Protein structure prediction with mass spectrometry data
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Abstract

Knowledge of protein structure is crucial to our understanding of biological function
and is routinely used in drug discovery. High-resolution techniques to determine the three-
dimensional atomic coordinates of proteins are available. However, such methods are
frequently limited by experimental challenges such as sample quantity, target size, and
efficiency. Structural mass spectrometry (MS) is a technique in which structural features
of proteins are elucidated quickly and relatively easily. Computational techniques that
convert sparse MS data into protein models that demonstrate agreement with the data
are needed. This review features cutting-edge computational methods that predict protein
structure from MS data such as chemical cross-linking, hydrogen-deuterium exchange,
hydroxyl radical protein footprinting, limited proteolysis, ion mobility, and surface-induced
dissociation. Additionally, we address future directions for protein structure prediction with

sparse MS data.

Introduction

Proteins are involved in nearly every life process, making them important subjects
for studying the molecular basis of disease. Additionally, protein structures can be
harnessed for structure-based drug discovery with existing and designed drug-like
molecules (1). However, a disparity currently exists between the number of known protein
sequences and the number of determined structures. Methodologies to elucidate protein
structure are vital to our understanding of molecular biology and for continued use in drug

discovery.



Multiple experimental techniques exist to determine high-resolution protein
structure. X-ray crystallography is a popular method in which a high concentration of a
protein target is crystalized. Then, the crystals are struck with an X-ray beam in order to
elucidate a diffraction pattern from which atomic protein coordinates can be determined
(2). While powerful, crystallography is rate-limited by the crystallization process, as
ascertaining experimental conditions ideal for crystal growth can be a tedious if not
impossible process. X-ray crystallography has historically been more successful for
ordered and monomeric proteins. Nuclear magnetic resonance (NMR) spectroscopy is
another high-resolution technique. It utilizes the chemical shifts of protein atoms for
structure determination (3). It is in most cases limited to smaller proteins in order to avoid
overlapping peaks. Cryo-electron microscopy (cryo-EM) has recently emerged as a
promising structure determination technique that can elucidate larger, more complex
proteins while bypassing the need for crystallization, probing the protein more
physiological conditions (4). However, further optimization of cryo-EM methodologies is
required to consistently determine higher resolution density maps.

Due to the limitations of above techniques, many proteins or protein complexes
currently evade high-resolution structure determination. Thus, additional experimental
methods are needed to provide insight into structural features. Structural mass
spectrometry (MS) is a powerful complementary approach that can overcome limitations
of above-mentioned methods with its high sensitivity, theoretically unlimited size
constraint, and speed. Although the data provided by MS are too sparse for full high-
resolution structure elucidation, structural MS can be used to examine size, solvent

accessibility, and topography of proteins (5-7). Several MS techniques exist that can



elucidate elements of protein tertiary and quaternary structure, including chemical cross-
linking (XL-MS) (8; 9), hydrogen-deuterium exchange (HDX-MS) (10), covalent labeling
(CL-MS) (11; 12), limited proteolysis (13), ion mobility (IM-MS) (14), and surface-induced

dissociation (SID-MS) (15), reviewed here (Figure 1)._In chemical cross-linking, residue

modifications provide insight into spatial proximity of modified residues. HDX-MS, CL-MS,

and limited proteolysis data are used to infer residue solvent exposure. IM-MS data reveal

information about the size and shape of proteins, while SID-MS is used to analyze protein

complex connectivity and stoichiometry. -Sparse experimental data from structural mass

spectrometry generally have-to-bemust be interpreted in combination with computational
methods to elucidate protein structure.

Computational methods have increasingly been employed to complement
experimental techniques in order to elucidate protein structures (16; 17). As experimental
data becomes more readily available, software packages can be employed to combine
sparse data with advanced structure sampling and scoring techniques. A number of
computational tools currently exist for protein structure modeling, including the Rosetta
software suite (17; 18), I-TASSER (19), Phyre2 (20), Integrative Modeling Platform (IMP)
(21), HADDOCK (22), and MODELLER (23). Sparse experimental data can be
implemented during the computational modeling process or used as a filter during post
model generation analysis. Here, we will be highlighting work that combines
computational efforts for protein structure examination with sparse experimental data

from MS. We will be discussing work that incorporates XL-MS, HDX-MS, CL-MS, limited

proteolysis, IM-MS, and SID-MS experimental data into computational modeling.




