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a b s t r a c t

Many large-scale and distributed optimization problems can be brought into a composite form in
which the objective function is given by the sum of a smooth term and a nonsmooth regularizer.
Such problems can be solved via a proximal gradient method and its variants, thereby generalizing
gradient descent to a nonsmooth setup. In this paper, we view proximal algorithms as dynamical
systems and leverage techniques from control theory to study their global properties. In particular,
for problems with strongly convex objective functions, we utilize the theory of integral quadratic
constraints to prove the global exponential stability of the equilibrium points of the differential
equations that govern the evolution of proximal gradient and Douglas–Rachford splitting flows. In
our analysis, we use the fact that these algorithms can be interpreted as variable-metric gradient
methods on the suitable envelopes and exploit structural properties of the nonlinear terms that arise
from the gradient of the smooth part of the objective function and the proximal operator associated
with the nonsmooth regularizer. We also demonstrate that these envelopes can be obtained from the
augmented Lagrangian associated with the original nonsmooth problem and establish conditions for
global exponential convergence even in the absence of strong convexity.

© 2020 Elsevier Ltd. All rights reserved.
1. Introduction

Structured optimal control and estimation problems typically
ead to optimization of objective functions that consist of a sum of
smooth term and a nonsmooth regularizer. Such problems are of
ncreasing importance in applications and it is thus necessary to
evelop efficient algorithms for distributed and embedded nons-
ooth composite optimization (Latafat, Freris, & Patrinos, 2019;
atafat, Stella, & Patrinos, 2016; Nedić & Ozdaglar, 2009; Wang &
Elia, 2011). The lack of differentiability in the objective function
precludes the use of standard descent methods from smooth
optimization. Proximal gradient method (Beck & Teboulle, 2009;
arikh & Boyd, 2013) generalizes gradient descent to nonsmooth
ontext and provides a powerful tool for solving problems in
hich the nonsmooth term is separable over the optimization
ariable.

✩ Supported in part by the National Science Foundation, USA under awards
ECCS-1708906 and ECCS-1809833. The material in this paper was presented
at the 57th IEEE Conference on Decision and Control, December 17–19, 2018,
Miami Beach, Florida, USA. This paper was recommended for publication in
revised form by Associate Editor Andrey V. Savkin under the direction of Editor
Ian R. Petersen.
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ihailo@usc.edu (M.R. Jovanović).
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0005-1098/© 2020 Elsevier Ltd. All rights reserved.
Examining optimization algorithms as continuous-time dy-
namical systems has been an active topic since the seminal work
of Arrow, Hurwicz, and Uzawa (Arrow, Hurwicz, & Uzawa, 1958).
This viewpoint can provide important insight into performance of
optimization algorithms and streamline their convergence anal-
ysis. During the last decade, it has been advanced and extended
to a broad class of problems including convergence analysis of
primal–dual (Cherukuri, Mallada, & Cortés, 2016; Cherukuri, Mal-
lada, Low, & Cortes, 2018; Dhingra, Khong, & Jovanović, 2019;
Feijer & Paganini, 2010; Qu & Li, 2018; Wang & Elia, 2011)
and accelerated (França, Robinson, & Vidal, 2018; Muehlebach
& Jordan, 2019; Poveda & Li, 2019; Shi, Du, Jordan, & Su, 2018;
Su, Boyd, & Candes, 2016; Wibisono, Wilson, & Jordan, 2016)
first-order methods. Furthermore, establishing the connection
between theory of ordinary differential equations (ODEs) and
numerical optimization algorithms has been a topic of many
studies, including (Brown & Bartholomew-Biggs, 1989; Schropp
& Singer, 2000); for recent efforts, see Wibisono et al. (2016) and
Zhang, Mokhtari, Sra, and Jadbabaie (2018).

