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Abstract 

 Knowledge of protein structure is crucial to our understanding of biological function 

and is routinely used in drug discovery. High-resolution techniques to determine the three-

dimensional atomic coordinates of proteins are available. However, such methods are 

frequently limited by experimental challenges such as sample quantity, target size, and 

efficiency. Structural mass spectrometry (MS) is a technique in which structural features 

of proteins are elucidated quickly and relatively easily. Computational techniques that 

convert sparse MS data into protein models that demonstrate agreement with the data 

are needed. This review features cutting-edge computational methods that predict protein 

structure from MS data such as chemical cross-linking, hydrogen-deuterium exchange, 

hydroxyl radical protein footprinting, limited proteolysis, ion mobility, and surface-induced 

dissociation. Additionally, we address future directions for protein structure prediction with 

sparse MS data. 

 

Introduction 

Proteins are involved in nearly every life process, making them important subjects 

for studying the molecular basis of disease. Additionally, protein structures can be 

harnessed for structure-based drug discovery with existing and designed drug-like 

molecules (1). However, a disparity currently exists between the number of known protein 

sequences and the number of determined structures. Methodologies to elucidate protein 

structure are vital to our understanding of molecular biology and for continued use in drug 

discovery. 



Multiple experimental techniques exist to determine high-resolution protein 

structure. X-ray crystallography is a popular method in which a high concentration of a 

protein target is crystalized. Then, the crystals are struck with an X-ray beam in order to 

elucidate a diffraction pattern from which atomic protein coordinates can be determined 

(2). While powerful, crystallography is rate-limited by the crystallization process, as 

ascertaining experimental conditions ideal for crystal growth can be a tedious if not 

impossible process. X-ray crystallography has historically been more successful for 

ordered and monomeric proteins. Nuclear magnetic resonance (NMR) spectroscopy is 

another high-resolution technique. It utilizes the chemical shifts of protein atoms for 

structure determination (3). It is in most cases limited to smaller proteins in order to avoid 

overlapping peaks. Cryo-electron microscopy (cryo-EM) has recently emerged as a 

promising structure determination technique that can elucidate larger, more complex 

proteins while bypassing the need for crystallization, probing the protein more 

physiological conditions (4). However, further optimization of cryo-EM methodologies is 

required to consistently determine higher resolution density maps. 

Due to the limitations of above techniques, many proteins or protein complexes 

currently evade high-resolution structure determination. Thus, additional experimental 

methods are needed to provide insight into structural features. Structural mass 

spectrometry (MS) is a powerful complementary approach that can overcome limitations 

of above-mentioned methods with its high sensitivity, theoretically unlimited size 

constraint, and speed. Although the data provided by MS are too sparse for full high-

resolution structure elucidation, structural MS can be used to examine size, solvent 

accessibility, and topography of proteins (5-7). Several MS techniques exist that can 



elucidate elements of protein tertiary and quaternary structure, including chemical cross-

linking (XL-MS) (8; 9), hydrogen-deuterium exchange (HDX-MS) (10), covalent labeling 

(CL-MS) (11; 12), limited proteolysis (13), ion mobility (IM-MS) (14), and surface-induced 

dissociation (SID-MS) (15), reviewed here (Figure 1). In chemical cross-linking, residue 

modifications provide insight into spatial proximity of modified residues. HDX-MS, CL-MS, 

and limited proteolysis data are used to infer residue solvent exposure. IM-MS data reveal 

information about the size and shape of proteins, while SID-MS is used to analyze protein 

complex connectivity and stoichiometry.  Sparse experimental data from structural mass 

spectrometry generally have to bemust be interpreted in combination with computational 

methods to elucidate protein structure. 

Computational methods have increasingly been employed to complement 

experimental techniques in order to elucidate protein structures (16; 17). As experimental 

data becomes more readily available, software packages can be employed to combine 

sparse data with advanced structure sampling and scoring techniques. A number of 

computational tools currently exist for protein structure modeling, including the Rosetta 

software suite (17; 18), I-TASSER (19), Phyre2 (20), Integrative Modeling Platform (IMP) 

(21), HADDOCK (22), and MODELLER (23). Sparse experimental data can be 

implemented during the computational modeling process or used as a filter during post 

model generation analysis. Here, we will be highlighting work that combines 

computational efforts for protein structure examination with sparse experimental data 

from MS. We will be discussing work that incorporates XL-MS, HDX-MS, CL-MS, limited 

proteolysis, IM-MS, and SID-MS experimental data into computational modeling. 

