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ABSTRACT: Covalent labeling mass spectrometry allows for protein structure elucidation via covalent modification and identifi-
cation of exposed residues. Diethylpyrocarbonate (DEPC) is a commonly used covalent labeling reagent that provides insight into
structure through the labeling of lysine, histidine, serine, threonine, and tyrosine residues. We recently implemented a Rosetta algo-
rithm that used binary DEPC labeling data to improve protein structure prediction efforts. In this work, we improved on our model-
ing efforts by accounting for the level of hydrophobicity of neighboring residues in the microenvironment of serine, threonine, and
tyrosine residues to obtain a more accurate estimate of the hydrophobic neighbor count. This was incorporated into Rosetta func-
tionality, along with considerations for solvent exposed histidine and lysine residues. Overall, our new Rosetta score term success-
fully identified best scoring models with less than 2 A root-mean-squared deviations (RMSDs) for five of the seven benchmark
proteins tested. We additionally developed a confidence metric to measure prediction success for situations in which a native struc-

ture is unavailable.

INTRODUCTION

Knowledge of protein structure can enable understanding
and manipulation of protein function. While techniques exist
to explicitly determine protein structure, experimental limita-
tions can impede structure elucidation. With low sample
amount requirements, no size limitations, and no crystalliza-
tion requirement, structural mass spectrometry (MS) is a valu-
able experimental technique that can provide insight into pro-
tein structure in the absence of higher resolution
information.(1-3) Covalent labeling MS (CL-MS) employs
reagents that covalently modify proteins in solution to glean
structural and topological information, particularly solvent
exposure for modified residues.(1) Some CL-MS experiments
include hydroxyl radical protein footprinting, trifluorometh-
ylation, carbenes, and diethylpyrocarbonate (DEPC)
labeling.(1,2,4,5) DEPC is a commercially-available labeling
reagent that produces a single product with +72.021 Da mass
addition during the covalent modification of the protein N-
terminus, Cys, Lys, His, Ser, Thr, and Tyr.(4,6-8) Knowledge
of DEPC-labeled and unlabeled residues coupled with compu-
tational methods can be wused for protein structure
elucidation.(9)

Computational methods in combination with MS and other
experimental data have been previously shown to support pro-
tein structure prediction efforts across different modeling plat-
forms.(9-20) Hydrogen-deuterium exchange (HDX) data from
MS and nuclear magnetic resonance and chemical cross-
linking (XL) data have been used for successful protein mod-
eling.(21-26) XL data provides insight into spatial proximity
of residues, while HDX data can be used to infer solvent expo-

sure of modified resides.(1) CL-MS data provides several ad-
vantages for structural modeling over XL and HDX data due
to inherent advantages in the data. CL-MS employs irreversi-
ble labeling with reagents to target a variety of residue types
that can be more precisely confirmed at the residue level dur-
ing data analysis. Identifying cross-linked sites in XL is more
challenging, and the surface distance restraints provided by
XL are associated with high uncertainty. As commonly ap-
plied, HDX does not provide residue-level information and is
prone to back exchange during MS analysis, often resulting in
the loss of structural information.(4) Rosetta is a molecular
modeling suite that can be used to examine structure predic-
tion via generation of ab initio and homology models.(11,27-
29) Functionality within Rosetta also exists to examine solvent
exposure of protein models, which can be used to aid in struc-
ture prediction.(21,22) Additionally, Rosetta has been a suc-
cessful venue for incorporation of MS data, including CL-MS
data, into protein structure prediction efforts, allowing sparse
experimental data to guide modeling when atomic-resolution
structure elucidation methods fall short.(1,9,10,12,13,24-
26,30-35)

Previously, we incorporated the first DEPC-guided Rosetta
score term based on the labeling sensitivity of Ser, Thr, and
Tyr (STY) residues to a hydrophobic microenvironment and
based on solvent exposure of His and Lys residues.(9) Labeled
and unlabeled STY residues with low relative solvent accessi-
ble surface area (SASA) were rewarded based on the number
of hydrophobic neighbors. Labeled residues with more hydro-
phobic neighbors and unlabeled residues with fewer hydro-
phobic residues were rewarded based on our previous work
that indicated neighboring hydrophobic residues promoted an



increased local concentration of DEPC and thus facilitated
labeling.(8) Overall, we demonstrated that modeling guided by
DEPC led to improved structure prediction with both ab initio
and homology modeling, as the best scoring model root-mean-
square deviation (RMSD) improved with score term usage.
Here, we sought to build upon this previous work by account-
ing for the level of hydrophobicity of neighboring residues
within the microenvironment. By using the normalized hydro-
phobicity of residues to dictate their contribution to the hydro-
phobic neighbor count (HNC), we have identified a more dis-
tinct difference in HNC distributions for labeled and unlabeled
residues. This guided the development of a label status-based
score term, depc_hydrophobicity, that combined the solvent
exposure rewards for labeled His and Lys residues with the
HNC rewards for STY residues based on the proximity of
hydrophobic neighbors within the residue microenvironment.
In a benchmark test of our algorithm, we used DEPC data for
seven proteins of known structure to guide modeling. We
identified accurate atomic detail in the best scoring models of
five of the seven proteins using both ab initio and homology
model sets.

