a non-identifiable model, parameter sets with similar values may yield considerably different 

model predictions (Kao and Eisenberg, 2018; Roda et al., 2020). Thus, a failure to consider 

identifiability could result in misleading recommendations, as has been previously noted (Kao 

and Eisenberg, 2018; Massonis et al., 2021; Roda et al., 2020; Roosa and Chowell, 2019), 
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some of which could have serious consequences.  For example, Kao and Eisenberg 

demonstrated using a dengue transmission model that two sets of parameters which fit the 

incidence data comparably well yielded very different predictions for incidence after an 

intervention is applied (see Fig. 9 in their paper) (Kao and Eisenberg, 2018). Roda and 

colleagues also showed that the lack of identifiability in COVID-19 transmission models could 

lead to extreme variability in predictions (Roda et al., 2020).   

A distinction is made between the two types of identifiability: structural identifiability and 

practical identifiability. Structural identifiability, a concept first introduced by Bellman and 

Astrom in 1970, is a property of the model structure and associated measurement function 

(i.e., the function of model variables that is to be observed) and does not depend on the 

quantity or quality of the observed data. It addresses the question: Given an error-free model 

structure, and assuming noise-free, infinite data, do unique solutions exist for the model 

parameters? Structural identifiability is affected by: 1) the nature of the model parameterization 

(Muñoz-Tamayo et al., 2018) which influences symmetries, i.e., functional relationships 

between model parameters (Eisenberg and Hayashi, 2014; Hengl et al., 2007; Massonis et 

al., 2021a; Villaverde, 2022); and 2) the data type considered as model output (Balsa-Canto 

et al., 2010; Chis et al., 2011; Massonis et al., 2021a; Tuncer and Le, 2018). Practical 

identifiability, on the other hand, is related to the adequacy of the available observed data for 

the estimation problem at hand (Balsa-Canto et al., 2010; Brouwer et al., 2017; Kao and 

Eisenberg, 2018; Miao et al., 2011; Raue et al., 2009; Tuncer et al., 2016; Tuncer and Le, 

2018). The corresponding question is: Do the data contain enough information to infer the 

model parameters? Structural identifiability is a necessary, but not sufficient, condition for 

practical identifiability; that is, a structurally non-identifiable parameter cannot be practically 

identifiable, and a structurally identifiable parameter could be practically non-identifiable 

depending on the data available (Cobelli and Distefano III, 1980; Eisenberg et al., 2013). In 

this work, we are considering structural identifiability of infectious disease transmission 

models. 
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Several studies have demonstrated the influence of the type of observed data on the structural 

identifiability of infectious disease models. For example, Tuncer and Le studied a Susceptible-

Infected-Treated-Recovered epidemic model which becomes structurally identifiable only 

when both cumulative incidence rates and the number of treated individuals is observed 

(Tuncer and Le, 2018). In the same work, the authors explored the identifiability of a 

Susceptible-Exposed-Infected-Recovered model and showed that the type of structural 

identifiability for two parameters (recovery rate and length of latent period) depended on 

whether the observed data were cumulative incidence or prevalence. Similar works include 

(Evans et al., 2005), on the structural identifiability of a seasonally forced SIR model with 

prevalence and a proportion of the incidence as outputs; (Eisenberg et al., 2013), on the 

identifiability of parameters of compartmental models for cholera with prevalence as output; 

(Tuncer et al., 2016), on the identifiability of an immune-epidemiological model for Rift Valley 

fever with time-series data of viremia levels as output; (Kao and Eisenberg, 2018), on the 

identifiability of a dengue transmission model with various types of human and mosquito 

incidence data as outputs; and more recently, (Massonis et al., 2021a), on the structural 

identifiability of a wide range of COVID-19 transmission models with a variety of surveillance 

data types as outputs.  

However, few of these studies (e.g.,  (Eisenberg et al., 2013; Evans et al., 2005)) have 

explicitly studied the identifiability of unknown initial conditions (ICs). Other studies have either 

assumed known ICs (e.g., (Tuncer and Le, 2018)) or have implicitly considered unknown ICs 

through assessment of the observability of model states (Massonis et al., 2021a); i.e., whether 

the state variable trajectories can be uniquely determined from observed data. (Structural 

identifiability has been considered as a particular case of observability (Massonis et al., 2021a; 

Sedoglavic, 2002; Tunali and Tarn, 1987; Villaverde, 2019).) Here, we explicitly consider ICs 

as unknown parameters in all models and analyse their structural identifiability given various 

data types. Often values are assumed for ICs, but careful analysis often reveals that parameter 

estimates depend on these IC assumptions. We can ask under what circumstances ICs can 

be uniquely determined from observed data. Although this question might technically be 
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considered one about observability, when the ICs are reframed as parameters, the question 

is one of identifiability. Thus, our work adds to the literature by examining how the structural 

identifiability of ICs of classic compartmental models change with data type. Additionally, we 

employ a publicly available web-based toolbox, SIAN (Hong et al., 2019), to analyse the 

structural identifiability of model parameters, allowing us to demonstrate the utility of such 

tools. 

Specifically, we consider four compartmental structures (SIR, SLIR, SLIR with vaccination and 

relapse and a vector-borne disease model with SLIR for hosts and SLI for vectors) and three 

common data types in disease surveillance (incidence, prevalence and detected vector 

counts). Using SIAN, we analyse the structural identifiability of unknown parameters in 26 

model versions, each a unique combination of underlying compartmental structure and data 

type considered as model output. We use the term “model version” to refer to a compartmental 

structure-output(s) combination; e.g., SIR with incidence, or SLIR with incidence and 

prevalence.  

Although the compartmental structures and data types we consider are by no means 

exhaustive, our work is intended to demonstrate the importance of identifiability and to be 

instructive for those seeking to apply these techniques to their own models. We have therefore 

made available all input codes and output files to facilitate reproducibility: 

https://github.com/emmanuelle-dankwa/structural-identifiability-epi-models.  

The paper is outlined as follows. In Section 1.2, we introduce the general modelling framework 

and notation and provide formal definitions of relevant structural identifiability concepts. Here, 

we also introduce the four compartmental structures, briefly introduce the software toolbox 

utilized, present the model versions examined and finally, outline the structural identifiability 

analysis performed. Section 1.3 presents the results and Section 1.4 presents a discussion of 

results. Concluding remarks are given in Section 1.5.   