Chemical cross-linking

Chemical cross-linking (XL) utilizes reagents to chemically link two amino acids,
particularly the side chain atoms within lysine residues, in order to assess proximity within
a protein or within protein complexes (9). After digestion and separation via liquid
chromatography, crosslinks can be identified via tandem MS. XL-MS experiments provide
insight into protein structure. Residues that are distant to one another in amino acid
sequence can be identified as being within spatial proximity. Interactions between protein
complex subunits can also be inferred by residues that are identified as crosslinked. Only
residues that are solvent exposed should be modified by a crosslinking reagent. As such,
the crosslinking agent can give insight into proximity between surface residues, from
which contact information can further be derived with computational methods that utilize
XL-MS data. XL-MS efforts have been incorporated into the Critical Assessment of protein
Structure Prediction (CASP) challenges to integrate high-density XL-MS data into
prediction methods (24).

Kahraman and coworkers developed methodologies for applying crosslinking data
to homology modeling, de novo modeling, and protein-protein docking (25). A database,
XLdb, was also assembled which contained XL-MS data for individual proteins and
protein complexes along with the corresponding protein data bank entries, providing a
source of accessible data for the mass spectrometry and computational communities.
Building on an earlier publication in which X-walk, a program that determines the shortest
distance between crosslinked amino acids within solvent accessible regions (26), was
established, distance restraints determined from XL-MS data were implemented into the

Rosetta scoring function. The Rosetta functionality penalized models that conflicted with



the experimental data. For instance, models with residues participating in a cross-link that
were spatially farther apart than the spacer length of the crosslinker received a penalty.
The distance restraints were also applied as filters to examine existing models. Overall,
it was found that usage of the crosslinking distance restraints improved the RMSD of the
top scoring models and improved protein-protein docking (Figure 2). Similar methodology
was applied in work by Lossl and colleagues in which crosslinking data was used to
determine differences in conformational ensembles and interaction modes of singular and
interacting proteins (27). Additionally, recent work by Piotrowski and colleagues used XL
distance restraints in combination with Rosetta to build models of calmodulin interacting
with bMunc13-2 and then subsequently identify a unique binding mode (28).

XL-MS data was used in protein structure investigation of human serum albumin
protein domains by Belsom and colleagues (29). Instead of traditional XL reagents, this
work employed a photo-XL agent that led to increased XL data to probe the protein in
isolation and within blood samples. Upon modeling with XL-MS data as restraints and
residue contacts predicted with a newly developed software, serum albumin protein
models were successfully identified with low RMSD values (3-6 A) for both the purified
and sample models. A similar approach was explored in work from dos Santos et al. in
which XL-MS data along with coevolutionary information was applied to protein structure
prediction (30). In the work, simplified models containing only alpha carbons were used
in combination with restraints from XL-MS and coevolutionary data via direct coupling
analysis to elucidate tertiary structure. Models were evaluated by clustering and TM-score
for multiple proteins. Quality models were identified from the method, validating the

effectiveness of the proposed methodology.



Hauri et al. used computationally determined models for a very large (1.8 MDa)
protein complex found in human plasma in order to examine specific peptides from XL-
MS, an effort denoted as targeted chemical cross-linking MS (31). Targeted XL-MS used
different MS acquisition techniques to discriminate between computational models of the
protein complex modeled by Rosetta’s homology modeling protocol. Proteins from the
complex were docked together in order to produce a collection of potential models that
represented the quaternary structure of the complex. Models of the protein-protein
complex that scored well with the crosslinking data were used to identify a short list of
potentially crosslinked lysine pairs. Models then underwent a flexible backbone docking
workflow with crosslinking data as distance restraints. Overall, the development of
targeted XL-MS paved the way for continued improvement of quaternary structure
prediction of highly complex systems. Recent work by Khakzad and others sought to
elucidate another large protein complex, the membrane attack complex (32). A
streamlined protocol for targeted XL-MS was pursued to examine the bacterial protein
complex in human plasma. The crosslinking results were utilized to obtain a complete
model of the complex that was corroborated with existing models from crystallography
and cryo-EM. This work further demonstrated the applicability of XL-MS, particularly to
complex targets from bacterial systems relevant to human disease.

XLFF, a force field that relied upon XL-MS restraints was applied to Rosetta’s ab
initio protocol by Ferrari and colleagues (33). This was accomplished by determining the
probability of identifying residues that could potentially crosslink within a nonredundant
set of proteins from the protein data bank. The resulting probability curve was then used

to determine a potential energy function reliant on the crosslinker length and the residues



involved in linkage. It was observed that usage of the XLFF force field resulted in higher
quality, more native-like models occurring within the top scoring model distributions.

In addition to inclusion of crosslinking data within Rosetta, software has been
developed outside the Rosetta suite. Degiacomi and coworkers implemented a software
tool called DynamXL to consider the implications of dynamics when modeling crosslinking
data (34). Contrasting other methods that rely upon the beta carbon for distance
measurements, the DynamXL algorithm employed the side chain nitrogen atom of lysine
for distance calculations, which was suggested as more experimentally accurate and less
computationally expensive. Additionally, the method took the flexibility of residue side
chains into account by examining different rotamers and backbone conformations. The
work sought to minimize the elimination of reasonable crosslinks, while simultaneously
excluding impossible crosslinks, which led to less error when classifying cross linkages.
Overall, application of this methodology led to improved RMSD values from protein-
protein docking, highlighting the accuracy of the implementation.

