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Data science as a promising paradigm provides novel and diverse opportunities for structural meta-
materials attaining exceptional mechanical properties. It is demonstrated here that porous structures
composed of brittle constitutive materials can be strong and tough through topological optimization
and data-driven techniques. We show that brittle fracture properties can be tailored through the
linear control of the homogenized stress and non-periodic microstructures from a multiscale perspec-
tive. These tough advanced structural metamaterials pave the way to multiscale components with
exceptional fracture resistance.

© 2021 Published by Elsevier Ltd.

1. Introduction

It is well-known that stress concentration will cause prema-
ture fracture of any bearing structural materials. Avoiding such
a phenomenon is among the most important criteria to design a
structure in engineering. However, controlling the stress distri-
bution from a multi-scale perspective has not yet been explored.
Besides, establishing inverse design optimization frameworks to
support the creation of structural metamaterials with optimal
architectures and fracture resistance is still in its infancy.

Topological optimization is an inverse design method that
tailors the morphology of the structure by distributing materials
inside a given domain under constraints like equilibrium and
boundary conditions. Initially flourishing in stiffness optimiza-
tion, it has been extended to tailor material microstructures to
achieve prescribed or extreme constitutive properties [1,2]. Re-
cently, structural fracture resistance design has attracted some
attention. In this direction, early works combine explicit crack
initiation and propagation with structural design for fracture
resistance [3,4]. Later on, gradient-based topology optimization
frameworks are proposed, where fracture simulation accounts for
the entire failure process involving multiple crack types, while
distributions of the constituent materials are tailored to enhance
mechanical fracture properties [5-9]. For instance, designing the
architecture of the soft constituent in biomimic composites [10]
enables energy dissipation ahead of the crack tip to prevent crack
propagation and toughen the composite.

* Corresponding author.
E-mail address: weichen@northwestern.edu (W. Chen).

https://doi.org/10.1016/j.em1.2021.101528
2352-4316/© 2021 Published by Elsevier Ltd.

On the other hand, fracture-related design of structural ma-
terials has also been addressed by introducing stress constraints
to prevent material failure [11,12]. Thereafter, the stress-based
topological optimization for specific objectives (e.g. minimal mass,
maximal stiffness or minimal overall stress) have been exten-
sively investigated (see, e.g., [13]). This approach is similar to
fracture resistance design from the perspective of alleviating the
stress concentration around the crack tip such that the crack initi-
ation is prevented, enhancing the fracture performance. Ref. [14]
validated that the stress-based optimal structures achieve im-
proved strength and toughness compared with other designs
such as the stiffness-oriented solutions. However, both stress
and failure process-based fracture resistance optimization have
thus far been locked in a single-scale framework. Topological
design of the material microstructures to enhance the fracture
mechanical properties is, to our best knowledge, investigated
here for the first time. Moreover, the ability of optimized non-
periodic porous structures to achieve even further improvement
in fracture properties is demonstrated.

Fracture resistance design from a multiscale perspective is
a challenging topic, mainly due to the lack of robust multi-
scale methods for fracture simulation in the presence of com-
plex heterogeneous media. In addition, numerical optimization is
difficult with such a high-dimensional problem where heteroge-
neous materials and structures acting at different scales need to
be optimized simultaneously. Under this stalemate, data-driven
methods came into being, providing novel and prosperous ways
for multi-scale design optimization, e.g. in reducing dimensional-
ity [15] and accelerating the design of nanocomposites [16] and
multiscale structures [17]. For the first time, this work combines
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Fig. 1. Illustration of the design domain and shear loading boundary condi-
tions (left); initial stiffness tensor distribution (middle); and the corresponding
homogenized global stress distribution (right).

data-driven and topology design methods to optimize the mi-
crostructure of materials by maximizing the uniform distribution
of the macrostructural stress, thus toughening and strengthening
the global (macroscopic) porous structure composed of brittle
constituent materials.

Three steps are implemented to validate the enhancement of
the fracture toughness of the porous structures. Firstly, a mul-
tiscale inverse optimization framework is established to pre-
cisely control the global stress by tailoring the distribution of the
components of the homogenized stiffness tensor. Thereafter, the
architecture of each unit cell is identified from a large database
via data-driven techniques while guaranteeing the connectivity
between neighboring cells. Finally, the fracture resistance perfor-
mance of the assembled structure is validated through the phase
field method [18-21].

