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Abstract. Technology is being used increasingly for lowering the trust
barrier in domains where collaboration and cooperation are necessary,
but reliability and e�ciency are critical due to high stakes. An example
is an industrial marketplace where many suppliers must participate in
production while ensuring reliable outcomes; hence, partnerships must be
pursued with care. Online marketplaces like Xometry facilitate partner-
ship formation by vetting suppliers and mediating the marketplace. How-
ever, such an approach requires that all trust be vested in the middleman.
This centralizes control, making the system vulnerable to being biased
towards specific providers. The use of blockchains is now being explored
to bridge the trust gap needed to support decentralizing marketplaces,
allowing suppliers and customers to interact more directly by using the
information on the blockchain. A typical scenario is the need to preserve
privacy in certain interactions initiated by the buyer (e.g., protecting
a buyer’s intellectual property during outsourcing negotiations). In this
work, we initiate the formal study of matching between suppliers and
buyers when buyer-privacy is required for some marketplace interactions
and make the following contributions. First, we devise a formal security
definition for private interactive matching in the Universally Compos-
able (UC) Model that captures the privacy and correctness properties
expected in specific supply chain marketplace interactions. Second, we
provide a lean protocol based on any programmable blockchain, anony-
mous group signatures, and public-key encryption. Finally, we implement
the protocol by instantiating some of the blockchain logic by extending
the BigChainDB blockchain platform.

1 Introduction

Online marketplaces like Xometry 1 provide a centralized venue for vetted sup-
pliers and customers that significantly facilitate matching customers’ needs and
suppliers’ o↵ers in the manufacturing domain. On the downside, such an ap-
proach requires that all trust be vested in the middleman. This approach cen-
tralizes control, making the system vulnerable to bias towards specific providers.
Furthermore, both customers and suppliers have no privacy w.r.t. the middle-
man.

? Varun Madathil and Alessandra Scafuro are supported by NSF Award #1764025
1 Xometry https://www.xometry.com/ is one among many other (e.g., Fictiv, Proto-
lab) online portals for on-demand manufacturing services that match their vetted
suppliers with customers interested in 3D printing their unique designs.
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Motivated by these concerns and spurred by the development of blockchain
technology, recent work [14,16,29] propose to build decentralized online market-
place by replacing the middleman with a smart-contract capable blockchain. A
blockchain [25, 38] is an immutable ledger that is shared among multiple peers.
Under the assumption that the majority of the peers follow the protocol, the
ledger is guaranteed to be immutable and contain only valid transactions. Valid-
ity of a transaction is assessed by the peers by running specific scripts on those
transactions. At a high-level, to build a decentralized marketplace, the inter-
action between customers and suppliers with the middleman could be replaced
with smart contracts over blockchain transactions. Correctness would be guar-
anteed by the transparency and consistency properties of the blockchain, which
enforce trust and facilitate dispute resolution.

Existing proposal for decentralized marketplaces [14,16,31,33] mostly target
retail marketplaces (e.g., Amazon), where the matching between a customer C

and a supplier S can be determined non-interactively via a payment transac-
tion from C in favor of S for a certain item. In this work, we are interested in
marketplaces where a match between a customer and a supplier is determined
after multiple interactions (e.g., request for proposal, bidding, selection, etc.),
and some interactions involve private inputs from both customers and suppliers.
This is typical of outsourcing supply chain marketplaces where some interactions
involve customers needing to disclose high-value data e.g. intellectual-property
assets like manufacturing designs, software algorithms etc. The process usually
involves an initial exploratory phase in which only limited information is shared
with a large group of suppliers, followed by a narrowing down of the selection of
candidate suppliers with whom subsequent interactions involving additional data
that need to be kept private. As a concrete example, a customer might request
proposals for the fabrication of a patient-specific craniofacial implant made out
of medical-grade titanium alloy, with a 3-week deadline. This initial information
may allow suppliers to determine if the request falls within their service capabil-
ities, but yet it does not necessarily divulge high-value information. However,
as negotiations proceed and potential suppliers are selected, suppliers will only
be able to determine if they can meet the 3-weeks delivery time and what price
to charge after seeing the complexity of the private implant design. Thus the
implant design is shared only with the shortlisted suppliers. In addition, buyers
need to keep some of their inputs in interactions private, but they may also
want to keep their identities private for some interactions. This is because, in
some contexts, the partnerships and collaborations that a company engages in
are considered a part of its competitive advantage.

On the other hand, in supply chain marketplaces, suppliers want to share as
much information about their capabilities, to be matched as candidates with as
many requests as possible. However, they may want to keep their bid values for
each request private. Therefore, in the context of blockchains where all transac-
tions and transacting parties are recorded, it is essential to consider how to keep
information about buyer identity and some transactional inputs of both buyer
and supplier private.

To summarize, in this work, we target interactive marketplaces that present
the following privacy properties. 1. Matching is determined from private inputs.
Private inputs from both the customers (e.g., the private product design) and
the suppliers (e.g., the quotes) are required to perform the matching. Hence, the
approach of simply publishing requests on a blockchain and having smart con-
tracts matching them is not applicable here. 2. Customers should be anonymous
but accountable. The matching between the customer and the supplier should re-
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main private. Yet, suppliers need some guarantee that they are interacting with
accountable customers, i.e., belonging to a group of verified customers. At the
same time, suppliers would also want to build a reputation by having a record of
successful matches with accountable customers. This is di↵erent from the typical
marketplace setting where a customer can be completely anonymous, and repu-
tation is built only through reviews. 3. Matched resources might be exclusive. A
supplier sells the use of its resources rather than an item. The marketplace must
guarantee that the manufacturer does not overbook its resources.