 

 

https://github.com/emmanuelle-dankwa/structural-identifiability-epi-models
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1.2 METHODS 
 
1.2.1 General modelling framework and formal definitions 
 
Consider a deterministic ordinary differential equation (ODE) infectious disease transmission 

model ℳ of the form 

 

 with observations on the interval 𝑡0 ≤ 𝑡 ≤ 𝑇,  where 𝑿̇(𝒕) is a system of non-linear ODEs, 

𝑿(𝒕) ∈ 𝑅𝑛𝑋 is a vector of time-varying disease states and the unique solution to the system 

𝑿̇(𝒕), 𝒑  ∈  𝑅𝑛𝑝  is a vector of constant unknown model parameters, 𝒚(𝑡) ∈ 𝑅𝑛𝑦 is a vector of 

time-dependent model outputs corresponding to a specific data type (for example, case 

incidence rates), 𝒖(𝑡) ∈ 𝑅𝑛𝑢 is a time-dependent input vector, 𝑔 is the measurement equation 

(which defines the relationship between 𝑿(𝒕),   𝒑 and 𝒚), and 𝑿𝑡0
 ⊂ 𝑅𝑛𝑋  is a vector of the known 

ICs. Note that unknown components of 𝑿𝑡0
 are included in 𝒑 and that 𝑓 and 𝑔 are vectors of 

analytic functions of their arguments. 

The formal definition of structural identifiability for a model and its parameters is given below. 

The structural identifiability of a parameter may either be local (i.e., holding only within a limited 

region of the parameter space or about a given point) or global (i.e., holding (almost) 

everywhere within the parameter space) (Ljung and Glad, 1994).  

 

Definition 1 [Parameter structural identifiability] (Cobelli and Distefano III, 1980; Ljung and 

Glad, 1994) 

A parameter 𝑝𝑖  ∈ 𝒑 is structurally globally identifiable (s.g.i.) on the time interval [𝑡0, 𝑇] for a 

given output 𝒚 if a unique solution exists for 𝑝𝑖;  that is, if and only if for almost any  𝒑∗ and 

 

ℳ ≔ {

𝑿̇(𝑡)  = 𝑓(𝑿(𝑡), 𝒑, 𝒖(𝑡))        

𝒚 (𝑡) = 𝑔(𝑿(𝑡), 𝒑)           

𝑿𝑡0
     = 𝑿(𝑡0)                       

, 

  

  

                                                                (1) 
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almost any IC (i.e., excluding degenerate values),  𝒚(𝑿,  𝒑̂) = 𝒚(𝑿,  𝒑∗) implies 𝑝̂𝑖  = 𝑝𝑖
∗. 

Otherwise, 𝑝𝑖 is structurally globally non-identifiable. 

A parameter 𝑝𝑖 ∈ 𝒑 is structurally locally identifiable (s.l.i.) on the time interval [𝑡0,  𝑇] for a 

given output 𝒚 if there exists a neighbourhood 𝑉(𝒑) of the parameter space within which a 

unique solution exists for 𝑝𝑖 .   Otherwise, 𝑝𝑖 is structurally non-identifiable (s.n.i.). 

 

Definition 2 [ Model structural identifiability] (Cobelli and Distefano III, 1980; Ljung and Glad, 

1994) 

The model ℳ is s.g.i. for a given output 𝒚 if every 𝑝𝑖 ∈ 𝒑 is s.g.i. given 𝒚.  

The model ℳ is s.l.i. for a given output 𝒚 if at least one  𝑝𝑖 ∈ 𝒑 is s.l.i. given 𝒚 and if no 𝑝𝑖 ∈ 𝒑 

is s.n.i. 

The model 𝑀 is s.n.i. for a given output 𝒚 if at least one 𝑝𝑖 ∈ 𝒑  is s.n.i. given 𝒚. 

 

1.2.2 Model structures 
 
The most basic model structure we consider is the SIR model. For simplicity, we assume no 

demography, no migration, homogenous populations, and a constant, unknown population 

size 𝑁. In this SIR model, there are three mutually exclusive compartments, each 

corresponding to a distinct infection state: Susceptible 𝑆,  Infectious 𝐼 and Recovered (and 

immune) 𝑅.  Susceptible individuals become infected at a rate βI/𝑁 where β is the transmission 

rate and is equal to the product of the contact rate and the probability that a contact will 

successfully result in an infection. Infectious individuals recover at a rate 𝛾. These dynamics 

can be described by the following set of ODEs:  

 

 

 

SIR: 

 

𝑑𝑆

𝑑𝑡
= −

βSI

𝑁
 

𝑑𝐼

𝑑𝑡
=

βSI

𝑁
− 𝛾𝐼 

 

 

        (2) . 
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𝑑𝑅

𝑑𝑡
= 𝛾𝐼 

 

ICs for the 𝑆,  𝐼 and 𝑅 states will be denoted by S(0), I(0) and R(0), respectively. At any time 

𝑡  ≥ 0, N = S(𝑡) + I(𝑡) + R(𝑡). For the SIR model, we consider two outputs: incidence, 𝑦1 =

βSI/𝑁, and prevalence, 𝑦2 = I/𝑁.   In this context, incidence is defined as the number of new 

cases arising within a given time period, while prevalence is defined as the infectious 

proportion of the population at a given time point. In many situations, incidence data are 

presented as cumulative incidence; cumulative incidence contains the same information from 

an identifiability perspective, but, for statistical reasons, it is preferable to convert cumulative 

incidence to incidence before fitting (King et al., 2015). Incidence data are often generated 

through passive surveillance (e.g., number of new cases reported each day from a hospital 

system), while prevalence data may be generated through active surveillance (e.g., door-to-

door data collection; testing of people at random regardless of symptoms). In reality, both 

incidence and prevalence are subject to bias from reporting rates and asymptomatic infection. 

Some studies explicitly include a reporting rate parameter 𝜅 in their measurement equations, 

or the effect can be implicitly accounted for in 𝛽 or 𝑁.  For this reason, 𝑁 does not necessarily 

correspond to population numbers from a census of the catchment region, and thus we treat 

it as an unknown quantity.  