Optimization algorithms can be viewed as a feedback inter-
connection of linear dynamical systems with nonlinearities that
possess certain structural properties. This system-theoretic inter-
pretation was exploited in Lessard, Recht, and Packard (2016)
and further advanced in recent papers (Dhingra et al., 2019;

Ding, Hu, Dhingra, & Jovanović, 2018; Fazlyab, Ribeiro, Morari, &
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reciado, 2018; Hassan-Moghaddam & Jovanović, 2018a, 2018b;
Hu & Lessard, 2017; Hu, Seiler, & Rantzer, 2017; Seidman, Fazlyab,
Preciado, & Pappas, 2019). The key idea is to exploit structural
features of linear and nonlinear terms and utilize theory and
techniques from stability analysis of nonlinear dynamical systems
to study properties of optimization algorithms. This approach
provides new methods for studying not only convergence rate but
also robustness of optimization routines (Michalowsky, Scherer,
& Ebenbauer, 2019; Mohammadi, Razaviyayn, & Jovanović, 2018,
2019, 2020) and can lead to new classes of algorithms that strike
a desired tradeoff between the speed and robustness.

In this paper, we utilize techniques from control theory to es-
tablish global properties of proximal gradient flow and Douglas–
Rachford (DR) splitting dynamics. These algorithms provide an
effective tool for solving nonsmooth convex optimization prob-
lems in which the objective function is given by a sum of a
differentiable term and a nondifferentiable regularizer. When
the smooth term is strongly convex with a Lipschitz continuous
gradient, we prove the global exponential stability of both the
proximal gradient flow and the DR splitting dynamics by utilizing
the theory of IQCs (Megretski & Rantzer, 1997). We also gen-
eralize the Polyak–Lojasiewicz (PL) (Polyak, 1963) condition to
nonsmooth problems and show global exponential convergence
of the forward–backward (FB) envelope (Patrinos, Stella, & Bem-
porad, 2014; Stella, Themelis, & Patrinos, 2017; Themelis, Stella,
& Patrinos, 2018) even in the absence of strong convexity.

Although there are related approaches for studying optimiza-
tion algorithms from a control-theoretic perspective, to the best
of our knowledge, we are the first to introduce the continuous
forms of proximal gradient and DR splitting algorithms. We use
simple proofs to establish their global stability properties and
provide explicit bounds on convergence rates. Furthermore, stan-
dard forms of these algorithms are obtained via explicit forward
Euler discretization of continuous-time dynamics.

The paper is structured as follows. In Section 2, we formulate
the nonsmooth composite optimization problem and provide
background material. In Section 3, we establish the global ex-
ponential stability of the proximal gradient flow dynamics for
a problem with strongly convex objective function. Moreover,
by exploiting the problem structure, we demonstrate the global
exponential convergence of the forward–backward envelope even
in the absence of strong convexity. In Section 4, we introduce a
continuous-time gradient flow dynamics based on the celebrated
Douglas–Rachford splitting algorithm and utilize the theory of
IQCs to prove global exponential stability for strongly convex
problems. We offer concluding remarks in Section 5.

2. Problem formulation and background

We consider a composite optimization problem,

minimize
x

f (x) + g(Tx) (1)

where x ∈ Rn is the optimization variable, T ∈ Rm×n is a given
matrix, f : Rn

→ R is a convex function with a Lipschitz con-
tinuous gradient, and g: Rm

→ R is a nondifferentiable convex
function. Such optimization problems arise in a number of ap-
plications and depending on the structure of the functions f and
g , different first- and second-order algorithms can be employed
to solve them. We are interested in studying global convergence
properties of methods based on proximal gradient flow algo-
rithms. In what follows, we provide background material that we
utilize in the rest of the paper.
2

2.1. Proximal operator and the associated envelopes

The proximal operator of a proper, closed, and convex function
g is defined as

proxµg (v) := argmin
z

(
g(z) +

1
2µ

∥z − v∥22

)
(2)

where µ is a positive parameter and v is a given vector. It
is determined by the resolvent operator associated with µ∂g ,
proxµg := (I + µ∂g)−1, and is a single-valued firmly non-
expansive mapping (Parikh & Boyd, 2013), i.e., for any u and v,

∥proxµg (u) − proxµg (v)∥22 ≤⟨
u − v, proxµg (u) − proxµg (v)

⟩
.

