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ABSTRACT: Covalent labeling mass spectrometry allows for protein structure elucidation via covalent modification and identifi-

cation of exposed residues. Diethylpyrocarbonate (DEPC) is a commonly used covalent labeling reagent that provides insight into 

structure through the labeling of lysine, histidine, serine, threonine, and tyrosine residues. We recently implemented a Rosetta algo-

rithm that used binary DEPC labeling data to improve protein structure prediction efforts. In this work, we improved on our model-

ing efforts by accounting for the level of hydrophobicity of neighboring residues in the microenvironment of serine, threonine, and 

tyrosine residues to obtain a more accurate estimate of the hydrophobic neighbor count. This was incorporated into Rosetta func-

tionality, along with considerations for solvent exposed histidine and lysine residues. Overall, our new Rosetta score term success-

fully identified best scoring models with less than 2 Å root-mean-squared deviations (RMSDs) for five of the seven benchmark 

proteins tested. We additionally developed a confidence metric to measure prediction success for situations in which a native struc-

ture is unavailable.  

INTRODUCTION 

Knowledge of protein structure can enable understanding 

and manipulation of protein function. While techniques exist 

to explicitly determine protein structure, experimental limita-

tions can impede structure elucidation. With low sample 

amount requirements, no size limitations, and no crystalliza-

tion requirement, structural mass spectrometry (MS) is a valu-

able experimental technique that can provide insight into pro-

tein structure in the absence of higher resolution 

information.(1-3) Covalent labeling MS (CL-MS) employs 

reagents that covalently modify proteins in solution to glean 

structural and topological information, particularly solvent 

exposure for modified residues.(1) Some CL-MS experiments 

include hydroxyl radical protein footprinting, trifluorometh-

ylation, carbenes, and diethylpyrocarbonate (DEPC) 

labeling.(1,2,4,5) DEPC is a commercially-available labeling 

reagent that produces a single product with +72.021 Da mass 

addition during the covalent modification of the protein N-

terminus, Cys, Lys, His, Ser, Thr, and Tyr.(4,6-8) Knowledge 

of DEPC-labeled and unlabeled residues coupled with compu-

tational methods can be used for protein structure 

elucidation.(9) 

Computational methods in combination with MS and other 

experimental data have been previously shown to support pro-

tein structure prediction efforts across different modeling plat-

forms.(9-20) Hydrogen-deuterium exchange (HDX) data from 

MS and nuclear magnetic resonance and chemical cross-

linking (XL) data have been used for successful protein mod-

eling.(21-26) XL data provides insight into spatial proximity 

of residues, while HDX data can be used to infer solvent expo-

sure of modified resides.(1) CL-MS data provides several ad-

vantages for structural modeling over XL and HDX data due 

to inherent advantages in the data. CL-MS employs irreversi-

ble labeling with reagents to target a variety of residue types 

that can be more precisely confirmed at the residue level dur-

ing data analysis. Identifying cross-linked sites in XL is more 

challenging, and the surface distance restraints provided by 

XL are associated with high uncertainty. As commonly ap-

plied, HDX does not provide residue-level information and is 

prone to back exchange during MS analysis, often resulting in 

the loss of structural information.(4) Rosetta is a molecular 

modeling suite that can be used to examine structure predic-

tion via generation of ab initio and homology models.(11,27-

29) Functionality within Rosetta also exists to examine solvent 

exposure of protein models, which can be used to aid in struc-

ture prediction.(21,22) Additionally, Rosetta has been a suc-

cessful venue for incorporation of MS data, including CL-MS 

data, into protein structure prediction efforts, allowing sparse 

experimental data to guide modeling when atomic-resolution 

structure elucidation methods fall short.(1,9,10,12,13,24-

26,30-35) 

Previously, we incorporated the first DEPC-guided Rosetta 

score term based on the labeling sensitivity of Ser, Thr, and 

Tyr (STY) residues to a hydrophobic microenvironment and 

based on solvent exposure of His and Lys residues.(9) Labeled 

and unlabeled STY residues with low relative solvent accessi-

ble surface area (SASA) were rewarded based on the number 

of hydrophobic neighbors. Labeled residues with more hydro-

phobic neighbors and unlabeled residues with fewer hydro-

phobic residues were rewarded based on our previous work 

that indicated neighboring hydrophobic residues promoted an 



 

increased local concentration of DEPC and thus facilitated 

labeling.(8) Overall, we demonstrated that modeling guided by 

DEPC led to improved structure prediction with both ab initio 

and homology modeling, as the best scoring model root-mean-

square deviation (RMSD) improved with score term usage. 

