

# A REMARK ON QUANTUM HOCHSCHILD HOMOLOGY

ROBERT LIPSHITZ

ABSTRACT. Beliakova-Puttyra-Wehrli studied various kinds of traces, in relation to annular Khovanov homology [2]. In particular, to a graded algebra and a graded bimodule over it, they associate a quantum Hochschild homology of the algebra with coefficients in the bimodule, and use this to obtain a deformation of the annular Khovanov homology of a link. A spectral refinement of the resulting invariant was recently given by Akhmechet-Krushkal-Willis [1].

In this short note we observe that quantum Hochschild homology is a composition of two familiar operations, and give a short proof that it gives an invariant of annular links, in some generality. Much of this is implicit in Beliakova-Puttyra-Wehrli [2].

**Definition 1.** [2, Section 3.8.5] Let  $A$  be a graded ring,  $M$  a chain complex of graded  $A$ -bimodules (so  $M$  is bigraded), and  $q \in A$  an invertible central element with grading 0. The quantum Hochschild complex of  $A$  with coefficients in  $M$  and parameter  $q$  has chain groups  $qCH_n(A; M) = M \otimes_{\mathbb{Z}} A^{\otimes \mathbb{Z} n}$  and differential

$$\begin{aligned} \partial(m \otimes a_1 \otimes \cdots \otimes a_n) = & ma_1 \otimes a_2 \otimes \cdots \otimes a_n + \sum_{i=1}^{n-1} (-1)^i m \otimes a_1 \otimes \cdots \otimes a_i a_{i+1} \otimes \cdots \otimes a_n \\ & + (-1)^n q^{-|a_n|} a_n m \otimes a_1 \otimes \cdots \otimes a_{n-1}. \end{aligned}$$

The homology of this complex is the quantum Hochschild homology  $qHH_{\bullet}(A; M)$  of  $A$  with coefficients in  $M$  and parameter  $q$ .

The goal of this note is to reformulate this operation and deduce that it often leads to annular link invariants. The data of  $A$  and  $q$  specifies a ring homomorphism  $f_q: A \rightarrow A$  defined on homogeneous elements  $a$  of  $A$  by

$$f_q(a) = q^{-|a|} a,$$

where  $|a|$  denotes the grading of  $a$ . We can twist the left action on the  $A$ -bimodule  $M$  by  $f_q$  to obtain a new bimodule  ${}_{f_q}M$  which is equal to  $M$  as a right  $A$ -module and has left action given by the composition  $A \otimes_{\mathbb{Z}} {}_{f_q}M \xrightarrow{f_q \otimes \mathbb{I}} A \otimes_{\mathbb{Z}} M \xrightarrow{m} M = {}_{f_q}M$ . This operation is a special case of tensor product:

$${}_{f_q}M \cong {}_{f_q}A \otimes_A M$$

(compare [2, Section 3.8.3]).

Our first observation is:

**Proposition 2.** The quantum Hochschild homology of  $A$  with coefficients in  $M$  is isomorphic to the ordinary Hochschild homology of  $A$  with coefficients in  ${}_{f_q}M$ .

*Proof.* This is immediate from the definitions. □

---

*Date:* January 31, 2021.

RL was supported by NSF grant DMS-1810893.

Call a chain complex of graded  $A$ -bimodules  $M$  *weakly central* if for any graded  $A$ -bimodule  $N$  there is a quasi-isomorphism  $M \otimes_A^L N \simeq N \otimes_A^L M$ .

**Lemma 3.** *The bimodule  ${}_{f_q}A$  is weakly central.*

*Proof.* The isomorphism  $M \otimes_A {}_{f_q}A \rightarrow {}_{f_q}A \otimes M$  sends  $m$  to  $q^{-|m|}m$ .  $\square$

We turn next to annular link invariants. Consider the category  $\mathbf{Tan}$  with one object for each even integer and  $\text{Hom}(2m, 2n)$  given by the set of isotopy classes of  $(2m, 2n)$ -tangles (embedded in  $D^2 \times [0, 1]$ ). Given a (graded) algebra  $A$ , a *very weak action* of  $\mathbf{Tan}$  on the category of  $A$ -modules is a choice of quasi-isomorphism class of chain complex of (graded)  $A$ -bimodules  $C(T)$  for each  $T \in \text{Hom}(2m, 2n)$  so that  $C(T_2 \circ T_1)$  is quasi-isomorphic to  $C(T_2) \otimes_A^L C(T_1)$ . For example, if we take  $A$  to be the direct sum of the Khovanov arc algebras [4] then Khovanov defined a very weak action of  $\mathbf{Tan}$  on  ${}_A\text{Mod}$ , and if we define  $A$  to be the direct sum of the Chen-Khovanov algebras [3] then Chen-Khovanov defined a very weak action of  $\mathbf{Tan}$  on  ${}_A\text{Mod}$ . (In fact, in both cases, they did more; cf. Remark 6.)

Any  $(2n, 2n)$ -tangle  $T \subset D^2 \times [0, 1]$  has an *annular closure* in  $D^2 \times S^1$ .

**Proposition 4.** *Fix a very weak action of  $\mathbf{Tan}$  on  ${}_A\text{Mod}$  and a weakly central  $A$ -bimodule  $P$ . Then for any  $(2n, 2n)$ -tangle  $T$ , the isomorphism class of  $\text{HH}_*(A; C(T) \otimes_A^L P)$  is an invariant of the annular closure of  $T$ .*

(Compare [2, Corollary 3.23].)

*Proof.* This is immediate from the definitions and the trace property of Hochschild homology, i.e., that given  $A$ -bimodules  $M$  and  $N$ ,

$$\text{HH}_*(A; M \otimes_A^L N) \cong \text{HH}_*(A; N \otimes_A^L M).$$

$\square$

The following is part of Beliakova-Putryra-Wehrli's Theorem B [2]:

**Corollary 5.** *Up to isomorphism, the quantum Hochschild homology of the Chen-Khovanov bimodule associated to a  $(2n, 2n)$ -tangle  $T$  is an invariant of the annular closure of  $T$ .*

*Proof.* This is immediate from Lemma 3, Proposition 4, and the fact that the Chen-Khovanov bimodules induce a very weak action of  $\mathbf{Tan}$  [3].  $\square$

*Remark 6.* To keep this note short, we have not discussed functoriality of these annular link invariants under annular cobordisms. To do so, one replaces  $\mathbf{Tan}$  by an appropriate 2-category of tangles and weak centrality by a notion keeping track of the isomorphisms. See Beliakova-Putryra-Wehrli [2] for further discussion.

## REFERENCES

- [1] Rostislav Akhmechet, Vyacheslav Krushkal, and Michael Willis, *Stable homotopy refinement of quantum annular homology*, 2019, arXiv:2001.00077.
- [2] Anna Beliakova, Krzysztof K. Putryra, and Stephan M. Wehrli, *Quantum link homology via trace functor I*, Invent. Math. **215** (2019), no. 2, 383–492. MR 3910068
- [3] Yanfeng Chen and Mikhail Khovanov, *An invariant of tangle cobordisms via subquotients of arc rings*, Fund. Math. **225** (2014), no. 1, 23–44. MR 3205563
- [4] Mikhail Khovanov, *A functor-valued invariant of tangles*, Algebr. Geom. Topol. **2** (2002), 665–741. MR MR1928174 (2004d:57016)