2. Stress control

For a given global macroscopic structure under specific bound-
ary conditions, e.g., Fig. 1, its stress distribution and fracture
resistance are highly dependent on its microscopic geometries.
The first goal is to establish an inverse topology optimization
framework to control the stress distribution by tailoring the ge-
ometries of material microstructures. The final morphology of
microstructures will be pulled from a database which contain
both the information of the geometries and the corresponding
homogenized effective properties, i.e., the apparent elastic moduli
CHom_ Therefore, each component of the elastic moduli CH™ is
used as a design variable, and they will be updated independently
during the optimization process. Note that only orthotropic mi-
crostructural geometries are considered in this work, so only four
components (design variables), Cfo™, cfom, cHom and CHO™ will
be tailored. However, fully anisotropic geometries and compos-
ite unit cells can be considered in future work with promising
perspectives.

In Fig. 1, the load and boundary conditions of the global
structure are schematized, where the bottom edge is fixed, and
a rightward incremental displacement load is applied to the top
boundary. The aspect ratio of the global structure is 1:2, and
the structure is discretized into 10 x 20 quadrilateral four-node
elements. Homogeneous initial values of the design variables are
shown on the middle of Fig. 1. The corresponding initial stress
state at the macroscopic scale is shown on the right, where the
maximum stress value is equal to 6.0717. Note that the stress
distribution computed here is the von Mises stress of each finite
element and measured by

. 1
oM = Ea’ o', with ¢} =0y — g(Sijakk (1)
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The Kronecker delta §;; serves as the identity matrix 1 based on
its properties that it equals to 1 when i = j and O otherwise. In
2D scenarios, with 0,, = 1, = 1, = 0, the von Mises stress reads

oym = /02 + oyzy — OxxOyy + 31:%/ (2)
or
1 —1/2 0
oym = (6"Ma)2, M=|-1/2 1 0 (3)
0 0 3

Firstly, we design the macroscopic stiffness component such
that the maximum stress of the global structure will reach a given
specific value. Therefore, the objective function can be formulated
as

cHom CH(}‘r?g}-Iom cHom f = (O'VM’maX - O'*)z (4)
11 °~12 °+22 66

where oy max 1S the maximum value and o* is the given thresh-
old. However, both values are discrete data and not differentiable,
which means that gradient-based optimization methods cannot
be adopted to solve the problem. To overcome this issue, the
maximum value is aggregated by the so-called P-norm stress
aggregation function [12] formulated as

Ne

P
OVM,max ~ 0pN = ( E OvM,e
e

WP e=1,...,N, (5)

where opy is the P-norm global stress measure, P is the constant
parameter, and N, is the total number of finite element discretiz-
ing the domain. It is known that a larger P value is preferable
to approximate the maximum stress more accurately, but it may
also lead to numerical problems in updating the pseudo density
in general stress-based topology optimization [12]. However, the
latter is naturally avoided in our optimization where the design
variables are defined as the true components of the effective
material properties which can be tailored among possible solu-
tions from our database without resulting in the ill-conditioned
problems. Based on our numerical experiments, a relatively large
number, P = 66, is adopted throughout the provided exam-
ples to ensure that the error between opy and oym max iS small
(e.g., within 1%). Hereafter, the objective function in (4) will
be equivalently expressed as f = (opy — 0*)?, and sensitivity
of the objective function w.r.t. the design variable is detailed
in Appendix A.

To validate our optimization framework, four different cases
are considered, in which the specific target value o* is set as 5.0,
6.5, 8.5, and 10.0, respectively. The macroscopic stress distribu-
tion is shown on the left side in each case in Fig. 2, while the
optimized stiffness tensor is shown on the right. As observed, the
maximum stress values are 4.9963, 6.5008, 7.9997, and 10.0056,
respectively, which are very close to the corresponding thresh-
olds. This is attributed to the subversively different distribution
of the stiffness tensor. We therefore first demonstrate that we
can effectively control the homogenized stress state inside the
macroscopic structure by tailoring the elemental stiffness tensor
aroused from the microscopic materials.

