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a b s t r a c t

Data science as a promising paradigm provides novel and diverse opportunities for structural meta-
materials attaining exceptional mechanical properties. It is demonstrated here that porous structures
composed of brittle constitutive materials can be strong and tough through topological optimization
and data-driven techniques. We show that brittle fracture properties can be tailored through the
linear control of the homogenized stress and non-periodic microstructures from a multiscale perspec-
tive. These tough advanced structural metamaterials pave the way to multiscale components with
exceptional fracture resistance.

© 2021 Published by Elsevier Ltd.
1. Introduction

It is well-known that stress concentration will cause prema-
ure fracture of any bearing structural materials. Avoiding such
phenomenon is among the most important criteria to design a
tructure in engineering. However, controlling the stress distri-
ution from a multi-scale perspective has not yet been explored.
esides, establishing inverse design optimization frameworks to
upport the creation of structural metamaterials with optimal
rchitectures and fracture resistance is still in its infancy.
Topological optimization is an inverse design method that

ailors the morphology of the structure by distributing materials
nside a given domain under constraints like equilibrium and
oundary conditions. Initially flourishing in stiffness optimiza-
ion, it has been extended to tailor material microstructures to
chieve prescribed or extreme constitutive properties [1,2]. Re-
ently, structural fracture resistance design has attracted some
ttention. In this direction, early works combine explicit crack
nitiation and propagation with structural design for fracture
esistance [3,4]. Later on, gradient-based topology optimization
rameworks are proposed, where fracture simulation accounts for
he entire failure process involving multiple crack types, while
istributions of the constituent materials are tailored to enhance
echanical fracture properties [5–9]. For instance, designing the
rchitecture of the soft constituent in biomimic composites [10]
nables energy dissipation ahead of the crack tip to prevent crack
ropagation and toughen the composite.

∗ Corresponding author.
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ttps://doi.org/10.1016/j.eml.2021.101528
352-4316/© 2021 Published by Elsevier Ltd.
On the other hand, fracture-related design of structural ma-
terials has also been addressed by introducing stress constraints
to prevent material failure [11,12]. Thereafter, the stress-based
topological optimization for specific objectives (e.g. minimal mass,
maximal stiffness or minimal overall stress) have been exten-
sively investigated (see, e.g., [13]). This approach is similar to
fracture resistance design from the perspective of alleviating the
stress concentration around the crack tip such that the crack initi-
ation is prevented, enhancing the fracture performance. Ref. [14]
validated that the stress-based optimal structures achieve im-
proved strength and toughness compared with other designs
such as the stiffness-oriented solutions. However, both stress
and failure process-based fracture resistance optimization have
thus far been locked in a single-scale framework. Topological
design of the material microstructures to enhance the fracture
mechanical properties is, to our best knowledge, investigated
here for the first time. Moreover, the ability of optimized non-
periodic porous structures to achieve even further improvement
in fracture properties is demonstrated.

Fracture resistance design from a multiscale perspective is
a challenging topic, mainly due to the lack of robust multi-
scale methods for fracture simulation in the presence of com-
plex heterogeneous media. In addition, numerical optimization is
difficult with such a high-dimensional problem where heteroge-
neous materials and structures acting at different scales need to
be optimized simultaneously. Under this stalemate, data-driven
methods came into being, providing novel and prosperous ways
for multi-scale design optimization, e.g. in reducing dimensional-
ity [15] and accelerating the design of nanocomposites [16] and
multiscale structures [17]. For the first time, this work combines

https://doi.org/10.1016/j.eml.2021.101528
http://www.elsevier.com/locate/eml
http://www.elsevier.com/locate/eml
http://crossmark.crossref.org/dialog/?doi=10.1016/j.eml.2021.101528&domain=pdf
mailto:weichen@northwestern.edu
https://doi.org/10.1016/j.eml.2021.101528
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Fig. 1. Illustration of the design domain and shear loading boundary condi-
tions (left); initial stiffness tensor distribution (middle); and the corresponding
homogenized global stress distribution (right).

data-driven and topology design methods to optimize the mi-
crostructure of materials by maximizing the uniform distribution
of the macrostructural stress, thus toughening and strengthening
the global (macroscopic) porous structure composed of brittle
constituent materials.