Here, we sought to build upon this previous work by account-

ing for the level of hydrophobicity of neighboring residues 

within the microenvironment. By using the normalized hydro-

phobicity of residues to dictate their contribution to the hydro-

phobic neighbor count (HNC), we have identified a more dis-

tinct difference in HNC distributions for labeled and unlabeled 

residues. This guided the development of a label status-based 

score term, depc_hydrophobicity, that combined the solvent 

exposure rewards for labeled His and Lys residues with the 

HNC rewards for STY residues based on the proximity of 

hydrophobic neighbors within the residue microenvironment. 

In a benchmark test of our algorithm, we used DEPC data for 

seven proteins of known structure to guide modeling. We 

identified accurate atomic detail in the best scoring models of 

five of the seven proteins using both ab initio and homology 

model sets. 

METHODS 

Benchmark Set of Proteins with DEPC Labeling Data 

Our benchmark set consisted of seven proteins, including 

myoglobin (PDB 1DWR, 152 residues), human growth hor-

mone (HGH, PDB 1HGU, 191 residues), β2-microglobulin 

(β2m, PDB 1JNJ, 100 residues), ubiquitin (PDB 1UBQ, 76 

residues), carbonic anhydrase (PDB 1V9E, 259 residues), su-

perfolder green fluorescent protein (sfGFP, PDB 2B3P, 244 

residues), and lysozyme (PDB 2LYZ, 129 residues). Experi-

mental data collection for myoglobin(8), β2m(8), ubiquitin(8), 

lysozyme(36), HGH(8), and carbonic anhydrase(37) has been 

described and published previously, with DEPC labeling status 

data for His, Lys, Ser, Thr, and Tyr residues for each 

protein.(9) Experimental data for sfGFP has been included in 

Table S1.  

Benchmark protein ab initio and homology model genera-

tion 

For all seven benchmark proteins, 3mer and 9mer fragments 

were generated using the Robetta fragment server based on the 

amino acid sequence of the proteins deposited in the Protein 

Data Bank.(38) Ab initio sets of 10,000 models per benchmark 

protein were generated with the Rosetta AbinitioRelax proto-

col using the fragment libraries and FASTA sequences. Mod-

els were scored with the Rosetta Energy Function 15 (Ref15) 

and ranked by score. Alpha carbon root-mean-square deviation 

(RMSD) values were calculated in Rosetta during scoring by 

providing the crystal structure. As such, residues that were not 

resolved in the crystal structure were not modeled and not 

included in RMSD calculations. The crystal structures were 

used exclusively for RMSD calculations. The best RMSD 

model generation was considered as a metric for homology 

modeling: if a model set’s best RMSD model generated had an 

RMSD of larger than 5 Å, homology modeling was pursued 

for model distribution generation. 

Rosetta’s Comparative Modeling protocol was employed for 

homology model production for carbonic anhydrase, lyso-

zyme, HGH, and sfGFP.(28) Five templates (Table S2) per 

benchmark protein with different sequence identities (23%-

91%) and coverages (52%-100%) were used for generation of 

3,500 models per template. Homology models were relaxed 

with the Rosetta Relax application prior to scoring with Ref15 

and calculating RMSDs.(39) 

Hydrophobicity Contribution in Hydrophobic Neighbor 

Counts 

Hydrophobic neighbor count (HNC) was calculated for la-

beled and unlabeled STY residues from benchmark protein 

crystal structures by a custom Python script that utilized pre-

viously published normalized hydrophobicity values.(40) The 

HNC used a gradual contribution method, meaning that the 

contribution to the HNC increased as the distance between the 

STY residue of interest and the hydrophobic neighbor de-

creased. The distances (distij) between the beta carbons of hy-

drophobic residues (j) and the hydroxyl oxygens of STY resi-

dues (i) were determined and factored into the HNC, as shown 

in Eq 1.  

