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Abstract—In this work, we propose a method for speeding
up linear regression distributively, while ensuring security. We
leverage randomized sketching techniques, and improve straggler
resilience in asynchronous systems. Specifically, we apply a
random orthonormal matrix and then subsample in blocks, to
simultaneously secure the information and reduce the dimension
of the regression problem. In our setup, the transformation
corresponds to an encoded encryption in an approximate gradient
coding scheme, and the subsampling corresponds to the responses
of the non-straggling workers; in a centralized coded computing
network. We focus on the special case of the Subsampled
Randomized Hadamard Transform, which we generalize to block
sampling; and discuss how it can be used to secure the data.

I. INTRODUCTION AND PRELIMINARIES

We propose a method to securely speed up linear regres-
sion by simultaneously leveraging random projections and
distributed computations. Random projections are a classical
way of performing dimensionality reduction, and are widely
used in algorithmic and learning contexts [2]–[5]. Distributed
computations in the presence of stragglers have gained a lot
of attention in the information theory community. Coding-
theoretic approaches have been adopted for this [6]–[18], and
fall under the framework of coded computing (CC). Data
security is also an increasingly important issue in CC [19].
We present our results in terms of the standard CC model
[6], though they extend to any centralized distributed network;
comprised of a central server and computational workers.

We focus on iterative sketching for steepest descent (SD)
in the context of solving overdetermined linear systems. We
propose to apply a random orthonormal projection before
distributing the data, and then perform mini-batch stochastic
steepest descent (SSD) distributively on the transformed sys-
tem. A special case of such a projection is the Subsampled
Randomized Hadamard Transform (SRHT) [4], which relates
to the fast Johnson-Lindenstrauss transform [20], [21]. The
benefit of applying an orthonormal matrix transformation is
that we rotate and/or reflect the data’s orthonormal basis,
which cannot be reversed without knowledge of the transfor-
mation. This is leveraged to give security guarantees, while
simultaneously ensuring that we recover well-approximated
gradients, and an approximate solution of the linear system.

We note that in CC, the workers are assumed to be homoge-
neous and all are assumed to have the same expected response
time. In the proposed method, we stop receiving computations
once a fixed fraction of workers respond, which results in a
different sketch at each iteration. A predominant task which
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has been studied in the CC framework is the gradient com-
putation of differentiable and additively separable objective
functions [22]–[36]. These schemes are collectively called
gradient coding (GC). We note that iterative sketching has
proven to be a powerful tool for second-order methods [37],
[38], though it has not been explored in first-order methods.
Since we consider a modified problem at each iteration, the
method we propose is an approximate GC scheme. Related
approaches have been proposed in [27]–[36]. Two benefits of
our approach are that we do not require a decoding step, nor
an encoding step by the workers; at each iteration.

Another benefit of our proposed approach, is that random
projections secure the information from potential eavesdrop-
pers, honest but curious; and colluding workers. We show
information theoretic security for the case where a random
orthonormal projection is utilized in our sketching algorithm.
Furthermore, the security of the SRHT, which is a crucial
aspect, has not been extensively studied. Unfortunately, the
SRHT is inherently insecure, which we show. We propose a
modified projection which guarantees computational security.

There are related works to what we propose. The work of
[39] focuses on parameter averaging for variance reduction,
but only mentions a security guarantee for the Gaussian sketch,
derived in [40]. Another line of work is that of [41], [42],
which focuses on introducing redundancy through equiangular
tight frames (ETFs), and partitioning the system into smaller
linear systems, and then averaging the solutions of a fraction
of them. A drawback of using ETFs, is the fact that most of
them are over C. The authors of [43] study privacy of random
projections, though make the assumption that the projections
meet the ‘ε-MI-DP constraint’. Lastly, a secure GC scheme is
studied in [44], though this work does not utilize sketching.

The paper is organized as follows. In II we review the
framework and background for coded linear regression, and
the ℓ2-subspace embedding property. In III we present the
proposed sketching algorithm, and in IV the special case where
the projection is the Hadamard transform, which we refer to
as block-SRHT. In V we present the security guarantee of
our algorithm, and the modified version of the block-SRHT;
which guarantees computational security. Finally, we present
numerical experiments in VI; and concluding remarks in VII.