The value function of the optimization problem (2) determines
the associated Moreau envelope,

Mµg (v) := g(proxµg (v)) +
1
2µ

∥proxµg (v) − v∥22

which is a continuously differentiable function even when g is
ot (Parikh & Boyd, 2013), with µ∇Mµg (v) = v − proxµg (v).
By introducing an auxiliary optimization variable z, prob-

lem (1) can be rewritten as follows,

minimize
x, z

f (x) + g(z)

ubject to Tx − z = 0
(3)

nd the associated augmented Lagrangian is given by,

µ(x, z; y) := f (x) + g(z) + ⟨y, Tx− z⟩ +
1
2µ ∥Tx− z∥22.

he completion of squares yields,

µ = f (x) + g(z) + 1
2µ ∥z − (Tx + µy)∥22 −

µ

2 ∥y∥22
where y is the Lagrange multiplier. The minimizer of Lµ with
respect to z is

z⋆(x, y) = proxµg (Tx + µy)

and the evaluation of Lµ along the manifold resulting from this
explicit minimization yields the proximal augmented Lagrangian
(Dhingra et al., 2019), Lµ(x; y) := Lµ(x, z⋆(x, y); y),

Lµ(x; y) = f (x) + Mµg (Tx + µy) −
µ

2 ∥y∥22. (4)

This function is continuously differentiable with respect to both
x and y and it can be used as a foundation for the develop-
ment of first- and second-order primal–dual methods for non-
smooth composite optimization (Dhingra, Khong, & Jovanović,
2017; Dhingra et al., 2019). For T = I , the forward–backward
envelope (Patrinos et al., 2014; Stella et al., 2017; Themelis et al.,
2018) is obtained by restricting the proximal augmented La-
grangian Lµ(x; y) along the manifold y⋆(x) = −∇f (x) resulting
from the KKT optimality conditions,

Fµ(x) := Lµ(x; y⋆(x)) = Lµ(x; y = −∇f (x))
= f (x) + Mµg (x − µ∇f (x)) −

µ

2 ∥∇f (x)∥22.

2.2. Strong convexity and Lipschitz continuity

The function f is mf -strongly convex if

f (x̂) ≥ f (x) +
⟨
∇f (x), x̂ − x

⟩
+

mf

2
∥x̂ − x∥22

and its gradient is Lf -Lipschitz continuous if

f (x̂) ≤ f (x) +
⟨
∇f (x), x̂ − x

⟩
+

Lf
2
∥x̂ − x∥22

for any x and x̂. When both properties hold we have

m ∥x − x̂∥ ≤ ∥∇f (x)−∇f (x̂)∥ ≤ L ∥x − x̂∥ . (5)
f 2 2 f 2
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nd the following inequality is satisfied (Nesterov, 2013),

∇f (x)−∇f (x̂), x − x̂
⟩

≥
mf Lf

mf + Lf
∥x − x̂∥22 +

1
mf + Lf

∥∇f (x)−∇f (x̂)∥22.
(6)

Furthermore, the subgradient ∂g of a nondifferentiable function
is defined as the set of points z ∈ ∂g(x) that for any x and x̂

atisfy,

(x̂) ≥ g(x) + zT (x̂ − x). (7)

.3. Proximal Polyak–Lojasiewicz inequality

The Polyak–Lojasiewicz (PL) condition can be used to prove
inear convergence of a gradient descent even in the absence of
onvexity (Karimi, Nutini, & Schmidt, 2016). For an unconstrained
optimization problem with a non-empty solution set and a twice
differentiable objective function f with a Lipschitz continuous
gradient, the PL condition is given by

∥∇f (x)∥22 ≥ γ (f (x) − f ⋆)

where γ > 0 and f ⋆ is the optimal value of f . For nonsmooth
optimization problem (3) with T = I , the proximal PL inequality
holds for µ ∈ (0, 1/Lf ) if there exist γ > 0 such that

∥Gµ(x)∥22 ≥ γ (Fµ(x) − F ⋆
µ). (8)

Here, Lf is the Lipschitz constant of ∇f , Fµ is the FB envelope, and
Gµ is the generalized gradient map,

Gµ(x) :=
1
µ

(x − proxµg (x − µ∇f (x))). (9)

hen f is twice continuously differentiable, the FB envelope Fµ

s continuously differentiable with (Patrinos et al., 2014),

Fµ(x) = (I − µ∇2f (x))Gµ(x). (10)

. Exponential stability of proximal algorithms

In this section, we briefly discuss the Arrow–Hurwicz–Uzawa
radient flow dynamics that can be used to solve (3) by com-
uting the saddle points of the proximal augmented Lagrangian
Dhingra et al., 2019). We then show that the proximal gradient
ethod in continuous time can be obtained from the proximal
ugmented Lagrangian method by restricting the dual variable
long the manifold y = −∇f (x). Finally, we discuss global sta-
ility properties of proximal algorithms both in the presence and
n the absence of strong convexity.