HNCi =

 ∑ (
1

1+exp(2 × (𝑑𝑖𝑠𝑡𝑖𝑗−8 Å))
 ×  1. XX)

# hydrophobic neighbor residues
𝑖 ≠𝑗  

Eq. 1 

The contribution of a particular hydrophobic neighbor was 

multiplied by a factor of 1.XX, in which XX represented the 

normalized hydrophobicity of the residue.(40) The multiplica-

tion factors were 2.00 for Phe, 1.99 for Ile, 1.97 for Trp and 

Leu, 1.63 for Tyr, and 1.41 for Ala. Based on DEPC molecule 

dimensions, an HNC midpoint value (8 Å) and steepness (2.0) 

were employed to maximize the HNC of hydrophobic residues 

within 6 Å.(8) The total contribution was calculated by sum-

ming all the hydrophobic neighbor contributions relevant to 

the STY residue. Additionally, we previously explored data 

accuracy and the tolerance towards false negatives in a cova-

lent labeling data set. We found that such data sets can ac-

commodate 35% false negative data points without losing their 

ability to meaningfully guide structural modeling, and our 

dataset for this work fell within that range.(9,12) 

Determination and employment of SASA 

Relative SASA calculations were performed with the Roset-

ta RelSASA application. Relative SASA was defined as the 

determined residue side chain SASA divided by the residue 

side chain SASA from a Gly-X-Gly tripeptide. 

Different SASA ranges were used for both STY residues 

and labeled His and Lys (HK) residues. Labeled and unlabeled 

STY residues with 30-60% relative SASA and labeled HK 

residues with greater than 50% relative SASA were examined. 

Within these ranges, 23 labeled STY residues, 44 unlabeled 

STY residues, and 44 HK residues were included across the 

seven benchmark proteins. 

Scoring model agreement with DEPC labeling data 

The ab initio and homology models were scored with 

depc_hydrophobicity, our newly implemented score term. Our 

score term rewarded models based on agreement with the la-

beling data, resulting in models that demonstrated stronger 

agreement with the data receiving more favorable scores. The 

DEPC-guided score term was calculated based on contribu-

tions from labeled STY residues, unlabeled STY residues, and 

labeled HK residues, as shown in Eq. 2. 

depc_hydrophobicity =

 (∑
1

1+exp(1×(hnci_Labeled_STY−5.29))
− 1# 𝐿𝑎𝑏𝑒𝑙𝑒𝑑_𝑆𝑇𝑌

i_Labeled_STY ) +



 

 (∑
1

1+exp(1×(hnci_Unlabeled_STY−3.81))

# Unlabeled_STY
i_Unlabeled_STY ) +

 (∑
1

1+exp(12×(relSASAi_Labeled_HK−0.50)) 
− 1# Labeled_HK

i_Labeled_HK ) Eq. 2 

For the labeled and unlabeled STY portions of the equation, 

the HNC of the labeled or unlabeled STY residue, respective-

ly, was calculated within the Rosetta score term according to 

Eq. 1. The labeled STY midpoint, 5.29, was the average la-

beled HNC value as calculated using the benchmark protein 

crystal structures. Labeled STY residues were rewarded for 

having a higher-than-average HNC, while unlabeled STY res-

idues were rewarded for having a lower-than-average HNC. 

The unlabeled STY midpoint, 3.81, was the average unlabeled 

HNC as calculated using benchmark protein crystal structures. 