Three steps are implemented to validate the enhancement of
he fracture toughness of the porous structures. Firstly, a mul-
iscale inverse optimization framework is established to pre-
isely control the global stress by tailoring the distribution of the
omponents of the homogenized stiffness tensor. Thereafter, the
rchitecture of each unit cell is identified from a large database
ia data-driven techniques while guaranteeing the connectivity
etween neighboring cells. Finally, the fracture resistance perfor-
ance of the assembled structure is validated through the phase

ield method [18–21].

. Stress control

For a given global macroscopic structure under specific bound-
ry conditions, e.g., Fig. 1, its stress distribution and fracture
esistance are highly dependent on its microscopic geometries.
he first goal is to establish an inverse topology optimization
ramework to control the stress distribution by tailoring the ge-
metries of material microstructures. The final morphology of
icrostructures will be pulled from a database which contain
oth the information of the geometries and the corresponding
omogenized effective properties, i.e., the apparent elastic moduli
Hom. Therefore, each component of the elastic moduli CHom is

used as a design variable, and they will be updated independently
during the optimization process. Note that only orthotropic mi-
crostructural geometries are considered in this work, so only four
components (design variables), CHom

11 , CHom
12 , CHom

22 , and CHom
66 will

e tailored. However, fully anisotropic geometries and compos-
te unit cells can be considered in future work with promising
erspectives.
In Fig. 1, the load and boundary conditions of the global

tructure are schematized, where the bottom edge is fixed, and
rightward incremental displacement load is applied to the top
oundary. The aspect ratio of the global structure is 1:2, and
he structure is discretized into 10 × 20 quadrilateral four-node
lements. Homogeneous initial values of the design variables are
hown on the middle of Fig. 1. The corresponding initial stress
state at the macroscopic scale is shown on the right, where the
maximum stress value is equal to 6.0717. Note that the stress
distribution computed here is the von Mises stress of each finite
element and measured by

σVM
=

√
3
σ ′ : σ ′, with σ ′ = σ ij −

1
δijσkk (1)
2 ij 3
2

The Kronecker delta δij serves as the identity matrix 1 based on
its properties that it equals to 1 when i = j and 0 otherwise. In
2D scenarios, with σzz = τxz = τyz = 0, the von Mises stress reads

σVM =

√
σ 2
xx + σ 2

yy − σxxσyy + 3τ 2
xy (2)

or

σVM = (σTMσ)1/2, M =

[ 1 −1/2 0
−1/2 1 0
0 0 3

]
(3)

Firstly, we design the macroscopic stiffness component such
that the maximum stress of the global structure will reach a given
specific value. Therefore, the objective function can be formulated
as

min
CHom
11 ,CHom

12 ,CHom
22 ,CHom

66

f = (σVM,max − σ ∗)2 (4)

where σVM,max is the maximum value and σ ∗ is the given thresh-
old. However, both values are discrete data and not differentiable,
which means that gradient-based optimization methods cannot
be adopted to solve the problem. To overcome this issue, the
maximum value is aggregated by the so-called P-norm stress
aggregation function [12] formulated as

σVM,max ≈ σPN = (
Ne∑
e

σ P
VM,e)

1/P , e = 1, . . . ,Ne (5)

where σPN is the P-norm global stress measure, P is the constant
parameter, and Ne is the total number of finite element discretiz-
ing the domain. It is known that a larger P value is preferable
to approximate the maximum stress more accurately, but it may
also lead to numerical problems in updating the pseudo density
in general stress-based topology optimization [12]. However, the
latter is naturally avoided in our optimization where the design
variables are defined as the true components of the effective
material properties which can be tailored among possible solu-
tions from our database without resulting in the ill-conditioned
problems. Based on our numerical experiments, a relatively large
number, P = 66, is adopted throughout the provided exam-
ples to ensure that the error between σPN and σVM,max is small
(e.g., within 1%). Hereafter, the objective function in (4) will
be equivalently expressed as f = (σPN − σ ∗)2, and sensitivity
of the objective function w.r.t. the design variable is detailed
in Appendix A.

To validate our optimization framework, four different cases
are considered, in which the specific target value σ ∗ is set as 5.0,
6.5, 8.5, and 10.0, respectively. The macroscopic stress distribu-
tion is shown on the left side in each case in Fig. 2, while the
optimized stiffness tensor is shown on the right. As observed, the
maximum stress values are 4.9963, 6.5008, 7.9997, and 10.0056,
respectively, which are very close to the corresponding thresh-
olds. This is attributed to the subversively different distribution
of the stiffness tensor. We therefore first demonstrate that we
can effectively control the homogenized stress state inside the
macroscopic structure by tailoring the elemental stiffness tensor
aroused from the microscopic materials.

