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ABSTRACT

If model identifiability is not confirmed, inferences from infectious disease transmission models
may not be reliable, so they might lead to misleading recommendations. Structural
identifiability analysis characterizes whether it is possible to obtain unique solutions for all
unknown model parameters, given the model structure.

In this work, we studied the structural identifiability of some typical deterministic
compartmental models for infectious disease transmission, focusing on the influence of the
data type considered as model output on the identifiability of unknown model parameters,
including initial conditions.

We defined 26 model versions, each having a unique combination of underlying
compartmental structure and data type(s) considered as model output(s). Four compartmental
model structures and three common data types in disease surveillance (incidence, prevalence
and detected vector counts) were studied.

The structural identifiability of some parameters varied depending on the type of model output.
In general, models with multiple data types as outputs had more structurally identifiable
parameters, than did models with a single data type as output.

This study highlights the importance of a careful consideration of data types as an integral part

of the inference process with compartmental infectious disease transmission models.
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1.1 INTRODUCTION

Goals of infectious disease transmission modelling often include making inferences about the
underlying transmission process, predicting the future course of an epidemic given a range of
interventions, or estimating what would have happened in a counterfactual scenario. A defined
model is fitted to a given data set (frequently an incidence time series generated by passive
surveillance). This model-fitting process is parameter estimation, where one determines
parameter values or distributions corresponding to model outputs that best fit (or at least,
approximate) the observed data. Parameter estimation however can only produce robust
results if the model is identifiable (Audoly et al., 2001; Castro and de Boer, 2020; Cobelli and
Distefano Ill, 1980; Kao and Eisenberg, 2018; Ljung and Glad, 1994; Villaverde et al., 2016;
Wieland et al., 2021): that is, if it is possible, in principle, to obtain unique solutions for all
unknown model parameters, given the model structure and available data. We note that other
properties such as predictability (Castro et al., 2020; Scarpino and Petri, 2019) and uncertainty
quantification (Capaldi et al., 2012; McCabe et al., 2021) also affect the reliability of model
inferences (Massonis et al., 2021a); these are not treated here, however.

Although the subject of identifiability has received considerable attention in the systems
biology and control literature (see (Wieland et al., 2021) for a recent review), it is inconsistently
applied in the infectious disease modelling literature. Relatively few studies exist on the
identifiability analysis of infectious disease models, e.g., (Brouwer et al., 2018; Eisenberg et
al., 2013; Evans et al., 2005; Kao and Eisenberg, 2018; Massonis et al., 2021a; Tuncer et al.,
2016; Tuncer and Le, 2018), and the practice of routinely checking the identifiability of these
models before parameter estimation is not widespread. Nevertheless, identifiability is required
to make meaningful inferences on model parameters and, consequently, to provide reliable
evidence to inform public health policymaking.

In a non-identifiable model, parameter sets with similar values may yield considerably different
model predictions (Kao and Eisenberg, 2018; Roda et al., 2020). Thus, a failure to consider
identifiability could result in misleading recommendations, as has been previously noted (Kao

and Eisenberg, 2018; Massonis et al., 2021; Roda et al., 2020; Roosa and Chowell, 2019),



some of which could have serious consequences. For example, Kao and Eisenberg
demonstrated using a dengue transmission model that two sets of parameters which fit the
incidence data comparably well yielded very different predictions for incidence after an
intervention is applied (see Fig. 9 in their paper) (Kao and Eisenberg, 2018). Roda and
colleagues also showed that the lack of identifiability in COVID-19 transmission models could
lead to extreme variability in predictions (Roda et al., 2020).

A distinction is made between the two types of identifiability: structural identifiability and
practical identifiability. Structural identifiability, a concept first introduced by Bellman and
Astrom in 1970, is a property of the model structure and associated measurement function
(i.e., the function of model variables that is to be observed) and does not depend on the
quantity or quality of the observed data. It addresses the question: Given an error-free model
structure, and assuming noise-free, infinite data, do unique solutions exist for the model
parameters? Structural identifiability is affected by: 1) the nature of the model parameterization
(Mufioz-Tamayo et al., 2018) which influences symmetries, i.e., functional relationships
between model parameters (Eisenberg and Hayashi, 2014; Hengl et al., 2007; Massonis et
al., 2021a; Villaverde, 2022); and 2) the data type considered as model output (Balsa-Canto
et al.,, 2010; Chis et al.,, 2011; Massonis et al., 2021a; Tuncer and Le, 2018). Practical
identifiability, on the other hand, is related to the adequacy of the available observed data for
the estimation problem at hand (Balsa-Canto et al., 2010; Brouwer et al., 2017; Kao and
Eisenberg, 2018; Miao et al., 2011; Raue et al., 2009; Tuncer et al., 2016; Tuncer and Le,
2018). The corresponding question is: Do the data contain enough information to infer the
model parameters? Structural identifiability is a necessary, but not sufficient, condition for
practical identifiability; that is, a structurally non-identifiable parameter cannot be practically
identifiable, and a structurally identifiable parameter could be practically non-identifiable
depending on the data available (Cobelli and Distefano Ill, 1980; Eisenberg et al., 2013). In
this work, we are considering structural identifiability of infectious disease transmission

models.