1.1 Our contribution

We initiate the study of decentralized interactive marketplaces and we build a
proof-of-concept system based on blockchain technology. Specifically, our contri-
butions are:
1. A Formal Definition of Private Interactive Matching. We formally

capture the correctness and privacy properties of an interactive marketplace,
by abstracting it as the problem of private interactive matching in the Univer-
sally Composable (UC) framework [7]. Our definitional choices are inspired
by the service-oriented marketplaces such as in the manufacturing domain.

2. A Protocol for Decentralized Private Interactive Matching. We pro-
vide a decentralized protocol based on an ideal ledger capable of a set of
validation rules we define, and on anonymous group signatures. We formally
prove it is UC-secure.

3. Implementation and Evaluations. We provide an implementation strat-
egy for our ledger protocol that involves extending the transaction validation
framework of an open-source blockchain database BigChainDB (discussed in
Section 4). We call the extended platform SmartChainDB.

A Formal Definition of Private Interactive Matching. To formally model
the intuitive security guarantees outlined above we use the Universally Com-
posable (UC) framework [7] to define an ideal functionality FPrivateMatch. The
ideal functionality FPrivateMatch describes the ideal behavior of a platform that
matches customer with the correct suppliers, while guaranteeing anonymity of
the customer (within a certain group of well-known customers), correctness of
the match, privacy and fairness. We describe the ideal functionality in details
in Section 2. At high-level the ideal functionality FPrivateMatch has the following
properties. Generality: It captures a variety of settings since there are no fixed
roles – a party can sign up as a supplier and customer; and no fixed logic – the
ideal functionality is parameterized by external algorithms validResource and
canServe that determines validity of the supplier commands. Customer’s (Ac-
countable) Anonymity: Requests are not associated to a specific customer, but
to the group the customer belong to. This means that when a supplier is matched
with a customer, the only information leaked to the other parties is that a sup-
plier was matched with a member of a certain group (e.g., the group containing
all the implant manufacturing companies). But a misbehaving customer can still
be identified within a group and then punished. Customer’s Input Privacy: Re-
quests contain public values (e.g., the type of resources required, the deadlines,
etc), and private values (e.g., the product design). From our example earlier,
the suppliers were informed that they were to provide titanium alloy for three
weeks. We consider such resources to be public as is the case in the real world.
The private values will be revealed only to the suppliers who have expressed the
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interest in fulfilling the request and possess the resources to do so. Our ideal
functionality allows a supplier to signal interest to all requests just to see the
private inputs. Note that this models a behavior that is allowed in real world.
However, note that just as in the real world, measures can be added so that if
a supplier exhibits this behavior, it can be automatically discarded by the cus-
tomer. Supplier’s Input Privacy: The resources o↵ered by a supplier and their
interest in serving a request are public. However, details of their quote (e.g.,
price) are private for everyone, except, of course, for the customer. Supplier’s
Transparency: The resources utilization (e.g., allocation to a certain request) of
the suppliers is public. Correctness and Flexibility of the Match: Only capable
suppliers can bid to be matched with the customer. The winner is chosen by the
customer according to its own private decision algorithm.
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Fig. 1. Example of the protocol overview.

A Protocol for Decentralized Private Interactive Matching. We pro-
vide a protocol that securely instantiates the ideal functionality FPrivateMatch. In
the instantiation, we require a blockchain which we abstract as an ideal ledger
functionality (Gsmartchain). To protect the anonymity of customers while ensuring
accountability, we use group signatures [2,5]. These are signatures associated to
a group such that a member can generate an anonymous signature on behalf
of the entire group. We also assume that there is a registration phase, where
the identity of each party and the claimed resources of the suppliers are vetted.
This step is application-specific, and we abstract it with an ideal functional-
ity Greg. After registration, parties can join groups. Group formation is again
application-specific; in our protocol we assume groups exist and do not regulate
group formation. We describe the stages of the protocol in details in Section 3.
Below we give an overview of the protocol with a simple example. In Figure 1
we present an example of the flow of the protocol. We consider three groups
of customers as can be seen on the top right. The customers are grouped by
their industry - car manufacturers, phone manufacturers and airplane manufac-

4



turers. In this example, Nokia (from the PHONE group) wants to build a chip
(the design) and needs some chip building equipment (the resource). The sup-
pliers presented below are Intel, Nvidia and AMD. All transactions are sent to
a network of validators, that determine if a transaction is valid and then add
them to the state of the blockchain. 1 Nokia creates a pre-request transaction
that details the resources it needs. It only authenticates that it belongs to the
group (GROUP:Phone) of phone manufacturers to achieve anonymity within
the group. To link next transactions, Nokia they attaches the hash of a random
nonce, and reveal the nonce with the next transaction. 2 Intel and AMD ex-
press interest in serving Nokia by posting an INTEREST transaction. 3 Nokia
creates a REQUEST transaction where it encrypts the design with a key k, and
encrypts the key k with the public keys of AMD pkAMD and Intel pkIntel. It also
attaches a public key pkbid for Intel and AMD to encrypt their bids. 4 AMD
and Intel retrieve the design and then determine a bid value. They encrypt their
respective bids under pkbid and post their BID transactions. 5 Nokia decrypts
to retrieve the bid values and determines a winner - Intel. It posts a WINNER
transaction indicating that Intel won. After this step, the interaction between
Nokia and Intel will happen o↵-chain.