II. CODED LINEAR REGRESSION

A. Least Squares Approximation and Steepest Descent

In linear least squares approximation [4], we approximate

x⋆
ls = arg min

x∈Rd

{︂
Lls(A,b;x) := ∥Ax− b∥22

}︂
(1)



where A ∈ RN×d and b ∈ RN . This corresponds to the
regression coefficients x of the model b = Ax+ ε⃗, which is
determined by the dataset D = {(ai, bi)}Ni=1 ⊊ Rd × R of N
samples, where (ai, bi) represent the features and label of the
ith sample, i.e. A =

[︁
a1 · · · aN

]︁T
and b =

[︁
b1 · · · bN

]︁T
.

We address the overdetermined case where N ≫ d. Existing
exact methods find a solution vector x⋆

ls in O(Nd2) time,
where x⋆

ls = A†b. A common way to approximate x⋆
ls is

through SD, which iteratively updates the gradient

g
[t]
ls := ∇xLls(A,b;x[t]) = 2AT (Ax[t] − b)

followed by updating the parameter vector: x[t+1] ← x[t]−ξt ·
g
[t]
ls . The step-size ξt > 0 is determined by the central server.

The exponent [t] indexes the iteration t = 1, 2, 3, ... which we
drop when it is clear from the context.

B. The Straggler Problem and Gradient Coding

Gradient coding is deployed in centralized computation
networks, i.e. a central server communicates x[t] to m workers;
who perform computations and then communicate back their
results. The central server distributes the dataset D among
the m workers, to facilitate the solution of optimization
problems with additively separable and differentiable objective
functions. For linear regression (1), the data is partitioned as

A =
[︂
AT

1 · · · AT
K

]︂T
and b =

[︂
bT
1 · · · bT

K

]︂T
(2)

where Ai ∈ Rτ×d and bi ∈ Rτ for all i, and τ = N/K. To
simplify the presentation, we assume that K|N . Then we have
Lls(A,b;x) =

∑︁K
i=1 Lls(Ai,bi;x). A regularizer µR(x)

can also be added to Lls(A,b;x) if desired.
We denote the row vectors of a matrix M by M(i), and the

column vectors by M(j). Our embedding results are presented
in terms of an arbitrary partition NN = ⊔Kι=1Kι, for NN :=
{1, · · · , N} the index set of M’s rows. The notation M(Kι)

denotes the submatrix of M comprised of the rows indexed by
Kι. That is: M(Kι) = I(Kι) ·M, for I(Kι) the corresponding
submatrix of IN . We call M(Kι) the ‘ιth block of M’.

In GC [22], the servers encode their computations gi :=
∇xLls(Ai,bi;x); which are then communicated to the cen-
tral server. We refer to gi’s as partial gradients. Once a
certain fraction of encoded partial gradients is received, the
central server applies a decoding step to recover the gradient
g = ∇xLls(A,b;x) =

∑︁K
i=1 gi. This can be computationally

prohibitive, and is carried out at every iteration. To the
best of our knowledge, the lowest decoding complexity is
O
(︂
(s+ 1) · ⌈ m

s+1⌉
)︂

; where s is the number of stragglers [25].
In our approach we trade time; by not requiring encoding

nor decoding steps, with accuracy of approximating x⋆
ls.

Unlike conventional GC schemes, in this paper the workers
carry out the computation on the encoded data. The resulting
gradient, is that of the modified least squares problem

x̂ls = arg min
x∈Rd

{︂
LS[t](A,b;x) := ∥S[t](Ax− b)∥22

}︂
(3)

for S[t] ∈ Rr×N a sketching matrix, with r < N . This is
the core idea behind our approximation, where we incorporate

iterative sketching with orthonormal matrices for S[t], for our
GC approach. The projection, is also what provides security
against the workers and eavesdroppers.