Continuous differentiability of the proximal augmented La-
rangian (4) can be utilized to compute its saddle points via the
rrow–Hurwicz–Uzawa dynamic,

ẋ
ẏ

]
=

[
−µ (∇f (x) + T T

∇Mµg (Tx + µy))
µ (∇Mµg (Tx + µy) − y)

]
. (11)

s shown in Dhingra et al. (2019), the optimal primal–dual pair
(x⋆, y⋆) is the globally exponentially stable equilibrium point
of (11) and x⋆ is the solution of (1) for convex problems in which
he matrix TT T is invertible and the smooth part of the objective
unction f is strongly convex.

For convex problems with T = I in (1),

inimize
x

f (x) + g(x) (12)

he optimality condition is given by

∈ ∇f (x⋆) + ∂g(x⋆) (13)
3

Fig. 1. Both the proximal gradient flow dynamics (15) and the DR splitting
dynamics (26) can be represented via feedback interconnections of stable LTI
systems with nonlinear terms that possess certain structural properties.

Multiplying by µ and adding/subtracting x⋆ yields,

0 ∈ [I + µ∂g] (x⋆) + µ∇f (x⋆) − x⋆.

Since proxµg is determined by the resolvent operator associated
with µ∂g and is single-valued (Parikh & Boyd, 2013), we have

x⋆
− proxµg (x

⋆
− µ∇f (x⋆)) = 0. (14)

We next demonstrate that (12) can be solved using the proximal
gradient flow dynamics, ẋ = −µGµ(x),

ẋ = −
(
x − proxµg (x − µ∇f (x))

)
= −µ

(
∇f (x) + ∇Mµg (x − µ∇f (x))

)
.

(15)

Remark 1. Proximal gradient flow dynamics (15) are differ-
ent from the subgradient flow dynamics associated with nons-
mooth problem (12). Standard proximal gradient algorithm (Beck
& Teboulle, 2009) can be obtained via explicit forward Euler
discretization of (15) with the stepsize one, xk+1

= proxµg (xk −
µ∇f (xk)). This should be compared and contrasted with (Parikh
& Boyd, 2013, Section 4.1.1) in which implicit backward Eu-
ler discretization of the subgradient flow dynamics associated
with (12) was used. We also note that (15) can be obtained by
substituting −∇f (x) for the dual variable y in the x-update step
of primal-descent dual-ascent gradient flow dynamics (11) with
T = I .

In Sections 3.1 and 3.2 , we examine properties of system (15),
first for strongly convex problems and then for the problems in
which only the PL condition holds.

3.1. Strongly convex problems

We utilize the theory of integral quadratic constraints to prove
global asymptotic stability of the proximal gradient flow dynam-
ics (15) under the following assumption.

Assumption 1. Let f in (12) be mf -strongly convex, let ∇f be
Lf -Lipschitz continuous, and let the regularization function g be
proper, closed, and convex.

As illustrated in Fig. 1, system (15) can be expressed as a
feedback interconnection of an LTI system

ż = A z + B u, ξ = C z
A = −I, B = C = I (16a)

where z := x, with the nonlinear term,

u(ξ ) := proxµg (ξ − µ∇f (ξ )). (16b)

Lemma 1 combines firm nonexpansiveness of proxµg , strong
convexity of f , and Lipschitz continuity of ∇f to characterize
nonlinear map (16b) by establishing a quadratic inequality for
u(ξ ).



S. Hassan-Moghaddam and M.R. Jovanović Automatica 123 (2021) 109311

L

h

σ

M
c

P
2

∥

E

D
b
r

∥

T
t
S
c

g
w
d[
w

T
e
g
s

∥

w
o

P
c[

w
t
s

p

w
m
i
s
t
p
o

R
h
m
o
t

3

s
P

A
p
t
s

∥

w
e

R
a
b

x

U
t
v
a
p

T
e
c
µ

F

P

V

t

V

S
f
µ

V

emma 1. Let Assumption 1 hold. Then, for any ξ ∈ Rn, ξ̂ ∈ Rn,
u := proxµg (ξ − µ∇f (ξ )), and û := proxµg (ξ̂ − µ∇f (ξ̂ )), the
pointwise quadratic inequality[
ξ − ξ̂

u − û

]T [
σ 2I 0
0 −I

]
  