Recent work by Mintseris and Gygi explored high density XL-MS efforts in
combination with IMP and Rosetta (35). The methodology was used to model carbonic
anhydrase proteins and the yeast proteasome. To minimize computational cost, the
implemented software reduced sampling of decoy and target peptides to minimize false
discovery rates and simplify false discovery rate calculations. Alternative reagents that
established crosslinks with additional residue types promoted the crosslinking density,
thus providing better results. XL-MS data was applied to modeling of inhibitor-bound
carbonic anhydrase via restraints applied during protein-protein docking with Rosetta.

High-quality models were identified. Additionally, the work tackled the modeling of the



yeast proteasome with both Rosetta and the IMP based on the XL-MS data. Coase-
grained models of the complex were elucidated, and regions were verified by existing

cryo-EM models.

Hydrogen-deuterium exchange

Hydrogen-deuterium exchange (HDX) is a prevalent non-specific covalent labeling
technique in which a protein is exposed to a deuterium-rich solvent (10). Amide hydrogen
atoms are able to exchange with deuterium atoms to label the protein backbone. After
digestion and separation with liquid chromatography, MS can be used to identify regions
of exchange. HDX-MS has also been used in combination with other techniques such as
electron capture dissociation to assess hydrogen bonding configurations (36). Regions of
the protein are more likely to be modified by HDX if the amide hydrogens are solvent
accessible and not actively participating in a hydrogen bond. HDX data is often resolved
to fragment level but occasionally residue-specific modifications are reported. From there,
data can be expressed as percentage modification, rate constants, or protection factors
(PF), all of which are routinely used as input into computational modeling to guide results
based upon agreement with HDX data.

HDX-MS data has been used in combination with homology modeling, as seen in
work from Zhang and coworkers (37). Homology modeling with MODELLER, Phyre2, and
I-TASSER were used to model the tertiary structure of cytochrome C. HDX-MS results
were taken into account when examining the models. Additionally, the relationship
between HDX modification and SASA was examined to identify the best models. It was

determined that the modeling efforts with Phyre2 demonstrated best agreement with the



HDX-MS results, and the SASA values from this model led to a better correlation with the
percent modification identified from HDX experiments. The results of this work effectively
demonstrated that both HDX data and solvent exposure could be used to identify better
homology models and to improve upon our previous understanding of the cytochrome C
mechanism. While HDX-MS data has not been applied to ab initio modeling, HDX-NMR
data has been recently implemented into protein structure prediction (38).

HDX-MS data in combination with molecular dynamics (MD) simulations were
employed to examine empirical and fractional population models for G-protein signaling
regulator proteins in work from Mohammadiarani et al. (39). Using long timescale MD
simulations with AMBER and CHARMM forcefields, PFs were calculated from simulation
frames and then compared to experimentally determined percent modification data. It was
determined that fractional population models were more accurate and less prone to error
than empirical models, arguing that the SASA of amide hydrogens coupled with the
distance between the amide hydrogen and first polar atom could be used for accurate
predictions. It was also indicated that amide hydrogen atoms could fluctuate in exposure
over a sub 100 ps timescale. HDX-MS and MD simulations were also applied to examine
interactions between lipids and membrane proteins such as lipid-induced conformational
changes in proteins in work from Martens and coworkers (40). The framework developed
in the study emphasized a multi-step protocol. After using HDX-MS to evaluate the protein
in the presence and absence of lipids, interactions were interpreted via MD simulations
in various bilayer conditions. The interactions identified from the simulation were then
corroborated by experimental mutagenesis of relevant sites. The methodology presented

in this work was suggested as a basis for further study of various lipid-protein interactions



in membranes. Beyond this work, size-exclusion chromatography in combination with
HDX-MS and circular dichroism were used with computational techniques such as
homology modeling and MD simulations to examine the activity of transaminases in work
from Makarov and others (41). The study demonstrated that the protocol could be applied
to enzyme-directed evolution efforts.