 



Chemical cross-linking 

 Chemical cross-linking (XL) utilizes reagents to chemically link two amino acids, 

particularly the side chain atoms within lysine residues, in order to assess proximity within 

a protein or within protein complexes (9). After digestion and separation via liquid 

chromatography, crosslinks can be identified via tandem MS. XL-MS experiments provide 

insight into protein structure. Residues that are distant to one another in amino acid 

sequence can be identified as being within spatial proximity. Interactions between protein 

complex subunits can also be inferred by residues that are identified as crosslinked. Only 

residues that are solvent exposed should be modified by a crosslinking reagent. As such, 

the crosslinking agent can give insight into proximity between surface residues, from 

which contact information can further be derived with computational methods that utilize 

XL-MS data. XL-MS efforts have been incorporated into the Critical Assessment of protein 

Structure Prediction (CASP) challenges to integrate high-density XL-MS data into 

prediction methods (24). 

 Kahraman and coworkers developed methodologies for applying crosslinking data 

to homology modeling, de novo modeling, and protein-protein docking (25). A database, 

XLdb, was also assembled which contained XL-MS data for individual proteins and 

protein complexes along with the corresponding protein data bank entries, providing a 

source of accessible data for the mass spectrometry and computational communities. 

Building on an earlier publication in which X-walk, a program that determines the shortest 

distance between crosslinked amino acids within solvent accessible regions (26), was 

established, distance restraints determined from XL-MS data were implemented into the 

Rosetta scoring function. The Rosetta functionality penalized models that conflicted with 



the experimental data. For instance, models with residues participating in a cross-link that 

were spatially farther apart than the spacer length of the crosslinker received a penalty. 

The distance restraints were also applied as filters to examine existing models. Overall, 

it was found that usage of the crosslinking distance restraints improved the RMSD of the 

top scoring models and improved protein-protein docking (Figure 2). Similar methodology 

was applied in work by Lössl and colleagues in which crosslinking data was used to 

determine differences in conformational ensembles and interaction modes of singular and 

interacting proteins (27). Additionally, recent work by Piotrowski and colleagues used XL 

distance restraints in combination with Rosetta to build models of calmodulin interacting 

with bMunc13-2 and then subsequently identify a unique binding mode (28). 

 XL-MS data was used in protein structure investigation of human serum albumin 

protein domains by Belsom and colleagues (29). Instead of traditional XL reagents, this 

work employed a photo-XL agent that led to increased XL data to probe the protein in 

isolation and within blood samples. Upon modeling with XL-MS data as restraints and 

residue contacts predicted with a newly developed software, serum albumin protein 

models were successfully identified with low RMSD values (3-6 Å) for both the purified 

and sample models. A similar approach was explored in work from dos Santos et al. in 

which XL-MS data along with coevolutionary information was applied to protein structure 

prediction (30). In the work, simplified models containing only alpha carbons were used 

in combination with restraints from XL-MS and coevolutionary data via direct coupling 

analysis to elucidate tertiary structure. Models were evaluated by clustering and TM-score 

for multiple proteins. Quality models were identified from the method, validating the 

effectiveness of the proposed methodology. 



 Hauri et al. used computationally determined models for a very large (1.8 MDa) 

protein complex found in human plasma in order to examine specific peptides from XL-

MS, an effort denoted as targeted chemical cross-linking MS (31). Targeted XL-MS used 

different MS acquisition techniques to discriminate between computational models of the 

protein complex modeled by Rosetta’s homology modeling protocol. Proteins from the 

complex were docked together in order to produce a collection of potential models that 

represented the quaternary structure of the complex. Models of the protein-protein 

complex that scored well with the crosslinking data were used to identify a short list of 

potentially crosslinked lysine pairs. Models then underwent a flexible backbone docking 

workflow with crosslinking data as distance restraints. Overall, the development of 

targeted XL-MS paved the way for continued improvement of quaternary structure 

prediction of highly complex systems. Recent work by Khakzad and others sought to 

elucidate another large protein complex, the membrane attack complex (32). A 

streamlined protocol for targeted XL-MS was pursued to examine the bacterial protein 

complex in human plasma. The crosslinking results were utilized to obtain a complete 

model of the complex that was corroborated with existing models from crystallography 

and cryo-EM. This work further demonstrated the applicability of XL-MS, particularly to 

complex targets from bacterial systems relevant to human disease. 

 XLFF, a force field that relied upon XL-MS restraints was applied to Rosetta’s ab 

initio protocol by Ferrari and colleagues (33). This was accomplished by determining the 

probability of identifying residues that could potentially crosslink within a nonredundant 

set of proteins from the protein data bank. The resulting probability curve was then used 

to determine a potential energy function reliant on the crosslinker length and the residues 



involved in linkage. It was observed that usage of the XLFF force field resulted in higher 

quality, more native-like models occurring within the top scoring model distributions. 