3. Database

Next, we will find the target microscopic unit cell in each
finite element based on the data-driven method. The targeted
unit cells are selected from the database to achieve the optimal
distribution of the stiffness tensor and then assembled into the
macroscopic global structure. The database of more than 160,000

unit cells, which can be found at https://github.com/Daicong-

https://github.com/Daicong-Da/2D-Orthotropic-Unit-Cell-Dataset.git
https://github.com/Daicong-Da/2D-Orthotropic-Unit-Cell-Dataset.git
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Fig. 2. Optimized components of the stiffness tensor and the corresponding
acroscopic stress distribution.

a/2D-Orthotropic-Unit-Cell-Dataset.git, is illustrated in Fig. 3,
isplaying that the constructed database covers a large portion
f the possible optimal properties. The detailed procedure to
enerate the meaningful unit cells can be found in our previous
ork [22,23]. In Fig. 3(d), the volume fractions of all unit cells
ange between 0.2 and 1. For each unit cell, the corresponding
ffective stiffness tensor CHom was computed by the numerical

homogenization method [24] and stored in the database so that
they can be quickly retrieved during design. The computation
is performed for elementary load cases in a standard homoge-
nization scheme consisting of unit tensile strain and pure shear
loading. Since multiple geometries of the unit cell can possess
the same values of the apparent elastic moduli CHom, the unit
cells with the best connectivity between their neighborhood and
that satisfy the optimized properties are selected through a graph
labeling. Specifically, we construct a grid-like weighted graph
where each node represents a unit cell, and edges connect ad-
jacent cells. Then the unit cell assembly problem can be regarded
as selecting an index from the given database to label each node
in the graph. Within this setting, the distance between the target
property and the one of the unit cell to be selected is designated
as the node weight, and the discrepancy between adjacent nodes
is designated as the weight of each edges. Thereafter, the dual
decomposition Markov random field (DD-MRF) method [25] can
be used to effectively find the best labels of the graph with
the smallest sum of node and edge attributes, to identify the
macrostructure that satisfies the target properties and ensures
connectivity.

4. Fracture resistance validation

For the fracture resistance validation, the number of the mi-
croscopic unit cells in the macrostructure of Fig. 1 is first selected
s 5 by 10, in the x- and y- directions, respectively. As baselines,
wo classical shapes, structures A and B, are chosen, and they
re depicted in Fig. 4(a) and (b), respectively. The non-periodic
tructure (c) is designed via the proposed data-driven and topo-
ogical optimization framework to minimize the maximum stress
n Eq. (5), where the objective function is formulated as:

min
Hom
11 ,CHom

12 ,CHom
22 ,CHom

66

f = σVM,max (6)

he volume fractions for all the structures are fixed as 0.5. Ex-
ellent consistency between the different unit cells can be well
bserved in Fig. 4(c).
We use the phase field method (see details in Appendix B)
o validate the improvement of the fracture resistance of the

3

Fig. 3. The constructed database: (a)–(c) different stiffness tensor components
versus each other; (d) the volume fraction Vf versus the component CHom

11 .

Fig. 4. (a) classical periodic Structure A; (b) periodic Structure B; (c) optimized
non-periodic structure by the proposed framework.

optimized structure compared to classical periodic structures.
The isotropic brittle solid material inside the global structure
has Young’s modulus E = 72, Poisson’s ratio ν = 0.29, and
critical energy release rate Gc = 0.442e−3. Final crack patterns
of the three macrostructures are shown in Fig. 5(a), (b), and
(c), corresponding to the displacement at 0.225, 0.335, and 0.49,
respectively. It first indicates that the optimized structure pos-
sesses the largest failure displacement. In addition, the damage
locations of the two periodic structures are initiated near the
bottom edges, while it is in the upper half of the optimal design.
Detailed force–displacement curves are compared in Fig. 5(d), and
amplifications of the mechanical properties including the stiffness
(E), toughness (T ), strength (S), and failure displacement (D) of all
the structures compared with Structure A are displayed in Fig. 5
(e). Here, the stiffness (E), i.e., ‘‘reciprocal’’ of the widely accepted
compliance in most topology optimization literature, is computed
by the slope of the rising curve. The toughness (T ) is measured by
the total area of each load–displacement curve. The strength (S)
is simply defined as the peak load of each curve, and the failure
displacement (D) is the largest deformation that the structure can
withstand before its rupture.