Π

[
ξ − ξ̂

u − û

]
≥ 0 (17a)

olds, where

= max
{
|1 − µmf |, |1 − µLf |

}
. (17b)

oreover, the nonlinear function u(ξ ) := proxµg (ξ − µ∇f (ξ )) is a
ontraction for µ ∈ (0, 2/Lf ).

roof. Since proxµg is firmly nonexpansive (Parikh & Boyd,
013), it is also Lipschitz continuous with parameter 1, i.e.,

u − û∥22 ≤ ∥(ξ − µ∇f (ξ )) − (ξ̂ − µ∇f (ξ̂ ))∥22. (18)

xpanding the right-hand-side of (18) yields,

∥u − û∥22 ≤ ∥ξ − ξ̂∥22 + µ2
∥∇f (ξ ) − ∇f (ξ̂ )∥22 −

2µ
⟨
ξ − ξ̂ ,∇f (ξ ) − ∇f (ξ̂ )

⟩
and utilizing inequality (6) for an mf -strongly convex function f
with an Lf -Lipschitz continuous gradient, the last inequality can
be further simplified to obtain,

∥u − û∥22 ≤ (1 −
2µmf Lf
Lf +mf

) ∥ξ − ξ̂∥22 +

(µ2
−

2µ

Lf +mf
) ∥∇f (ξ ) − ∇f (ξ̂ )∥22.

(19)

epending on the sign of µ − 2/(Lf +mf ) either lower or upper
ound in (5) can be used to upper bound the second term on the
ight-hand-side of (19), thereby yielding

u − û∥22 ≤ max
{
(1 − µLf )2, (1 − µmf )2

}
∥ξ − ξ̂∥22. (20)

hus, for σ given by (17b) the nonlinear function u(ξ ) is a con-
raction if and only if −1 < 1−µLf < 1 and −1 < 1−µmf < 1.
ince mf ≤ Lf , these conditions hold for µ ∈ (0, 2/Lf ) which
ompletes the proof.

We next employ (Hu & Seiler, 2016, Theorem 3) to prove the
lobal exponential stability of the equilibrium point z⋆ of (16)
ith the rate ρ > 0 by verifying the existence of a positive
efinite matrix P such that,

AT
ρP + PAρ PB
BTP 0

]
+

[
CT 0
0 I

]
Π

[
C 0
0 I

]
⪯ 0, (21)

here Aρ := A+ ρI and Π is given by (17a).

heorem 2. Let Assumption 1 hold and let µ ∈ (0, 2/Lf ). Then, the
quilibrium point z⋆ of the proximal gradient flow dynamics (16) is
lobally ρ-exponentially stable, i.e., there is c > 0 and ρ ∈ (0, 1−σ ]

uch that,

z(t) − z⋆
∥2 ≤ c e−ρt

∥z(0) − z⋆
∥2, ∀ t ≥ 0

here σ is given by (17b). Moreover, x⋆
= z⋆ is the optimal solution

f (12).

roof. Substituting Π given by (17a) into (21) implies that the
ondition (21) holds if there exists a positive scalar p such that

2(1− ρ)p− σ 2
−p

]
⪰ 0 (22)
−p 1

4

here the block-diagonal structure of A, B, C , and Π allows us
o choose P = pI without loss of generality. Condition (22) is
atisfied if there is p > 0 such that
2
− 2(1 − ρ)p + σ 2

≤ 0 (23)

here ρ < 1 guarantees positivity of the first element on the
ain diagonal of the matrix in (22). For µ ∈ (0, 2/Lf ), Lemma 1

mplies σ < 1 and ρ ≤ 1−σ is required for the existence of p > 0
uch that (23) holds. Thus, z⋆ is globally exponentially stable with
he rate ρ ≤ 1 − σ . The result follows because the equilibrium
oint z⋆

= x⋆ of (16) satisfies the optimality condition (14) for
ptimization problem (12).

emark 2. For µ = 2/(Lf + mf ), the second term on the right-
and-side in (19) disappears and σ is given by σ = (Lf −mf )/(Lf +
f ) = (κ − 1)/(κ + 1) where κ := Lf /mf is the condition number
f the function f and ρ is upper bounded by 2/(κ + 1). In fact,
his is the best achievable convergence rate for system (15).