3. Database

Next, we will find the target microscopic unit cell in each
finite element based on the data-driven method. The targeted
unit cells are selected from the database to achieve the optimal
distribution of the stiffness tensor and then assembled into the
macroscopic global structure. The database of more than 160,000
unit cells, which can be found at https://github.com/Daicong-


https://github.com/Daicong-Da/2D-Orthotropic-Unit-Cell-Dataset.git
https://github.com/Daicong-Da/2D-Orthotropic-Unit-Cell-Dataset.git

D. Da, Y.-C. Chan, L. Wang et al.

acy, Ay Ch
o M Ch Hm w 1? - .
P & W : - T

. B 7 o:ll & tH
I = | o M -
. I e i -

-
L
(a) 0° =50, guM, = 49963

= Cfy 'i c
M m M.
(y' l ! " "l
' oo, W Ch

M g

(¢) o° =80, o¥¥, =7.9997

ovM, = 65008

H
‘9’ C-ill ’;!_f c.xlz
M A

« . {1 ¥
M -22 ﬁ -66
- . U

———

(d) ¢* =100, o%¥, =10.0056

Fig. 2. Optimized components of the stiffness tensor and the corresponding
macroscopic stress distribution.

Da/2D-Orthotropic-Unit-Cell-Dataset.git, is illustrated in Fig. 3,
displaying that the constructed database covers a large portion
of the possible optimal properties. The detailed procedure to
generate the meaningful unit cells can be found in our previous
work [22,23]. In Fig. 3(d), the volume fractions of all unit cells
range between 0.2 and 1. For each unit cell, the corresponding
effective stiffness tensor C"°™ was computed by the numerical
homogenization method [24] and stored in the database so that
they can be quickly retrieved during design. The computation
is performed for elementary load cases in a standard homoge-
nization scheme consisting of unit tensile strain and pure shear
loading. Since multiple geometries of the unit cell can possess
the same values of the apparent elastic moduli C#™, the unit
cells with the best connectivity between their neighborhood and
that satisfy the optimized properties are selected through a graph
labeling. Specifically, we construct a grid-like weighted graph
where each node represents a unit cell, and edges connect ad-
jacent cells. Then the unit cell assembly problem can be regarded
as selecting an index from the given database to label each node
in the graph. Within this setting, the distance between the target
property and the one of the unit cell to be selected is designated
as the node weight, and the discrepancy between adjacent nodes
is designated as the weight of each edges. Thereafter, the dual
decomposition Markov random field (DD-MRF) method [25] can
be used to effectively find the best labels of the graph with
the smallest sum of node and edge attributes, to identify the
macrostructure that satisfies the target properties and ensures
connectivity.

4. Fracture resistance validation

For the fracture resistance validation, the number of the mi-
croscopic unit cells in the macrostructure of Fig. 1 is first selected
as 5 by 10, in the x- and y- directions, respectively. As baselines,
two classical shapes, structures A and B, are chosen, and they
are depicted in Fig. 4(a) and (b), respectively. The non-periodic
structure (c) is designed via the proposed data-driven and topo-
logical optimization framework to minimize the maximum stress
in Eq. (5), where the objective function is formulated as:

Hom Cng?g}iom cHom f = OVM,max (6)
11 *~12 22 °~66
The volume fractions for all the structures are fixed as 0.5. Ex-
cellent consistency between the different unit cells can be well
observed in Fig. 4(c).
We use the phase field method (see details in Appendix B)
to validate the improvement of the fracture resistance of the
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Fig. 3. The constructed database: (a)-(c) different stiffness tensor components
versus each other; (d) the volume fraction V; versus the component C{¢™.
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Fig. 4. (a) classical periodic Structure A; (b) periodic Structure B; (c) optimized
non-periodic structure by the proposed framework.

optimized structure compared to classical periodic structures.
The isotropic brittle solid material inside the global structure
has Young’s modulus E = 72, Poisson’s ratio v = 0.29, and
critical energy release rate G. = 0.442e—3. Final crack patterns
of the three macrostructures are shown in Fig. 5(a), (b), and
(c), corresponding to the displacement at 0.225, 0.335, and 0.49,
respectively. It first indicates that the optimized structure pos-
sesses the largest failure displacement. In addition, the damage
locations of the two periodic structures are initiated near the
bottom edges, while it is in the upper half of the optimal design.
Detailed force-displacement curves are compared in Fig. 5(d), and
amplifications of the mechanical properties including the stiffness
(E), toughness (T), strength (S), and failure displacement (D) of all
the structures compared with Structure A are displayed in Fig. 5
(e). Here, the stiffness (E), i.e., “reciprocal” of the widely accepted
compliance in most topology optimization literature, is computed
by the slope of the rising curve. The toughness (T) is measured by
the total area of each load-displacement curve. The strength (S)
is simply defined as the peak load of each curve, and the failure
displacement (D) is the largest deformation that the structure can
withstand before its rupture.