Recently, Zhang and colleagues used both XL-MS and HDX-MS data to evaluate
protein-protein docking models of interleukin 7 and its alpha receptor (Figure 3) (42).
HDX-MS analysis was performed on free interleukin 7 and when it was bound with its
receptor to elucidate changes in exposure. XL-MS was also applied to the system in order
to identify residues involved in the receptor binding interface of interleukin 7. Protein-
protein docking with RosettaDock produced models of the complex and top-scoring
models were subsequently clustered. Clustering data was analyzed for different numbers
of crosslinks and subsequently validated by HDX data. When examining the crosslinking
data, it was deduced that some crosslinks that suggested an interface at a particular
region were undermined by the HDX data that implied protection at the same region,
implying that a two-pronged approach was necessary to verify findings. Solvent exposure
was additionally examined using SASA for identified models to determine if the models
corroborated with regions of protection and exposure identified by HDX. Overall, this
methodology elegantly emphasized the importance of more than one structural MS
technique being applied to quaternary structure prediction.

HDX-MS data has also been applied to antibody-antigen modeling. Huang et al.
used HDX-MS data along with electron-transfer dissociation to examine binding of the

mAb1 antibody with a cytokine with implications in autoimmune disease (43). SASA



calculations and protein-protein docking provided additional insight into the antibody-
antigen binding interface. The study emphasized the importance of HDX-MS data and
complementary computational efforts for epitope elucidation. Additionally, recent efforts
from Jeliazkov and others were applied to the improvement of Rosetta software for
antigen-antibody modeling, RosettaAntibody and SnugDock (44). The SnugDock feature
relies upon flexible docking to elucidate the complementarity determining region (CDR)
loop, indicated in antigen binding and unique amongst antibody structures, and to
configure an adjustment of the heavy and light fragments relevant to antigen-antibody
interactions. Restraints from HDX-MS data were used to score antigen-antibody
complexes based on agreement with the data. When testing the HDX-MS restraints on
an antibody-antigen complex with available labeling data, it was deduced that the HDX-

MS restraint-based methodology led to more native-like structure of the CDR loop.

Hydroxyl radical protein footprinting

Hydroxyl radical protein footprinting (HRPF) is a non-specific CL-MS technique in
which hydroxyl radicals can covalently modify nineteen of the twenty amino acids types
in proteins (11). Synthesized via photolysis or radiolysis of water or hydrogen peroxide,
hydroxyl radicals modify residues with varying degrees of reliability and reactivity, as
indicated by a broad range of relative intrinsic reactivities (12). Rate constants for labeled
peptide fragments and individual residues can be determined and used to calculate
protection factor (PF), the relative intrinsic reactivity divided by the labeling rate constant

for the particular residue. Because HRPF is more likely to occur in regions that are solvent



exposed, residues that are more protected (higher PF) are correlated with lower solvent
exposure, and vice versa.

Xie and colleagues recently examined the relationship between residue protection
and solvent exposure using MD simulations (45). The work emphasized that
normalization of HRPF data should be sequence-dependent, not based on standard
values determined from free amino acids. With labeling data for myoglobin and lysozyme,
a method was proposed in which accurate side chain SASA values are derived from
HRPF data by normalizing labeling data based on sequence context. This was validated
by improvements in correlation between labeling data and SASA. When examining the
relationship between normalized PF and relative SASA, the correlation was determined
to worsen as the relative intrinsic reactivity of the amino acids considered decreased,
suggesting that only residues with higher intrinsic reactivity should be used in structural
analysis based on PF. When the rate constant of a particular residue in the folded protein
was normalized with the rate constant of the same residue in the denatured protein, the
correlation improved for all non-sulfur-containing residues (Figure 4). A prediction
equation that established a relationship between relative SASA and the normalized rate
constant was determined such that relative SASA could be calculated from HRPF data.
When the prediction equation was tested with homology models of lysozyme, it was
observed that models with backbone RMSD less than 3 A could be differentiated from
models with backbone RMSD greater than 4 A.

Our group has used HRPF labeling data for protein structure prediction. We used
the relationship between the natural logarithm of PF (InPF) and a residue exposure

metric, spherical neighbor count, for 15 relaxed crystal structures of calmodulin as a



prediction equation. The equation was then implemented in the first available software to
use HRPF data for protein structure prediction (46). When tested on ab initio models for
four benchmark proteins, the addition of our score term within the Rosetta framework led
to improvement in the best scoring model RMSD and funnel-like quality of the score
versus RMSD distributions. Results were further validated through use of a confidence
metric that assessed the funnel-like quality of the score versus RMSD distribution when
RMSD was calculated to the best scoring model. Follow-up work explored the
incorporation of labeling data into the ab initio folding algorithm, as opposed to using it for
model rescoring.(47)

More recently, we sought to improve the correlation between InPF and neighbor
count, as we hypothesized that accounting for side chain flexibility would improve the
relationship (48). We utilized a conical neighbor count for a subset of residue types
selected based on intermediate to high intrinsic reactivity and simulated side chain
flexibility with MD simulations and with a Rosetta mover ensemble for four benchmark
proteins. Upon determining that the normalized root mean square error of InPF versus
conical neighbor count was comparable between MD and the mover ensemble, we
developed a new Rosetta score term. 20,000 ab initio models were scored with our term,
then a total score was calculated by combining the HRPF score with the Rosetta score.
The top 20 scoring models were used as inputs for mover model generation, then scored
with both Rosetta and HRPF data. Upon including mover models in our distributions, we
found that the best scoring model RMSD was identified at accurate atomic detail for three
of the four proteins, indicating that HRPF in combination with a Rosetta mover ensemble

can be used to significantly improve model quality.