Several studies have demonstrated the influence of the type of observed data on the structural
identifiability of infectious disease models. For example, Tuncer and Le studied a Susceptible-
Infected-Treated-Recovered epidemic model which becomes structurally identifiable only
when both cumulative incidence rates and the number of treated individuals is observed
(Tuncer and Le, 2018). In the same work, the authors explored the identifiability of a
Susceptible-Exposed-Infected-Recovered model and showed that the type of structural
identifiability for two parameters (recovery rate and length of latent period) depended on
whether the observed data were cumulative incidence or prevalence. Similar works include
(Evans et al., 2005), on the structural identifiability of a seasonally forced SIR model with
prevalence and a proportion of the incidence as outputs; (Eisenberg et al., 2013), on the
identifiability of parameters of compartmental models for cholera with prevalence as output;
(Tuncer et al., 2016), on the identifiability of an immune-epidemiological model for Rift Valley
fever with time-series data of viremia levels as output; (Kao and Eisenberg, 2018), on the
identifiability of a dengue transmission model with various types of human and mosquito
incidence data as outputs; and more recently, (Massonis et al., 2021a), on the structural
identifiability of a wide range of COVID-19 transmission models with a variety of surveillance
data types as outputs.

However, few of these studies (e.g., (Eisenberg et al., 2013; Evans et al., 2005)) have
explicitly studied the identifiability of unknown initial conditions (ICs). Other studies have either
assumed known ICs (e.g., (Tuncer and Le, 2018)) or have implicitly considered unknown ICs
through assessment of the observability of model states (Massonis et al., 2021a); i.e., whether
the state variable trajectories can be uniquely determined from observed data. (Structural
identifiability has been considered as a particular case of observability (Massonis et al., 2021a;
Sedoglavic, 2002; Tunali and Tarn, 1987; Villaverde, 2019).) Here, we explicitly consider ICs
as unknown parameters in all models and analyse their structural identifiability given various
data types. Often values are assumed for ICs, but careful analysis often reveals that parameter
estimates depend on these IC assumptions. We can ask under what circumstances ICs can

be uniquely determined from observed data. Although this question might technically be



considered one about observability, when the ICs are reframed as parameters, the question
is one of identifiability. Thus, our work adds to the literature by examining how the structural
identifiability of ICs of classic compartmental models change with data type. Additionally, we
employ a publicly available web-based toolbox, SIAN (Hong et al., 2019), to analyse the
structural identifiability of model parameters, allowing us to demonstrate the utility of such
tools.

Specifically, we consider four compartmental structures (SIR, SLIR, SLIR with vaccination and
relapse and a vector-borne disease model with SLIR for hosts and SLI for vectors) and three
common data types in disease surveillance (incidence, prevalence and detected vector
counts). Using SIAN, we analyse the structural identifiability of unknown parameters in 26
model versions, each a unique combination of underlying compartmental structure and data
type considered as model output. We use the term “model version” to refer to a compartmental
structure-output(s) combination; e.g., SIR with incidence, or SLIR with incidence and
prevalence.

Although the compartmental structures and data types we consider are by no means
exhaustive, our work is intended to demonstrate the importance of identifiability and to be
instructive for those seeking to apply these techniques to their own models. We have therefore
made available all input codes and output files to facilitate reproducibility:

https://qgithub.com/emmanuelle-dankwa/structural-identifiability-epi-models.

The paper is outlined as follows. In Section 1.2, we introduce the general modelling framework
and notation and provide formal definitions of relevant structural identifiability concepts. Here,
we also introduce the four compartmental structures, briefly introduce the software toolbox
utilized, present the model versions examined and finally, outline the structural identifiability
analysis performed. Section 1.3 presents the results and Section 1.4 presents a discussion of

results. Concluding remarks are given in Section 1.5.


https://github.com/emmanuelle-dankwa/structural-identifiability-epi-models

1.2 METHODS

1.2.1 General modelling framework and formal definitions
Consider a deterministic ordinary differential equation (ODE) infectious disease transmission

model M of the form

X@® =f(x@®),p,u®)
M =4 y (@) =g&X(@),p) :

Xey = X(to) (1)

with observations on the interval t, <t < T, where X(t)is a system of non-linear ODEs,
X(t) € R™ is a vector of time-varying disease states and the unique solution to the system
X(t), p € R™ s a vector of constant unknown model parameters, y(t) € R is a vector of
time-dependent model outputs corresponding to a specific data type (for example, case
incidence rates), u(t) € R™ is a time-dependent input vector, g is the measurement equation
(which defines the relationship between X(t), p andy), and X, c R™X is a vector of the known
ICs. Note that unknown components of X, are included in p and that f and g are vectors of
analytic functions of their arguments.

The formal definition of structural identifiability for a model and its parameters is given below.
The structural identifiability of a parameter may either be Jocal (i.e., holding only within a limited
region of the parameter space or about a given point) or global (i.e., holding (almost)

everywhere within the parameter space) (Ljung and Glad, 1994).

Definition 1 [Parameter structural identifiability] (Cobelli and Distefano Ill, 1980; Ljung and
Glad, 1994)

A parameter p; € pis structurally globally identifiable (s.q.i.) on the time interval [t,, T] for a

given output y if a unique solution exists for p;; that is, if and only if for almost any p* and



almost any IC (i.e., excluding degenerate values), y(X, p) =y(X, p*)impliesp; = p;.