Firstly, the periodic Structure A does have the largest stiffness
and highest strength. However, this structure is the first to break
because of the conflicting nature between strength and tough-
ness [26]. Compared with the Structure A, the toughness and
failure displacement of the periodic Structure B is improved by
8.12% and 47.82%, while the stiffness and strength are decreased
by 48.75% and 32.40%, respectively. For the optimized structure
based on the data-driven method, the reduction in stiffness is
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Fig. 5. (a-c): final crack patterns of the three global structures; (d): comparison
of the load-displacement curves; (e) amplifications of the mechanical properties
compared with the classical periodic Structure A.

similar to that of Structure B, while the strength is decreased
by only 6.78% compared to A. On the other hand, the failure
displacement of the data-driven design is increased by 115.22%,
and the toughness, which is measured based on the total area
of the curve, is improved by 131.71%. These improvements are
significant and, to a certain degree, overcomes the conflicts be-
tween the strength and toughness by postponing the failure of
the structure. In other words, the porous structures composed of
the brittle constitutive material can be both strong and tough by
using our proposed data-driven design technique.

Next, we investigate the size effect of the microscopic unit
cells. Instead of the previous 5 x 10, a larger number of the
unit cells 10 x 20 is considered. The dimension of the global
structure is the same as before, and the length size of the unit
cell is therefore reduced by half. We repeat all the previous
cases and show the designed macrostructure with 10 x 20 unit
cells along with its fracture resistance against other structures
in Fig. 6. Displayed in the top row of Fig. 6(a) are the geome-
tries of periodic structures A and B as well as the data-driven
aperiodic design. To quantify the introduced error of substituting
the optimized material properties by the closest unit cells, we
employ the Mean Squared Error (MSE) as the measuring metric,
ie, MSE = 5 S Ne(cH — CH)?, where N, is the number of unit
cells/elements, C! are the effective properties of the substituted
unit cell including CY,, C¥,, C,, and Cl;, while C! are the
corresponding optimized ones. A small MSE therefore indicates
a good substitution of the optimized material properties. The
MSE value for the provided structure by the proposed data-driven
design in Fig. 6 is 1.84e—4. Excellent match between CY, and C¥|

and between CY, and CY, of the unit cells within the assembled
structure is illustrated in Fig. 7.

The final crack patterns of the three porous structures are
shown in the bottom row of Fig. 6(a), corresponding to the
displacement loading at 0.235, 0.335, 0.46, respectively. Thus,
the failure displacement of the data-driven design is elongated
by 95.74% and 37.31%, compared with periodic structures A and
B, respectively. The strength (S) of the data-driven design is
the same as the strongest Structure A, while the toughness is
improved by 117.07%. Comparing each case with the same macro
dimension but less unit cells (5 x 10), the mechanical properties
of the periodic structures A and B with different size of the unit
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Fig. 6. (a) geometries and final crack patterns of the three macrostructures with
10 x 20 microscopic unit cells; (b) corresponding force-displacement curves;
(c) amplifications of the mechanical properties of all structures compared with
the periodic Structure A.

H
1
S & &8 -

Effective property of C£

Effective property of C

0 50 100 150 200 10 200

Unit cell number

(@) ()

100
Unit cell number

Fig. 7. Illustration of the comparison between (a) optimized C’{'1 and substituted
c!l; and (b) optimized C%, and substituted C%,.

cells are almost identical. However, in the data-driven design,
the stiffness (E), toughness (T), and strength (S) are improved by
15.86%, 4.07%, and 13.58%, respectively. This is because during
the optimization, the homogenized stress is considered at the
macroscopic scale, while the structure is assembled by the unit
cell in a finite-element-wise way, given the evidence that the
scales are not separated. Therefore, with the smaller size of the
microscopic unit cell, it is closer to satisfying the scale separation
assumption which is essential to the numerical homogenization.
On the other hand, with the larger number of unit cells, more
design variables are utilized, which contributes to more design
freedom and thus ability to obtain a better design.