For privacy, the sensitive information of the matching is protected as follows.
The identity of the customer is protected with the use of group signatures. If the
customer misbehaves, they may be de-anonymized by the group manager. This
functionality is not easily achieved with other privacy-enhancing techniques such
as ring signatures. The private design of the customer is never included directly
in a transaction. It is always encrypted. The encryption could even be uploaded
to another web location (controlled by the customer) and the transaction only
includes the web location. In the transaction, a customer will include encryptions
of the key used to encrypt the design, under the public key of the suppliers who
have shown interest in doing the job. Finally, the private bids of the suppliers
are protected by encrypting them under the customer’s ephemeral public key
pkbid.

Note that, due to the use of anonymous group signatures, a malicious member
of the group can send follow up transactions for the same request. To prevent
this, we chain the transactions through puzzles (hash = H(nonce)), in such a
way that a customer can compute the next transaction in the flow only if it
knows the solution (nonce) to the puzzle of previous transactions.
Implementation: SmartChainDB. Our implementation strategy choices were
between the use of smart contracts on platforms such as Ethereum or the de-
velopment of native support for these marketplace transactions as first class
blockchain transactions. We chose the latter approach which o↵ered several ben-
efits over the use of the smart contracts model. For this reason, we selected
to build on a platform BigChainDB [23], which o↵ers an extensible architec-
ture to implement di↵erent kinds of blockchain applications. We also implement
group signature [5] as a possible signature scheme in BigChainDB. We refer to
the resulting extended system as SmartChainDB . We undertook a performance
evaluation to assess the additional overhead our changes to BigChainDB. We
found that latency of our marketplace transaction types took no more than 2.5⇥
(additional 2sec of processing time) that of traditional transactions. The group
signature scheme took up to 12⇥ (additional 12ms) more than the traditional
signature scheme.
Some remark on our design choices. We use a blockchain to allow a seamless
interaction between suppliers and customers while maintaining transparency of
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this interaction. This transparency is critical when disputes occur between enti-
ties. In traditional EVM compatible blockchain environments such as Ethereum,
Hyperledger Fabric, “Smart Contracts” are used to implement general business
logic. However, because smart contracts are owned by a single entity, each cus-
tomer would have to bear the burden of implementing their own contract and
face the risks of errors and high economic costs (gas fees) for ine�cient imple-
mentation. In addition, each supplier would need to discover and study smart
contracts as they are made available and make the e↵ort to fully understand their
terms since smart contracts are binding and irreversible. We observe that there
would be su�cient commonality in behavior in such marketplace smart contracts
that they could be generalized and provided as system level operations (i.e. first-
class blockchain transactions) which can be reused and parameterized by users
as needed. An additional advantage of this approach is that moving function-
ality away from the smart contract layer into the blockchain transaction layer,
avoids the significant additional economic costs of such applications because of
the high costs of smart contracts. Given the above mentioned issues, we have
pursued a di↵erent implementation model that is informed by the factors that
led to the success of database systems. More specifically we extend BigChainDB
an open-source blockchain database with new transactions that enable matching
between suppliers and customers.

Our definition of the ideal matching functionality is inspired by the service-
oriented marketplaces (such as Xometry, Fictiv etc). In such domains having
the supplier’s activities public is considered as a feature for building reputation
rather than a drawback. We allow the private input associated to the customer’s
request to be seen by the suppliers that are interested in bidding, and not only
the supplier that is finally matched, since suppliers decide a bid value depending
on the complexity of the request. We note that a supplier can try to send an
interest transaction to learn the request of the customers. We note that such
an interaction is always possible in interactive marketplaces and can occur even
today. Furthermore, we note that depending on the application this may not
be favorable to the supplier. For example, our system may easily be modified to
lock resources of the supplier each time it sends an interest transaction. This will
disincentivize suppliers to send interest transactions just to learn the design of
customers. To protect the anonymity of the customers we use group signatures.
Each group in a group signature scheme is associated with a group manager and
this manager can deanonymize users. This is useful in the case of disputes and a
customer needs to be de-anonymized. Furthermore, the group manager may be
decentralized and we discuss this at the end of Section 3.

Related Work. Kosba et al. present Hawk [17], a framework for creating
privacy-preserving Ethereum smart contracts. A set of clients describe a func-
tionality that they want to implement, and the framework outputs the code for a
smart contract, and programs that is run by a third party who is the facilitator.
The data used by the smart contract is encrypted, this ensures on-chain privacy.
However, the facilitator must learn the inputs of all clients in order to compute
the functionality which is a scenario we avoid.

Benhamouda et al. [3] present a framework on top of the Hyperledger Fabric
that allows party to send encrypted inputs to the chain. To compute a function,
the parties run an o↵-chain multiparty computation protocol over the encrypted
input. The bidding and match steps in our private match functionality share sim-
ilarities with sealed-bid auctions. There, bidders simultaneously submit sealed
bids to an auctioneer who then announce the winner. A few sealed-bid auctions
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via smart contracts have been proposed (e.g., Galal et al. [10] on Ethereum and
Xiong et al. [39]). However, they cannot be extended to implement the entire
flow of private matching. In terms of functionality, the closest work to our is by
Thio-ac et al [35] [34]. They integrate a blockchain to an electronic procurement
system (a procurement is the process of matching customers with suppliers).
However, they do not consider any privacy concern, nor do they present any
definitions or proofs. Recent work proposes blockchain-based solutions to decen-
tralize e-commerce retail platforms (e.g., Amazon). In [16, 26, 29], vendors list
their items as input to a smart contract and buyers input their bids. The smart
contract computes the output and reveals the winner. None of these schemes con-
sider the anonymity of the buyers. Buyers’ anonymity is addressed in Beaver [32]
by employing anonymous wallets and the Zcash blockchain [30]. However, this
line of work is suitable only for a non-interactive match over public inputs and
do not extend to the interactive setting we are interested in this paper. Finally,
a rich body of work has investigated the use of blockchains to increase trans-
parency in the supply-chain management (e.g. [9, 18, 24, 36, 37] just to name a
few). However, all such work focusses only on the traceability and provenance
of the products.