Otherwise, p; is structurally globally non-identifiable.

A parameter p; € p is structurally locally identifiable (s.Li.) on the time interval [t,, T] for a

given output y if there exists a neighbourhood V (p) of the parameter space within which a

unique solution exists for p;. Otherwise, p; is structurally non-identifiable (s.n.i.).

Definition 2 [ Model structural identifiability] (Cobelli and Distefano Ill, 1980; Ljung and Glad,
1994)

The model M is s.g.i. for a given output y if every p; € p is S.g.i. given y.

The model M is s.Li. for a given output y if at least one p; € p is s.Li. giveny and if nop; € p
is S.n.i.

The model M is s.n.i. for a given output y if at least one p; € p is s.n.i. given y.

1.2.2 Model structures

The most basic model structure we consider is the SIR model. For simplicity, we assume no
demography, no migration, homogenous populations, and a constant, unknown population
size N. In this SIR model, there are three mutually exclusive compartments, each
corresponding to a distinct infection state: Susceptible S, Infectious I and Recovered (and
immune) R. Susceptible individuals become infected at a rate 31/N where 3 is the transmission
rate and is equal to the product of the contact rate and the probability that a contact will
successfully result in an infection. Infectious individuals recover at a rate y. These dynamics

can be described by the following set of ODEs:

—_

s BsI
dt N
dl sl
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ICs for the S, I and R states will be denoted by S(0),1(0) and R(0), respectively. At any time
t =0, N=S(t)+1(t) + R(t). For the SIR model, we consider two outputs: incidence, y; =
BSI/N, and prevalence, y, = I/N. In this context, incidence is defined as the number of new
cases arising within a given time period, while prevalence is defined as the infectious
proportion of the population at a given time point. In many situations, incidence data are
presented as cumulative incidence; cumulative incidence contains the same information from
an identifiability perspective, but, for statistical reasons, it is preferable to convert cumulative
incidence to incidence before fitting (King et al., 2015). Incidence data are often generated
through passive surveillance (e.g., number of new cases reported each day from a hospital
system), while prevalence data may be generated through active surveillance (e.g., door-to-
door data collection; testing of people at random regardless of symptoms). In reality, both
incidence and prevalence are subject to bias from reporting rates and asymptomatic infection.
Some studies explicitly include a reporting rate parameter k in their measurement equations,
or the effect can be implicitly accounted for in g or N. For this reason, N does not necessarily
correspond to population numbers from a census of the catchment region, and thus we treat

it as an unknown quantity.

For diseases with a non-negligible latent period (e.g., COVID-19 (Liu et al., 2020)), the SIR
model can be modified to include a latent state L. The modified dynamics are described by the

following set of equations:



T (3)

—
SLIR: dl

where 1/a represents the length of the latent period. Let L(0) denote the IC for the latent state.
Forallt >0, N=S(t) + L(t) + I(t) + R(t). We study an equivalent set of outputs as for the

SIR model: incidence, y; = aL, and prevalence, y, = [/N.

For diseases where a relapse of symptoms is possible after a period of remission (e.g.,
hepatitis A), we can include a compartment Q to represent the remission state. In this model,
we also allow for immunity by vaccination. The dynamics of this SLIRQ (Susceptible-Latent-
Infectious-Recovered (or immune)-Remission) model as adapted from Dankwa et al. (2021)
are as follows. In this model, individuals in the R compartment are immune, either as a result
of vaccination or past infection. Susceptible individuals become exposed at a rate gI/N and
move to the latent state, where they remain for 1/a time units, after which they become
infectious. A proportion, 1 —n, of infectious individuals recover temporarily, moving to the
remission state for a period of 1/ time units, after which they experience a relapse of
symptoms, becoming infectious. The remaining proportion, n, of infectious individuals recover
permanently and become immune. The recovery rate is y. A number v(t) of individuals are
vaccinated at time t and become immune. These dynamics are captured by the following set

of ODEs:
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The IC corresponding to the remission state will be denoted by Q(0). Forallt = 0, N = S(¢t) +
L(t) + 1(t) + R(t) + Q(t). We consider the same set of outputs as before: incidence, ys =
al + 0Q, and prevalence, y, = I/N.

Finally, we introduce a SLIR/SLI model structure suitable for vector-borne diseases, and
adapted from the works of Ngwa and Shu (2000) and Kao and Eisenberg (2018), who apply
the model to malaria and dengue, respectively. In the model, infection dynamics within the
host population are explained via a SLIR model, as in equation (3), while the dynamics in the
vector population are explained via a SLI model, thus a SLIR/SLI model. Transmission can
only occur between individuals of different populations, i.e., host-to-vector or vector-to-host.
Like in the previous models, we assume constant sizes for both populations: let N, and N,
represent the sizes of the host and vector populations, respectively. We use subscripts “h”
and “v” to represent compartments for hosts and vectors, respectively. Thus, we have N, =
Sp(t) + Lp(t) + I,(t) + Ry (t) and N, = S, (t) + L, (t) + I,(t), vt = 0.