For q the total number of responsive workers, we can
mitigate up to s = m− q stragglers. Specifically, the number
of responsive workers m− s in the CC model, corresponds to
the number of sampling trials q of our sketching algorithm, i.e.
q = m − s. At iteration t, a SD update of the modified least
squares problem (3) is obtained distributively. Furthermore,
we assume that the data is partitioned into as many blocks as
there are workers, i.e. K = m. The stragglers are assumed to
be uniformly random and may differ at each iteration. Thus,
there is a different sketching matrix S[t] at each epoch.

C. The ℓ2-Subspace Embedding Property
For the analysis of the sketching matrices SΠ we propose,

we consider any orthonormal basis U ∈ RN×d of the column-
space of A, i.e. im(A) = im(U).

Recall that the ℓ2-subspace embedding property [3] states
that any y ∈ im(U) satisfies:

∥Id − (SΠU)T (SΠU)∥2 ⩽ ϵ (4)

for ϵ > 0. In turn, this characterizes the approximation’s error
of the solution x̂ls of (3) for S← SΠ, as

∥Ax̂ls−b∥2 ⩽
1 + ϵ

1− ϵ
∥Ax⋆

ls−b∥2 ⩽ (1+O(ϵ))∥Ax⋆
ls−b∥2

and ∥A(x⋆
ls − x̂ls)∥2 ⩽ ϵ∥(IN −UUT )b∥2.

III. BLOCK SUBSAMPLED ORTHONORMAL SKETCHES

Sampling blocks (i.e. submatrices) for sketching least
squares has not been explored as extensively as sampling rows,
though there has been interest in using “block-iterative meth-
ods” for solving systems of linear equations [45]–[48]. Our
interest in sampling blocks, is to invoke results and techniques
from randomized numerical linear algebra (RandNLA) to CC.
Specifically, we apply the transformation before partitioning
the data and sharing it between the workers, who will compute
the respective partial gradients. Then, the slowest s workers
will be considered as stragglers and disregarded. The proposed
sketching matrices are summarised in Algorithm 1.

Algorithm 1: Subsampled Orthonormal Sketches
Input: A ∈ RN×d, τ = N

K
, and q = r

τ
> d

τ

Output: sketching matrix SΠ ∈ Rr×N , sketch ˜︁Ar ∈ Rr×d

Initialize: Ω = 0q×K

Randomly Select: Π ∈ ON (R), an orthonormal matrix
for i = 1 to q do

uniformly sample with replacement ji from NK

Ωi,ji =
√︁

N/r =
√︁

K/q
end
Ωq ← Ω⊗ Iτ
SΠ ← Ωq ·Π˜︁Ar ← SΠ ·A

To construct the sketch ˜︁Ar, we first transform the orthonor-
mal basis U by applying Π to A. Then, we subsample q
many blocks from ΠA, to reduce the dimension. Finally, we
normalize by

√︁
N/r to reduce the variance of the estimator˜︁Ar. Analogous steps are carried out on Πb, to construct ˜︁br.



A. Distributed Steepest Descent and Iterative Sketching

We now discuss the workers’ computational tasks of our
proposed GC scheme, when SD is carried out distributively.
The encoding corresponds to Ã = G · A and b̃ = G · b
for G :=

√︁
N/r · Π, which are then partitioned into K

blocks (Ãi, b̃i); similar to (2), and distributed to the workers.
Specifically, Ãi = I(Ki) · Ã and b̃i = I(Ki) · b̃. This differs to
most GC schemes, in that the encoding is usually done locally
by the workers on the computed results, at each iteration.

If each worker respectively computes∇xLls(Ãi, b̃i;x
[t]) =

2Ã
T

i (Ã
T

i x
[t]− b̃i) at iteration t, and the index multiset of the

first q responsive workers is S [t], the aggregated gradient

ĝ[t] = 2 ·
∑︂

j∈S[t]

Ã
T

j

(︂
Ãjx

[t] − b̃j

)︂
(5)

is equal to the gradient of LS for S← S
[t]
Π the induced sketch-

ing matrix at each iteration, i.e. ĝ[t] = ∇xLS
[t]
Π

(A,b;x[t]).