The labeled HK midpoint, 0.50, represented a relative SASA 

of 50%. Labeled HK residues were rewarded for having higher 

relative SASA values. The depc_hydrophobicity score was 

weighted and added to the initial Rosetta score, as demonstrat-

ed in Eq. 3: 

total model score = (11.0 ×
 depc_hydrophobicity score) + Rosetta Ref15 score Eq. 3 

where a weight of 11.0 was used. Improvements from the 

depc_hydrophobicity scoring protocol were evaluated by ex-

amining the best scoring model RMSD compared to scoring 

with just Rosetta Ref15. Best, or lowest, scoring models were 

examined because the best scoring model is thought to be the 

most native-like, so improvements in the best scoring model 

RMSD would indicate better model selection. 

Confidence Metric 

In order to assess the confidence in our modeling results, we 

implemented a size-normalized score confidence metric. Ro-

setta with DEPC data scores were isolated for the best scoring 

models. Scores were divided by the number of residues in the 

respective benchmark protein to obtain a size-normalized 

score. A lower size-normalized score corresponded to a higher 

confidence prediction. 

RESULTS AND DISCUSSION 

Incorporation of level of hydrophobicity contribution and 

parameterization of score term 

The hydrophobic residue microenvironment has previously 

been shown to impact DEPC labeling of STY residues, as 

more hydrophobic residues were observed in the microenvi-

ronment of labeled STY residues than unlabeled STY resi-

dues.(8) In earlier efforts, we modeled protein structure based 

on DEPC labeling data, but we did not account for varying 

levels of hydrophobicity of neighboring residues. Here, we 

hypothesized that residues with higher levels of hydrophobi-

city would further facilitate DEPC labeling. We thus sought to 

determine whether accounting for the level of hydrophobicity 

of neighboring residues in the microenvironment could lead to 

improvements in protein structure prediction. To do this, we 

examined the residue microenvironment of seven proteins for 

which DEPC labeling data was available:  β2m, carbonic an-

hydrase, HGH, lysozyme, myoglobin, sfGFP, and ubiquitin. 

We calculated the HNC of each labeled and unlabeled STY 

residue by implementing a gradual neighbor contribution 

method in which the contribution of hydrophobic neighbors to 

the HNC was scaled based on their distance to the STY resi-

due. The HNC was weighted by the actual normalized hydro-

phobicity of the neighboring residue. When comparing the 

HNC distributions between labeled and unlabeled STY resi-

dues (Figure 1), labeled STY residues exhibited higher HNCs 

than unlabeled STY residues. 

 

Figure 1. Comparison of relative frequencies of hydrophobic 

neighbor count values for labeled and unlabeled Ser, Thr, and Tyr 

residues with low to moderate exposure. Labeled residues (23) 

and unlabeled residues (44) from the seven benchmark proteins 

are included in the violin plot. Average, minimum, and maximum 

HNCs are shown. 

The average HNC for labeled STY was 5.29 and for unla-

beled STY it was 3.81, meaning that on average every labeled 

STY residue had 1.5 additional hydrophobic neighboring resi-

dues as compared to unlabeled STY residues. Of the unlabeled 

residues, 73% had HNC less than five. in contrast, 60% of 

labeled residues had HNC greater than four. Overall, this 

demonstrated that the hydrophobicity contribution incorpo-

rated into the HNC calculation led to notable HNC difference 

between labeled and unlabeled STY residues while capturing 

the effect of neighboring residue identity in the microenvi-

ronment. 

In addition to STY residues, we aimed to account for label-

ing of His and Lys residues. Since residues with higher solvent 

exposure are more likely to be exposed to a labeling reagent, 

we examined the differences in relative SASAs between la-

beled and unlabeled HK residues. Figure S1 demonstrates the 

comparison of relative SASA values between labeled and un-

labeled HK residues. Of 58 HK residues with 50-100% SASA 

in the benchmark proteins, 44 residues were labeled while 

only 14 were unlabeled. Labeled HK residues had an average 

SASA of 73%, which was higher than the unlabeled average 

SASA (66%). Consequently, we pursued rewarding labeled 

HK residues with higher SASA values. 