The pathogen transmission rate from host to vector 3, is equal to the product of the contact
rate between host and vector (in malaria for example, this may be the human biting rate of
mosquitoes) and the probability of successful transmission from an infectious host to a
susceptible vector. Similarly, the transmission rate from vector to host (3, is equal to the
product of the contact rate between vector and host and the probability of successful

transmission from an infectious vector to a susceptible host. Infected hosts become infectious

11



after a latency period of 1/a;, time units and remain infectious for a period of 1/y;, time units
before recovery. Recovered hosts become immune to the disease. Infectious hosts transmit
the pathogen to susceptible vectors at a rate f,,1,/N;. Infected vectors become infectious
after a latency period of 1/a, time units. Infectious vectors transmit the pathogen to
susceptible hosts at a rate 3,1,/ Ny,. Within each population, we assume equal birth and death
rates: yw; and p, for hosts and vectors, respectively, so no disease-related mortality is

incorporated. The SLIR/SLI model is represented by the following system of ODEs:

dsy _ _ BunSnly
dt HriVh N,

— UpSh

dLp _ BynSul
— == — aplp — L

dt Ny,
A _ o1 I I
dt = UpLp —Ynip — Uplp
dR
SLIRISLI: — —" = Ylp — HaRn ' ()
dSv — _ Bhvsvlh _ S
dt UV v Nh IJ'U v
dL,  BuySyln
d—tv = ];V—: —ayLy, — WLy
dl,
E = ayLy, — Wyl

—

The ICs for the SLIR/SLI model will be denoted by (listed in order of states):
Sr(0), Ex(0),1,,(0), Ry (0), S,(0),L,(0) and 1,(0).

The following outputs are studied: 1) incidence in hosts (host incidence), y, = a,Ly; 2)
prevalence in hosts (host prevalence), yg = I,/Ny; 3) incidence in vectors (vector incidence),
Y9 = a,L,; and 4) detected vector counts, y,q = A,(S, + L, + I,), A, is an unknown vector

detection rate.
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1.2.3 Toolbox employed

In this study, we employ the SIAN (Structural Identifiability Analyser) (Hong et al., 2019)
software tool for structural identifiability analysis. The algorithm implemented in SIAN,
proposed by Hong et al. (2020), is based on a combination of differential algebra and Taylor
series approaches to structural identifiability analysis. SIAN is implemented in Maple and is

available as a web application: https://maple.cloud/app/6509768948056064.

Here, we are interested in assessing both local and global structural identifiability of model
parameters, including ICs. Therefore, although other toolboxes exist which are capable of
assessing the local and global structural identifiability of M (e.g., COMBOS (Meshkat et al.,
2014), DAISY (Bellu et al., 2007) and GenSSl 2.0 (Ligon et al., 2018)), we employ SIAN
because it uniquely possesses the following combination of characteristics as desired for this
study. First, it is capable of assessing both local and global identifiability of model
parameters. Second, it provides identifiability results for parameter-based ICs. Third, it is
available as a web application and accepts a simple text-based input, hence more
accessible than toolboxes which require program installation or knowledge of a particular
programming language. This latter characteristic is a particularly desirable one for a
structural identifiability analysis software, as it addresses a potential barrier to the application
of structural identifiability analysis. A comparison of the performance and features of
toolboxes for structural identifiability analysis of ODE models is beyond the scope of the

study. Interested readers may consult Ligon et al. (2018) and Hong et al. (2019).

For a given model, SIAN typically produces one of the following results for the structural

identifiability of each model parameter: s.g.i., s.li. or s.n.i. SIAN is also capable of computing

identifiable combinations, although we do not employ that functionality here.

1.2.4 Structural identifiability assessments
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Structural identifiability analysis was conducted in four stages, each stage designed to reflect

a possible scenario that may be encountered when modelling infectious disease transmission.

Across these stages, we studied the structural identifiability of model parameters given three

common data types as model outputs — incidence, prevalence, and detected vector counts

(the latter only applicable to SLIR/SLI). We analysed 26 ODE model versions, assuming in all

cases constant, unknown population sizes. For each model, we assessed the structural

identifiability of all unknown parameters, including ICs.

Stages are now described.

Stage one (single outputs, all parameters unknown): Structural identifiability
analysis was conducted for models defined with a single data type as output and
assuming all parameters were unknown. This scenario is typical in the initial stages
of an outbreak of an emerging pathogen, when little is known of pathogen
epidemiology and consequently, natural history parameters or transmission rates.
Furthermore, in such scenarios, as data are often limited, only one type of data may
be available for parameter estimation. It is therefore of interest to determine which
parameters are structurally identifiable in such contexts. Therefore, for SIR, SLIR
and SLIRQ, we assessed the structural identifiability of model parameters given
either incidence or prevalence data. For SLIR/SLI, output was host incidence or host
prevalence. We do not consider vector data at this stage, as such data are less likely
to be available during the early stages of an emerging vector-borne disease

outbreak. Thus, at this stage, eight model versions were analysed.

Stage two (single outputs, only natural history parameters known): In the case
of an endemic disease which has been widely studied (e.g., malaria in sub-Saharan
Africa), a high level of certainty may be obtained on the values of natural history
parameters. In modelling transmission of such diseases, knowledge of natural
history parameters may be assumed and hence these parameters may be treated

as known quantities in the model. Stage two considers this scenario. For the model
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versions analysed at stage one, we assumed all natural history parameters to be
known and re-evaluated the structural identifiability of the other (unknown) model
parameters, i.e., all ICs, transmission rate parameters, and for the SLIR/SLI models,
the demography parameters, additionally. This analysis enabled us to identify how
the structural identifiability properties of unknown parameters change once other
parameters in the model are assumed known. As in stage one, eight model versions

were analysed at this stage.