 In addition to inclusion of crosslinking data within Rosetta, software has been 

developed outside the Rosetta suite. Degiacomi and coworkers implemented a software 

tool called DynamXL to consider the implications of dynamics when modeling crosslinking 

data (34). Contrasting other methods that rely upon the beta carbon for distance 

measurements, the DynamXL algorithm employed the side chain nitrogen atom of lysine 

for distance calculations, which was suggested as more experimentally accurate and less 

computationally expensive. Additionally, the method took the flexibility of residue side 

chains into account by examining different rotamers and backbone conformations. The 

work sought to minimize the elimination of reasonable crosslinks, while simultaneously 

excluding impossible crosslinks, which led to less error when classifying cross linkages. 

Overall, application of this methodology led to improved RMSD values from protein-

protein docking, highlighting the accuracy of the implementation. 

 Recent work by Mintseris and Gygi explored high density XL-MS efforts in 

combination with IMP and Rosetta (35). The methodology was used to model carbonic 

anhydrase proteins and the yeast proteasome. To minimize computational cost, the 

implemented software reduced sampling of decoy and target peptides to minimize false 

discovery rates and simplify false discovery rate calculations. Alternative reagents that 

established crosslinks with additional residue types promoted the crosslinking density, 

thus providing better results. XL-MS data was applied to modeling of inhibitor-bound 

carbonic anhydrase via restraints applied during protein-protein docking with Rosetta. 

High-quality models were identified. Additionally, the work tackled the modeling of the 



yeast proteasome with both Rosetta and the IMP based on the XL-MS data. Coase-

grained models of the complex were elucidated, and regions were verified by existing 

cryo-EM models.    

 

Hydrogen-deuterium exchange 

 Hydrogen-deuterium exchange (HDX) is a prevalent non-specific covalent labeling 

technique in which a protein is exposed to a deuterium-rich solvent (10). Amide hydrogen 

atoms are able to exchange with deuterium atoms to label the protein backbone. After 

digestion and separation with liquid chromatography, MS can be used to identify regions 

of exchange. HDX-MS has also been used in combination with other techniques such as 

electron capture dissociation to assess hydrogen bonding configurations (36). Regions of 

the protein are more likely to be modified by HDX if the amide hydrogens are solvent 

accessible and not actively participating in a hydrogen bond. HDX data is often resolved 

to fragment level but occasionally residue-specific modifications are reported. From there, 

data can be expressed as percentage modification, rate constants, or protection factors 

(PF), all of which are routinely used as input into computational modeling to guide results 

based upon agreement with HDX data.  

 HDX-MS data has been used in combination with homology modeling, as seen in 

work from Zhang and coworkers (37). Homology modeling with MODELLER, Phyre2, and 

I-TASSER were used to model the tertiary structure of cytochrome C. HDX-MS results 

were taken into account when examining the models. Additionally, the relationship 

between HDX modification and SASA was examined to identify the best models. It was 

determined that the modeling efforts with Phyre2 demonstrated best agreement with the 



HDX-MS results, and the SASA values from this model led to a better correlation with the 

percent modification identified from HDX experiments. The results of this work effectively 

demonstrated that both HDX data and solvent exposure could be used to identify better 

homology models and to improve upon our previous understanding of the cytochrome C 

mechanism. While HDX-MS data has not been applied to ab initio modeling, HDX-NMR 

data has been recently implemented into protein structure prediction (38). 

 HDX-MS data in combination with molecular dynamics (MD) simulations were 

employed to examine empirical and fractional population models for G-protein signaling 

regulator proteins in work from Mohammadiarani et al. (39). Using long timescale MD 

simulations with AMBER and CHARMM forcefields, PFs were calculated from simulation 

frames and then compared to experimentally determined percent modification data. It was 

determined that fractional population models were more accurate and less prone to error 

than empirical models, arguing that the SASA of amide hydrogens coupled with the 

distance between the amide hydrogen and first polar atom could be used for accurate 

predictions. It was also indicated that amide hydrogen atoms could fluctuate in exposure 

over a sub 100 ps timescale. HDX-MS and MD simulations were also applied to examine 

interactions between lipids and membrane proteins such as lipid-induced conformational 

changes in proteins in work from Martens and coworkers (40). The framework developed 

in the study emphasized a multi-step protocol. After using HDX-MS to evaluate the protein 

in the presence and absence of lipids, interactions were interpreted via MD simulations 

in various bilayer conditions. The interactions identified from the simulation were then 

corroborated by experimental mutagenesis of relevant sites. The methodology presented 

in this work was suggested as a basis for further study of various lipid-protein interactions 



in membranes. Beyond this work, size-exclusion chromatography in combination with 

HDX-MS and circular dichroism were used with computational techniques such as 

homology modeling and MD simulations to examine the activity of transaminases in work 

from Makarov and others (41). The study demonstrated that the protocol could be applied 

to enzyme-directed evolution efforts.  

 Recently, Zhang and colleagues used both XL-MS and HDX-MS data to evaluate 

protein-protein docking models of interleukin 7 and its alpha receptor (Figure 3) (42). 