Other covalent labeling methods and limited proteolysis

Besides the popular HDX and HRPF techniques, other covalent labels have been
used to elucidate protein structure. Carbene, another nonspecific covalent labeling
reagent, has been used for structural mass spectrometry. Carbene footprinting was
applied by Manzi and coworkers to examine the binding sites of lysozyme and a large
protease (49). Additional work by Manzi et al. demonstrated that carbene footprinting
could be applied to more complex cases by elucidating the interfaces of a trimer
membrane protein (50). Radical trifluoromethylation, in which 18 amino acids can be
modified, has also been used for covalent labeling structural MS. Myoglobin, beta-
lactoglobulin, and membrane protein vitamin K epoxide reductase were explored by
radical trifluoromethylation in novel efforts by Cheng and coworkers (51). This work paved
the way for an additional study in which trifluoromethyl radicals were produced via
synchrotron radiolysis (52). Radical trifluoromethylation is a particularly promising
technique for future structure prediction efforts.

In addition to non-specific covalent labeling reagents, other covalent labeling
reagents that modify only specific residues have been used to probe protein structure.
Diethylpyrocarbonate (DEPC) is a readily available labeling reagent that modifies Cys,
Lys, His, Ser, Thr, and Tyr residues along with the N-terminus. It was recently shown that
the residue microenvironment played a role in labeling weakly nucleophilic Ser, Thr, and
Tyr (STY) residues, as labeled STY residues with lower solvent exposure were found to
be in the vicinity of hydrophobic residues (53). Based on this study, we developed a score

term within Rosetta to reward models that demonstrated agreement with DEPC labeling



data (54). Labeled STY residues with 5-35% relative SASA were rewarded for having
more hydrophobic neighbors, while unlabeled STY residues with the same solvent
exposure were rewarded for having less hydrophobic neighbors. Additionally, our term
rewarded labeled His and Lys residues with higher solvent exposure, as residues that are
more exposed are more likely to be covalently labeled. The DEPC score was added to
the Rosetta score, and models were ranked by total score. We tested our term with ab
initio and homology models for six benchmark proteins and found that the best scoring
model RMSD and funnel-like quality of the score versus RMSD distributions improved
with use of our term.

Similar to covalent labeling, limited proteolysis is a technique in which a protein is
exposed to a low concentration of protease that cleaves solvent accessible regions of the
protein (13; 55). Hennig and coworkers developed a pipeline between MDMDAT,
software that analyzes MS data, and HADDOCK, a protein-protein docking algorithm (56).
Limited proteolysis data was first analyzed by MDMDAT and then utilized by HADDOCK
to dock the protein Rpn13 with ubiquitin. This work demonstrated that limited proteolysis
data could be applied to a protocol for protein complex modeling that was easier and
quicker than structure determination methods such as NMR. Limited proteolysis was also
applied to examine protein complexes in work by Proctor and colleagues (57). Limited
proteolysis elucidated by MS guided the modeling of the Cu,Zn superoxide dismutase
(SOD1) trimer protein complex. Software was developed to translate locations of
proteolysis into restraints that were applied to discrete MD simulations. Such restraints
emphasized the importance of regions affected by proteolysis being solvent exposed.

After coarse-grained and full atom MD simulations to isolate the lowest energy model,



computational mutagenesis was applied to examine interface residues of importance to

SOD1 trimer generation.

lon mobility

lon mobility (IM) is a structural native mass spectrometry technique in which
proteins are subjected to soft ionization in the gas phase and then exposed to a nitrogen
or helium gas chamber in which an electric field is applied. Instead of residue or fragment-
resolved data as for the previously described techniques, IM-MS provides insight into the
shape of the protein. Commonly calculated from IM-MS data is the collision cross section
(CCS), which is the rotationally averaged two-dimensional projection area of the protein.
Computational methods currently exist to predict CCS from protein structure, including
the trajectory method (58; 59), projection superposition approximation (60), and projection
approximation (61).