 

For diseases with a non-negligible latent period (e.g., COVID-19 (Liu et al., 2020)), the SIR 

model can be modified to include a latent state 𝐿. The modified dynamics are described by the 

following set of equations:  

 



 10 

 

 

 

SLIR: 

𝑑𝑆

𝑑𝑡
= −

βSI

𝑁
 

𝑑𝐿

𝑑𝑡
=

βSI

𝑁
− 𝛼𝐿 

𝑑𝐼

𝑑𝑡
= 𝛼𝐿 − 𝛾𝐼 

𝑑𝑅

𝑑𝑡
= 𝛾𝐼 

 

 

 (3) 

 

where 1/𝛼 represents the length of the latent period. Let L(0) denote the IC for the latent state. 

For all 𝑡  ≥ 0,  N = S(𝑡) + L(𝑡) +  I(𝑡) + R(𝑡). We study an equivalent set of outputs as for the 

SIR model: incidence, 𝑦3 = 𝛼𝐿, and prevalence, 𝑦4 = I/𝑁. 

 

For diseases where a relapse of symptoms is possible after a period of remission (e.g., 

hepatitis A), we can include a compartment 𝑄 to represent the remission state. In this model, 

we also allow for immunity by vaccination. The dynamics of this SLIRQ (Susceptible-Latent-

Infectious-Recovered (or immune)-Remission) model as adapted from Dankwa et al. (2021) 

are as follows. In this model, individuals in the 𝑅 compartment are immune, either as a result 

of vaccination or past infection. Susceptible individuals become exposed at a rate βI/𝑁 and 

move to the latent state, where they remain for 1/𝛼 time units, after which they become 

infectious. A proportion, 1 − 𝜂, of infectious individuals recover temporarily, moving to the 

remission state for a period of 1/𝜎 time units, after which they experience a relapse of 

symptoms, becoming infectious. The remaining proportion, 𝜂, of infectious individuals recover 

permanently and become immune. The recovery rate is 𝛾. A number 𝑣(𝑡) of individuals are 

vaccinated at time 𝑡 and become immune. These dynamics are captured by the following set 

of ODEs: 

 

, 
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SLIRQ:    

𝑑𝑆

𝑑𝑡
= −

βSI

𝑁
− 𝑣

𝑆

𝑁
 

𝑑𝐿

𝑑𝑡
=

βSI

𝑁
− 𝛼𝐿 

𝑑𝐼

𝑑𝑡
= 𝛼𝐿 − 𝛾𝐼 + 𝜎𝑄 

𝑑𝑅

𝑑𝑡
= 𝑣

𝑆

𝑁
+ 𝜂𝛾𝐼 

𝑑𝑄

𝑑𝑡
= (1 − η)𝛾𝐼 − 𝜎𝑄 

 

 

 

 

 

(4) 

The IC corresponding to the remission state will be denoted by Q(0). For all 𝑡  ≥ 0,  N = S(𝑡) +

L(𝑡) +  I(𝑡) + R(𝑡) + Q(𝑡).   We consider the same set of outputs as before: incidence, 𝑦5 =

𝛼𝐿 + 𝜎𝑄, and prevalence, 𝑦6 = I/𝑁. 

Finally, we introduce a SLIR/SLI model structure suitable for vector-borne diseases, and 

adapted from the works of Ngwa and Shu (2000) and Kao and Eisenberg (2018), who apply 

the model to malaria and dengue, respectively. In the model, infection dynamics within the 

host population are explained via a SLIR model, as in equation  (3), while the dynamics in the 

vector population are explained via a SLI model, thus a SLIR/SLI model. Transmission can 

only occur between individuals of different populations, i.e., host-to-vector or vector-to-host. 

Like in the previous models, we assume constant sizes for both populations: let 𝑁ℎ and 𝑁𝑣 

represent the sizes of the host and vector populations, respectively. We use subscripts “h” 

and “v” to represent compartments for hosts and vectors, respectively. Thus, we have 𝑁ℎ =

𝑆ℎ(𝑡) + 𝐿ℎ(𝑡) + 𝐼ℎ(𝑡) + 𝑅ℎ(𝑡) and 𝑁𝑣 = 𝑆𝑣(𝑡) + 𝐿𝑣(𝑡) + 𝐼𝑣(𝑡), ∀𝑡  ≥ 0. 

The pathogen transmission rate from host to vector βℎ𝑣  is equal to the product of the contact 

rate between host and vector (in malaria for example, this may be the human biting rate of 

mosquitoes) and the probability of successful transmission from an infectious host to a 

susceptible vector. Similarly, the transmission rate from vector to host β𝑣ℎ is equal to the 

product of the contact rate between vector and host and the probability of successful 

transmission from an infectious vector to a susceptible host. Infected hosts become infectious 

. 
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after a latency period of 1/αℎ time units and remain infectious for a period of  1/γℎ time units 

before recovery. Recovered hosts become immune to the disease. Infectious hosts transmit 

the pathogen to susceptible vectors at a rate βℎ𝑣𝐼ℎ/𝑁ℎ. Infected vectors become infectious 

after a latency period of 1/α𝑣 time units. Infectious vectors transmit the pathogen to 

susceptible hosts at a rate β𝑣ℎ𝐼𝑣/𝑁ℎ. Within each population, we assume equal birth and death 

rates: μℎ and μ𝑣 for hosts and vectors, respectively, so no disease-related mortality is 

incorporated. The SLIR/SLI model is represented by the following system of ODEs: 

 

                          
𝑑𝐼𝑣

𝑑𝑡
= α𝑣𝐿𝑣 − μ𝑣𝐼𝑣 

 

The ICs for the SLIR/SLI model will be denoted by (listed in order of states): 

𝑆ℎ(0), 𝐸ℎ(0), 𝐼ℎ(0),  𝑅ℎ(0),  𝑆𝑣(0), 𝐿𝑣(0) and 𝐼𝑣(0).   