HDX-MS analysis was performed on free interleukin 7 and when it was bound with its 

receptor to elucidate changes in exposure. XL-MS was also applied to the system in order 

to identify residues involved in the receptor binding interface of interleukin 7. Protein-

protein docking with RosettaDock produced models of the complex and top-scoring 

models were subsequently clustered. Clustering data was analyzed for different numbers 

of crosslinks and subsequently validated by HDX data. When examining the crosslinking 

data, it was deduced that some crosslinks that suggested an interface at a particular 

region were undermined by the HDX data that implied protection at the same region, 

implying that a two-pronged approach was necessary to verify findings. Solvent exposure 

was additionally examined using SASA for identified models to determine if the models 

corroborated with regions of protection and exposure identified by HDX. Overall, this 

methodology elegantly emphasized the importance of more than one structural MS 

technique being applied to quaternary structure prediction. 

 HDX-MS data has also been applied to antibody-antigen modeling. Huang et al. 

used HDX-MS data along with electron-transfer dissociation to examine binding of the 

mAb1 antibody with a cytokine with implications in autoimmune disease (43).  SASA 



calculations and protein-protein docking provided additional insight into the antibody-

antigen binding interface. The study emphasized the importance of HDX-MS data and 

complementary computational efforts for epitope elucidation. Additionally, recent efforts 

from Jeliazkov and others were applied to the improvement of Rosetta software for 

antigen-antibody modeling, RosettaAntibody and SnugDock (44). The SnugDock feature 

relies upon flexible docking to elucidate the complementarity determining region (CDR) 

loop, indicated in antigen binding and unique amongst antibody structures, and to 

configure an adjustment of the heavy and light fragments relevant to antigen-antibody 

interactions. Restraints from HDX-MS data were used to score antigen-antibody 

complexes based on agreement with the data. When testing the HDX-MS restraints on 

an antibody-antigen complex with available labeling data, it was deduced that the HDX-

MS restraint-based methodology led to more native-like structure of the CDR loop. 

 

Hydroxyl radical protein footprinting 

 Hydroxyl radical protein footprinting (HRPF) is a non-specific CL-MS technique in 

which hydroxyl radicals can covalently modify nineteen of the twenty amino acids types 

in proteins (11). Synthesized via photolysis or radiolysis of water or hydrogen peroxide, 

hydroxyl radicals modify residues with varying degrees of reliability and reactivity, as 

indicated by a broad range of relative intrinsic reactivities (12). Rate constants for labeled 

peptide fragments and individual residues can be determined and used to calculate 

protection factor (PF), the relative intrinsic reactivity divided by the labeling rate constant 

for the particular residue. Because HRPF is more likely to occur in regions that are solvent 



exposed, residues that are more protected (higher PF) are correlated with lower solvent 

exposure, and vice versa. 

 Xie and colleagues recently examined the relationship between residue protection 

and solvent exposure using MD simulations (45). The work emphasized that 

normalization of HRPF data should be sequence-dependent, not based on standard 

values determined from free amino acids. With labeling data for myoglobin and lysozyme, 

a method was proposed in which accurate side chain SASA values are derived from 

HRPF data by normalizing labeling data based on sequence context. This was validated 

by improvements in correlation between labeling data and SASA. When examining the 

relationship between normalized PF and relative SASA, the correlation was determined 

to worsen as the relative intrinsic reactivity of the amino acids considered decreased, 

suggesting that only residues with higher intrinsic reactivity should be used in structural 

analysis based on PF. When the rate constant of a particular residue in the folded protein 

was normalized with the rate constant of the same residue in the denatured protein, the 

correlation improved for all non-sulfur-containing residues (Figure 4). A prediction 

equation that established a relationship between relative SASA and the normalized rate 

constant was determined such that relative SASA could be calculated from HRPF data. 

When the prediction equation was tested with homology models of lysozyme, it was 

observed that models with backbone RMSD less than 3 Å could be differentiated from 

models with backbone RMSD greater than 4 Å.  

 Our group has used HRPF labeling data for protein structure prediction. We used 

the relationship between the natural logarithm of PF (lnPF) and a residue exposure 

metric, spherical neighbor count, for 15 relaxed crystal structures of calmodulin as a 



prediction equation. The equation was then implemented in the first available software to 

use HRPF data for protein structure prediction (46). When tested on ab initio models for 

four benchmark proteins, the addition of our score term within the Rosetta framework led 

to improvement in the best scoring model RMSD and funnel-like quality of the score 

versus RMSD distributions. Results were further validated through use of a confidence 

metric that assessed the funnel-like quality of the score versus RMSD distribution when 

RMSD was calculated to the best scoring model. Follow-up work explored the 

incorporation of labeling data into the ab initio folding algorithm, as opposed to using it for 

model rescoring.(47) 

 More recently, we sought to improve the correlation between lnPF and neighbor 

count, as we hypothesized that accounting for side chain flexibility would improve the 

relationship (48). We utilized a conical neighbor count for a subset of residue types 

selected based on intermediate to high intrinsic reactivity and simulated side chain 

flexibility with MD simulations and with a Rosetta mover ensemble for four benchmark 

proteins. Upon determining that the normalized root mean square error of lnPF versus 

conical neighbor count was comparable between MD and the mover ensemble, we 

developed a new Rosetta score term. 20,000 ab initio models were scored with our term, 

then a total score was calculated by combining the HRPF score with the Rosetta score. 