In elegant work by Bleiholder and Liu (62), MD simulations were employed to
model ubiquitin at various charge states for ion spectra prediction. The structure
relaxation approximation (SRA) method was introduced to examine the similarity of
ubiquitin ions to the native protein. SRA operated with input MD simulation frames by
removing solvent, adjusting the charge state via charged residues with high exposure,
relaxing the structure with a short simulation of the gas-phase protein, calculating average
cross sections with the projection superposition approximation, and then determining the
ion mobility spectrum based on Gaussian distributions of the averaged cross sections.

The method was validated by the agreement of residue interactions between the crystal



structure and modeled states, demonstrating that ubiquitin remained native-like during
the procedure.

Hall and colleagues examined a modeling method in which coarse-grained models
of protein complexes were evaluated with a scoring function based on their agreement
with CCS data (63). Complexes from the protein data bank were used to validate the use
of coarse-grained models, and it was demonstrated that the CCS of the coarse-grained
models were similar to those calculated using all-atom models. The coarse-grained model
relied upon spheres to represent individual proteins while a complex was represented by
multiple spheres. For the scoring function, volume and CCS restraints were implemented
based on the findings from a benchmark set. This method was then applied to influenza
B virus neuraminidase, where models were scored based on volume and CCS restraints
and then clustered by similarity to other models. The most native-like model was identified
within the largest cluster. The method was further applied to tryptophan synthase and
nitrobenzene dioxygenase complexes. The case study of nitrobenzene dioxygenase
successfully identified high quality models, while the tryptophan synthase uncovered the
relevance for symmetry data, which was identified by other experiments. This work
confirmed that IM-MS data was able to play a valuable role in protein complex structure
investigation.

Eschweiler and coworkers used IM-MS data and computational modeling to
elucidate a structural model of the urease activation complex (64). CCS values were
determined for the subcomplexes of interest and used to guide coarse-grained model
generation with the IMP, representing subunits within the complex as individual spheres.

A Monte Carlo algorithm was applied to sample conformational space with the aid of



restraints from both CCS data and previous experimental data that established
connectivity between particular subunits. IMPACT was applied to determine CCS values
for complex models, followed by a clustering and comparison to existing complex
structures. This study effectively modeled a very large complex using numerous restraints
from experimental and calculated CCS, XL-MS, and SAXS data. A similar methodology
was applied in recent work by Wang and others. In order to model apolipoprotein E
oligomers relevant to Alzheimer’'s disease, IM-MS data was used to identify coarse-
grained models using the IMP (65). Additionally, collision-induced unfolding was used to
examine the monomer and tetramer of apolipoprotein E. This work deviated from the use
of spheres for each individual subunit within the complex. Instead, the monomer was
modelled with two domains, or two spheres, within the coarse-grained model, which
corroborated the CCS data. A Monte-Carlo algorithm was applied to identify models,
which were subsequently clustered by similarity in order to determine a likely complex
structure. Intriguingly, electron-capture dissociation was also implemented to validate
models based on identification of flexible portions of the complex, demonstrating the
capability of IM-MS and IMP modeling coupled with additional experimental techniques.

Finally, our group has developed Rosetta functionality to use IM-MS data in protein
tertiary structure prediction (66). An algorithm, Projection Approximation using Rough
Circular Shapes (PARCS), was implemented to calculate CCS from protein structure.
PARCS was shown to perform as accurately and efficiently as the popular IMPACT
method. A score term reliant upon IM-MS data was also incorporated into the Rosetta
framework based on the PARCS predictions. The score term penalized models with

differences in observed and predicted CCS. It was first tested on models for a benchmark



set of proteins with PARCS-computed CCS values in which the RMSD of best scoring
models was improved for 82 of the 100 proteins examined (Figure 5). The funnel-like
quality of the score versus RMSD distributions for model sets also tended to improve
upon scoring with IM-MS data. Additionally, the score term was examined with ab initio
and homology models for 23 proteins for which experimental IM-MS data was available,
with the RMSD improving or exhibiting no change for all 23 instances. This work further

solidified the capability of IM-MS methods to elucidate protein structure.

Surface-induced dissociation

Recently emerging as a structural native MS technique, surface-induced
dissociation (SID) relies on the breakage of interfaces within a protein complex when the
complex strikes a surface. During SID-MS, protein complexes undergo soft ionization,
then are collided with a surface, which can provide insight into the stoichiometry and
interfaces within a protein complex. It has been demonstrated that the dissociation
observed in SID experiments can be correlated with identified assembly pathways (67-
69).

We demonstrated that it is possible to predict SID appearance energy (AE) from
protein structure (70). AE, specified as 10% fragmentation, was predicted from quantities
such as the number of residues at the interface, number of unsatisfied hydrogen bonds,
and rigidity factor, which was determined by intermolecular interactions such as hydrogen
bonds, salt bridges, and disulfide bonds. A weighted sum of these terms was used in a

prediction equation such that a strong correlation was observed between predicted and



experimental AE . The development of this model suggested that the methodology could
be applied to structure prediction applications.