The sampling matrix Ω
[t]
q and index set S [t], correspond to

the q responsive workers.
In Algorithm 1 and Theorems 5 and 6, we assume sampling

uniformly with replacement. In what we just described, we
used one replica of each block, thus K = m. To compensate
for this, more than one replicas of each block could be
distributed. This is not a major concern with uniform sampling,
as the probability that the ith block would be sampled more
than once is (q − 1)/K2, which is negligible for large K.
Furthermore, we sample uniformly at random in Algorithm
1, as the application of Π flattens the block-leverage scores
[36], [49], i.e. they are all approximately equal. That is, for
Ṽ = ΠU, we have ℓ̃ι := ∥Ṽ(Kι)∥2F ≈ d

K for all ι ∈ NK .

Lemma 1. At any iteration t of the proposed scheme, with
no replications of the blocks across the network, the resulting
sketching matrix S[t] satisfies E

[︂
ST
[t]S[t]

]︂
= IN .

By Lemma 1, the Gram matrix of S[t] in expectation
satisfies the subspace embedding identity (4) with ϵ = 0, as
E
[︂
UT · (ST

[t]S[t]) ·U
]︂
= UTE

[︂
ST
[t]S[t]

]︂
U = UTU = Id.

Theorem 2. The proposed GC scheme results in a mini-batch
stochastic steepest descent procedure for

x̂ = arg min
x∈Rd

{︂
LG(A,b;x) := Lls(GA,Gb;x)

}︂
. (6)

Moreover E
[︂
ĝ[t]
]︂
= q

K · g
[t]
ls .

Lemma 3. The optimal solution of the modified least squares
problem on LG, is equal to the optimal solution x⋆

ls of (1).

Note that E
[︂
ĝ[t]
]︂

= q
K · g

[t]
ls means the estimate ĝ[t] is

unbiased after an appropriate rescaling. This rescaling could
be incorporated in the step-size ξt. The subsampling which
takes place; as a consequence of considering the q fastest
responses, is the reason the distributive procedure results in
a SSD approach for the modified problem (6). By Theorem
2 and Lemma 3, it follows that with a diminishing step-size,

our updates x̂[t] converge to x⋆
ls in expectation; at a rate of

O(1/
√
t+ r/t) [50].

Corollary 4. Consider the problems (1) and (6), which are
respectively solved through SD and our iterative sketching
based GC scheme. Assume that the two approaches have the
same starting point x[0] and index set S [t] at each t; and
ξ̃t = K

q · ξt the step-sizes used for our scheme. Then, in
expectation, our scheme has the same update at each step
t as SD at the corresponding update, i.e E

[︂
x̂[t]
]︂
= x[t].

By Lemma 3 and Corollary 4, our iterative sketching
scheme approaches the optimal solution of the original prob-
lem (1), by solving the modified regression problem (6). Next,
we present our main ℓ2-subspace embedding result.
Theorem 5. Fix ϵ > 0 such that ϵ≪ 1/N . Then, the sketching
matrix SΠ of Algorithm 1 is a (1±ϵ)-embedding of A, accord-
ing to (4). Specifically, for δ > 0 and q = Θ( dτ log (2d/δ)/ϵ2):

Pr
[︁
∥Id −UTST

ΠSΠU∥2 ⩽ ϵ
]︁
⩾ 1− δ.

IV. THE BLOCK-SRHT
In this section, we focus on a special case of Π which can be

utilized in Algorithm 1, the randomized Hadamard transform.
The SRHT is comprised of three matrices: Ω ∈ Rr×N a
uniform sampling and rescaling matrix of r rows, ĤN ∈
{±1/

√
N}N×N the normalized Hadamard matrix for N = 2n,

and D ∈ {0,±1}N×N with i.i.d. diagonal Rademacher random
entries; i.e. it is a signature matrix. The main intuition of the
projection is that it expresses the original signal or feature-
row in the Walsh-Hadamard basis. Furthermore, ĤN can be
applied efficiently due to its structure. In the new basis the
block-leverage scores are close to uniform, hence uniform
sampling is applied to reduce the effective dimension N ,
whilst the information of the data matrix is maintained.