Stage three (multiple outputs, all parameters unknown): In instances where
surveillance capacities are strengthened in the face of an emerging outbrealk, it is
possible to observe more than one type of data. For example, in the context of a
vector-borne disease outbreak, there may be, in addition to host incidence data,
data on the size of the vector population, as could be obtained through traps in the
case of mosquitoes (for mosquito-borne diseases), or field signs, in the case of
badgers (for bovine tuberculosis). In stage three, we studied the structural
identifiability of model parameters in these “data-rich” scenarios by defining models
to have at least two output types. All parameters were treated as unknown, as in
stage one. Thus, we were able to compare results obtained at this stage to results
at stage one (with single outputs) to assess the influence of additional outputs on
parameters’ structural identifiability.

For the SIR, SLIR and SLIRQ structures, outputs were incidence and prevalence.
For the SLIR/SLI structure, we studied two output combinations. One comprised
host incidence and host prevalence, reflecting a scenario in which host infection
data are available but vector data are absent, while the other comprised both host
and vector data: host incidence, host prevalence, vector incidence and detected

vector counts. Thus, five model versions were analysed at this stage.
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e Stage four (multiple outputs, only natural history parameters known): Here, we
consider the five model versions analysed at stage three, but assuming knowledge
of natural history parameters, as in stage two. Thus, we could compare the structural
identifiability of parameters at this stage to corresponding results: 1) at stage two, to
determine whether additional outputs improved parameters’ structural identifiability
after some parameters have been assumed known; and 2) at stage three, to
determine how structural identifiability of parameters improved with knowledge of

natural history parameters, given multiple outputs.

1.3 RESULTS

Structural identifiability results of model parameters assessed at stages one, two, three, and
four are presented in Table 1, Error! Reference source not found., Error! Reference
source not found., and Error! Reference source not found., respectively. For some
models, SIAN was unable to complete global identifiability calculations but provides results for
local identifiability. For these model versions, parameters assessed as being s.l.i. by SIAN are
referred to in this study as being at least s.l.i., given that they may potentially be s.g.i.
Results are now discussed by stage.

Stage one (single outputs, all parameters unknown): See Table 1. When all parameters
were assumed unknown and single outputs considered, all models except the SLIRQ models
are s.n.i. All parameters of the SLIRQ model are s.l.i., irrespective of output type. In the SIR
and SLIR models with output as prevalence, the transmission rate S is s.g.i. However, with
output as incidence, 8 becomes s.n.i. We should note, however, that /N is an identifiable
combination (meaning that its value is identifiable even if the constituent parameters are not),
and the assumption of unknown N is the reason that both R(0) and g are s.n.i. in these two
models. The IC for the recovered compartment R(0) is s.n.i. in all SIR and SLIR models
studied at stage one but is at least s.Li. in both SLIRQ models (i.e., given incidence or

prevalence as output). In the SLIR/SIR model with incidence as output, the IC corresponding
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to the recovered compartment for hosts R, (0) is at least s.Li. when output is host incidence
but s.n.i. when output is host prevalence. The transmission rate parameter and all ICs
corresponding to the vector population are s.n.i. with host prevalence or host prevalence as
output, while other parameters associated with the vector population (birth rate u, and
parameter controlling the length of latent period «,,) are at least s.l.i.

Stage two (single outputs, only natural history parameters known): See Error!
Reference source not found.. Assuming knowledge of the natural history parameters in the
SIR, SLIR and SLIR/SLI models did not lead to an improvement of the structural identifiability
of parameters which were s.n.i. at stage one (where all parameters — including natural history
parameters — were unknown), irrespective of output type. However, for the SLIRQ models, the
structural identifiability of unknown parameters (f and ICs) is seen to improve with the
assumption of knowledge of natural history parameters: these parameters are s.g.i. at this
stage but were at least s.l.i at stage one.

Stage three (multiple outputs, all parameters unknown): See Error! Reference source
not found.. When incidence and prevalence data are considered jointly as outputs in the same
model, structural identifiability of the SIR, SLIR and SLIRQ models improves considerably
compared to stage one. All parameters in these models which were s.n.i. at stage one become
s.g.i. For example, g is s.n.i. in the SIR model with incidence only as output; however, with the
addition of prevalence data as an output in the model, g becomes s.g.i. Likewise, R(0) is s.n.i.
in all SIR and SLIR models with single outputs (either incidence or prevalence; Table 1) but
becomes s.g.i. when these outputs are considered simultaneously.

For the SLIR/SLI model, all parameters associated with the host population are at least s.l.i.
when host incidence and host prevalence data are joint model outputs. However, the ICs and
transmission rate parameter associated with the vector population are s.n.i., as in stage one
when these outputs were considered separately (Table 1).

Stage four (multiple outputs, natural history parameters known): See Error! Reference

source not found.. Even when natural history parameters are assumed known, the ICs and
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transmission rate parameter associated with the vector population in the SLIR/SLI model
remain s.n.i. with host prevalence and host incidence as joint model outputs. It is only with the
addition of vector data (vector incidence and detected vector counts) as outputs that these

parameters become s.g.i.