.2. Proximal Polyak–Lojasiewicz condition

Next, we consider the problems in which the function f is not
trongly convex but the function F := f +g satisfies the proximal
L condition (8).

ssumption 2. Let the regularization function g in (12) be
roper, closed, and convex, let f be twice continuously differen-
iable with ∇

2f (x) ⪯ Lf I , and let the generalized gradient map
atisfy the proximal PL condition,

Gµ(x)∥22 ≥ γ (Fµ(x) − F ⋆
µ)

here µ ∈ (0, 1/Lf ), γ > 0, and F ⋆
µ is the optimal value of the FB

nvelope Fµ.

emark 3. The proximal gradient algorithm can be interpreted
s a variable-metric gradient method on FB envelope and (15) can
e equivalently written as

˙ = −µ (I − µ∇2f (x))−1
∇Fµ(x).

nder Assumption 2, I − µ∇2f (x) is invertible and the func-
ions F and Fµ have the same minimizers and the same optimal
alues (Patrinos et al., 2014), i.e., argminx F (x) = argminx Fµ(x)
nd F ⋆

= F ⋆
µ. This motivates the analysis of the convergence

roperties of (15) in terms of the FB envelope.

heorem 3. Let Assumption 2 hold. Then the forward–backward
nvelope associated with the proximal gradient flow dynamics (15)
onverge exponentially to F ⋆

µ = F ⋆ with the rate ρ = γµ(1 −

Lf ), i.e.,

µ(x(t)) − F ⋆
µ ≤ e−ρt (Fµ(x(0)) − F ⋆

µ), ∀ t ≥ 0.

roof. For a Lyapunov function candidate,

(x) = Fµ(x) − F ⋆
µ

he derivative of V along the solutions of (15) is given by

˙ (x) =
⟨
∇Fµ(x), ẋ

⟩
= −

⟨
∇Fµ(x), µ(I − µ∇2f (x))−1

∇Fµ(x)
⟩

= −
⟨
Gµ(x), µ(I − µ∇2f (x))Gµ(x)

⟩
.

ince the gradient of f is Lf -Lipschitz continuous, i.e., ∇2f (x) ⪯ Lf I
or all x ∈ Rn, Assumption 2 implies −(I − µ∇2f (x)) ⪯ −(1 −

Lf )I, and, thus,

˙ (x) ≤ −µ(1 − µLf ) ∥Gµ(x)∥22
⋆ (24)
≤ −γµ(1 − µLf ) (Fµ(x) − Fµ)
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s non-positive for µ ∈ (0, 1/Lf ). Moreover, combining the last
inequality with the definition of V yields V̇ ≤ −γµ(1 − µLf )V ,
hich implies

µ(x(t)) − F ⋆
µ ≤ e−γµ(1−µLf )t (Fµ(x(0)) − F ⋆

µ).

emark 4. When the proximal PL condition is satisfied, Fµ(x(t))−
⋆
µ converges exponentially but, in the absence of strong con-
exity, the exponential convergence rate cannot be established
or ∥x(t)− x⋆

∥2. Thus, although the objective function converges
xponentially fast, the solution to (15) does not enjoy this con-
ergence rate. To the best of our knowledge, the convergence rate
f x(t) to the set of optimal values x⋆ is not known in this case.

. Global exponential stability of the Douglas-Rachford split-
ing dynamics

We next introduce a continuous-time gradient flow dynam-
cs based on the well-known Douglas–Rachford splitting
lgorithm (Douglas & Rachford, 1956) and establish global expo-
ential stability for strongly convex f .