The top 20 scoring models were used as inputs for mover model generation, then scored 

with both Rosetta and HRPF data. Upon including mover models in our distributions, we 

found that the best scoring model RMSD was identified at accurate atomic detail for three 

of the four proteins, indicating that HRPF in combination with a Rosetta mover ensemble 

can be used to significantly improve model quality.  



 

Other covalent labeling methods and limited proteolysis 

 Besides the popular HDX and HRPF techniques, other covalent labels have been 

used to elucidate protein structure. Carbene, another nonspecific covalent labeling 

reagent, has been used for structural mass spectrometry. Carbene footprinting was 

applied by Manzi and coworkers to examine the binding sites of lysozyme and a large 

protease (49). Additional work by Manzi et al. demonstrated that carbene footprinting 

could be applied to more complex cases by elucidating the interfaces of a trimer 

membrane protein (50). Radical trifluoromethylation, in which 18 amino acids can be 

modified, has also been used for covalent labeling structural MS. Myoglobin, beta-

lactoglobulin, and membrane protein vitamin K epoxide reductase were explored by 

radical trifluoromethylation in novel efforts by Cheng and coworkers (51). This work paved 

the way for an additional study in which trifluoromethyl radicals were produced via 

synchrotron radiolysis (52). Radical trifluoromethylation is a particularly promising 

technique for future structure prediction efforts. 

In addition to non-specific covalent labeling reagents, other covalent labeling 

reagents that modify only specific residues have been used to probe protein structure. 

Diethylpyrocarbonate (DEPC) is a readily available labeling reagent that modifies Cys, 

Lys, His, Ser, Thr, and Tyr residues along with the N-terminus. It was recently shown that 

the residue microenvironment played a role in labeling weakly nucleophilic Ser, Thr, and 

Tyr (STY) residues, as labeled STY residues with lower solvent exposure were found to 

be in the vicinity of hydrophobic residues (53). Based on this study, we developed a score 

term within Rosetta to reward models that demonstrated agreement with DEPC labeling 



data (54). Labeled STY residues with 5-35% relative SASA were rewarded for having 

more hydrophobic neighbors, while unlabeled STY residues with the same solvent 

exposure were rewarded for having less hydrophobic neighbors. Additionally, our term 

rewarded labeled His and Lys residues with higher solvent exposure, as residues that are 

more exposed are more likely to be covalently labeled. The DEPC score was added to 

the Rosetta score, and models were ranked by total score. We tested our term with ab 

initio and homology models for six benchmark proteins and found that the best scoring 

model RMSD and funnel-like quality of the score versus RMSD distributions improved 

with use of our term. 

Similar to covalent labeling, limited proteolysis is a technique in which a protein is 

exposed to a low concentration of protease that cleaves solvent accessible regions of the 

protein (13; 55). Hennig and coworkers developed a pipeline between MDMDAT, 

software that analyzes MS data, and HADDOCK, a protein-protein docking algorithm (56). 

Limited proteolysis data was first analyzed by MDMDAT and then utilized by HADDOCK 

to dock the protein Rpn13 with ubiquitin. This work demonstrated that limited proteolysis 

data could be applied to a protocol for protein complex modeling that was easier and 

quicker than structure determination methods such as NMR. Limited proteolysis was also 

applied to examine protein complexes in work by Proctor and colleagues (57). Limited 

proteolysis elucidated by MS guided the modeling of the Cu,Zn superoxide dismutase 

(SOD1) trimer protein complex. Software was developed to translate locations of 

proteolysis into restraints that were applied to discrete MD simulations. Such restraints 

emphasized the importance of regions affected by proteolysis being solvent exposed. 

After coarse-grained and full atom MD simulations to isolate the lowest energy model, 



computational mutagenesis was applied to examine interface residues of importance to 

SOD1 trimer generation. 

 

Ion mobility 

 Ion mobility (IM) is a structural native mass spectrometry technique in which 

proteins are subjected to soft ionization in the gas phase and then exposed to a nitrogen 

or helium gas chamber in which an electric field is applied. Instead of residue or fragment-

resolved data as for the previously described techniques, IM-MS provides insight into the 

shape of the protein. Commonly calculated from IM-MS data is the collision cross section 

(CCS), which is the rotationally averaged two-dimensional projection area of the protein. 

Computational methods currently exist to predict CCS from protein structure, including 

the trajectory method (58; 59), projection superposition approximation (60), and projection 

approximation (61). 