1.4 DISCUSSION
In this work, we have studied the structural identifiability of 26 ODE model versions, each with
a unique combination of underlying compartmental structure (SIR, SLIR, SLIRQ or SLIR/SLI)

and data type considered as model output (incidence, prevalence or detected vector counts).

The consideration of multiple data types as outputs generally improved models’ structural
identifiability. Indeed, when only single outputs were considered (Table 1, Error! Reference
source not found.), all models except the SLIRQ-structured models were s.n.i. However,
when these models were defined to have at least two data types as outputs, all but one model

become s.g.i. (Error! Reference source not found., Error! Reference source not found.).

The exception — the SLIR/SLI model with outputs as host incidence and host prevalence —
had its transmission rate parameter and ICs for the vector population remaining s.n.i. despite
having host incidence and host prevalence as model outputs (Error! Reference source not
found.), and even after all natural history parameters in the model were assumed known
(Error! Reference source not found.). However, when vector-related data (vector incidence
and detected vector counts) were added as outputs in the model, these parameters become
s.g.i. (Error! Reference source not found., Error! Reference source not found.),
suggesting that data on host infection alone (incidence, prevalence or both) are not sufficient

to identify these vector-related parameters.
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We found it surprising that the other vector-related parameters studied — y,,, the vector birth
rate and a,,, the parameter controlling the length of the latent period — were at least s.l.i. given
host incidence or host prevalence (Table 1), since we expected vector-related parameters to
be non-identifiable in the absence of vector data. We thus checked with other structural
identifiability software capable of computing global results — GenSSI 2.0 (Ligon et al., 2018),
COMBOS (Meshkat et al., 2014) and DAISY (Bellu et al., 2007) — but none of this were able
to complete computations. That these vector-related parameters are identifiable with host data
is not yet clear to us and it is a question we continue to explore. We suspect that these
parameters are likely not practically identifiable from typically available host incidence data,

even if they are structurally identifiable.

Assuming knowledge of the natural history parameters did not seem to improve the structural
identifiability of parameters in the majority of single-output models (Table 1, Error! Reference
source not found.), likely because all natural history parameters were at least s.l.i. (in those
models in which they were treated as unknown parameters; Table 1), indicating that they were
not in identifiable combinations. Hence, fixing the values of these parameters appeared not to

have influenced existing symmetries.

We note that for all SIR and SLIR models with single outputs (incidence or prevalence), the
IC corresponding to the recovered compartment R(0) is s.n.i., and its structural identifiability
does not improve even when natural history parameters in these models are assumed known
(Table 1, Error! Reference source not found.). Only with the simultaneous analysis of
multiple data types as outputs does R(0) become s.g.i. (Error! Reference source not
found.). It is interesting to observe this “synergy-like” effect: separately, neither incidence nor
prevalence is sufficient for the identification of R(0), but considered jointly, these data prove
adequate to identify R(0). In this case, the at-risk population size N is identifiable if both

incidence and prevalence are observed, allowing determination of R(0). More broadly, it is
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helpful to pre-determine which data types will lead to structural identifiability when used
separately or in combination with new, external parameter information. We recommend that
formal methods for pre-determination, such as the use of identifiable parameter combinations,
be used in the development of study designs: these methods may result in more efficient data

collection to support inference for the specific research question.

Our results on the IC of the recovered state in models with unknown N are consistent with
those of Massonis et al. (2021a) who, in a structural identifiability analysis of several
compartmental COVID-19 transmission models with known N, found that the recovered state
is “almost never observable”. That is, its value over time cannot be determined from the given
data, although it could potentially be observable with a single measurement (such as the initial
condition or a later serosurvey). It is not surprising that if R(0) is not identifiable in models
assuming known N (Massonis et al., 2021a) that it would not be identifiable in models with

unknown N (our results).

An important question then arises: what sources of data are useful to inform the IC of the
recovered/immune state in scenarios where this state is not directly observed? Expert
knowledge or seroprevalence estimates based on representative studies may be helpful in
this regard. Where these data are not readily available, the IC for the recovered or immune
state has often been set to zero; however, if the true value is different from zero, other
parameters need to be interpreted accordingly and the assumptions need to be stated clearly.
The transmission rate and the at-risk population size N, in particular, need to be interpreted in
the context of the assumptions made about the ICs, as well as any assumptions about the
reporting rate and asymptomatic fraction of cases. The distinction may be particularly
important when trying to mechanistically interpret the transmission rate as a product of
constituent parameters (e.g., contact rate times probability of infection) or when connecting N

to catchment census data. More broadly, simulation studies and sensitivity analysis may be

20



needed to understand the specific influences of IC values on one’s parameter estimates and

thus the robustness of one’s inferences.

Our study is a relevant contribution to the literature as it explicitly considers ICs and population
sizes as unknown in models which have been mostly studied assuming these quantities are
known. Data on ICs or population size may not always be available or able to be measured
directly, hence the need to study identifiability in such scenarios. Also, as we had complete
control over structure-output combinations, we were able to modify model characteristics such
that the cause for a change in identifiability results could be precisely identified. In addition,
unlike most previous studies, we provide input code for all analyses conducted, to serve as a
model to individuals who may be new to structural identifiability analysis. To further facilitate
increased adoption of structural identifiability analysis, we chose to use a web-based structural
identifiability analysis tool, which accepts simple text-based inputs. This eliminates potential
barriers to adoption such as the need for program installation or proficiency in a programming

language.