Our group then developed a computational algorithm to use SID-MS data for
protein complex structure prediction (71). The number of residues at the interface, rigidity
factor, and buried hydrophobic surface area were combined to better predict AE. The new
model that combined these three terms was then used in the creation of a Rosetta scoring
term that combined SID data with RosettaDock scoring. It was first tested on 57 protein
systems using crystal structures to calculate the ‘experimental’ AE, with 54/57 cases
demonstrating improvement or no change in best scoring model RMSD. When using
experimentally determined AE from SID-MS, it was determined that six of the nine
complexes examined demonstrated near-native structures within the top three scoring
models (Figure 6). Additionally, a confidence metric was established in this work, using
the average score per residue for the best 1,000 models to independently verify the
accuracy of scoring. The confidence metric allowed identification of successful
predictions, as proteins with more-negative score per residue tended to have improved
RMSD values compared to complexes with a higher score per residue. Overall, this work
demonstrated that SID data in conjunction with RosettaDock can be used to improve
protein complex structure prediction effectively. In follow-up work, it was shown recently
that using SID-MS data in combination with cryo-EM data resulted in improved flexible
docking results for protein complexes and required less prior knowledge of structures

(72).

Future directions of the field



While advances in MS and computational technologies have propelled the field
forward in recent years, obstacles still exist and will require provocative solutions to
overcome.

As MS data are too sparse to determine protein structure unambiguously,
computational techniques will remain relevant to interpret MS data for structure
elucidation. One way in which the community can support computational method
development is through the establishment of central data repositories. Such databases
currently exist for other experimental techniques (73-75). Kahraman and coworkers (25)
have started to pave the way for this effort by establishing a crosslinking database.
Hopefully, other MS databases will follow suit in the near future. Publicly available
datasets can lead to the creation and development of freely accessible, competitive
algorithms that can harness sparse experimental data, such as the mass spectrometry
data outlined here, to improve structure prediction with machine learning and artificial
intelligence methodologies.

Because MS data is sparse, even advanced computational methodologies will
inevitably predict false positive structures. Going forward, integrative structural modeling
that combines multiple sets of experimental data will be instrumental in reducing the rate
at which false positives occur. Further exploration of protein complexes remains a key
endeavor for the future of protein structure modeling. Protein complexes have been
implicated to have roles in many biological processes, and structural changes to
complexes can lead to human disease (76). Elucidation of protein complex structure can
provide insight into the mechanisms of such complexes. Structural information can

complement efforts to target protein complexes with drugs to alleviate implications in



disease. The study of protein complexes benefits greatly from integrative experimental
techniques to combat modeling ambiguities. This has been nicely demonstrated in work
by Zhang and colleagues that applied both HDX and XL data to quaternary structure
investigation (42). The field should continue to emphasize combination of multiple
techniques to elucidate structural features of protein complexes.

Recently, the performance of AlphaFold at CASP14 has raised questions about
the role of experimental techniques in protein structure determination (77). AlphaFold
relies upon artificial intelligence to accomplish protein structure prediction from amino acid
sequences. Its impressive global distance test (GDT) median score of 92.4 (78) redefined
the field’s expectations of how precise modeling algorithms could be. This inevitably
caused speculations about the ability to determine protein structure purely
computationally. We believe that this is unlikely to happen in the near future. As AlphaFold
is currently not accessible to the academic community, computational researchers should
continue to establish techniques that mimic AlphaFold. Callaway indicated in the Nature
synopsis of CASP14 (77) that purely computational structure determination is unlikely,
but rather that sparse experimental data will soon be sufficient for unambiguous structure
elucidation in combination with the new wave of artificial intelligence technologies. As
such, we anticipate that MS data will play a continued, if not growing, role alongside tools
like AlphaFold.

An additional future avenue of protein structure prediction from MS data is citizen
science. Foldlt is one such tool that enlists video game enthusiasts for structure prediction
(79). With its colorful graphical user interface and endearing symbols for relevant scientific

concepts like steric hinderance and solvent exposure of hydrophobic regions, Foldlt uses



the Rosetta software suite to reward user-sampled conformations of proteins. Users can
advance through multiple levels of the game while supporting scientific efforts by
sampling protein conformations that may be inaccessible to automated protein sampling
algorithms. Overall, games such as Foldlt inspire a new generation of scientists while
tackling the sampling problem and examining novel protein conformations.

In summary, the future of MS techniques with complementary computational
methods appears promising. The combination of MS and computational protocols will, in

our opinion, lead to the elucidation of many challenging protein structures.