 In elegant work by Bleiholder and Liu (62), MD simulations were employed to 

model ubiquitin at various charge states for ion spectra prediction. The structure 

relaxation approximation (SRA) method was introduced to examine the similarity of 

ubiquitin ions to the native protein. SRA operated with input MD simulation frames by 

removing solvent, adjusting the charge state via charged residues with high exposure, 

relaxing the structure with a short simulation of the gas-phase protein, calculating average 

cross sections with the projection superposition approximation, and then determining the 

ion mobility spectrum based on Gaussian distributions of the averaged cross sections. 

The method was validated by the agreement of residue interactions between the crystal 



structure and modeled states, demonstrating that ubiquitin remained native-like during 

the procedure.       

 Hall and colleagues examined a modeling method in which coarse-grained models 

of protein complexes were evaluated with a scoring function based on their agreement 

with CCS data (63). Complexes from the protein data bank were used to validate the use 

of coarse-grained models, and it was demonstrated that the CCS of the coarse-grained 

models were similar to those calculated using all-atom models. The coarse-grained model 

relied upon spheres to represent individual proteins while a complex was represented by 

multiple spheres. For the scoring function, volume and CCS restraints were implemented 

based on the findings from a benchmark set. This method was then applied to influenza 

B virus neuraminidase, where models were scored based on volume and CCS restraints 

and then clustered by similarity to other models. The most native-like model was identified 

within the largest cluster. The method was further applied to tryptophan synthase and 

nitrobenzene dioxygenase complexes. The case study of nitrobenzene dioxygenase 

successfully identified high quality models, while the tryptophan synthase uncovered the 

relevance for symmetry data, which was identified by other experiments. This work 

confirmed that IM-MS data was able to play a valuable role in protein complex structure 

investigation. 

 Eschweiler and coworkers used IM-MS data and computational modeling to 

elucidate a structural model of the urease activation complex (64). CCS values were 

determined for the subcomplexes of interest and used to guide coarse-grained model 

generation with the IMP, representing subunits within the complex as individual spheres. 

A Monte Carlo algorithm was applied to sample conformational space with the aid of 



restraints from both CCS data and previous experimental data that established 

connectivity between particular subunits. IMPACT was applied to determine CCS values 

for complex models, followed by a clustering and comparison to existing complex 

structures. This study effectively modeled a very large complex using numerous restraints 

from experimental and calculated CCS, XL-MS, and SAXS data. A similar methodology 

was applied in recent work by Wang and others. In order to model apolipoprotein E 

oligomers relevant to Alzheimer’s disease, IM-MS data was used to identify coarse-

grained models using the IMP (65). Additionally, collision-induced unfolding was used to 

examine the monomer and tetramer of apolipoprotein E. This work deviated from the use 

of spheres for each individual subunit within the complex. Instead, the monomer was 

modelled with two domains, or two spheres, within the coarse-grained model, which 

corroborated the CCS data. A Monte-Carlo algorithm was applied to identify models, 

which were subsequently clustered by similarity in order to determine a likely complex 

structure. Intriguingly, electron-capture dissociation was also implemented to validate 

models based on identification of flexible portions of the complex, demonstrating the 

capability of IM-MS and IMP modeling coupled with additional experimental techniques.    

 Finally, our group has developed Rosetta functionality to use IM-MS data in protein 

tertiary structure prediction (66). An algorithm, Projection Approximation using Rough 

Circular Shapes (PARCS), was implemented to calculate CCS from protein structure. 

PARCS was shown to perform as accurately and efficiently as the popular IMPACT 

method. A score term reliant upon IM-MS data was also incorporated into the Rosetta 

framework based on the PARCS predictions. The score term penalized models with 

differences in observed and predicted CCS. It was first tested on models for a benchmark 



set of proteins with PARCS-computed CCS values in which the RMSD of best scoring 

models was improved for 82 of the 100 proteins examined (Figure 5). The funnel-like 

quality of the score versus RMSD distributions for model sets also tended to improve 

upon scoring with IM-MS data. Additionally, the score term was examined with ab initio 

and homology models for 23 proteins for which experimental IM-MS data was available, 

with the RMSD improving or exhibiting no change for all 23 instances. This work further 

solidified the capability of IM-MS methods to elucidate protein structure.  

 

Surface-induced dissociation 

 Recently emerging as a structural native MS technique, surface-induced 

dissociation (SID) relies on the breakage of interfaces within a protein complex when the 

complex strikes a surface. During SID-MS, protein complexes undergo soft ionization, 

then are collided with a surface, which can provide insight into the stoichiometry and 

interfaces within a protein complex. It has been demonstrated that the dissociation 

observed in SID experiments can be correlated with identified assembly pathways (67-

69). 