Implementation of DEPC-guided term led to improvements 

in best scoring model RMSD  

We developed a Rosetta score term in which label status, 

residue microenvironment hydrophobicity, solvent exposure, 

and residue type guided model scoring. HNC was calculated 

for labeled and unlabeled STY residues using the level of hy-

drophobicity of the immediate microenvironment. Labeled 

STY residues were rewarded for having a large number of 

hydrophobic neighbors while unlabeled STY residues were 

rewarded for having a small number of hydrophobic neigh-

bors. Relative SASA was calculated for labeled HK residues, 

which was used to reward those HK residues with high solvent 

exposure. We generated 10,000 ab initio models of all seven 



 

benchmark proteins in order to evaluate our new term. How-

ever, for four of the benchmark proteins, the best RMSD mod-

el generated was larger than 5 Å, indicating that native-like 

models were not present within the model set. For those four 

proteins (carbonic anhydrase, HGH, lysozyme, and sfGFP), 

we pursued homology modeling using multiple templates with 

varying sequence identity and coverage. 

Both ab initio and homology model sets were scored with 

Rosetta and the new depc_hydrophobicity term to determine a 

total score. Score versus RMSD plots and best scoring models 

aligned with the crystal structures for each benchmark protein 

are shown in Figure 2 for ab initio models and Figure 3 for 

homology models. 

 

Figure 2. (a) Rosetta score versus RMSD plots for 10,000 ab initio models of ubiquitin (orange), β2m (lime), and myoglobin (gold). Best 

scoring models are denoted by a star (★). (b) Best scoring Rosetta model (color) aligned with respective crystal structure (dark grey). 

RMSD is listed below the alignments. (c) Rosetta and DEPC score versus RMSD plots for benchmark protein model sets. Best scoring 

models are denoted by a star (★). (d) Best scoring Rosetta and DEPC model (color) aligned with respective crystal structure (dark grey). 

RMSD is listed below the alignments. 



 

 

Figure 3. (a) Rosetta score versus RMSD plots for homology models of carbonic anhydrase (deep pink), HGH (light purple), lysozyme 

(teal), and sfGFP (light coral). Best scoring models are denoted by a star (★). (b) Best scoring Rosetta model (color) aligned with respec-

tive crystal structure (dark grey). RMSD is listed below the alignments. (c) Rosetta and DEPC score versus RMSD plots for benchmark 

protein model sets. Best scoring models are denoted by a star (★). (d) Best scoring Rosetta and DEPC model (color) aligned with respec-

tive crystal structure (dark grey). RMSD is listed below the alignments. The disconnected point clouds observed for carbonic anhydrase, 

lysozyme, and sfGFP are a result of using multiple templates for homology modeling. These point clouds represent similarity with particu-

lar templates employed in the homology modeling process. 

Overall, scoring with the depc_hydrophobicity term consist-

ently improved the best scoring model RMSD from scoring 

with Rosetta for ab initio model sets. The best scoring model 

RMSD of ubiquitin improved from 2.24 Å with Rosetta to 

1.58 Å with Rosetta and DEPC-guided scoring. Because of the 

possible flexibility of the C-terminal loop of ubiquitin, it was 

impossible to confirm that the best scoring model from Roset-

ta and DEPC-guided scoring indeed had better C-terminal 

agreement. Improvements were also noted for β2m (from 2.43 

Å to 1.66 Å). Myoglobin demonstrated notable changes, im-

proving from 7.11 Å with Rosetta scoring to 1.78 Å with Ro-

setta and DEPC scoring.  

Of the homology modeling sets, consistent best scoring 

RMSD improvements were also observed. HGH exhibited 

improvements, with the best scoring model RMSD changing 

from 4.35 Å to 3.82 Å. The carbonic anhydrase best scoring 

model RMSD decreased from 1.10 Å to 1.01 Å. sfGFP had 

improvement from 3.79 Å with Rosetta to 3.57 Å with Rosetta 

including DEPC data. Finally, lysozyme improved from 0.73 

Å to 0.59 Å. Since the crystallographic resolution for lyso-

zyme (PDB 2LYZ) was 2 Å, both of these models were con-

sidered perfect predictions. 