Conclusion

The field of structural mass spectrometry has significantly benefited from the
development of hybrid computational techniques for MS-guided protein structure
prediction. Algorithms that use XL-MS, HDX-MS, HRPF-MS, limited proteolysis, IM-MS,
and SID-MS data for tertiary and quaternary structure prediction, described here,
successfully allow structure elucidation from sparse MS data. The field will continue to
thrive with efforts to maintain accessible datasets and software packages, to combine
multiple techniques for the purpose of protein complex elucidation, and to pursue out-of-
the-box methods like Foldlt that recruit the general public into structure prediction efforts.
While it is encouraging to see how far the field has progressed recently, it remains even
more exciting to envision where the field will go with continued advances in techniques

and technology.

Acknowledgements



The authors are grateful to the members of the Lindert group for insightful
discussions. We thank SM Bargeen Alam Turzo for designing and providing Figure 5 and

Justin Seffernick for designing and providing Figure 6. MS-guided protein modeling work

in the Lindert group was supported by the NSF (Grant No. CHE 1750666), the NIH (Grant

No. P41 GM128577), and a Sloan Research Fellowship to S. L.

Competing interest
The authors declare no competing interests.

Figure 1. Mass spectrometry-based methods and computational modeling explored in
this review. Chemical crosslinking involves the modification of residues, commonly lysine,
to provide information regarding spatial proximity. Hydrogen-deuterium exchange
examines the exchange rate of amide hydrogens with deuterium solvent to give insight
into solvent exposure and residue flexibility. Covalent labeling is reliant upon the
irreversible covalent modification of residues, illuminating solvent exposure and topology.
Limited proteolysis uses a protease enzyme to cleave proteins into fragments based on
solvent exposure. lon mobility is used to investigate shape and size of proteins based on
the collision cross sectional area. Appearance energies (AE) can be deduced from
surface-induced dissociation, which is used to study the stoichiometry and connectivity of
protein complexes. Data from these techniques is then incorporated into computational
modeling techniques such as protein-protein docking to examine complexes, structure
prediction via ab initio or homology modeling, and molecular dynamics based on

experimental restraints.



Figure 2. Improvement of model prediction and scoring with XL-MS data. A, Best scoring
models of IgBP1 (green) complexed with PP2AA (purple), with the opaque cartoon
depicting the best scoring model from the largest cluster and the more transparent
cartoons depicting the best scoring models from 2-4" largest clusters. Crosslinks are
depicted as green, red, and blue spheres, with black spheres representing mutations. B,
Rosetta score versus RMSD to the largest cluster plot for models with minimum of six
inter-protein XLs (grey), minimum of six inter-protein XLs with binding interface larger
than 900 A2 (blue), and representative models from the four biggest clusters (red). Figure
reproduced under the Creative Commons License from Kahraman et al. (2013); copyright
2013 PLOS.

Figure 3. IL-7 (multi-colored, colored with HDX uptake) complexed with IL-7Ra (green)
models. Models were docked, clustered, then sorted into types by similarity. Models from
each type are depicted in A-C, each utilizing two crosslinking restraints. D, the type 3
model with only one crosslinking restraint. Figure reproduced with permission from Zhang
et al. (2019); copyright 2019 American Chemical Society.

Figure 4. Comparison of prediction equations using SASA and HRPF data. a, prediction
equation between relative SASA (<SASA>/<SASA>gxc) and normalized protection factor
(slopen/relative intrinsic reactivity) using myoglobin data for residue types WYFHLI. b,
lysozyme <SASA> calculated using prediction equation derived from (a) versus SASA
observed in MD simulations. ¢, prediction equation between relative SASA of the native
(<SASA>N/<SASA>GXG) and rate constant ratio (slopen/slopep) for all non-sulfur

containing myoglobin residues. d, lysozyme SASA calculated using prediction equation



shown in (c) versus SASA observed in MD simulations. Figure reproduced under the
Creative Commons License from Xie et al. (2017); copyright 2017 Springer Nature.
Figure 5. Incorporation of IM-MS data into Rosetta improved RMSD of best scoring
models. a, Depiction of a protein and its projection on a plane upon space-filling measures
by the PARCS application. b, Structural alignments of the crystal structure (grey) with the
best scoring model when scoring without IM-MS data (burgundy) and with IM-MS data
(yellow). ¢, Comparison of best scoring model RMSDs when scoring with and without IM
data. Helium buffer gas conditions are depicted in teal while nitrogen buffer gas conditions
are gold. Figure credit: SM Bargeen Alam Turzo.

Figure 6. Utilization of SID-MS data improved RMSD of best scoring models. Alignment
of the crystal structures (green) with one of the top three best scoring models when
scoring without SID data (blue, top row) and when including SID-MS data in scoring (pink,

bottom row) for three protein complexes. Figure credit: Justin Seffernick.
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