 We demonstrated that it is possible to predict SID appearance energy (AE) from 

protein structure (70). AE, specified as 10% fragmentation, was predicted from quantities 

such as the number of residues at the interface, number of unsatisfied hydrogen bonds, 

and rigidity factor, which was determined by intermolecular interactions such as hydrogen 

bonds, salt bridges, and disulfide bonds. A weighted sum of these terms was used in a 

prediction equation such that a strong correlation was observed between predicted and 



experimental AE . The development of this model suggested that the methodology could 

be applied to structure prediction applications. 

 Our group then developed a computational algorithm to use SID-MS data for 

protein complex structure prediction (71). The number of residues at the interface, rigidity 

factor, and buried hydrophobic surface area were combined to better predict AE. The new 

model that combined these three terms was then used in the creation of a Rosetta scoring 

term that combined SID data with RosettaDock scoring. It was first tested on 57 protein 

systems using crystal structures to calculate the ‘experimental’ AE, with 54/57 cases 

demonstrating improvement or no change in best scoring model RMSD. When using 

experimentally determined AE from SID-MS, it was determined that six of the nine 

complexes examined demonstrated near-native structures within the top three scoring 

models (Figure 6). Additionally, a confidence metric was established in this work, using 

the average score per residue for the best 1,000 models to independently verify the 

accuracy of scoring. The confidence metric allowed identification of successful 

predictions, as proteins with more-negative score per residue tended to have improved 

RMSD values compared to complexes with a higher score per residue. Overall, this work 

demonstrated that SID data in conjunction with RosettaDock can be used to improve 

protein complex structure prediction effectively. In follow-up work, it was shown recently 

that using SID-MS data in combination with cryo-EM data resulted in improved flexible 

docking results for protein complexes and required less prior knowledge of structures 

(72). 

 

Future directions of the field 



 While advances in MS and computational technologies have propelled the field 

forward in recent years, obstacles still exist and will require provocative solutions to 

overcome.  

As MS data are too sparse to determine protein structure unambiguously, 

computational techniques will remain relevant to interpret MS data for structure 

elucidation. One way in which the community can support computational method 

development is through the establishment of central data repositories. Such databases 

currently exist for other experimental techniques (73-75). Kahraman and coworkers (25) 

have started to pave the way for this effort by establishing a crosslinking database. 

Hopefully, other MS databases will follow suit in the near future. Publicly available 

datasets can lead to the creation and development of freely accessible, competitive 

algorithms that can harness sparse experimental data, such as the mass spectrometry 

data outlined here, to improve structure prediction with machine learning and artificial 

intelligence methodologies. 

 Because MS data is sparse, even advanced computational methodologies will 

inevitably predict false positive structures. Going forward, integrative structural modeling 

that combines multiple sets of experimental data will be instrumental in reducing the rate 

at which false positives occur. Further exploration of protein complexes remains a key 

endeavor for the future of protein structure modeling. Protein complexes have been 

implicated to have roles in many biological processes, and structural changes to 

complexes can lead to human disease (76). Elucidation of protein complex structure can 

provide insight into the mechanisms of such complexes. Structural information can 

complement efforts to target protein complexes with drugs to alleviate implications in 



disease. The study of protein complexes benefits greatly from integrative experimental 

techniques to combat modeling ambiguities. This has been nicely demonstrated in work 

by Zhang and colleagues that applied both HDX and XL data to quaternary structure 

investigation (42). The field should continue to emphasize combination of multiple 

techniques to elucidate structural features of protein complexes. 

 Recently, the performance of AlphaFold at CASP14 has raised questions about 

the role of experimental techniques in protein structure determination (77). AlphaFold 

relies upon artificial intelligence to accomplish protein structure prediction from amino acid 

sequences. Its impressive global distance test (GDT) median score of 92.4 (78) redefined 

the field’s expectations of how precise modeling algorithms could be. This inevitably 

caused speculations about the ability to determine protein structure purely 

computationally. We believe that this is unlikely to happen in the near future. As AlphaFold 

is currently not accessible to the academic community, computational researchers should 

continue to establish techniques that mimic AlphaFold. Callaway indicated in the Nature 

synopsis of CASP14 (77) that purely computational structure determination is unlikely, 

but rather that sparse experimental data will soon be sufficient for unambiguous structure 

elucidation in combination with the new wave of artificial intelligence technologies. As 

such, we anticipate that MS data will play a continued, if not growing, role alongside tools 

like AlphaFold. 

An additional future avenue of protein structure prediction from MS data is citizen 

science. FoldIt is one such tool that enlists video game enthusiasts for structure prediction 

(79). With its colorful graphical user interface and endearing symbols for relevant scientific 

concepts like steric hinderance and solvent exposure of hydrophobic regions, FoldIt uses 



the Rosetta software suite to reward user-sampled conformations of proteins. Users can 

advance through multiple levels of the game while supporting scientific efforts by 

sampling protein conformations that may be inaccessible to automated protein sampling 

algorithms. Overall, games such as FoldIt inspire a new generation of scientists while 

tackling the sampling problem and examining novel protein conformations. 