METHODS
Benchmark Set of Proteins with DEPC Labeling Data

Our benchmark set consisted of seven proteins, including
myoglobin (PDB 1DWR, 152 residues), human growth hor-
mone (HGH, PDB 1HGU, 191 residues), B2-microglobulin
(B2m, PDB 1JNJ, 100 residues), ubiquitin (PDB 1UBQ, 76
residues), carbonic anhydrase (PDB 1V9E, 259 residues), su-
perfolder green fluorescent protein (sfGFP, PDB 2B3P, 244
residues), and lysozyme (PDB 2LYZ, 129 residues). Experi-
mental data collection for myoglobin(8), B2m(8), ubiquitin(8),
lysozyme(36), HGH(8), and carbonic anhydrase(37) has been
described and published previously, with DEPC labeling status
data for His, Lys, Ser, Thr, and Tyr residues for each
protein.(9) Experimental data for sfGFP has been included in
Table S1.

Benchmark protein ab initio and homology model genera-
tion

For all seven benchmark proteins, 3mer and 9mer fragments
were generated using the Robetta fragment server based on the
amino acid sequence of the proteins deposited in the Protein
Data Bank.(38) Ab initio sets of 10,000 models per benchmark
protein were generated with the Rosetta AbinitioRelax proto-
col using the fragment libraries and FASTA sequences. Mod-
els were scored with the Rosetta Energy Function 15 (Refl5)
and ranked by score. Alpha carbon root-mean-square deviation
(RMSD) values were calculated in Rosetta during scoring by
providing the crystal structure. As such, residues that were not
resolved in the crystal structure were not modeled and not
included in RMSD calculations. The crystal structures were
used exclusively for RMSD calculations. The best RMSD
model generation was considered as a metric for homology
modeling: if a model set’s best RMSD model generated had an
RMSD of larger than 5 A, homology modeling was pursued
for model distribution generation.

Rosetta’s Comparative Modeling protocol was employed for
homology model production for carbonic anhydrase, lyso-
zyme, HGH, and sfGFP.(28) Five templates (Table S2) per
benchmark protein with different sequence identities (23%-
91%) and coverages (52%-100%) were used for generation of
3,500 models per template. Homology models were relaxed

with the Rosetta Relax application prior to scoring with Refl5
and calculating RMSDs.(39)

Hydrophobicity Contribution in Hydrophobic Neighbor
Counts

Hydrophobic neighbor count (HNC) was calculated for la-
beled and unlabeled STY residues from benchmark protein
crystal structures by a custom Python script that utilized pre-
viously published normalized hydrophobicity values.(40) The
HNC used a gradual contribution method, meaning that the
contribution to the HNC increased as the distance between the
STY residue of interest and the hydrophobic neighbor de-
creased. The distances (dist;) between the beta carbons of hy-
drophobic residues (j) and the hydroxyl oxygens of STY resi-
dues (i) were determined and factored into the HNC, as shown
in Eq 1.

HNC; =

# hydrophobic neighbor residues 1

T X 1.XX
Zl #J <1+exp(2 x (dist;j—8 A)) >
Eq. 1

The contribution of a particular hydrophobic neighbor was
multiplied by a factor of 7.XX, in which XX represented the
normalized hydrophobicity of the residue.(40) The multiplica-
tion factors were 2.00 for Phe, 1.99 for Ile, 1.97 for Trp and
Leu, 1.63 for Tyr, and 1.41 for Ala. Based on DEPC molecule
dimensions, an HNC midpoint value (8 A) and steepness (2.0)
were employed to maximize the HNC of hydrophobic residues
within 6 A.(8) The total contribution was calculated by sum-
ming all the hydrophobic neighbor contributions relevant to
the STY residue. Additionally, we previously explored data
accuracy and the tolerance towards false negatives in a cova-
lent labeling data set. We found that such data sets can ac-
commodate 35% false negative data points without losing their
ability to meaningfully guide structural modeling, and our
dataset for this work fell within that range.(9,12)

Determination and employment of SASA

Relative SASA calculations were performed with the Roset-
ta RelSASA application. Relative SASA was defined as the
determined residue side chain SASA divided by the residue
side chain SASA from a Gly-X-Gly tripeptide.