Confidence in modeling efforts was established via size-

normalized score metric 

 Scoring with DEPC data improved predictions for all 

benchmark proteins and led to the identification of near-

native-like (< 2 Å RMSD) models for five of the seven 

benchmark proteins pursued. We developed a confidence met-

ric as a method to establish confidence in results when RMSD 

cannot be calculated. In the absence of a native model, gener-

ally the lowest scoring model is identified as the predicted 

structure, as a lower Rosetta score indicates a more energeti-

cally favorable conformation that is thought to be the most 

native-like model. In the absence of experimental data in 

model generation based on Monte Carlo sampling, these best 

scoring models may constitute outliers such as the myoglobin 

best scoring model with Rosetta Ref15 scoring. In order to 

independently evaluate models predicted by our DEPC-guided 

scoring approach, we implemented a confidence metric, the 

size-normalized score, to test prediction accuracy in the ab-

sence of a solved structure. Depending on the system, confi-

dence can be inferred from the steepness of the point funnel 

from score versus RMSD plots, where deeper funnels corre-

spond to higher confidence. However, a metric such as the 

size-normalized score contributed an additional layer of confi-

dence for when funnels could not be attained due to lack of a 

native structure for RMSD calculations. The size-normalized 

score was determined using the top scoring model when 

scored with Rosetta and DEPC data. Each model’s score was 



 

divided by the number of residues in the respective protein. A 

lower size-normalized score was considered more native-like, 

thus establishing more confidence in the prediction. Figure 4 

illustrates the top scoring model RMSD versus its size-

normalized score when scoring with Rosetta including DEPC 

data.  

 

Figure 4. RMSD versus size-normalized score for best scoring 

benchmark protein models when scored with Rosetta + DEPC 

data. Points are labeled by protein. Models of high confidence fall 

below the dotted line, and models of lower confidence appear 

above the dotted line. 

A size-normalized score value of -3.85 was established as 

the cutoff between high and low confidence modeling, rein-

forced by the 5 perfectly predicted benchmark proteins all 

having size-normalized score values less than -3.85. Two pro-

teins, HGH and sfGFP, were of lower confidence than the 

remaining proteins in the benchmark set. Their best models 

generated in the set had RMSDs of 3.46 Å and 2.92 Å, respec-

tively, and thus were correctly labeled as less accurate. The 

absence of near-native, high-confidence models for HGH and 

sfGFP was a direct consequence of a lack of high-quality tem-

plates available for homology modeling. Overall, the confi-

dence metric effectively confirmed the prediction accuracy 

with DEPC-MS data and can be applied to systems in which 

RMSD calculations are unattainable. 

CONCLUSION 

In an effort to further account for the effect of the residue 

microenvironment in DEPC labeling, we incorporated an at-

tribute into our hydrophobic neighbor count calculation that 

accounts for the normalized hydrophobicity of the neighboring 

residue. HNCs were calculated for both labeled and unlabeled 

STY residues and were subsequently used to guide scoring. 

Labeled STY residues with higher HNC and unlabeled STY 

residues with lower HNC were rewarded. Additionally, ex-

posed HK residues were rewarded. Our score term was tested 

on a benchmark set of seven proteins, including β2m, carbonic 

anhydrase, HGH, lysozyme, myoglobin, sfGFP, and ubiquitin. 

Implementation of our DEPC data-guided score term im-

proved best scoring model RMSD for all benchmark protein 

model sets, demonstrating the score term’s success with both 

ab initio and homology model sets. Additionally, five of the 

seven benchmark proteins had best scoring model RMSDs less 

than 2 Å. Our work further demonstrates the power of DEPC 

labeling data in combination with computational modeling 

efforts, as accounting for the level of hydrophobicity led to 

improvements with structural modeling. As such, we conclude 

that more hydrophobic microenvironments facilitate DEPC 

labeling of STY residues. 

Future work will emphasize dynamics involved in DEPC 

labeling. Additionally, we aim to incorporate DEPC labeling 

data into structure prediction for protein complexes. 
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