Firstly, the periodic Structure A does have the largest stiffness
and highest strength. However, this structure is the first to break
because of the conflicting nature between strength and tough-
ness [26]. Compared with the Structure A, the toughness and
failure displacement of the periodic Structure B is improved by
8.12% and 47.82%, while the stiffness and strength are decreased
by 48.75% and 32.40%, respectively. For the optimized structure
based on the data-driven method, the reduction in stiffness is

https://github.com/Daicong-Da/2D-Orthotropic-Unit-Cell-Dataset.git
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Fig. 5. (a–c): final crack patterns of the three global structures; (d): comparison
of the load–displacement curves; (e) amplifications of the mechanical properties
compared with the classical periodic Structure A.

similar to that of Structure B, while the strength is decreased
by only 6.78% compared to A. On the other hand, the failure
displacement of the data-driven design is increased by 115.22%,
and the toughness, which is measured based on the total area
of the curve, is improved by 131.71%. These improvements are
significant and, to a certain degree, overcomes the conflicts be-
tween the strength and toughness by postponing the failure of
the structure. In other words, the porous structures composed of
the brittle constitutive material can be both strong and tough by
using our proposed data-driven design technique.

Next, we investigate the size effect of the microscopic unit
ells. Instead of the previous 5 × 10, a larger number of the
nit cells 10 × 20 is considered. The dimension of the global

structure is the same as before, and the length size of the unit
cell is therefore reduced by half. We repeat all the previous
cases and show the designed macrostructure with 10 × 20 unit
ells along with its fracture resistance against other structures
n Fig. 6. Displayed in the top row of Fig. 6(a) are the geome-
ries of periodic structures A and B as well as the data-driven
periodic design. To quantify the introduced error of substituting
he optimized material properties by the closest unit cells, we
mploy the Mean Squared Error (MSE) as the measuring metric,
.e., MSE = 1

Ne

∑Ne
e (CH

e − ĈH
e )

2, where Ne is the number of unit
ells/elements, CH

e are the effective properties of the substituted
unit cell including CH

11, CH
12, CH

22, and CH
66, while ĈH

e are the
orresponding optimized ones. A small MSE therefore indicates
good substitution of the optimized material properties. The
SE value for the provided structure by the proposed data-driven
esign in Fig. 6 is 1.84e−4. Excellent match between ĈH

11 and CH
11

nd between ĈH
22 and CH

22 of the unit cells within the assembled
tructure is illustrated in Fig. 7.
The final crack patterns of the three porous structures are

hown in the bottom row of Fig. 6(a), corresponding to the
isplacement loading at 0.235, 0.335, 0.46, respectively. Thus,
he failure displacement of the data-driven design is elongated
y 95.74% and 37.31%, compared with periodic structures A and
, respectively. The strength (S) of the data-driven design is
he same as the strongest Structure A, while the toughness is
mproved by 117.07%. Comparing each case with the same macro
imension but less unit cells (5 × 10), the mechanical properties
f the periodic structures A and B with different size of the unit
 i

4

Fig. 6. (a) geometries and final crack patterns of the three macrostructures with
10 × 20 microscopic unit cells; (b) corresponding force–displacement curves;
(c) amplifications of the mechanical properties of all structures compared with
the periodic Structure A.

Fig. 7. Illustration of the comparison between (a) optimized ĈH
11 and substituted

CH
11; and (b) optimized ĈH

22 and substituted CH
22 .

ells are almost identical. However, in the data-driven design,
he stiffness (E), toughness (T ), and strength (S) are improved by
5.86%, 4.07%, and 13.58%, respectively. This is because during
he optimization, the homogenized stress is considered at the
acroscopic scale, while the structure is assembled by the unit
ell in a finite-element-wise way, given the evidence that the
cales are not separated. Therefore, with the smaller size of the
icroscopic unit cell, it is closer to satisfying the scale separation
ssumption which is essential to the numerical homogenization.
n the other hand, with the larger number of unit cells, more
esign variables are utilized, which contributes to more design
reedom and thus ability to obtain a better design.