The following outputs are studied: 1) incidence in hosts (host incidence), 𝑦7 = αℎ𝐿ℎ; 2) 

prevalence in hosts (host prevalence), 𝑦8 = 𝐼ℎ/𝑁ℎ;   3) incidence in vectors (vector incidence), 

𝑦9 = α𝑣𝐿𝑣; and 4) detected vector counts, 𝑦10 = λ𝑣(𝑆𝑣 + 𝐿𝑣 + 𝐼𝑣),   λ𝑣 is an unknown vector 

detection rate.  

 

 

 

 

 

 

SLIR/SLI:    

 𝑑𝑆ℎ

𝑑𝑡
= μℎ𝑁ℎ −

β𝑣ℎ𝑆ℎ𝐼𝑣

𝑁ℎ
− μℎ𝑆ℎ 

𝑑𝐿ℎ

𝑑𝑡
=

β𝑣ℎ𝑆ℎ𝐼𝑣

𝑁ℎ
− αℎ𝐿ℎ − μℎ𝐿ℎ 

𝑑𝐼ℎ

𝑑𝑡
= αℎ𝐿ℎ − γℎ𝐼ℎ − μℎ𝐼ℎ 

𝑑𝑅ℎ

𝑑𝑡
= γℎ𝐼ℎ − μℎ𝑅ℎ 

𝑑𝑆𝑣

𝑑𝑡
= μ𝑣𝑁𝑣 −

βℎ𝑣𝑆𝑣𝐼ℎ

𝑁ℎ
−  μ𝑣𝑆𝑣  

𝑑𝐿𝑣

𝑑𝑡
=  

βℎ𝑣𝑆𝑣𝐼ℎ

𝑁ℎ
− α𝑣𝐿𝑣 −  μ𝑣𝐿𝑣 

 

 

 

 

                (5) 
. 
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1.2.3 Toolbox employed 
 
In this study, we employ the SIAN (Structural Identifiability Analyser) (Hong et al., 2019) 

software tool for structural identifiability analysis. The algorithm implemented in SIAN, 

proposed by Hong et al. (2020), is based on a combination of differential algebra and Taylor 

series approaches to structural identifiability analysis. SIAN is implemented in Maple and is 

available as a web application: https://maple.cloud/app/6509768948056064.  

Here, we are interested in assessing both local and global structural identifiability of model 

parameters, including ICs. Therefore, although other toolboxes exist which are capable of 

assessing the local and global structural identifiability of ℳ (e.g., COMBOS (Meshkat et al., 

2014), DAISY (Bellu et al., 2007) and GenSSI 2.0 (Ligon et al., 2018)), we employ SIAN 

because it uniquely possesses the following combination of characteristics as desired for this 

study. First, it is capable of assessing both local and global identifiability of model 

parameters. Second, it provides identifiability results for parameter-based ICs. Third, it is 

available as a web application and accepts a simple text-based input, hence more 

accessible than toolboxes which require program installation or knowledge of a particular 

programming language. This latter characteristic is a particularly desirable one for a 

structural identifiability analysis software, as it addresses a potential barrier to the application 

of structural identifiability analysis.  A comparison of the performance and features of 

toolboxes for structural identifiability analysis of ODE models is beyond the scope of the 

study. Interested readers may consult Ligon et al. (2018) and Hong et al. (2019). 

 

For a given model, SIAN typically produces one of the following results for the structural 

identifiability of each model parameter: s.g.i., s.l.i. or s.n.i. SIAN is also capable of computing 

identifiable combinations, although we do not employ that functionality here. 

 

1.2.4 Structural identifiability assessments 
 

https://maple.cloud/app/6509768948056064
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Structural identifiability analysis was conducted in four stages, each stage designed to reflect 

a possible scenario that may be encountered when modelling infectious disease transmission. 

Across these stages, we studied the structural identifiability of model parameters given three 

common data types as model outputs – incidence, prevalence, and detected vector counts 

(the latter only applicable to SLIR/SLI). We analysed 26 ODE model versions, assuming in all 

cases constant, unknown population sizes. For each model, we assessed the structural 

identifiability of all unknown parameters, including ICs.   

Stages are now described. 

• Stage one (single outputs, all parameters unknown): Structural identifiability 

analysis was conducted for models defined with a single data type as output and 

assuming all parameters were unknown. This scenario is typical in the initial stages 

of an outbreak of an emerging pathogen, when little is known of pathogen 

epidemiology and consequently, natural history parameters or transmission rates. 

Furthermore, in such scenarios, as data are often limited, only one type of data may 

be available for parameter estimation. It is therefore of interest to determine which 

parameters are structurally identifiable in such contexts. Therefore, for SIR, SLIR 

and SLIRQ, we assessed the structural identifiability of model parameters given 

either incidence or prevalence data. For SLIR/SLI, output was host incidence or host 

prevalence. We do not consider vector data at this stage, as such data are less likely 

to be available during the early stages of an emerging vector-borne disease 

outbreak. Thus, at this stage, eight model versions were analysed.  

 

• Stage two (single outputs, only natural history parameters known): In the case 

of an endemic disease which has been widely studied (e.g., malaria in sub-Saharan 

Africa), a high level of certainty may be obtained on the values of natural history 

parameters. In modelling transmission of such diseases, knowledge of natural 

history parameters may be assumed and hence these parameters may be treated 

as known quantities in the model. Stage two considers this scenario. For the model 
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versions analysed at stage one, we assumed all natural history parameters to be 

known and re-evaluated the structural identifiability of the other (unknown) model 

parameters, i.e., all ICs, transmission rate parameters, and for the SLIR/SLI models, 

the demography parameters, additionally. This analysis enabled us to identify how 

the structural identifiability properties of unknown parameters change once other 

parameters in the model are assumed known. As in stage one, eight model versions 

were analysed at this stage. 

 

 

• Stage three (multiple outputs, all parameters unknown): In instances where 

surveillance capacities are strengthened in the face of an emerging outbreak, it is 

possible to observe more than one type of data. For example, in the context of a 

vector-borne disease outbreak, there may be, in addition to host incidence data, 

data on the size of the vector population, as could be obtained through traps in the 

case of mosquitoes (for mosquito-borne diseases), or field signs, in the case of 

badgers (for bovine tuberculosis). In stage three, we studied the structural 

identifiability of model parameters in these “data-rich” scenarios by defining models 

to have at least two output types. All parameters were treated as unknown, as in 

stage one. Thus, we were able to compare results obtained at this stage to results 

at stage one (with single outputs) to assess the influence of additional outputs on 

parameters’ structural identifiability. 