Different SASA ranges were used for both STY residues
and labeled His and Lys (HK) residues. Labeled and unlabeled
STY residues with 30-60% relative SASA and labeled HK
residues with greater than 50% relative SASA were examined.
Within these ranges, 23 labeled STY residues, 44 unlabeled
STY residues, and 44 HK residues were included across the
seven benchmark proteins.

Scoring model agreement with DEPC labeling data

The ab initio and homology models were scored with
depc_hydrophobicity, our newly implemented score term. Our
score term rewarded models based on agreement with the la-
beling data, resulting in models that demonstrated stronger
agreement with the data receiving more favorable scores. The
DEPC-guided score term was calculated based on contribu-
tions from labeled STY residues, unlabeled STY residues, and
labeled HK residues, as shown in Eq. 2.

depc_hydrophobicity =

y# Labeled_STY 1 —1]+
i_Labeled_STY 1+9Xp(1x(hnciiLabeled,STY_S'zg))




# Unlabeled_STY 1 +
i_Unlabeled STY 1+eXp(1><(hﬂci,Unlabeled,STY—3-81))

# Labeled_HK 1
i | —1)Eq.2
< iLabeled HK 1+EXP(12X(relSASAi_Labeled_HK_O-SO)) a

For the labeled and unlabeled STY portions of the equation,
the HNC of the labeled or unlabeled STY residue, respective-
ly, was calculated within the Rosetta score term according to
Eq. 1. The labeled STY midpoint, 5.29, was the average la-
beled HNC value as calculated using the benchmark protein
crystal structures. Labeled STY residues were rewarded for
having a higher-than-average HNC, while unlabeled STY res-
idues were rewarded for having a lower-than-average HNC.
The unlabeled STY midpoint, 3.81, was the average unlabeled
HNC as calculated using benchmark protein crystal structures.
The labeled HK midpoint, 0.50, represented a relative SASA
of 50%. Labeled HK residues were rewarded for having higher
relative SASA values. The depc_hydrophobicity score was
weighted and added to the initial Rosetta score, as demonstrat-
ed in Eq. 3:

total model score = (11.0 X
depc_hydrophobicity score) + Rosetta Ref15 score Eq. 3

where a weight of 11.0 was used. Improvements from the
depc_hydrophobicity scoring protocol were evaluated by ex-
amining the best scoring model RMSD compared to scoring
with just Rosetta Refl5. Best, or lowest, scoring models were
examined because the best scoring model is thought to be the
most native-like, so improvements in the best scoring model
RMSD would indicate better model selection.

Confidence Metric

In order to assess the confidence in our modeling results, we
implemented a size-normalized score confidence metric. Ro-
setta with DEPC data scores were isolated for the best scoring
models. Scores were divided by the number of residues in the
respective benchmark protein to obtain a size-normalized
score. A lower size-normalized score corresponded to a higher
confidence prediction.

RESULTS AND DISCUSSION

Incorporation of level of hydrophobicity contribution and
parameterization of score term

The hydrophobic residue microenvironment has previously
been shown to impact DEPC labeling of STY residues, as
more hydrophobic residues were observed in the microenvi-
ronment of labeled STY residues than unlabeled STY resi-
dues.(8) In earlier efforts, we modeled protein structure based
on DEPC labeling data, but we did not account for varying
levels of hydrophobicity of neighboring residues. Here, we
hypothesized that residues with higher levels of hydrophobi-
city would further facilitate DEPC labeling. We thus sought to
determine whether accounting for the level of hydrophobicity
of neighboring residues in the microenvironment could lead to
improvements in protein structure prediction. To do this, we
examined the residue microenvironment of seven proteins for
which DEPC labeling data was available: B2m, carbonic an-
hydrase, HGH, lysozyme, myoglobin, sfGFP, and ubiquitin.
We calculated the HNC of each labeled and unlabeled STY
residue by implementing a gradual neighbor contribution
method in which the contribution of hydrophobic neighbors to
the HNC was scaled based on their distance to the STY resi-
due. The HNC was weighted by the actual normalized hydro-
phobicity of the neighboring residue. When comparing the

HNC distributions between labeled and unlabeled STY resi-
dues (Figure 1), labeled STY residues exhibited higher HNCs
than unlabeled STY residues.
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Figure 1. Comparison of relative frequencies of hydrophobic
neighbor count values for labeled and unlabeled Ser, Thr, and Tyr
residues with low to moderate exposure. Labeled residues (23)
and unlabeled residues (44) from the seven benchmark proteins
are included in the violin plot. Average, minimum, and maximum
HNCs are shown.