.1. Non-smooth composite optimization problem

The optimality condition for (12) is given by (13), i.e., 0 ∈

f (x⋆)+∂g(x⋆). Multiplication by µ and addition of x to the both
ides yields 0 ∈ [I + µ∇f ] (x⋆) + µ∂g(x⋆) − x⋆. Since proxµf :=

I + µ∇f )−1 is single-valued (Parikh & Boyd, 2013), introducing
:= x− µ∂g(x) leads to,

⋆
= proxµf (x

⋆
− µ∂g(x⋆)) = proxµf (z

⋆). (25a)

ow, adding x to the both sides of the defining equation for z
gives [I + µ∂g] (x⋆) = 2proxµf (z⋆)− z⋆, i.e.,
⋆
= proxµg (2 proxµf (z

⋆) − z⋆). (25b)

Combining (25a) and (25b) results in the following optimality
condition,

proxµf (z
⋆) − proxµg (2 proxµf (z

⋆) − z⋆) = 0. (25c)

urthermore, the reflected proximal operators (Giselsson & Boyd,
017), Rµf (z) := [2 proxµf − I](z) and Rµg := [2 proxµg − I](z),

can be used to rewrite optimality condition (25c) as

z⋆
− [RµgRµf ](z⋆) = 0. (25d)

We are now ready to introduce the continuous-time DR gradient
flow dynamics to compute z⋆,

ż = −z + [RµgRµf ](z). (26)

Note that the explicit forward Euler discretization of (26) yields
the standard DR splitting algorithm (Eckstein & Bertsekas, 1992).

e view (26) as a feedback interconnection of an LTI system (16a)
with the nonlinear term,

u(ξ ) := [RµgRµf ](ξ ). (27)

We first characterize properties of nonlinearity u in (27) and
then, similar to the previous section, establish global exponential
stability of nonlinear system (26).

Lemma 4. Let Assumption 1 hold and let µ ∈ (0, 2/Lf ). Then, the
operator Rµf is σ -contractive,

∥Rµf (x) − Rµf (y)∥2 ≤ σ∥x − y∥2

where σ is given by

σ = max
{
|1 − µmf |, |1 − µLf |

}
< 1. (28)
5

Proof. Given zx := proxµf (x) and zy := proxµf (y), x and y can be
computed as follows

x = zx + µ∇f (zx), y = zy + µ∇f (zy).

Thus,

∥Rµf (x) − Rµf (y)∥2 = ∥2(zx − zy) − (x− y)∥2 =

∥(zx − zy) − µ (∇f (zx)−∇f (zy))∥2 = ∥zx − zy∥2 +

∥µ(∇f (zx)−∇f (zy))∥2 − 2µ
⟨
∇f (zx)−∇f (zy), zx − zy

⟩
≤ max

{
(1 − µLf )2, (1 − µmf )2

}
∥zx − zy∥2

≤ σ 2
∥x − y∥2.

where the firm non-expansiveness of proxµf is used in the last
step. Moreover, according to Lemma 1, for µ ∈ (0, 2/Lf ) we have
σ < 1, which completes the proof.

Lemma 5. Let Assumption 1 hold and let µ ∈ (0, 2/Lf ). Then, the
operator Rµg is firmly non-expansive.

Proof. ∥Rµg (x) − Rµg (y)∥22 = 4∥proxµf (x) − proxµf (y)∥22 + ∥x −
y∥22 − 4

⟨
x− y, proxµf (x)− proxµf (y)

⟩
≤ ∥x− y∥22.

Remark 5. Since Rµg is firmly non-expansive and Rµf is σ -
contractive, the composite operator RµgRµf is also σ -contractive.
Moreover, since the operator Rµf and nonlinearity u in (16b) have
the same contraction parameters, the quadratic inequality that
describes (16b) can be also used to characterize the composite
operator RµgRµf .

Theorem 6. Let Assumption 1 hold and let µ ∈ (0, 2/Lf ). Then,
the equilibrium point z⋆ of the DR splitting dynamics (26) is globally
ρ-exponentially stable, i.e., there is c > 0 and ρ ∈ (0, 1 − σ ) such
that,

∥z(t) − z⋆
∥ ≤ c e−ρt

∥z(0) − z⋆
∥, ∀ t ≥ 0

where σ is given by (28). Moreover, x⋆
= proxµf (z⋆) is the optimal

solution of (12).

Proof. Although the nonlinear terms in systems (11) and (26)
re different, they share quadratic characterization (17a) and the
TI dynamics (16a). Thus, the result follows from the proof of
heorem 2 and the fact that x⋆

= proxµf (z⋆) satisfies optimality
ondition (25c).