2 Private Interactive Matching: Formal Definition in the
UC-Framework

The ideal functionality FPrivateMatch captures a private matching functionality
in the UC Framework [7], where customers are allowed to request a service
anonymously within a group, suppliers bid to fulfill these services, where the
value of the bid is private and eventually a supplier is matched with the customer

The functionality maintains a global state that will contain all the transac-
tions and can be read by all parties. It also maintains a list (bu↵er) of transactions
that are to be added to state. The functionality keeps of track of the requests
in a table T that is indexed by the request id (denoted RID). To set notation
: P is the set of all parties and the adversary is denoted as A. G is the list of
groups initialized by the environment Z. We denote a set of locked resources
as LOCKS and TIMER as the set of times for each request. This set is used to
ensure that no time-out (denoted FulfillTime or MatchTime) has occurred. Upon
receiving a command from a party, the functionality creates a transaction that
corresponds to the command, adds the transaction to bu↵er and sends the same
to the adversary. This reflects the fact that the adversary learns that a command
has been invoked.
Overview of the functionality. Our functionality (Figure 2) captures the
operations that the system should perform, the inputs that the system should
protect and the information that the system is allowed to leak to an adversary.
We briefly describe the security properties guaranteed by this functionality. Any
party that registers with the system as a customer joins a group identified by
GID. This party is anonymous within the group, since for every command
sent by the party (PRE-REQ, REQ, WINNER, RFILL) its identity is not revealed, but
only its GID is included. Only the set of suppliers chosen by the customer can see
the design as can be observed from the REQ command where the design is sent only
to Pj 2 bidderSet (a set of suppliers that made bids). This guarantees service

confidentiality. Similarly, in bid command, the adversary is only notified of
the bid and the actual bid value is only revealed to Pi. This guarantees bid

confidentiality to the bidders. Request soundness is the property that a
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customer participate for a request flow unless it had sent the PRE-REQ command
for the request. This is achieved by checking for each command received from a
party Pi for request RID, that Pi 2 T [RID]. The canServe predicate checks if a
supplier has enough available resources to serve a customer. The functionality
accepts bids from bidders only if canServe outputs 1 on their resources. This
ensures supplier completeness.
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Register : Upon receiving (REG, Pi, [roles]) from Pi, do P = P [ Pi. Send
(tx = (REG, Pi, [roles])) to A and do bu↵er = bu↵erktx.
Non-adaptive setup : Receive (CORRUPTED, b) from party Pi

Join Group : Upon receiving (gJOIN,GID) from a party Pi, update
G[GID] = G[GID] [ {Pi}. Send (gJOIN, Pi,GID) to A and (gJOIN, Pi,GID, 1) to
Pi.
Update Profile : Upon receiving (UPD, prof, roles) from Pi, verify Pi 2 P. If
prof = GID, check if Pi 2 G[GID]. If yes, send (tx = UPD, Pi,GID) to A and
do bu↵er = bu↵erktx. Else ignore the message. If prof = resi, and (Pi, ·) /2
LOCKS[RID] for some RID and validResource(resi, Pi) = 1, update P as P [
{(Pi, resi)} and remove other instances of Pi 2 P. Send (tx = UPD, Pi, resi) to
A and do bu↵er = bu↵erktx.
PreRequest : Upon receiving (PRE-REQ, GID, res, RID) from Pi

1. Check that Pi 2 G[GID]. If not, ignore.
2. Add T [RID] = (Pi, res, ;).
3. Initialize LOCKS[RID] = ; and TIMER[RID] = 0.
4. Send (tx = PRE-REQ, (RID, res,GID)) to the A and do bu↵er = bu↵erktx.
Interest : Upon receiving (INTRST,RID) from some supplier Pj :
1. Check if (res 2 T [RID]) ⇢ resj

2. If yes, send (tx = INTRST,RID, Pj) to A and do bu↵er = bu↵erktx.
Request : Upon receiving (REQ, (RID, [designj ]j2bidders,GID, bidders)) from Pi

1. Check Pi 2 T [RID] and Pi 2 G[GID]
2. Update T [RID] = (P, res, bidders)
3. Send (tx = REQ,RID,GID, bidders) to A and do bu↵er = bu↵erktx.
4. For each Pj 2 bidders, send (REQ,RID, designj).
Bidding : Upon receiving (BID, (RID, bidj)) from Pj

1. Check canServe(RID, Pj , state, LOCKS) = 1 If yes,
2. Send (tx = BID, (RID, Pj)) to A and (BID, (RID, Pj , bidj)) to Pi. Send TIME

to GrefClock to receive currTime. Set TIMER[RID] = currTime.
3. Add (Pj ,RID, res) to LOCKS

Match : Upon receiving (WINNER,RID,GID, P ⇤) from Pi

1. Check that Pi 2 T [RID] and that it belongs to G[GID]
2. For each (Pj ,RID, ·) 2 LOCKS[RID], delete (Pj ,RID, ·) from LOCKS[RID].