Finally, we examine the size effect of the global structure
tself. Taking the previous data-driven design with 5 × 10 unit
ells (global dimension 20 × 40 mm2) as a baseline, we fix the
umber of unit cells as 5 × 10 but increase the global size to
0 × 80 mm2 and 60 × 120 mm2. The final crack patterns of the
hree global structures with different dimensions are shown in
ig. 8(a). Interestingly, with the larger size, the fracture location
s different from that of the smallest global size (20 × 40 mm2),
hile they are all the same for both structures A and B based
n our experiments, illustrating that there is a huge size effect
n the data-driven designed structures. Following the fracture
ize effects analysis in [27], we compute the nominal stress as
nominal =

3FL
2bH2 for each case with different global sizes, where

L and H are the length and height of the global structures, re-
pectively, and b is the thickness and equals to 1 herein. F is
he reaction force. The nominal stress–strain curves for the three
onsidered global structures are shown Fig. 8(b). It indicates that
he largest global structure is the weakest while the smallest one
s the strongest, which is still consistent with the conclusions
n [27].
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Fig. 8. Size effects of the global structure: (a) final crack patterns of the
data-driven designed structures; (b) corresponding nominal stress–strain curves.

5. Conclusions

In summary, we proposed a data-driven design framework
or brittle porous structure with the purpose to enhance fracture
esistance. The topological-like optimization on distribution of
he stiffness tensor components is first established to control the
lobal homogenized stress. Thereafter, data-driven techniques are
sed to find the target unit cells with the geometries stratify-
ng the optimal distribution of the stiffness tensor. Then, the
acroscopic structure is assembled by the target unit cells, where

he good connectivity between neighboring cells is guaranteed.
inally, phase field fracture simulation is conducted for the data-
riven design and illustrates that the fracture resistance can
e significantly enhanced compared with the classical periodic
tructures.
It is demonstrated that the fracture properties of the brittle

tructural materials can be optimally tailored through stress con-
rol, topology optimization, and data-driven techniques. Conflicts
etween strength and toughness of brittle materials are overcome
y maximizing the uniform distribution of the macrostructure
tress, i.e. minimizing the maximum stress to avoiding the stress
oncentration. By doing this, it postpones the crack initiation
uring continuous loading and therefore toughens the brittle
tructural materials.
In addition, both size effects on the global structures and on

he microscopic unit cells are investigated. Through optimiza-
ion, global structures with smaller size unit cells may have
etter fracture resistance because of the greater design freedom
nd homogenized size effects. Last but not least, the larger size
f the global structure will be weaker for both periodic and
ata-driven designed aperiodic structures. However, the frac-
ure location is completely changed when the size changes for
he optimal design, displaying a huge size effect of the data-
riven structures and indicating the extreme designability of
racture resistance at different scales. Future work will consider
aterial and/or geometric nonlinearities, and conduct physical
xperimental verification on samples fabricated by using additive
anufacturing.
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Appendix A

The derivative of the P-norm global stress measure σPN in (5)
.r.t. the design variable, i.e., ijth component of the macroscopic
tiffness of element e (Ce,ij) reads:

∂σPN

∂Ce,ij
= σ 1−P

PN

(∑
e

σ P−1
VM,e

∂σVM,e

∂Ce,ij

)
(7)

Using the von Mises formulation (3), the derivative of the von
Mises stress w.r.t. the stress vector first reads
∂σVM

∂σ
= (σTMσ)−1/2σTM (8)

Therefore, the term ∂σVM,e
∂Ce,ij

in (7), i.e. the derivative of elemental
von Mises stress w.r.t. the ijth component of the macroscopic
stiffness Ce,ij reads

∂σVM,e

∂Ce,ij
= σ−1VM,eσ

T
e M

∂CeBeUe

∂Ce,ij
(9)

Note that Be is the elemental strain–displacement matrix which
is independently of the Ce,ij. Then, the above formulation can be
rewritten as
∂σVM,e

∂Ce,ij
= σ−1VM,eσ

T
e M

∂Ce

∂Ce,ij
BeUe+

σ−1VM,eσ
T
e MCeBe

∂Ue

∂Ce,ij

(10)

The first term on the right hand side (RHS) of Eq. (10) can be
computed directly. Using Ue = LeU and ∂U

∂Ce,ij
= −K−1 ∂K

∂Ce,ij
U

(assuming that there is no traction or it is constant), the second
term becomes

−σ−1VM,eσ
T
e MCeBeLeK−1

∂K
∂Ce,ij

U

Note again terms K and U are the global stiffness and displace-
ment matrices, respectively. Therefore, the derivative of the P-
norm stress measure w.r.t. the ijth component of the macroscopic
stiffness Ce,ij reads