For the SIR, SLIR and SLIRQ structures, outputs were incidence and prevalence. 

For the SLIR/SLI structure, we studied two output combinations. One comprised 

host incidence and host prevalence, reflecting a scenario in which host infection 

data are available but vector data are absent, while the other comprised both host 

and vector data: host incidence, host prevalence, vector incidence and detected 

vector counts.   Thus, five model versions were analysed at this stage.  
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• Stage four (multiple outputs, only natural history parameters known): Here, we 

consider the five model versions analysed at stage three, but assuming knowledge 

of natural history parameters, as in stage two. Thus, we could compare the structural 

identifiability of parameters at this stage to corresponding results: 1) at stage two, to 

determine whether additional outputs improved parameters’ structural identifiability 

after some parameters have been assumed known; and 2) at stage three, to 

determine how structural identifiability of parameters improved with knowledge of 

natural history parameters, given multiple outputs.  

 

1.3 RESULTS 
 
Structural identifiability results of model parameters assessed at stages one, two, three, and 

four are presented in Table 1, Error! Reference source not found., Error! Reference 

source not found., and Error! Reference source not found., respectively. For some 

models, SIAN was unable to complete global identifiability calculations but provides results for 

local identifiability. For these model versions, parameters assessed as being s.l.i. by SIAN are 

referred to in this study as being at least s.l.i., given that they may potentially be s.g.i.  

Results are now discussed by stage. 

Stage one (single outputs, all parameters unknown): See Table 1. When all parameters 

were assumed unknown and single outputs considered, all models except the SLIRQ models 

are s.n.i. All parameters of the SLIRQ model are s.l.i., irrespective of output type. In the SIR 

and SLIR models with output as prevalence, the transmission rate 𝛽 is s.g.i. However, with 

output as incidence, 𝛽 becomes s.n.i. We should note, however, that 𝛽/𝑁 is an identifiable 

combination (meaning that its value is identifiable even if the constituent parameters are not), 

and the assumption of unknown 𝑁 is the reason that both 𝑅(0) and 𝛽 are s.n.i. in these two 

models. The IC for the recovered compartment 𝑅(0) is s.n.i. in all SIR and SLIR models 

studied at stage one but is at least s.l.i. in both SLIRQ models (i.e., given incidence or 

prevalence as output). In the SLIR/SIR model with incidence as output, the IC corresponding 
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to the recovered compartment for hosts 𝑅ℎ(0) is at least s.l.i. when output is host incidence 

but s.n.i. when output is host prevalence. The transmission rate parameter and all ICs 

corresponding to the vector population are s.n.i. with host prevalence or host prevalence as 

output, while other parameters associated with the vector population (birth rate  𝜇𝑣 and 

parameter controlling the length of latent period 𝛼𝑣) are at least s.l.i.  

Stage two (single outputs, only natural history parameters known): See Error! 

Reference source not found.. Assuming knowledge of the natural history parameters in the 

SIR, SLIR and SLIR/SLI models did not lead to an improvement of the structural identifiability 

of parameters which were s.n.i. at stage one (where all parameters – including natural history 

parameters – were unknown), irrespective of output type. However, for the SLIRQ models, the 

structural identifiability of unknown parameters (𝛽 and ICs) is seen to improve with the 

assumption of knowledge of natural history parameters: these parameters are s.g.i. at this 

stage but were at least s.l.i at stage one.   

Stage three (multiple outputs, all parameters unknown): See Error! Reference source 

not found.. When incidence and prevalence data are considered jointly as outputs in the same 

model, structural identifiability of the SIR, SLIR and SLIRQ models improves considerably 

compared to stage one. All parameters in these models which were s.n.i. at stage one become 

s.g.i. For example, 𝛽 is s.n.i. in the SIR model with incidence only as output; however, with the 

addition of prevalence data as an output in the model, 𝛽 becomes s.g.i. Likewise, 𝑅(0) is s.n.i. 

in all SIR and SLIR models with single outputs (either incidence or prevalence; Table 1) but 

becomes s.g.i. when these outputs are considered simultaneously. 

For the SLIR/SLI model, all parameters associated with the host population are at least s.l.i. 

when host incidence and host prevalence data are joint model outputs. However, the ICs and 

transmission rate parameter associated with the vector population are s.n.i., as in stage one 

when these outputs were considered separately (Table 1).  

Stage four (multiple outputs, natural history parameters known): See Error! Reference 

source not found.. Even when natural history parameters are assumed known, the ICs and 
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transmission rate parameter associated with the vector population in the SLIR/SLI model 

remain s.n.i. with host prevalence and host incidence as joint model outputs. It is only with the 

addition of vector data (vector incidence and detected vector counts) as outputs that these 

parameters become s.g.i.  

 

 

1.4 DISCUSSION 
 
In this work, we have studied the structural identifiability of 26 ODE model versions, each with 

a unique combination of underlying compartmental structure (SIR, SLIR, SLIRQ or SLIR/SLI) 

and data type considered as model output (incidence, prevalence or detected vector counts).  

 

The consideration of multiple data types as outputs generally improved models’ structural 

identifiability. Indeed, when only single outputs were considered (Table 1, Error! Reference 

source not found.), all models except the SLIRQ-structured models were s.n.i. However, 

when these models were defined to have at least two data types as outputs, all but one model 

become s.g.i. (Error! Reference source not found., Error! Reference source not found.).  