Finally, we examine the size effect of the global structure
itself. Taking the previous data-driven design with 5 x 10 unit
cells (global dimension 20 x 40 mm?) as a baseline, we fix the
number of unit cells as 5 x 10 but increase the global size to
40 x 80 mm? and 60 x 120 mm?. The final crack patterns of the
three global structures with different dimensions are shown in
Fig. 8(a). Interestingly, with the larger size, the fracture location
is different from that of the smallest global size (20 x 40 mm?),
while they are all the same for both structures A and B based
on our experiments, illustrating that there is a huge size effect
on the data-driven designed structures. Following the fracture
size effects analysis in [27], we compute the nominal stress as
Cnominal = 2?7% for each case with different global sizes, where
L and H are the length and height of the global structures, re-
spectively, and b is the thickness and equals to 1 herein. F is
the reaction force. The nominal stress-strain curves for the three
considered global structures are shown Fig. 8(b). It indicates that
the largest global structure is the weakest while the smallest one
is the strongest, which is still consistent with the conclusions
in [27].
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Fig. 8. Size effects of the global structure: (a) final crack patterns of the
data-driven designed structures; (b) corresponding nominal stress-strain curves.

5. Conclusions

In summary, we proposed a data-driven design framework
for brittle porous structure with the purpose to enhance fracture
resistance. The topological-like optimization on distribution of
the stiffness tensor components is first established to control the
global homogenized stress. Thereafter, data-driven techniques are
used to find the target unit cells with the geometries stratify-
ing the optimal distribution of the stiffness tensor. Then, the
macroscopic structure is assembled by the target unit cells, where
the good connectivity between neighboring cells is guaranteed.
Finally, phase field fracture simulation is conducted for the data-
driven design and illustrates that the fracture resistance can
be significantly enhanced compared with the classical periodic
structures.

It is demonstrated that the fracture properties of the brittle
structural materials can be optimally tailored through stress con-
trol, topology optimization, and data-driven techniques. Conflicts
between strength and toughness of brittle materials are overcome
by maximizing the uniform distribution of the macrostructure
stress, i.e. minimizing the maximum stress to avoiding the stress
concentration. By doing this, it postpones the crack initiation
during continuous loading and therefore toughens the brittle
structural materials.

In addition, both size effects on the global structures and on
the microscopic unit cells are investigated. Through optimiza-
tion, global structures with smaller size unit cells may have
better fracture resistance because of the greater design freedom
and homogenized size effects. Last but not least, the larger size
of the global structure will be weaker for both periodic and
data-driven designed aperiodic structures. However, the frac-
ture location is completely changed when the size changes for
the optimal design, displaying a huge size effect of the data-
driven structures and indicating the extreme designability of
fracture resistance at different scales. Future work will consider
material and/or geometric nonlinearities, and conduct physical
experimental verification on samples fabricated by using additive
manufacturing.
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Appendix A
The derivative of the P-norm global stress measure opy in (5)

w.r.t. the design variable, i.e., ijth component of the macroscopic
stiffness of element e (C, ;) reads:

bl do

PN — OP]NP 5M1e VM, e (7)
0C, i . 0C, jj
Using the von Mises formulation (3), the derivative of the von
Mises stress w.r.t. the stress vector first reads

BO'VM

Jdo
Therefore, the term 8;2"‘“ in (7), i.e. the derivative of elemental

von Mises stress W.r.L. the ijth component of the macroscopic
stiffness C, ; reads

= (6"Mo) %6™M (8)

foleg dC.B.U

T = o o M ()
8((3&1]- ’ a(C&U
Note that B, is the elemental strain-displacement matrix which
is independently of the C, ;. Then, the above formulation can be
rewritten as

0 aC
O’VM,e _ V_N1[E eTM e BeUe+
9C, ;i 9C, ;i
au, (10)
GVM e’e MCeBe a(ce i
The first term on the right hand side (RHS) of Eq. (10) can be
computed directly. Using U, = LU and ;22 = —K ' 2<uyu

(assuming that there is no traction or it is constant) the second
term becomes

oK
9C, ;i
Note again terms K and U are the global stiffness and displace-
ment matrices, respectively. Therefore, the derivative of the P-

norm stress measure w.r.t. the ijth component of the macroscopic
stiffness C, ; reads