∂σPN

∂Ce,ij
= σ 1−P

PN

(∑
e

σ P−2
VM,eσ

T
e M

∂Ce

∂Ce,ij
BeUe

)
−

σ 1−P
PN

(∑
e

σ P−2
VM,eσ

T
e MCeBeLe

)
K−1

∂K
∂Ce,ij

U

(11)

here e = 1, . . . ,Ne and i, j = 1, 2, 3. The second term on the
HS of (11) requires to solve the following adjoint equation

λ =
∑
e

σ P−2
VM,e(CeBeLe)TMσe (12)

inally, the sensitivity of Eq. (11) which originally from Eq. (7)
can be formulated as

∂σPN

∂Ce,ij
=σ 1−P

PN

(∑
e

σ P−2
VM,eσ

T
e M

∂Ce

∂Ce,ij
BeUe

)
−

σ 1−P
PN λT

e
∂K
∂Ce,ij

U

(13)

here Ue and λe are the elemental displacement and adjoint
odal value vectors associated to the eth element, respectively.
Correspondingly, the sensitivity of the objective function f in

4) w.r.t. the ijth component of the macroscopic stiffness Ce,ij
eads
∂ f
= 2(σPN − σ ∗)

∂σPN (14)

∂Ce,ij ∂Ce,ij
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For a cracked body, the associated regularized form of total
nergy in phase field method is defined by:

(u, d) =
∫
Ω

Ψ (ε, d) dV + gc

∫
Ω

γ (d,∇d)dV −
∫
Ωt

t · u dS (15)

here Ω ⊂ R3 is a defined cracked domain, and Ψ (ε, d) is the
lastic energy density function formulated as

(ε, d) = g(d)Ψ +(ε+)+ Ψ −(ε−) (16)

bove, g(d) is a degradation function such that g(0) = 1, g(1) = 0
and g ′(1) = 0. Besides, Ψ + and Ψ − denote the tensile and
compressive parts of the strain density function, respectively,
through a decomposition of the elastic strain. The second part
on the right of (15) corresponds to the energy required to create
crack according to the Griffith criterion, where gc is the critical
fracture energy density and also named as Griffith’s critical en-
ergy release rate. γ (d,∇d) is the crack surface density function.
With sharp cracks denoted collectively as Γ , the second term
on the right of (15) will be donated as

∫
Γ
gcdΓ . t represents

any external tractions applied to the body’s surface. This phase
field formulation implies: (a) minimization of the total energy
with respect to the displacement field u and (b) minimization
of the energy with respect to the scalar field d describing the
crack surface in a smooth manner. The second minimization is
subjected to an inequality constraint: ḋ ≥ 0, and the time-step
T = {t0, t1, . . . , tn, tn+1, . . . , tNload} will be introduced to simply
formulate the two problems to find the displacement field un+1

and dn+1 (in each time step tn+1). Therefore, the mechanical and
crack phase field problems are fully coupled, and these two-phase
problems will be solved in a sequential or staggered scheme.

For the mechanical problem, at each time step, the linear
momentum balance equation for the solid medium without body
force reads

∇ · σ = 0 (17)

with

σ · n = t on ∂Ωt and u = ū on ∂Ωu (18)

where

σ =
∂Ψ (ε, d)

∂ε
(19)

Regarding to the phase field problem, by choosing γ (d) =
1
2ℓd

2
+

ℓ
2∇d · ∇d, the associated Euler–Lagrange equation for the

above second minimization at each time step is given by:

(2[Ψ +] +
gc
l
)d− lgc∇2d = 2[Ψ +] (20)

with

∇d · n = 0 on ∂Ω and d = 1 on Γ (21)

where l is the length scale for characterizing the phase field
crack diffusion. [Ψ +] is the tensile part of the strain energy
density through a decomposition. Here, we use the volumetric-
deviatoric split/decomposition of the strain energy density as
proposed in [28], which reads:

Ψ + :=
K
2
⟨tr(ε)⟩2

+
+ µ(εdev

: εdev) Ψ − :=
K
2
⟨tr(ε)⟩2

−
(22)

ith

= λ+
2µ
n
⟨x⟩± :=

1
2
(x± |x|) εdev

:= ε−
1
3
tr(ε)1 (23)

here K is the material bulk modulus, n is the problem dimen-
ion, λ and µ are the Lamé coefficients, and εdev is the deviatoric
6

strain tensor. Note that other energy distribution ways, e.g. prin-
cipal/spectral splitting by the strain tensor are also applicable to
the above decomposition. Further, to enforce the irreversibility of
the crack phase field d, the tensile part of the strain energy Ψ +

in (20) is replaced by a so-called local history variable field H as
proposed in [21]:

H(x, t) := max
t∈[0,T ]

{
Ψ +(x, t)

}
. (24)

As the staggered solution scheme is employed to solve the
bove coupled problem of fracture, the overall algorithm is de-
ined as follow.