Send TIME to GrefClock to receive currTime. Set TIMER[RID] = currTime.
3. Send (tx = WINNER,GID,RID, P ⇤) to A and do bu↵er = bu↵erktx
Fulfillment from customer: Upon receiving tx = (RFILL,RID,GID) from
Pi:
1. Check that Pi 2 T [RID] and that it belongs to G[GID]
2. Send tx = (RFILL,RID,GID) to A and do bu↵er = bu↵erktx
Fulfillment from supplier: Upon receiving tx = (SFILL,RID) from Pi:
1. Send TIME to GrefClock and receive currTime. Set TIMER[RID] = currTime

2. Delete (Pi,RID, ·) from LOCKS[RID].
3. Send SFILL,RID to A and do bu↵er = bu↵erktx
Read : Upon receiving (READ) from Pi return state to Pi

Update State : Upon receiving (UPDATE, tx) from A: Delete tx from bu↵er.
Update state = statektx.
Unlock resources on time-out :
1. If currTime� TIMER[RID] > MatchTime, then delete (Pi,RID, ·) from

LOCKS[RID]
2. For RID if there exist WINNER message and no RFILL message and

currTime� TIMER[RID] > FulfillTime, then delete all (Pi, ·) from
LOCKS[RID] and LOCKS[RID]

Fig. 2. An ideal functionality for private matching

FPrivateMatch
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Auxiliary functionalities We will use several building blocks such as anonymous
signatures, registration authority, ledger, etc. in our protocols. We describe them
briefly:
Clock functionality. GrefClock (defined in [8]) captures a global reference clock.
When queried with (TIME) command it returns currTime to the calling entity.
This functionality provides an abstract notion of time and only the environment
Z can update it. Parties do not use this function, only FPrivateMatch uses this
functionality as a sub-routine. This functionality is a simple counter that is
incremented by the environment. For our protocols we only require such an
incrementing counter. Alternatively one can also assume that time is realized
with respect to block height. For example, a supplier’s resources may be locked
for k blocks where k is a parameter of the system.
Group signature functionality. Ggsign (defined in [2]) provides an interface
of gSETUP, gJOIN,GKGen, gENROLL, gSIGN, gVERIFY, gOPEN, gGET. There are two
types of players associated to the functionality. The group manager GM and
the set of parties. The functionality allows a party Pj to join the group (using
gENROLL) only if the GM gives the approval. After joining Pj can ask the ideal
functionality to generate signatures (using gSIGN) on behalf of the group. A party
Pl can ask the ideal functionality to de-anonymize (“open” a certain signature
(using gOPEN), and the Ggsign will do so if allowed by GM. An instance of the
functionality for group with identifier GID is denoted as Ggsign[GID].
Registration functionality. Greg described in Fig 3 abstracts the registration
process. Command REG allows parties to join the system without any role, that
they can later update using the UPD command. Greg verifies if the party is eligible
for this update by evaluating predicate ValidReg , and if so it returns a certificate
cert. Any party verify that a cert is valid by sending a VERIFY command.

This functionality is parameterized by a function ValidReg and maintains a list LREG

– Upon receiving (REG, roles) from a party Pi send (Pi, roles) to A and get back certi.
Store (Pi, roles, certi) in LREG.

– Upon receiving (UPD, prof, roles) from a party Pi, check if ValidReg(Pi, prof, roles) = 1.
If yes, send (Pi, prof, roles) to A and get back certi. Update entry (Pi, roles, ·) in LREG,
with (Pi, roles, certi).

– Upon receiving (VERIFY, cert⇤, P⇤
, roles) from a party Pi or a functionality F , check if

(P⇤
, roles, cert

⇤) exists in LREG. If yes, return 1 else 0.
ValidReg(Pi, prof, roles):
– If prof = GID and “customer” 2 roles, send gGET to Ggsign[GID] to receive D. If Pi 2 D,

output 1.
– If prof = res and “supplier” 2 roles, check validResource(Pi, res) = 1. If yes, return 1.

Fig. 3. The registration functionality

Greg

Smart Ledger functionality. The smart-ledger functionality Gsmartchain ab-
stract the operations of a shared ledger where transactions are validated and
then added to the ledger. The ledger is denoted by the global state state that all
parties can read. Upon receiving a transaction from a party, the Gsmartchain func-
tionality first validates (see Fig 8) the transaction and then adds the transaction
to the state.

The functionality is parameterized by a ValidateTxn function (defined in Fig 8). The
functionality maintains a global state.
Validate transactions : Upon receiving tx from a party Pi. If ValidateTxn(tx) = 1 , do
state = statektx. Else ignore.
Read : Upon receiving READ from a party Pi, return state.

Fig. 4. The Gsmartchain functionality

Gsmartchain

10



3 The PrivateMatch Protocol

In this section we provide a detailed description of our PrivateMatch, and prove
that securely realizes the ideal functionality FPrivateMatch. We describe our proto-
col using the UC formalism below:
Protocol Overview. The protocol PrivateMatch uses the ideal functionalities
Greg, Ggsign [2] and Gsmartchain described above. Parties create and send transactions
to the Gsmartchain functionality. If valid, the transaction is added to a global state
that can be read by any party.