Despite these strengths, some limitations exist. First, when models were complex (i.e., having
more than four states, or multiple outputs and several parameters), it was generally
challenging for SIAN (and other toolboxes used) to produce complete results. More work is
needed on scaling toolboxes to match the increasing complexity of modern epidemic models.
Second, it would have been desirable to use multiple toolboxes for all analysis, as that would
have facilitated the detection of potentially problematic results; however as stated earlier, SIAN
was the only publicly available toolbox — as far as we know — which had the combination of
functionalities required for this study: 1) ability to assess both local and global identifiability of
model parameters; 2) ability to assess identifiability of unknown ICs, and 3) possibility to
implement without requiring program installation or specialized programming language skills.
Work on developing more accessible toolboxes with a range of relevant functionalities is

therefore warranted. Third, the selection of compartmental models studied here is limited.
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Similarly, although the set of data types examined here comprises some of the most commonly
measured in disease surveillance, it is not representative of the wide variety of possible data
types; for example, we did not directly consider detected incidence (i.e., incidence allowing for
underreporting, although we do acknowledge that it is important to account for in real data and
contributed to our decision to assume that N is unknown). Our work is intended to be primarily
illustrative, providing the rationale for assessing structural identifiability and some approaches.
We also note that the work here is relevant regardless of downstream decisions to take a
frequentist or Bayesian approach to parameter estimation from real data, though we do note
that making a choice of informative prior distributions on parameters or initial conditions is akin
to changing the assumptions of what is known or unknown, which may impact the identifiability

of other aspects of the model.

Our work focused on deterministic, compartmental ODE models. It would be desirable to
extend our study to cover stochastic models (Browning et al., 2020); models which incorporate
population structure (e.g., age-structured or spatial models); time-varying parameters, which
have been shown to address structural identifiability issues due to their role in breaking
symmetries in the model structure (Massonis et al., 2021a); and additional data types such as
the number of recovered individuals (Massonis et al., 2021a) and environmental surveillance
(Brouwer et al., 2019; Eisenberg et al., 2013). A critical caveat exists, however: the available
structural identifiability toolboxes only allow for deterministic ODEs, although they could be
used to establish proxy identifiability results for stochastic differential equation models
(Browning et al., 2020). More research is needed towards developing identifiability analysis

tools suited to stochastic models.

So far, we have focused on answering the question: Given a model M, which data types can
make model parameters more structurally identifiable? Our discussions have therefore
originated from an output (or data type) perspective. Less attention has been paid to the

influence of the rest of the model structure on the identifiability of model parameters. The
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alternative question, therefore, and one that is necessary for data-limited settings, is: Which
structural modifications on the system of ODEs X (t) will improve the structural identifiability of
M? Some approaches have been suggested. One approach involves reparameterizing the
model with the aim to reduce the number of parameters, concentrating particularly on
identifiable combinations (Eisenberg and Hayashi, 2014; Massonis et al., 2021a, 2021b;
Meshkat et al., 2014; Wieland et al., 2021). Another approach centers on simplifying model
complexity by reducing the number of features/states (Massonis et al., 2021a) and another
entails non-dimensionalizing (Kao and Eisenberg, 2018) or scaling some state variables
(Brouwer et al., 2018; Eisenberg et al., 2013). These considerations are outside the scope of
the current discussion but are important to the broader goal of developing infectious disease

models for useful inference.

It is important to note that although a model may be s.n.i, it may be useful for drawing
inferences, if these are limited to the structurally identifiable parameters of the model (Janzén
et al., 2016; Massonis et al., 2021a). For example, with the SIR model with incidence, studied
at stage one (Table 1), inference may be made on y, $(0) and I(0) but not on 8 or R(0), since

B and R(0) are s.n.i while y, S(0) and I(0) are s.g.i.

In this work, we have demonstrated the influence of data types on structural identifiability of
model parameters. A careful consideration of the type of data available for parameter
estimation is therefore advised as a relevant initial step in performing inference with infectious

disease transmission models.

1.5 CONCLUSIONS
We have studied the structural identifiability of parameters of various compartmental models
for infectious disease transmission. We have demonstrated the influence of data types on

structural identifiability by considering different data types as model outputs and examining
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how structural identifiability of unknown parameters, including ICs, varied with varying outputs.
The structural identifiability of some parameters varied depending on the type of model output,
and single-output models were often not structurally identifiable. In general, the inclusion of
additional data types as outputs improved structural identifiability of parameters. Attention
ought therefore to be paid to the type(s) of observed data at hand, prior to estimating model
parameters, given that data types influence a model's structural identifiability and

consequently, the robustness of resulting inferences.
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Table 1 (stage one): Structural identifiability of parameters and models assuming all parameters are unknown and given single model
outputs: incidence (I) or prevalence (P). For the SLIR/SLI models, outputs corresponding to the host population are annotated with “(h)”.
Output cells are shaded according to the structural identifiability of the model given that output: a green shade indicates the model is
structurally globally identifiable (s.g.i.), a yellow shade indicates the model is structurally locally identifiable (s.l.i.) and a brown shade indicates
the model is structurally non-identifiable (s.n.i.).