 In summary, the future of MS techniques with complementary computational 

methods appears promising. The combination of MS and computational protocols will, in 

our opinion, lead to the elucidation of many challenging protein structures. 

 

Conclusion 

 The field of structural mass spectrometry has significantly benefited from the 

development of hybrid computational techniques for MS-guided protein structure 

prediction. Algorithms that use XL-MS, HDX-MS, HRPF-MS, limited proteolysis, IM-MS, 

and SID-MS data for tertiary and quaternary structure prediction, described here, 

successfully allow structure elucidation from sparse MS data. The field will continue to 

thrive with efforts to maintain accessible datasets and software packages, to combine 

multiple techniques for the purpose of protein complex elucidation, and to pursue out-of-

the-box methods like FoldIt that recruit the general public into structure prediction efforts. 

While it is encouraging to see how far the field has progressed recently, it remains even 

more exciting to envision where the field will go with continued advances in techniques 

and technology. 
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Figure 1. Mass spectrometry-based methods and computational modeling explored in 

this review. Chemical crosslinking involves the modification of residues, commonly lysine, 

to provide information regarding spatial proximity. Hydrogen-deuterium exchange 

examines the exchange rate of amide hydrogens with deuterium solvent to give insight 

into solvent exposure and residue flexibility. Covalent labeling is reliant upon the 

irreversible covalent modification of residues, illuminating solvent exposure and topology. 

Limited proteolysis uses a protease enzyme to cleave proteins into fragments based on 

solvent exposure. Ion mobility is used to investigate shape and size of proteins based on 

the collision cross sectional area. Appearance energies (AE) can be deduced from 

surface-induced dissociation, which is used to study the stoichiometry and connectivity of 

protein complexes. Data from these techniques is then incorporated into computational 

modeling techniques such as protein-protein docking to examine complexes, structure 

prediction via ab initio or homology modeling, and molecular dynamics based on 

experimental restraints.  



Figure 2. Improvement of model prediction and scoring with XL-MS data. A, Best scoring 

models of IgBP1 (green) complexed with PP2AA (purple), with the opaque cartoon 

depicting the best scoring model from the largest cluster and the more transparent 

cartoons depicting the best scoring models from 2-4th largest clusters. Crosslinks are 

depicted as green, red, and blue spheres, with black spheres representing mutations. B, 

Rosetta score versus RMSD to the largest cluster plot for models with minimum of six 

inter-protein XLs (grey), minimum of six inter-protein XLs with binding interface larger 

than 900 Å2 (blue), and representative models from the four biggest clusters (red). Figure 

reproduced under the Creative Commons License from Kahraman et al. (2013); copyright 

2013 PLOS. 

Figure 3. IL-7 (multi-colored, colored with HDX uptake) complexed with IL-7R (green) 

models. Models were docked, clustered, then sorted into types by similarity. Models from 

each type are depicted in A-C, each utilizing two crosslinking restraints. D, the type 3 

model with only one crosslinking restraint. Figure reproduced with permission from Zhang 

et al. (2019); copyright 2019 American Chemical Society.  

Figure 4. Comparison of prediction equations using SASA and HRPF data. a, prediction 

equation between relative SASA (<SASA>/<SASA>GXG) and normalized protection factor 

(slopeN/relative intrinsic reactivity) using myoglobin data for residue types WYFHLI. b, 

lysozyme <SASA> calculated using prediction equation derived from (a) versus SASA 

observed in MD simulations. c, prediction equation between relative SASA of the native 

(<SASA>N/<SASA>GXG) and rate constant ratio (slopeN/slopeD) for all non-sulfur 

containing myoglobin residues. d, lysozyme SASA calculated using prediction equation 



shown in (c) versus SASA observed in MD simulations. Figure reproduced under the 

Creative Commons License from Xie et al. (2017); copyright 2017 Springer Nature. 

Figure 5. Incorporation of IM-MS data into Rosetta improved RMSD of best scoring 

models. a, Depiction of a protein and its projection on a plane upon space-filling measures 

by the PARCS application. b, Structural alignments of the crystal structure (grey) with the 

best scoring model when scoring without IM-MS data (burgundy) and with IM-MS data 

(yellow). c, Comparison of best scoring model RMSDs when scoring with and without IM 

data. Helium buffer gas conditions are depicted in teal while nitrogen buffer gas conditions 

are gold. Figure credit: SM Bargeen Alam Turzo. 

Figure 6. Utilization of SID-MS data improved RMSD of best scoring models. Alignment 

of the crystal structures (green) with one of the top three best scoring models when 

scoring without SID data (blue, top row) and when including SID-MS data in scoring (pink, 

bottom row) for three protein complexes. Figure credit: Justin Seffernick. 
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