The average HNC for labeled STY was 5.29 and for unla-
beled STY it was 3.81, meaning that on average every labeled
STY residue had 1.5 additional hydrophobic neighboring resi-
dues as compared to unlabeled STY residues. Of the unlabeled
residues, 73% had HNC less than five. in contrast, 60% of
labeled residues had HNC greater than four. Overall, this
demonstrated that the hydrophobicity contribution incorpo-
rated into the HNC calculation led to notable HNC difference
between labeled and unlabeled STY residues while capturing
the effect of neighboring residue identity in the microenvi-
ronment.

In addition to STY residues, we aimed to account for label-
ing of His and Lys residues. Since residues with higher solvent
exposure are more likely to be exposed to a labeling reagent,
we examined the differences in relative SASAs between la-
beled and unlabeled HK residues. Figure S1 demonstrates the
comparison of relative SASA values between labeled and un-
labeled HK residues. Of 58 HK residues with 50-100% SASA
in the benchmark proteins, 44 residues were labeled while
only 14 were unlabeled. Labeled HK residues had an average
SASA of 73%, which was higher than the unlabeled average
SASA (66%). Consequently, we pursued rewarding labeled
HK residues with higher SASA values.

Implementation of DEPC-guided term led to improvements
in best scoring model RMSD

We developed a Rosetta score term in which label status,
residue microenvironment hydrophobicity, solvent exposure,
and residue type guided model scoring. HNC was calculated
for labeled and unlabeled STY residues using the level of hy-
drophobicity of the immediate microenvironment. Labeled
STY residues were rewarded for having a large number of
hydrophobic neighbors while unlabeled STY residues were
rewarded for having a small number of hydrophobic neigh-
bors. Relative SASA was calculated for labeled HK residues,
which was used to reward those HK residues with high solvent
exposure. We generated 10,000 ab initio models of all seven



benchmark proteins in order to evaluate our new term. How- Both ab initio and homology model sets were scored with

ever, for four of the benchmark proteins, the best RMSD mod- Rosetta and the new depc_hydrophobicity term to determine a
el generated was larger than 5 A, indicating that native-like total score. Score versus RMSD plots and best scoring models
models were not present within the model set. For those four aligned with the crystal structures for each benchmark protein
proteins (carbonic anhydrase, HGH, lysozyme, and sfGFP), are shown in Figure 2 for ab initio models and Figure 3 for
we pursued homology modeling using multiple templates with homology models.

varying sequence identity and coverage.
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Figure 2. (a) Rosetta score versus RMSD plots for 10,000 ab initio models of ubiquitin (orange), f2m (lime), and myoglobin (gold). Best
scoring models are denoted by a star (%). (b) Best scoring Rosetta model (color) aligned with respective crystal structure (dark grey).
RMSD is listed below the alignments. (¢) Rosetta and DEPC score versus RMSD plots for benchmark protein model sets. Best scoring

models are denoted by a star (%). (d) Best scoring Rosetta and DEPC model (color) aligned with respective crystal structure (dark grey).
RMSD is listed below the alignments.
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Figure 3. (a) Rosetta score versus RMSD plots for homology models of carbonic anhydrase (deep pink), HGH (light purple), lysozyme
(teal), and sfGFP (light coral). Best scoring models are denoted by a star (%). (b) Best scoring Rosetta model (color) aligned with respec-
tive crystal structure (dark grey). RMSD is listed below the alignments. (¢) Rosetta and DEPC score versus RMSD plots for benchmark
protein model sets. Best scoring models are denoted by a star (%). (d) Best scoring Rosetta and DEPC model (color) aligned with respec-
tive crystal structure (dark grey). RMSD is listed below the alignments. The disconnected point clouds observed for carbonic anhydrase,
lysozyme, and sfGFP are a result of using multiple templates for homology modeling. These point clouds represent similarity with particu-

lar templates employed in the homology modeling process.

Overall, scoring with the depc_hydrophobicity term consist-
ently improved the best scoring model RMSD from scoring
with Rosetta for ab initio model sets. The best scoring model
RMSD of ubiquitin improved from 2.24 A with Rosetta to
1.58 A with Rosetta and DEPC-guided scoring. Because of the
possible flexibility of the C-terminal loop of ubiquitin, it was
impossible to confirm that the best scoring model from Roset-
ta and DEPC-guided scoring indeed had better C-terminal
agreement. Improvements were also noted for f2m (from 2.43
A to 1.66 A). Myoglobin demonstrated notable changes, im-
proving from 7.11 A with Rosetta scoring to 1.78 A with Ro-
setta and DEPC scoring.