Structural identifiability of parameters
Model Output | s.g.i. s.Li s.n.i.
structure
SIR I ¥,5(0),1(0) B,N,R(0)
) B,y N, $(0),1(0), R(0)
SLIR I a,vy,5(0),L(0),1(0) B,N,R(0)
P I a,y N, 5(0),L(0),1(0),R(0)
SLIRQ | a,B,n,v,0,N,5(0),L(0),1(0),R(0),Q(0)?
P a,B,n,v,0,N,5(0),L(0),1(0), R(0), Q(0)*
SLIR/SLI | I (h) Any A, Brs Vi B o Ny S (0), L (0), 1,,(0), R, (0)* | Ny, S,,(0), L,,(0), 1,(0), B,
P (h) an, Ay, Bro Vi B by By Np, S (0), L (0), 15,(0), R, (0),
5,(0), L,(0), 1,(0), N,

aParameters are at least s.l.i. No results were produced for global identifiability: SIAN timed out before global identifiability calculations could be completed.
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Table 2 (stage two): Structural identifiability of parameters and models assuming all natural history parameters are known (transmission
and demography parameters unknown) and given single model outputs: incidence (I) or prevalence (P). For the SLIR/SLI models, outputs
corresponding to the host population are annotated with “(h)”. Output cells are shaded according to the structural identifiability of the model given
that output: a green shade indicates the model is structurally globally identifiable (s.g.i.), a yellow shade indicates the model is structurally locally
identifiable (s.l.i.) and a brown shade indicates the model is structurally non-identifiable (s.n.i.).

Structural identifiability of parameters

Model Output [ s.g.i. s.Li s.n.i.
structure
SIR | 5(0),1(0) B,N,R(0)

P B N,S5(0),1(0),R(0)
SLIR | 5(0),L(0),1(0) B,N,R(0)

P B N,5(0),L(0),1(0), R(0)
SLIRQ | B, N,5(0),L(0),1(0),R(0),Q(0)

P B,N,5(0),L(0),1(0),R(0),Q(0)
SLIR/SLI | I(h) Bh, s s N, S,(0), L, (0), 1,(0), R, (0)2 | By, Ny, S,(0), L, (0),1,(0)

P (h) Brs s H® By, Nu, Sp(0), L (0), 1,(0), R, (0), Ny, S,,(0), L,,(0), 1,,(0)

a Parameters are at least s.l.i. No results were produced for global identifiability: SIAN timed out before global identifiability calculations could be completed.
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Table 3 (stage three): Structural identifiability of parameters and models assuming all parameters are unknown and given multiple model
outputs: outputs are incidence (l), prevalence (P) or detected vector counts (DC). For the SLIR/SLI models, outputs corresponding to the host
and vector populations are annotated with “(h)” and “(v)”, respectively. Output cells are shaded according to the structural identifiability of the
model given that output: a green shade indicates the model is structurally globally identifiable (s.g.i.), a yellow shade indicates the model is
structurally locally identifiable (s.l.i.) and a brown shade indicates the model is structurally non-identifiable (s.n.i.).

Structural identifiability of parameters

Model Output s.g.i. s.Li s.n.i.
structure
SIR I, P B,v,N,S(0),1(0), R(0)
SLIR l, P a,B,v,N,S5(0),L(0),1(0), R(0)
SLIRQ l, P a,B,1,v,0,N,5(0),L(0),1(0), R(0), Q(0)
SLIR/SLI | I (h), P (h) @n, Ay Brs Vi B s N Sp(0), | By Ny, S,,(0), L, (0), 1,(0)
Ly (0),1,(0), R, (0)?
L(h), P(h), | an @y, Bh, Bos Vs Avs tns o, Ni, Sh(0), Ly (0), 1,(0), R (0),
| (v), DC (v) | Vo 5v(0),L,(0),1,(0)

@ Parameters are at least s.l.i. No results were produced for global identifiability: SIAN timed out before global identifiability calculations could be completed.

30



36
37
38
39
40
41

42

43

Table 4 (stage four): Structural identifiability of parameters and models assuming all natural history parameters are known (transmission
and demography parameters unknown) and given multiple model outputs: outputs are incidence (l), prevalence (P) or detected vector counts
(DC). For the SLIR/SLI models, outputs corresponding to the host and vector populations are annotated with “(h)” and “(v)”, respectively. Output
cells are shaded according to the structural identifiability of the model given that output: a green shade indicates the model is structurally globally
identifiable (s.g.i.), a yellow shade indicates the model is structurally locally identifiable (s.l.i.) and a brown shade indicates the model is structurally
non-identifiable (s.n.i.).

Structural identifiability of parameters
Model Output | s.g.i. s.Li s.n.i.
structure
SIR I, P B,N,5(0),1(0), R(0)
SLIR I, P B,N,S(0),L(0),1(0),R(0)
SLIRQ I, P B,N,S(0),L(0),1(0), R(0), Q(0)
SLIR/SLI | 1(h), P(h) | B, tn, o) N, Sp(0), Ly (0), 1,(0), R, (0) By, Ny, S,(0), L,,(0), 1,,(0)
I (h), P Bhs By Ao, s oy Nn, Sp(0), Ly (0), 1, (0), R, (0),
(h), Ny, 5,(0), L, (0), 1,,(0)
I (v), DC
(v)
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