To exploit the SRHT in distributed GC for linear regression,
we generalize it to subsampling blocks instead of rows; of
the transformed data matrix, as in Algorithm 1. We give a
subspace embedding guarantee for the block-wise sampling
version or SRHT, which characterizes the approximation of
our proposed GC for linear regression.

We refer to this special case as the “block-SRHT”, for which
Π is taken from the set of orthonormal matrices

HN :=
{︂
ĤN ·D : D = diag(±1) ∈ {0,±1}N×N

}︂
, (7)

where D is a random signature matrix with equiprobable
entries of +1 and -1, and ĤN for N = 2n is defined by

H2 =

(︃
1 1
1 −1

)︃
ĤN =

1√
N
·H⊗ log2(N)

2 .

The SRHT introduced in [4] corresponds to the case where
we select τ = 1, i.e. K = N . The main differences in SΠ

is the sampling matrix Ωq , and that q = r/τ sampling trials
take place instead of r. Henceforth, we drop the subscript N .
The limiting computational step in applying SΠ in (3) is the
multiplication by Ĥ. The recursive structure of Ĥ permits us to
compute SΠ ·A in O(Nd logN) time, by using Fourier based
methods. Furthermore, the transformation ĤD also permits for



a very sparse random projection to be applied, instead of Ωq

[20]. Also note that the diagonal entries of D is the only place
in which randomness takes place other than the sampling.

In Theorem 6, we state our ℓ2-subspace embedding result
regarding the block-SRHT.

Theorem 6. The block-SRHT SΠ is a (1±ϵ)-embedding of A.
For δ > 0 and q = Θ

(︁
d
τ log(Nd/δ) · log(2d/δ)/ϵ2

)︁
:

Pr
[︁
∥Id −UTST

ΠSΠU∥2 ⩽ ϵ
]︁
⩾ 1− δ .

In Subsection V-A we alter the transformation ĤD by
permuting its rows. While our ℓ2-subspace embedding result
remains intact, under mild but necessary assumptions, this
transformation now also guarantees computational security.

V. SECURITY OF ORTHONORMAL SKETCHES

In this section, we discuss the security of the proposed
orthonormal-based sketching matrices, and that of the block-
SRHT. The main idea behind securing the resulting sketches
is that there are infinitely many options of Π to select from,
making it near-impossible for adversaries to discover the
inverse transformation.

To give information-theoretic security guarantees, we make
some mild but necessary assumptions regarding Algorithm 1
and the data matrix A. First, we recall the definition of a
perfectly secret cryptographic scheme.

Definition 7 (Ch.2 [51]). A security scheme Enc with mes-
sage, ciphertext and key spaces M, C and K respectively is
Shannon/perfectly secret w.r.t. a probability distribution D
over M, if for all m̄ ∈M and all c̄ ∈ C:

Pr
m←D
k←K

[m = m̄ | Enck(m) = c̄] = Pr
m←D

[m = m̄] , (8)

which is equivalent to the condition that for all m0,m1 ∈M:

Pr
k←K

[Enck(m0) = c̄] = Pr
k←K

[Enck(m1) = c̄] . (9)

For an information-theoretic security guarantee, M needs
to be finite, which M in our case corresponds to the set of
possible orthonormal bases of the column-space of A. This is
something we do not have control over, and it depends on the
application and distribution from which we assume the data
is gathered. Therefore, we assume that M is finite. For this
reason, we consider a finite multiplicative subgroup (ÕA, ·)
of ON (R) (thus IN ∈ ÕA, and if Q ∈ ÕA then QT ∈ ÕA),
which contains all potential orthonormal bases of A. Recall
that ON (R) is a regular submanifold of GLN (R). Hence, we
can define a distribution on any subset of ON (R).