 

The exception – the SLIR/SLI model with outputs as host incidence and host prevalence – 

had its transmission rate parameter and ICs for the vector population remaining s.n.i. despite 

having host incidence and host prevalence as model outputs (Error! Reference source not 

found.), and even after all natural history parameters in the model were assumed known 

(Error! Reference source not found.). However, when vector-related data (vector incidence 

and detected vector counts) were added as outputs in the model, these parameters become 

s.g.i. (Error! Reference source not found., Error! Reference source not found.), 

suggesting that data on host infection alone (incidence, prevalence or both) are not sufficient 

to identify these vector-related parameters.  
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We found it surprising that the other vector-related parameters studied – 𝜇𝑣, the vector birth 

rate and 𝛼𝑣, the parameter controlling the length of the latent period – were at least s.l.i. given 

host incidence or host prevalence (Table 1), since we expected vector-related parameters to 

be non-identifiable in the absence of vector data. We thus checked with other structural 

identifiability software capable of computing global results – GenSSI 2.0 (Ligon et al., 2018), 

COMBOS (Meshkat et al., 2014) and DAISY (Bellu et al., 2007) – but none of this were able 

to complete computations. That these vector-related parameters are identifiable with host data 

is not yet clear to us and it is a question we continue to explore. We suspect that these 

parameters are likely not practically identifiable from typically available host incidence data, 

even if they are structurally identifiable. 

 

Assuming knowledge of the natural history parameters did not seem to improve the structural 

identifiability of parameters in the majority of single-output models (Table 1, Error! Reference 

source not found.), likely because all natural history parameters were at least s.l.i. (in those 

models in which they were treated as unknown parameters; Table 1), indicating that they were 

not in identifiable combinations. Hence, fixing the values of these parameters appeared not to 

have influenced existing symmetries.  

 

We note that for all SIR and SLIR models with single outputs (incidence or prevalence), the 

IC corresponding to the recovered compartment 𝑅(0) is s.n.i., and its structural identifiability 

does not improve even when natural history parameters in these models are assumed known 

(Table 1, Error! Reference source not found.). Only with the simultaneous analysis of 

multiple data types as outputs does 𝑅(0) become s.g.i. (Error! Reference source not 

found.). It is interesting to observe this “synergy-like” effect: separately, neither incidence nor 

prevalence is sufficient for the identification of 𝑅(0), but considered jointly, these data prove 

adequate to identify 𝑅(0). In this case, the at-risk population size 𝑁 is identifiable if both 

incidence and prevalence are observed, allowing determination of 𝑅(0).  More broadly, it is 
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helpful to pre-determine which data types will lead to structural identifiability when used 

separately or in combination with new, external parameter information. We recommend that 

formal methods for pre-determination, such as the use of identifiable parameter combinations, 

be used in the development of study designs: these methods may result in more efficient data 

collection to support inference for the specific research question.  

 

Our results on the IC of the recovered state in models with unknown 𝑁 are consistent with 

those of Massonis et al. (2021a) who, in a structural identifiability analysis of several 

compartmental COVID-19 transmission models with known 𝑁, found that the recovered state 

is “almost never observable”. That is, its value over time cannot be determined from the given 

data, although it could potentially be observable with a single measurement  (such as the initial 

condition or a later serosurvey). It is not surprising that if 𝑅(0) is not identifiable in models 

assuming known 𝑁 (Massonis et al., 2021a) that it would not be identifiable in models with 

unknown 𝑁 (our results).  

 

An important question then arises: what sources of data are useful to inform the IC of the 

recovered/immune state in scenarios where this state is not directly observed? Expert 

knowledge or seroprevalence estimates based on representative studies may be helpful in 

this regard. Where these data are not readily available, the IC for the recovered or immune 

state has often been set to zero; however, if the true value is different from zero, other 

parameters need to be interpreted accordingly and the assumptions need to be stated clearly. 

The transmission rate and the at-risk population size 𝑁, in particular, need to be interpreted in 

the context of the assumptions made about the ICs, as well as any assumptions about the 

reporting rate and asymptomatic fraction of cases. The distinction may be particularly 

important when trying to mechanistically interpret the transmission rate as a product of 

constituent parameters (e.g., contact rate times probability of infection) or when connecting 𝑁 

to catchment census data. More broadly, simulation studies and sensitivity analysis may be 
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needed to understand the specific influences of IC values on one’s parameter estimates and 

thus the robustness of one’s inferences. 

 

Our study is a relevant contribution to the literature as it explicitly considers ICs and population 

sizes as unknown in models which have been mostly studied assuming these quantities are 

known. Data on ICs or population size may not always be available or able to be measured 

directly, hence the need to study identifiability in such scenarios. Also, as we had complete 

control over structure-output combinations, we were able to modify model characteristics such 

that the cause for a change in identifiability results could be precisely identified. In addition, 

unlike most previous studies, we provide input code for all analyses conducted, to serve as a 

model to individuals who may be new to structural identifiability analysis. To further facilitate 

increased adoption of structural identifiability analysis, we chose to use a web-based structural 

identifiability analysis tool, which accepts simple text-based inputs. This eliminates potential 

barriers to adoption such as the need for program installation or proficiency in a programming 

language.    

 

Despite these strengths, some limitations exist. First, when models were complex (i.e., having 

more than four states, or multiple outputs and several parameters), it was generally 

challenging for SIAN (and other toolboxes used) to produce complete results. More work is 

needed on scaling toolboxes to match the increasing complexity of modern epidemic models. 

Second, it would have been desirable to use multiple toolboxes for all analysis, as that would 

have facilitated the detection of potentially problematic results; however as stated earlier, SIAN 

was the only publicly available toolbox – as far as we know – which had the combination of 

functionalities required for this study: 1) ability to assess both local and global identifiability of 

model parameters; 2) ability to assess identifiability of unknown ICs, and 3) possibility to 

implement without requiring program installation or specialized programming language skills. 

Work on developing more accessible toolboxes with a range of relevant functionalities is 

therefore warranted. Third, the selection of compartmental models studied here is limited. 
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Similarly, although the set of data types examined here comprises some of the most commonly 

measured in disease surveillance, it is not representative of the wide variety of possible data 

types; for example, we did not directly consider detected incidence (i.e., incidence allowing for 

underreporting, although we do acknowledge that it is important to account for in real data and 

contributed to our decision to assume that 𝑁 is unknown). Our work is intended to be primarily 

illustrative, providing the rationale for assessing structural identifiability and some approaches. 

We also note that the work here is relevant regardless of downstream decisions to take a 

frequentist or Bayesian approach to parameter estimation from real data, though we do note 

that making a choice of informative prior distributions on parameters or initial conditions is akin 

to changing the assumptions of what is known or unknown, which may impact the identifiability 

of other aspects of the model. 