Upon receiving command I from the environment Z the customer does the following:
Register If I = REG

1. Send (REG, [roles]) to Greg and receive cert. Send (tx = REG, (Pi, cert)) to Gsmartchain and
receive (ACCEPTED, b).

2. Create keys : Generate encryption keys (Enc.pki, Enc.ski) Enc.KGen(1�) and

signature keys (Sig.vki, Sig.ski) Sig.KGen(1�). Publish (Sig.pki, Enc.pki)
Customer : Join group If I = (gJOIN,GID), send (gENROLL) to Ggsign[GID] and receive
back bit b.
Update profile If I = (UPD, prof, roles)
1. As supplier : Send (UPD, resi, [roles]) to Greg and receive cert. Send

(tx = (UPD, (Pi, cert))) to Gsmartchain and receive (ACCEPTED, b)
2. As customer : Send (UPD,GID, [roles]) to Greg. Receive cert and send

(tx = (UPD, (Pi, cert))) to Gsmartchain and receive (ACCEPTED, b)

Fig. 5. Registration and Updates

Registration and Profile Updates

Registration and profile updates. Before participating in the protocol, par-
ties must register with the system by invoking the Greg functionality and receiv-
ing a certificate cert. The party then prepares a transaction with the certificate
and its identity tx = (REG, (Pi, cert)) and sends it to the Gsmartchain functionality
who updates state. Once registered, a party updates its profile as a customer or
supplier (or both). To join a group GID, the party sends gENROLL command to
Ggsign[GID]. The party’s profile is then updated using the UPD interface of Greg.
Similarly the party uses the UPD interface to update its profile as a supplier.
Request for service. To request resources for an implementation of design
the customer first prepares an anonymous PRE-REQ transaction (signed under
its group GID) which only includes the resources (denoted res) it would require.
Suppliers who are interested in fulfilling this request, send an INTRST transac-
tion, which includes an encryption key pk

j
The customer then picks a set of

suppliers from the interested set of suppliers and creates the REQ transaction,
where the design is encrypted (denoted Cd) with a fresh key kRID. The key kRID

is then encrypted (denoted C
j

key
) under the public keys (pk

j
) of the interested

suppliers. Lastly, an encryption pkbid is also included that will be used by the
suppliers to encrypt their bid values. As described earlier, we chain transac-
tions for the same RID using puzzles. Hence, every transaction from the cus-
tomer for a specific RID contains the output hash of a collision-resistant hash
function (CRHF), and any follow up transaction must contain the pre-image
of hash. This is done to ensure that the same group member in the group is
continuing the protocol. Specifically the transaction is (REQ, (GID, (RID, pkbid,
{Cj

key
}j2bidders, Cd, hash1, nonce0),�)). Note that the design is encrypted and can

be decrypted only by the chosen suppliers.
Bidding and matching. To bid on a request, a supplier first decrypts the
encrypted keys to retrieve the symmetric key kRID with which they decrypt
the ciphertext and get the design. The supplier then encrypts its bid using the
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public key pkbid, and send BID transaction containing the encrypted bid, where
BID = Sigski((RID, Cbid)). Since the bid is encrypted under the pkbid, only the
customer can learn the bid value of the supplier. The Gsmartchain functionality
locks the resources of the bidders at this point. The customer then decrypts the
encryptions to get the bids, perform its local decision to select a winner, and
finally creates a transaction (WINNER) that includes P

⇤ which is the identity of
the winner. Once confirmed, the resources of the suppliers that were not selected
as winner are unlocked.

Pre-request If I = (PRE-REQ,RID, res)
1. Sample nonce0  {0, 1}� and compute hash0 = H(nonce0kRID)
2. Send (gSIGN,GID, (hash0, res,RID)) to Ggsign[GID] and receive back �. Send

tx = (PRE-REQ,GID, ((hash0, res,RID),�)) to Gsmartchain and receive (ACCEPTED, b)
Request If I = (REQ,RID, design, bidders)
1. Generate design encryption key kRID  PrivKGen(1�). Encrypt design:

Cd  Enc(kRID, design).

2. For each Pj 2 bidders - create C
j
key
 Enc(pkj , kRID)

3. Generate bid encryption keys (pk
bid

, sk
bid

) KGen(1�). Sample nonce1  {0, 1}� and
compute hash1 = H(nonce1kRID).

4. Send (gSIGN,GID, (RID, pk
bid

, {Cj
key

}j2bidders, Cd, hash1, nonce0)) to Ggsign[GID] and

receive �. Send tx = (REQ, (GID, (RID, pk
bid

, {Cj
key

}j2bidders, Cd, hash1, nonce0),�)) to

Gsmartchain and receive (ACCEPTED, b)
Match If I = (WINNER,RID, P

⇤)

1. Retrieve set of encrypted bids {RID, C
j
bid

}j2bidders from state

2. Compute bidj = Dec(sk
bid

, C
j
bid

). Ignore, if decryption fails.

3. Sample nonce2  {0, 1}� and compute hash2 = H(nonce2kRID)
4. Send (gSIGN,GID, (hash2, nonce1,RID, P

⇤)) to Ggsign[GID] and receive �. Send
tx = (WINNER, (GID, (hash2, nonce1,RID, P

⇤),�)) to Gsmartchain and receive (ACCEPTED, b)
Fulfilling If I = RFILL

1. Send (gSIGN,GID, fulfill) to Ggsign[GID] and receive �. Send tx = (RFILL, (GID, fulfill,�))
to Gsmartchain and receive (ACCEPTED, b)

Fig. 6. Customer protocols

Customer: requesting and matching

Interest If I = (INTRST,RID)
1. Read PRE-REQ message from state with RID.
2. Create interest message (RID, pki) and create a signature � = Sig

ski
(RID, pki).

3. Send (INTRST, ((RID, pki),�)) to Gsmartchain and receive (ACCEPTED, b)
Bid If I = (BID, bid)

1. From state get (RID, pk
bid

, {Cj
key

}j2bidders, Cd, hash1, nonce0)

2. Ignore if i /2 bidders. Else compute k
⇤
RID

= Dec(ski, C
i
key

) and compute

design
⇤ = Dec(kRID, Cd).