—0i e0d MCeB,LK™' ——U

a(pr P—2 T 3(Ce
= . M B.U. | —
9Cey (Z e et (11)
JK
GPN <Z UVM e’e M(CEB L ) K71 aC ,,U
e,ij

wheree = 1,...,N, and i,j = 1, 2, 3. The second term on the
RHS of (11) requires to solve the following adjoint equation

KA = ZO‘VM 2 (C,BeL,) Mo, (12)

Finally, the sensitivity of Eq. (11) which originally from Eq. (7)
can be formulated as

dopN 1-P oP=2 5T aC,
—— =0 M B.U. | —
a(cey PN - VMe e B(Ce,ij e>e
oK
1 P)‘Z
8(Ce ij
where U, and A, are the elemental displacement and adjoint
nodal value vectors associated to the eth element, respectively.
Correspondingly, the sensitivity of the objective function f in

(4) w.r.t. the ijth component of the macroscopic stiffness C
reads

(13)
U

(14)
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Appendix B

For a cracked body, the associated regularized form of total
energy in phase field method is defined by:

E(u,d) = / W(e,d)dV +gc/ y(d, vd)dV — / t-udS (15)
2 o) 2t

where 2 C R? is a defined cracked domain, and ¥(e, d) is the

elastic energy density function formulated as

U(e,d)=g(d)¥T(e")+¥ (e7) (16)

Above, g(d) is a degradation function such that g(0) = 1,g(1) =0
and g'(1) = 0. Besides, ¥ and ¥~ denote the tensile and
compressive parts of the strain density function, respectively,
through a decomposition of the elastic strain. The second part
on the right of (15) corresponds to the energy required to create
crack according to the Griffith criterion, where g is the critical
fracture energy density and also named as Griffith’s critical en-
ergy release rate. y(d, Vd) is the crack surface density function.
With sharp cracks denoted collectively as I', the second term
on the right of (15) will be donated as fr g.dI'. t represents
any external tractions applied to the body’s surface. This phase
field formulation implies: (a) minimization of the total energy
with respect to the displacement field u and (b) minimization
of the energy with respect to the scalar field d describing the
crack surface in a smooth manner. The second minimization is
subjected to an inequality constraint: d > 0, and the time-step
T = {0 ¢!, ..., ¢" "1 ... tNoad} will be introduced to simply
formulate the two problems to find the displacement field u"*!
and d"*! (in each time step t"*!). Therefore, the mechanical and
crack phase field problems are fully coupled, and these two-phase
problems will be solved in a sequential or staggered scheme.

For the mechanical problem, at each time step, the linear
momentum balance equation for the solid medium without body
force reads

V.o=0 (17)
with

o-n=t onds2; and u=1u on 92, (18)
where

o= LQZ’ 4) (19)

Regarding to the phase field problem, by choosing y(d) =
idz + %Vd - Vd, the associated Euler-Lagrange equation for the
above second minimization at each time step is given by:

Qe+ "’ilc)d g V2d = 2[W ] (20)
with
Vd-n=0 ond2 and d=1 on I" (21)

where [ is the length scale for characterizing the phase field
crack diffusion. [¥T] is the tensile part of the strain energy
density through a decomposition. Here, we use the volumetric-
deviatoric split/decomposition of the strain energy density as
proposed in [28], which reads:

K K
W= () (e ) W = (o) (22)
with

2 1 1
K=x+ TM W= LKD) e =e—ct(e1  (23)

where K is the material bulk modulus, n is the problem dimen-
sion, A and p are the Lamé coefficients, and &%V is the deviatoric
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strain tensor. Note that other energy distribution ways, e.g. prin-
cipal/spectral splitting by the strain tensor are also applicable to
the above decomposition. Further, to enforce the irreversibility of
the crack phase field d, the tensile part of the strain energy ¥+
in (20) is replaced by a so-called local history variable field H as
proposed in [21]:

H(x, t) = max {¥F(x, t)} . (24)
¢€l0,T]

As the staggered solution scheme is employed to solve the
above coupled problem of fracture, the overall algorithm is de-
fined as follow.

1. Set the initial fields d(ty), u(tp), and #(tp) at time to.
2. Loop over all time increments; at each time t,,:

(a) Given d(t,), u(t,), and H(t,),

(b) Compute the history function #(t,+1) according to
(24).

(c) Compute the crack phase field d(t,+1) by solving
(20).

(d) Compute u(t,,1) with the current crack d(t,,1) by
solving (17).

(e) (Jn <= (.)nt+1 and go to ().

3. End.
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