1. Set the initial fields d(t0),u(t0), and H(t0) at time t0.
2. Loop over all time increments; at each time tn+1:

(a) Given d(tn),u(tn), and H(tn),
(b) Compute the history function H(tn+1) according to

(24).
(c) Compute the crack phase field d(tn+1) by solving

(20).
(d) Compute u(tn+1) with the current crack d(tn+1) by

solving (17).
(e) (.)n ← (.)n+1 and go to (a).

3. End.

eferences

[1] O. Sigmund, Materials with prescribed constitutive parameters: an inverse
homogenization problem, Int. J. Solids Struct. 31 (17) (1994) 2313–2329.

[2] O. Sigmund, Tailoring materials with prescribed elastic properties, Mech.
Mater. 20 (4) (1995) 351–368.

[3] G.X. Gu, L. Dimas, Z. Qin, M.J. Buehler, Optimization of composite fracture
properties: method, validation, and applications, J. Appl. Mech. 83 (7)
(2016).

[4] B. San, H. Waisman, Optimization of carbon black polymer composite
microstructure for rupture resistance, J. Appl. Mech. 84 (2) (2017).

[5] L. Xia, D. Da, J. Yvonnet, Topology optimization for maximizing the fracture
resistance of quasi-brittle composites, Comput. Methods Appl. Mech. Engrg.
332 (2018) 234–254.

[6] D. Da, J. Yvonnet, L. Xia, G. Li, Topology optimization of particle-matrix
composites for optimal fracture resistance taking into account interfacial
damage, Internat. J. Numer. Methods Engrg. 115 (5) (2018) 604–626.

[7] D. Da, Topology Optimization Design of Heterogeneous Materials and
Structures, John Wiley & Sons, 2019.

[8] C. Wu, J. Fang, S. Zhou, Z. Zhang, G. Sun, G.P. Steven, Q. Li, Level-
set topology optimization for maximizing fracture resistance of brittle
materials using phase-field fracture model, Internat. J. Numer. Methods
Engrg. 121 (13) (2020) 2929–2945.

[9] D. Da, J. Yvonnet, Topology optimization for maximizing the fracture
resistance of periodic quasi-brittle composites structures, Materials 13 (15)
(2020) 3279.

[10] D. Da, X. Qian, Fracture resistance design through biomimicry and topology
optimization, Extrem. Mech. Lett. (2020) 100890.

[11] P. Duysinx, M.P. Bendsøe, Topology optimization of continuum structures
with local stress constraints, Internat. J. Numer. Methods Engrg. 43 (8)
(1998) 1453–1478.

[12] C. Le, J. Norato, T. Bruns, C. Ha, D. Tortorelli, Stress-based topology
optimization for continua, Struct. Multidiscip. Optim. 41 (4) (2010)
605–620.

[13] C. Wang, X. Qian, Heaviside projection–based aggregation in stress-
constrained topology optimization, Internat. J. Numer. Methods Engrg. 115
(7) (2018) 849–871.

[14] J.B. Russ, H. Waisman, A novel topology optimization formulation for
enhancing fracture resistance with a single quasi-brittle material, Internat.
J. Numer. Methods Engrg. 121 (13) (2020) 2827–2856.

[15] M.A. Bessa, R. Bostanabad, Z. Liu, A. Hu, D.W. Apley, C. Brinson, W.
Chen, W.K. Liu, A framework for data-driven analysis of materials under
uncertainty: Countering the curse of dimensionality, Comput. Methods
Appl. Mech. Engrg. 320 (2017) 633–667.