We then let M = ÕA, and assume UA the N × N
orthonormal basis of A be drawn from M w.r.t. D. We
consider D to be the uniform distribution. Furthermore, an
inherent limitation of Shannon secrecy is that |K| ⩾ |M|.
Theorem 8. In Algorithm 1, sample Π uniformly at random
from ÕA. The application of Π to A before partitioning the
data, provides Shannon secrecy to A w.r.t. D uniform, for
K,M, C all equal to ÕA.

A. Securing the SRHT
Unfortunately, the guarantee of Theorem 8 does not apply to

the block-SRHT, as in this case it is restrictive to assume that
UA ∈ HN . A simple computation on a specific example also
shows that this sketching approach does not provide Shannon
secrecy. For instance, if U0 = I2, U1 = Ĥ2 and the observed
transformed basis C̄ has two zero entries, then

Pr
Π←H2

[︁
Π ·U1 = C̄

]︁
> Pr

Π←H2

[︁
Π ·U0 = C̄

]︁
= 0.

Furthermore, since Ĥ is a known orthonormal matrix, it is a
trivial task to invert this projection and reveal DA. This shows
that the inherent security of the SRHT is relatively weak.

Proposition 9. The SRHT does not provide Shannon secrecy.

To secure the SRHT and the block-SRHT, we randomly
permute the rows of Ĥ, before applying it to A. That is, for
P ∈ SN where SN ⊊ {0, 1}N×N is the permutation group
on N ×N matrices, we let H̃ := PĤ ∈ {±1/

√
N}N×N , and

the new sketching matrix is

SΠ̃ = Ωq · (P · Ĥ) ·D = Ωq · H̃ ·D = Ωq · Π̃ (10)

for which our flattening result still holds true (Corollary 10).
The reason we “garble” Ĥ is so that the projection applied
to A now inherently has more randomness, and allows us to
draw from a larger ensemble. Specifically, for a fixed N , the
block-SRHT has N2 options for the projection of ĤD, while
for Π̃ = H̃D there are N2 · N ! = O(N1.5+Ne−N ) options
for the projection Π̃. Moreover, for

H̃N := {P ·Π : P ∈ SN and Π ∈ HN} (11)

the set of all possible garbled Hadamard transforms, it follows
that (H̃N , ·) is a finite multiplicative subgroup of ON (R).
Hence, we can also define a distribution on H̃N . We also
get the benefits of permuting Ĥ’s columns without explicitly
applying a second permutation, through D.

By the following Corollary, the result of Theorem 6 also
holds for the garbled block-SRHT (an analogous result is used
to prove that the scores of ĤDA are flattened). Thus, we can
apply any Π̃ from H̃N in Algorithm 1, and get a valid sketch.

Corollary 10. For y ∈ RN a fixed (orthonormal) column
vector of U, and D ∈ {0,±1}N×N with random equi-
probable diagonal entries of ±1, we have:

Pr
[︂
∥H̃D · y∥∞ > C

√︁
log(Nd/δ)/N

]︂
⩽

δ

2d
(12)

for 0 < C ⩽
√︁
2 + log(16)/ log(Nd/δ) a constant.

Moreover, the flattening result also holds true for random
projections R whose entries are rescaled Rademacher random
variables, i.e. Rij = ±1/

√
N with equal probability. The

advantage of this is that we have a larger set of projections

R̃N :=
{︂
R ∈ {±1/

√
N}N×N : Pr[Rij = +1/

√
N ] = 1/2

}︂
to draw from. This makes it even harder for an adversary to
determine which projection was applied. Specifically |R̃N | =



2N
2

, which is significantly larger than |H̃N |. A drawback of
applying such a projection is that it is much slower than its
Hadamard-based counterpart.

Next, we provide a computationally secure guarantee for the
garbled block-SRHT, i.e. for SΠ̃ ← Ωq · Π̃. The guarantee of
Theorem 11 against computationally bounded adversaries, re-
lies heavily on the assumption that one-way functions (OWFs)
exist. Even though OWFs are minimal cryptographic objects,
it is not known whether such functions exist [51]. Proving their
existence is non-trivial, as this would then imply that P ̸= NP.
In practice however, this is not unreasonable to assume.