 

Our work focused on deterministic, compartmental ODE models. It would be desirable to 

extend our study to cover stochastic models (Browning et al., 2020); models which incorporate 

population structure (e.g., age-structured or spatial models); time-varying parameters, which 

have been shown to address structural identifiability issues due to their role in breaking 

symmetries in the model structure (Massonis et al., 2021a); and additional data types such as 

the number of recovered individuals (Massonis et al., 2021a) and environmental surveillance 

(Brouwer et al., 2019; Eisenberg et al., 2013). A critical caveat exists, however: the available 

structural identifiability toolboxes only allow for deterministic ODEs, although they could be 

used to establish proxy identifiability results for stochastic differential equation models 

(Browning et al., 2020). More research is needed towards developing identifiability analysis 

tools suited to stochastic models.  

 

So far, we have focused on answering the question: Given a model ℳ, which data types can 

make model parameters more structurally identifiable? Our discussions have therefore 

originated from an output (or data type) perspective. Less attention has been paid to the 

influence of the rest of the model structure on the identifiability of model parameters. The 
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alternative question, therefore, and one that is necessary for data-limited settings, is: Which 

structural modifications on the system of ODEs 𝑿̇(𝒕) will improve the structural identifiability of 

ℳ? Some approaches have been suggested. One approach involves reparameterizing the 

model with the aim to reduce the number of parameters, concentrating particularly on 

identifiable combinations (Eisenberg and Hayashi, 2014; Massonis et al., 2021a, 2021b; 

Meshkat et al., 2014; Wieland et al., 2021). Another approach centers on simplifying model 

complexity by reducing the number of features/states (Massonis et al., 2021a) and another 

entails non-dimensionalizing (Kao and Eisenberg, 2018) or scaling some state variables 

(Brouwer et al., 2018; Eisenberg et al., 2013). These considerations are outside the scope of 

the current discussion but are important to the broader goal of developing infectious disease 

models for useful inference. 

 

It is important to note that although a model may be s.n.i, it may be useful for drawing 

inferences, if these are limited to the structurally identifiable parameters of the model (Janzén 

et al., 2016; Massonis et al., 2021a). For example, with the SIR model with incidence, studied 

at stage one (Table 1), inference may be made on 𝛾, 𝑆(0) and 𝐼(0) but not on 𝛽 or 𝑅(0), since 

𝛽 and 𝑅(0) are s.n.i while 𝛾, 𝑆(0) and 𝐼(0) are s.g.i. 

 

In this work, we have demonstrated the influence of data types on structural identifiability of 

model parameters. A careful consideration of the type of data available for parameter 

estimation is therefore advised as a relevant initial step in performing inference with infectious 

disease transmission models. 

 

1.5 CONCLUSIONS 
 
We have studied the structural identifiability of parameters of various compartmental models 

for infectious disease transmission. We have demonstrated the influence of data types on 

structural identifiability by considering different data types as model outputs and examining 
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how structural identifiability of unknown parameters, including ICs, varied with varying outputs. 

The structural identifiability of some parameters varied depending on the type of model output, 

and single-output models were often not structurally identifiable. In general, the inclusion of 

additional data types as outputs improved structural identifiability of parameters. Attention 

ought therefore to be paid to the type(s) of observed data at hand, prior to estimating model 

parameters, given that data types influence a model’s structural identifiability and 

consequently, the robustness of resulting inferences.   
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Table 1 (stage one): Structural identifiability of parameters and models assuming all parameters are unknown and given single model 1 
outputs: incidence (I) or prevalence (P).  For the SLIR/SLI models, outputs corresponding to the host population are annotated with “(h)”. 2 
Output cells are shaded according to the structural identifiability of the model given that output: a green shade indicates the model is 3 
structurally globally identifiable (s.g.i.), a yellow shade indicates the model is structurally locally identifiable (s.l.i.) and a brown shade indicates 4 
the model is structurally non-identifiable (s.n.i.).  5 

 6 
 

Model 

structure  

    

Output 

Structural identifiability of parameters 

s.g.i. s.l.i  s.n.i. 

SIR I  𝛾, 𝑆(0), 𝐼(0)  𝛽, 𝑁, 𝑅(0) 

 P  β, γ  𝑁, 𝑆(0), 𝐼(0), 𝑅(0) 

SLIR I  𝛼, 𝛾, 𝑆(0), 𝐿(0), 𝐼(0)  𝛽, 𝑁, 𝑅(0) 

 P 𝛽 𝛼, 𝛾 𝑁, 𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0) 

SLIRQ I   𝛼, 𝛽, 𝜂, 𝛾, 𝜎, 𝑁, 𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)a  

 P  𝛼, 𝛽, 𝜂, 𝛾, 𝜎, 𝑁, 𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)a  

SLIR/SLI I (h)  𝛼ℎ, 𝛼𝑣 , 𝛽ℎ, 𝛾ℎ , 𝜇ℎ, 𝜇𝑣 , 𝑁ℎ, 𝑆ℎ(0), 𝐿ℎ(0), 𝐼ℎ(0), 𝑅ℎ(0)a 𝑁𝑣 , 𝑆𝑣(0), 𝐿𝑣(0), 𝐼𝑣(0), 𝛽𝑣  

 P (h)  𝛼ℎ, 𝛼𝑣 , 𝛽ℎ, 𝛾ℎ , 𝜇ℎ, 𝜇𝑣 𝛽𝑣 , 𝑁ℎ, 𝑆ℎ(0), 𝐿ℎ(0), 𝐼ℎ(0), 𝑅ℎ(0),  

𝑆𝑣(0), 𝐿𝑣(0), 𝐼𝑣(0), 𝑁𝑣 
a Parameters are at least s.l.i. No results were produced for global identifiability: SIAN timed out before global identifiability calculations could be completed. 7 

 8 

 9 
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Table 2 (stage two): Structural identifiability of parameters and models assuming all natural history parameters are known (transmission 10 
and demography parameters unknown) and given single model outputs: incidence (I) or prevalence (P).  For the SLIR/SLI models, outputs 11 
corresponding to the host population are annotated with “(h)”. Output cells are shaded according to the structural identifiability of the model given 12 
that output: a green shade indicates the model is structurally globally identifiable (s.g.i.), a yellow shade indicates the model is structurally locally 13 
identifiable (s.l.i.) and a brown shade indicates the model is structurally non-identifiable (s.n.i.).  14 

 15 

 

Model 

structure  

    

Output 

Structural identifiability of parameters 

s.g.i. s.l.i  s.n.i. 