[16] A. Iyer, Y. Zhang, A. Prasad, P. Gupta, S. Tao, Y. Wang, P. Prabhune, L.S.
Schadler, L.C. Brinson, W. Chen, Data centric nanocomposites design via
mixed-variable Bayesian optimization, Mol. Syst. Des. Eng. 5 (8) (2020)
1376–1390.

http://refhub.elsevier.com/S2352-4316(21)00207-8/sb1
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb1
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb1
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb2
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb2
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb2
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb3
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb3
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb3
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb3
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb3
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb4
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb4
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb4
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb5
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb5
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb5
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb5
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb5
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb6
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb6
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb6
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb6
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb6
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb7
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb7
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb7
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb8
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb8
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb8
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb8
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb8
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb8
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb8
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb9
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb9
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb9
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb9
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb9
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb10
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb10
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb10
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb11
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb11
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb11
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb11
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb11
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb12
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb12
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb12
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb12
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb12
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb13
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb13
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb13
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb13
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb13
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb14
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb14
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb14
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb14
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb14
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb15
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb15
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb15
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb15
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb15
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb15
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb15
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb16
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb16
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb16
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb16
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb16
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb16
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb16


D. Da, Y.-C. Chan, L. Wang et al. Extreme Mechanics Letters 50 (2022) 101528
[17] L. Wang, S. Tao, P. Zhu, W. Chen, Data-driven topology optimization with
multiclass microstructures using latent variable Gaussian process, J. Mech.
Des. 143 (3) (2021) 031708.

[18] G.A. Francfort, J.-J. Marigo, Revisiting brittle fracture as an energy
minimization problem, J. Mech. Phys. Solids 46 (8) (1998) 1319–1342.

[19] B. Bourdin, G.A. Francfort, J.-J. Marigo, Numerical experiments in revisited
brittle fracture, J. Mech. Phys. Solids 48 (4) (2000) 797–826.

[20] B. Bourdin, G.A. Francfort, J.-J. Marigo, The variational approach to fracture,
J. Elasticity 91 (1–3) (2008) 5–148.

[21] C. Miehe, M. Hofacker, F. Welschinger, A phase field model for rate-
independent crack propagation: Robust algorithmic implementation based
on operator splits, Comput. Methods Appl. Mech. Engrg. 199 (45–48)
(2010) 2765–2778.

[22] L. Wang, Y.-C. Chan, Z. Liu, P. Zhu, W. Chen, Data-driven metamaterial de-
sign with Laplace-Beltrami spectrum as ‘‘shape-DNA’’, Struct. Multidiscip.
Optim. (2020) 1–16.
7

[23] Y.-C. Chan, F. Ahmed, L. Wang, W. Chen, METASET: Exploring shape and
property spaces for data-driven metamaterials design, J. Mech. Des. 143
(3) (2021) 031707.

[24] B. Hassani, E. Hinton, A review of homogenization and topology optimiza-
tion I—homogenization theory for media with periodic structure, Comput.
Struct. 69 (6) (1998) 707–717.

[25] N. Komodakis, N. Paragios, G. Tziritas, MRF energy minimization and
beyond via dual decomposition, IEEE Trans. Pattern Anal. Mach. Intell. 33
(3) (2010) 531–552.

[26] R.O. Ritchie, The conflicts between strength and toughness, Nature Mater.
10 (11) (2011) 817–822.

[27] Z.P. Bazant, J. Planas, Fracture and size effect in concrete and other
quasibrittle materials, 16, CRC Press, 1997.

[28] H. Amor, J.-J. Marigo, C. Maurini, Regularized formulation of the variational
brittle fracture with unilateral contact: Numerical experiments, J. Mech.
Phys. Solids 57 (8) (2009) 1209–1229.

http://refhub.elsevier.com/S2352-4316(21)00207-8/sb17
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb17
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb17
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb17
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb17
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb18
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb18
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb18
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb19
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb19
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb19
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb20
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb20
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb20
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb21
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb21
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb21
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb21
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb21
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb21
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb21
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb22
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb22
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb22
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb22
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb22
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb23
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb23
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb23
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb23
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb23
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb24
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb24
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb24
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb24
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb24
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb25
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb25
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb25
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb25
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb25
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb26
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb26
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb26
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb27
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb27
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb27
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb28
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb28
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb28
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb28
http://refhub.elsevier.com/S2352-4316(21)00207-8/sb28

	Data-driven and topological design of structural metamaterials for fracture resistance
	Introduction
	Stress control 
	Database 
	Fracture resistance validation 
	Conclusions 
	Declaration of competing interest
	Acknowledgments
	Appendix A
	Appendix B
	References