3. Encrypt bid as Cbid = Enc(pk
bid

, bid). Send (BID, Sig
ski

((RID, Cbid))) to Gsmartchain and

receive (ACCEPTED, b)
Fulfill If I = SFILL

1. Create � = Sig
ski

(SFILL, CdeliveryPrf ,RID).

2. Send (SFILL, (RID,�)) to Gsmartchain and receive (ACCEPTED, b)

Fig. 7. Supplier protocols

Supplier: interest, bid, fulfill and dispute
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Unlock Resources As is done in FPrivateMatch.
Validate registration and updates If tx = (REG, v, cert, roles) or (UPD, v, cert, roles),
send (VERIFY, cert, P, roles) to Greg. Output the bit returned.
Validate pre-request If tx = (PRE-REQ,m,�) from a party Pi, send (gVERIFY,m,�) to
Ggsign[GID]. Output the bit returned.
Validate interest : Upon receiving (INTRST,m,�) from a party Pi, check
Sig.Vrf(vki,m,�) = 1. If res ⇢ resi, retrun 1.
Validate request : If tx = (REQ,m,�) Send (gVERIFY, (m,�)) to Ggsign[GID]. If 1 re-
turned, check VrfSame(m, state) = 1, if yes, return 1.
Validate bid: If tx = (BID,m,�) Check Sig.Vrf(vki,m,�) = 1. Get RID from m

and check canServe(Pi, state,RID, LOCKS), add (Pi,RID, res) to LOCKS[RID], update
TIMER[RID] = currTime and return 1.
Validate Match: If tx = (WINNER,m,�) send (gVERIFY,m,�) to Ggsign[GID]. If 1 returned,
check VrfSame(m, state) = 1, if yes, return 1. Let P

⇤ be the winner according to m and
res be the resource for RID. For all Pj 6= P

⇤, remove (Pj , ·) from the LOCKS[RID] and
update TIMER[RID] = currTime

Validate requester fulfill : If tx = (RFILL,m,�), check VrfSame(m, state) = 1. If yes ,
send (gVERIFY,m) to Ggsign[GID]. If 1 returned, output 1.
Validate supplier fulfill : If tx = (SFILL,m,�): Get RID from m. Check Sig.Vrfvki

(m).
If yes, then return 1, and remove (Pj , ·) from LOCKS

Function VrfSame(m, state): Retrieve noncei from m. If 9hashi 2 state s.t. hashi =
H(noncei), output 1, else output 0.
Function canServe checks if the supplier has su�cient unlocked resources to serve the
customer.

Fig. 8. The validation function

Function ValidateTxn

3.1 Security Proof

Theorem 1. (Security in Presence of Malicious Customers) The protocol
PrivateMatch UC realizes the FPrivateMatch ideal functionality in the Ggsign,Greg,Gsmartchain-
hybrid world assuming collision-resistant hash functions [15], secure “special”
symmetric key encryption [20], EUF-CMA signature [15], secure commitment
schemes [15] and CPA-secure encryption [15] in the presence of a PPT adver-
sary that corrupts a subset of the customers .

Proof. In order to prove UC security we show that there exists a simulator
interacting with FPrivateMatch that generates a transcript that is indistinguish-
able from the transcript generated by the real-world adversary running protocol
PrivateMatch. We give a high-level description of the simulator Sr and give an
intuition why security is guaranteed. We present detailed proofs in the full ver-
sion of the paper [21]. For a PRE-REQ command, the simulator only receives the
GID and not the identity of the party calling the PRE-REQ command. The sim-
ulator simulates the Ggsign functionality and records the message-signature pair
without the identity of the party. This guarantees anonymity within the group
GID. For the REQ command, the simulator encrypts 0 instead of design. By CPA
security of the encryption scheme the simulation is indistinguishable from the
real-world and thus we achieve service confidentiality. The simulator aborts
if it is able to create a REQ transaction that corresponds to the RID of an honest
user. This occurs with negligible probability since we use CRHF and thus we
guarantee requester soundness. For the BID command the simulator encrypts
0 instead of the bid value to get bid confidentiality. In the case of a malicious
customer, the simulator simulates a key-exchange and sends an encryption of 0
to the customer instead of encryption of its secret key.

Theorem 2. (Security in Presence of Malicious Suppliers) The protocol
PrivateMatch UC realizes the FPrivateMatch ideal functionality in the Ggsign,Greg,Gsmartchain-
hybrid world assuming collision-resistant hash functions [15], EUF-CMA signa-
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ture [15], secure commitment schemes [15] and CPA-secure encryption [15] in
the presence of a PPT adversary that corrupts a subset of the suppliers.

Proof. Like the malicious requesters case we need to show that there exists
a simulator (Ss) interacting with FPrivateMatch that generates a transcript that
is indistinguishable from the transcript generated by the real-world adversary
running protocol PrivateMatch. For an INTRST transaction from a corrupt Pi,
the simulator aborts with UnforgeabilityError if the signature corresponds to that
of an honest party. By the unforgeability property of the signature schemes, this
abort occurs with negligible probability. Moreover, when the command is sent
to the FPrivateMatch functionality, it checks the supplier is capable of fulfilling the
request. This guarantees the supplier completeness property

Remark on fairness. We do not tackle the problem of fairness or disputes in
this work and consider it out of scope. There are numerous dispute resolution
solutions in the literature [12] [16] and we claim that an appropriate technique
could be used in our setting as well.
Implementing auxiliary functionalities. We present some intuition on how
to realize the auxiliary functionalities - Greg: Verification of identity can be done
with systems like CanDID [22] that allows parties to port credentials from legacy
systems (e.g. social security numbers) whereas verifying resources of suppliers
may be done by some external auditing agencies. Ggsign: We use the Ggsign func-
tionality as defined in the work by Ateniese et al. [2] and the protocol realizing
this functionality is presented in Section 5 of [2]. This protocol has a single
group manager(GM) which goes against the spirit of a decentralized setting.
One can replace the GM with multiple managers that enable threshold group
signatures. 2 [4] present a fair traceable group signature scheme that allow spe-
cific fairness authorities to open signatures where the group manager encrypts
the identity of the party under the pk of the fairness authorities, and to open,
the fairness authorities run a threshold decryption protocol. Similarly [6, 11]
present protocols for distributed tracing using tag-based encryption to open the
signatures of parties.