Of the homology modeling sets, consistent best scoring
RMSD improvements were also observed. HGH exhibited
improvements, with the best scoring model RMSD changing
from 4.35 A to 3.82 A. The carbonic anhydrase best scoring
model RMSD decreased from 1.10 A to 1.01 A. sfGFP had
improvement from 3.79 A with Rosetta to 3.57 A with Rosetta
including DEPC data. Finally, lysozyme improved from 0.73
A to 0.59 A. Since the crystallographic resolution for lyso-
zyme (PDB 2LYZ) was 2 A, both of these models were con-
sidered perfect predictions.

Confidence in modeling efforts was established via size-
normalized score metric

Scoring with DEPC data improved predictions for all
benchmark proteins and led to the identification of near-
native-like (< 2 A RMSD) models for five of the seven
benchmark proteins pursued. We developed a confidence met-
ric as a method to establish confidence in results when RMSD
cannot be calculated. In the absence of a native model, gener-
ally the lowest scoring model is identified as the predicted
structure, as a lower Rosetta score indicates a more energeti-
cally favorable conformation that is thought to be the most
native-like model. In the absence of experimental data in
model generation based on Monte Carlo sampling, these best
scoring models may constitute outliers such as the myoglobin
best scoring model with Rosetta Refl5 scoring. In order to
independently evaluate models predicted by our DEPC-guided
scoring approach, we implemented a confidence metric, the
size-normalized score, to test prediction accuracy in the ab-
sence of a solved structure. Depending on the system, confi-
dence can be inferred from the steepness of the point funnel
from score versus RMSD plots, where deeper funnels corre-
spond to higher confidence. However, a metric such as the
size-normalized score contributed an additional layer of confi-
dence for when funnels could not be attained due to lack of a
native structure for RMSD calculations. The size-normalized
score was determined using the top scoring model when
scored with Rosetta and DEPC data. Each model’s score was



divided by the number of residues in the respective protein. A
lower size-normalized score was considered more native-like,
thus establishing more confidence in the prediction. Figure 4
illustrates the top scoring model RMSD versus its size-
normalized score when scoring with Rosetta including DEPC
data.
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Figure 4. RMSD versus size-normalized score for best scoring
benchmark protein models when scored with Rosetta + DEPC
data. Points are labeled by protein. Models of high confidence fall
below the dotted line, and models of lower confidence appear
above the dotted line.

A size-normalized score value of -3.85 was established as
the cutoff between high and low confidence modeling, rein-
forced by the 5 perfectly predicted benchmark proteins all
having size-normalized score values less than -3.85. Two pro-
teins, HGH and sfGFP, were of lower confidence than the
remaining proteins in the benchmark set. Their best models
generated in the set had RMSDs of 3.46 A and 2.92 A, respec-
tively, and thus were correctly labeled as less accurate. The
absence of near-native, high-confidence models for HGH and
sfGFP was a direct consequence of a lack of high-quality tem-
plates available for homology modeling. Overall, the confi-
dence metric effectively confirmed the prediction accuracy
with DEPC-MS data and can be applied to systems in which
RMSD calculations are unattainable.

CONCLUSION

In an effort to further account for the effect of the residue
microenvironment in DEPC labeling, we incorporated an at-
tribute into our hydrophobic neighbor count calculation that
accounts for the normalized hydrophobicity of the neighboring
residue. HNCs were calculated for both labeled and unlabeled
STY residues and were subsequently used to guide scoring.
Labeled STY residues with higher HNC and unlabeled STY
residues with lower HNC were rewarded. Additionally, ex-
posed HK residues were rewarded. Our score term was tested
on a benchmark set of seven proteins, including 2m, carbonic
anhydrase, HGH, lysozyme, myoglobin, sftGFP, and ubiquitin.
Implementation of our DEPC data-guided score term im-
proved best scoring model RMSD for all benchmark protein
model sets, demonstrating the score term’s success with both
ab initio and homology model sets. Additionally, five of the
seven benchmark proteins had best scoring model RMSDs less
than 2 A. Our work further demonstrates the power of DEPC
labeling data in combination with computational modeling

efforts, as accounting for the level of hydrophobicity led to
improvements with structural modeling. As such, we conclude
that more hydrophobic microenvironments facilitate DEPC
labeling of STY residues.

Future work will emphasize dynamics involved in DEPC
labeling. Additionally, we aim to incorporate DEPC labeling
data into structure prediction for protein complexes.
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