SIR I  𝑆(0), 𝐼(0)  𝛽, 𝑁, 𝑅(0) 

 P  𝛽  𝑁, 𝑆(0), 𝐼(0), 𝑅(0) 

SLIR I  𝑆(0), 𝐿(0), 𝐼(0)  𝛽, 𝑁, 𝑅(0) 

 P 𝛽  𝑁, 𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0) 

SLIRQ I  𝛽, 𝑁, 𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)   

 P 𝛽, 𝑁, 𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)   

SLIR/SLI I (h)   𝛽ℎ , 𝜇ℎ, 𝜇𝑣, 𝑁ℎ , 𝑆ℎ(0), 𝐿ℎ(0), 𝐼ℎ(0), 𝑅ℎ(0)a 𝛽𝑣 , 𝑁𝑣 , 𝑆𝑣(0), 𝐿𝑣(0), 𝐼𝑣(0) 

 P (h)  𝛽ℎ, 𝜇ℎ, 𝜇𝑣
a 𝛽𝑣, 𝑁ℎ, 𝑆ℎ(0), 𝐿ℎ(0), 𝐼ℎ(0), 𝑅ℎ(0), 𝑁𝑣 , 𝑆𝑣(0), 𝐿𝑣(0), 𝐼𝑣(0) 

         a Parameters are at least s.l.i. No results were produced for global identifiability: SIAN timed out before global identifiability calculations could be completed. 16 
  17 

 18 
 19 
 20 
 21 
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Table 3 (stage three): Structural identifiability of parameters and models assuming all parameters are unknown and given multiple model 22 
outputs: outputs are incidence (I), prevalence (P) or detected vector counts (DC).  For the SLIR/SLI models, outputs corresponding to the host 23 
and vector populations are annotated with “(h)” and “(v)”, respectively. Output cells are shaded according to the structural identifiability of the 24 
model given that output: a green shade indicates the model is structurally globally identifiable (s.g.i.), a yellow shade indicates the model is 25 
structurally locally identifiable (s.l.i.) and a brown shade indicates the model is structurally non-identifiable (s.n.i.).  26 

 27 
 28 
 29 

 

Model 

structure  

    

Output 

Structural identifiability of parameters 

s.g.i. s.l.i  s.n.i. 

SIR I, P  𝛽, 𝛾, 𝑁, 𝑆(0), 𝐼(0), 𝑅(0)   

SLIR I, P  𝛼, 𝛽, 𝛾, 𝑁, 𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0)   

SLIRQ I, P  𝛼, 𝛽, 𝜂, 𝛾, 𝜎, 𝑁, 𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)   

SLIR/SLI I (h), P (h)  𝛼ℎ, 𝛼𝑣 , 𝛽ℎ, 𝛾ℎ , 𝜇ℎ, 𝜇𝑣 , 𝑁ℎ, 𝑆ℎ(0),  

𝐿ℎ(0), 𝐼ℎ(0), 𝑅ℎ(0)a 

𝛽𝑣 , 𝑁𝑣 , 𝑆𝑣(0), 𝐿𝑣(0), 𝐼𝑣(0) 

 I (h), P (h),  

I (v), DC (v)  

𝛼ℎ, 𝛼𝑣 , 𝛽ℎ , 𝛽𝑣 , 𝛾ℎ, 𝜆𝑣 , 𝜇ℎ, 𝜇𝑣, 𝑁ℎ , 𝑆ℎ(0), 𝐿ℎ(0), 𝐼ℎ(0), 𝑅ℎ(0), 

𝑁𝑣 , 𝑆𝑣(0), 𝐿𝑣(0), 𝐼𝑣(0) 

  

                     a Parameters are at least s.l.i. No results were produced for global identifiability: SIAN timed out before global identifiability calculations could be completed. 30 
 31 
 32 
 33 
 34 
 35 
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Table 4 (stage four): Structural identifiability of parameters and models assuming all natural history parameters are known (transmission 36 
and demography parameters unknown) and given multiple model outputs: outputs are incidence (I), prevalence (P) or detected vector counts 37 
(DC).  For the SLIR/SLI models, outputs corresponding to the host and vector populations are annotated with “(h)” and “(v)”, respectively. Output 38 
cells are shaded according to the structural identifiability of the model given that output: a green shade indicates the model is structurally globally 39 
identifiable (s.g.i.), a yellow shade indicates the model is structurally locally identifiable (s.l.i.) and a brown shade indicates the model is structurally 40 
non-identifiable (s.n.i.).  41 

 42 
 

Model 

structure  

    

Output 

Structural identifiability of parameters 

s.g.i. s.l.i  s.n.i. 

SIR I, P  𝛽, 𝑁, 𝑆(0), 𝐼(0), 𝑅(0)   

SLIR I, P  𝛽, 𝑁, 𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0)   

SLIRQ I, P  𝛽, 𝑁, 𝑆(0), 𝐿(0), 𝐼(0), 𝑅(0), 𝑄(0)   

SLIR/SLI I (h), P (h) 𝛽ℎ, 𝜇ℎ, 𝜇𝑣 , 𝑁ℎ, 𝑆ℎ(0), 𝐿ℎ(0), 𝐼ℎ(0), 𝑅ℎ(0) 

 

 𝛽𝑣 , 𝑁𝑣 , 𝑆𝑣(0), 𝐿𝑣(0), 𝐼𝑣(0) 

 I (h), P 

(h),  

I (v), DC 

(v)  

 𝛽ℎ , 𝛽𝑣 , 𝜆𝑣 , 𝜇ℎ, 𝜇𝑣, 𝑁ℎ , 𝑆ℎ(0), 𝐿ℎ(0), 𝐼ℎ(0), 𝑅ℎ(0), 

𝑁𝑣 , 𝑆𝑣(0), 𝐿𝑣(0), 𝐼𝑣(0) 
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