4 Implementation and evaluation

Our implementation framework for PrivateMatch focuses on (i.) transactional
behavior that captures general marketplace business logic e.g., requesting for
quotes, bidding, etc; (ii.) transaction anonymity using group signatures.

We introduce new blockchain transaction types into an open-source blockchain
platform that is amenable to the desired extensions. BigchainDB [23] is a blockchain
database that possesses blockchain characteristics. Its architecture involves a
fixed set of nodes - validators, and is Byzantine Fault Tolerant (BFT) (up to a
third nodes may fail). Its key architectural components include Tendermint [19]
(for consensus), the BigchainDB Server (for syntactic and semantic validation
of transactions), and a local MongoDB [1] database (for blockchain storage) on
every validator node.
Extending BigChainDB’s Transaction Model. BigChainDB allows transfer
of assets, and its transaction model is a “declarative”, attribute/key-value model.

2 In threshold group signatures, a signature can be de-anonymized only if a threshold
of managers all agree to perform de-anonymization
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We refer to our extension of BigChainDB as SmartChainDB. SmartChainDB ex-
tends the validator algorithms in BigChainDB according to the ValidateTxn. We
implement “locking” of resources as a transfer of resources to an “escrow” ac-
count (a designated non-user account used for holding resources). To release
the resources, the validators issue a transaction back to the owner. Note that
SmartChainDB is deployed as a network of its own with the validators running
new validation algorithms. They run the same consensus algorithms (Tender-
mint) and are incentivized to do as in BigChainDB
Extending BigChainDB’s Privacy Model. We enable parties to use group
signatures [5] instead of regular Ed25519 signatures provided by BigChainDB’s
library. The core building block of this scheme is a re-randomizable signature
scheme (Pointcheval-Sanders scheme from [27]) and implemented in [13]. Our
implementation is in Rust and uses python-based Cherrypy server as a wrapper
to call the Rust cryptographic functions as a service.

The objective of our evaluation of SmartChainDB was twofold: (i.) verify
that the newly introduced transaction types can support simulated marketplace
workloads under reasonable performance bounds and (ii.) that the overhead of
the group signature implementation did not deem the protocol impractical

Experimental Setup We set up a private test network on 16 machines
with an Intel Westmere E56 Quad-core 3.46 GHz CPU, 8 GB memory, running
64-bit Ubuntu with kernel v4.15.0. We set up 12 validator nodes, with each
node running its SmartchainDB server, Tendermint v0.31.5, and MongoDB v3.6
instances. For workload simulations, we set up the driver on 4 VM instances,
running the customer and supplier code to trigger di↵erent transaction types.
The drivers produce 80-100 transactions per second and send them to the val-
idator nodes. The CREATE and TRANSFER (available in the vanilla BigChainDB
implementation) transactions are evaluated under the same workload.

Latency Overhead We measure the commit latency ( time between a val-
idator node receiving a transaction and its commit into the blockchain. We
compare the PRE-REQ and REQ with CREATE transactions because those trans-
actions are semantically closest. Similarly, the vanilla TRANSFER transaction is

Fig. 9. Performance Comparison of
Transactions

Mean Median Std. Dev
gSIGN ( [5] + [28]) 9.77 9.65 0.92
BigchainDB Sign 0.75 0.52 0.84

gVERIFY ( [5] + [28]) 11.13 11.03 0.30
BigchainDB Verify 1.00 0.76 0.64

Fig. 10. Comparing group signatures
and BigchainDB signatures (ms)

similar to INTRST and BID transaction. Figure 9 shows the average commit la-
tency for every transaction types under the workload discussed above. The blue
bars are for the native transactions and the orange ones for the new transac-
tions. Overall, the results show the expected trend with the newer, more complex
transactions having higher latency than their traditional ”counterparts” due to
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the required additional validation overhead. In practical terms, these latency
di↵erences can be considered as a relatively minor trade-o↵ for supporting more
involved market-place events. Note that, these experiments were carried out in
the non-private and non-anonymous settings, where we do not consider group
signatures, encryptions, etc. Finally for the group signatures, we measure the
time taken to sign and verify messages using our implementation of group sig-
natures with the signature scheme used in BigchainDB (eddsa-sha512). We ran
200 sign and verify algorithms and observe that the group signature signing and
verification take 10⇥ that of regular signatures.

5 Conclusion and Future Work

In this paper we present a protocol for decentralized private interactive matching
and prove that it is UC secure. We also extend an existing blockchain database
system (BigChainDB) to implement private matching by introducing new trans-
actions

An interesting future direction would be to enhance the privacy of the request
that is sent by the customer to the suppliers. This may be achieved using tech-
niques such as fully homomorphic encryption or garbled circuits. Another future
direction would be to specify protocols and transactions for dispute resolution
for the SmartChainDB system.
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