.2. Douglas-Rachford splitting on the dual problem

Even though the DR splitting algorithm cannot be directly used
o solve a problem with a more general linear equality constraint,

minimize
x, z

f (x) + g(z)

subject to Tx + Sz = r
(29)

t can be utilized to solve the dual problem,

minimize
ζ

f1(ζ ) + g1(ζ ). (30)

ere, T ∈ Rm×n, S ∈ Rm×n, and r ∈ Rm are the problem param-
ters, f1(ζ ) := f ⋆(−T T ζ )+ rT ζ , g1(ζ ) := g⋆(−ST ζ ), and h⋆(ζ ) :=
upx(ζ T x−h(x)) is the conjugate of the function h. It is a standard
fact (Eckstein & Bertsekas, 1992; Gabay, 1983) that solving the
dual problem (30) via the DR splitting algorithm is equivalent
to using ADMM for the original problem (29). If Assumption 1
holds and if T is a full row rank matrix, the global exponentially
stability of the DR gradient flow dynamics associated with (30),
˙
ζ = −ζ + [Rµg1Rµf1 ](ζ ), is readily established.
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. Concluding remarks

We study a class of nonsmooth optimization problems in
hich it is desired to minimize the sum of a continuously dif-

erentiable function with a Lipschitz continuous gradient and a
ondifferentiable function. For strongly convex problems, we em-
loy the theory of integral quadratic constraints to prove global
xponential stability of proximal gradient flow and Douglas–
achford splitting dynamics. We also utilize a generalized Polyak–
ojasiewicz condition for nonsmooth problems to demonstrate
he global exponential convergence of the forward–backward
nvelope for the proximal gradient flow algorithm even in the
bsence of strong convexity.

ppendix. Proximal PL condition

The generalization of the PL condition to nonsmooth problems
as introduced in Karimi et al. (2016) and is given by

g (x, Lf ) ≥ 2κ (F (x) − F ⋆) (A.1)

here κ is a positive constant, Lf is the Lipschitz constant of ∇f ,
nd Dg (x, α) is determined by

2α min
y

(⟨∇f (x), y− x⟩ +
α

2
∥y− x∥22 + g(y)− g(x)). (A.2)

erein, we show that if proximal PL condition (A.1) holds, there
s a lower bound given by (8) on the norm of the generalized
gradient map Gµ(x). For µ ∈ (0, 1/Lf ), Dg (x, 1/µ) ≥ Dg (x, Lf ),
and, thus, inequality (A.1) also holds for Dg (x, 1/µ). Moreover,
from the definition (A.2) of Dg (x, α), it follows that

Dg (x, 1/µ) =
2
µ

(F (x) − Fµ(x))

where F := f + g and Fµ is the FB envelope. Substituting this
expression for Dg (x, 1/µ) to (A.1) yields,

1
µ

(F (x) − Fµ(x)) ≥ κ (F (x) − F ⋆). (A.3)

he smooth part of the objective function f can be written as (Pa-
rinos et al., 2014),

(x) = Fµ(x) − g(proxµg (x − µ∇f (x))) +
µ
⟨
∇f (x),Gµ(x)

⟩
−

µ

2
∥Gµ(x)∥22

nd substituting this expression for f to (A.3) yields
(µκ − 1)

2 ∥Gµ(x)∥22 ≥ κ (Fµ(x)− F ⋆) + (µκ−1)
µ

g(x) −
µκ − 1)( 1

µ
g(proxµg (x− µ∇f (x)))+

⟨
∇f (x),Gµ(x)

⟩
).

(A.4)

ince Gµ(x) − ∇f (x) ∈ ∂g(x), the subgradient inequality (7)
mplies

≤ µ ∥Gµ(x)∥22 ≤ g(x) − g(proxµg (x − µ∇f (x))) +
µ
⟨
∇f (x),Gµ(x)

⟩
.

(A.5)

ombining (A.4) and (A.5) and taking the sign of µκ − 1 into
ccount yields,
α

2
∥Gµ(x)∥22 ≥ κ (Fµ(x) − F ⋆), α := |µκ − 1|.

Furthermore, since (Patrinos et al., 2014), argminx F (x) =

argminx Fµ(x) and F ⋆
= F ⋆

µ, F ⋆
µ can be substituted for F ⋆ and we

have ∥G (x)∥2 ≥ γ (F (x) − F ⋆) with γ := 2κ/|µκ − 1|.
µ 2 µ µ

6
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