Theorem 11. Under the assumption that one-way permuta-
tions exist, the garbled sketching matrix SΠ̃ ← Ωq ·Π̃ is com-
putationally secure against polynomial-bounded adversaries.

B. Exact Gradient Recovery
In the case where the exact gradient is desired, one can use

the proposed orthonormal projections to encrypt the informa-
tion from the workers, while requiring that the computations
from all the workers are received. From Theorems 8 and 11,
we know that under certain assumptions we can secure A.

Since the projections are orthonormal, it follows that ĝ[t] =
g
[t]
ls . Thus, as long as all workers respond, the aggregated

gradient is equal to the exact gradient. One can utilize this idea
to encrypt other distributive computations, e.g. matrix multi-
plication, logistic regression. This resembles a homomorphic
encryption scheme, but is by no means fully-homomorphic.

VI. EXPERIMENTS

We compared our proposed distributed GC schemes to
analogous approaches where the projection Π is a Gaussian
sketch or a Rademacher random matrix. Our approach was
found to outperform both of these sketching methods in terms
of convergence and approximation error.

We also compared our approach with uncoded (regular) SD
and SSD. Random matrices A ∈ R2000×40 with non-uniform
block-leverage scores were generated for the experiments.
Standard Gaussian noise was added to an arbitrary vector
from im(A), to define b. We considered K = 100 blocks,
thus τ = 20. Each experiment was carried out six times,
and we report the average in our plot. For the experiments
in Figure 1 we ran a total of 400 iterations, and varied ξ for
each experiment by logarithmic factors of the optimal step-size
ξ× = 2/σmax(A)2. The effective dimension N was reduced
to r = 1000 in all experiments.

In Figure 1 we show how the residual error ∥x⋆
ls − x̂∥2

behaves, with different step-sizes. In the depicted simulation,
we considered a sparse matrix A. In analogous experiments
where we considered a dense matrix, or a matrix drawn from
a t-distribution, the behaviors were similar. In all cases, the
order of the magnitude of the residual error was the same.

In Figure 2 we present the residual error at each iteration,
in the case where A was drawn from a t-distribution. We
considered a fixed step-size at ξ = 102 · ξ×. It is evident, that
our proposed sketches result in faster convergence of x̂ per

Fig. 1. log residual error, for A sparse.

iteration, than SD and SSD. Our approach also outperformed
the scenario when a Gaussian projection was applied.

Fig. 2. Error at each iteration.

Lastly, we show the resulting block-leverage scores after
applying the projections, in Figure 3. The flattening of these
scores is precisely what permitted us to sample uniformly
through Ωq , and prove Theorems 5 and 6.

Fig. 3. Flattening of block-scores, for A following a t-distribution.

VII. CONCLUDING REMARKS

In this work, we proposed approximately solving a linear
system by distributively leveraging iterative sketching and per-
forming first-order SD simultaneously. In doing so, we benefit
from both (approximate) GC and RandNLA. A difference
between this and other works is that the resulting sketches are
sampling blocks uniformly, after applying random orthonormal
projections. The benefit is that by considering a large ensemble
of orthonormal matrices to pick from, under necessary as-
sumptions, we guarantee information theoretic security while
performing the computations. This approach also enables us
to not require encoding and decoding steps at every iteration.
We also studied the special case where the projection is the
Hadamard transform, and discussed its security limitation. To
overcome this, we proposed a modified ‘garbled block-SRHT’,
which guarantees computational security.

We note that applying orthonormal random matrices also
secures coded matrix multiplication. There is a benefit when



applying a garbled Hadamard transform in this scenario, as
the complexity of multiplication resulting from the sketching
is less than that of regular multiplication. Also, if such a ran-
dom projection is used before performing CR-multiplication
distributively [14], the approximate result will be the same.

Moreover, our dimensionality reduction algorithm can be
utilized by a single server, to store a very large data-matrix.
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APPENDIX A
PROOFS OF SECTION III-A

Proof. [Lemma 1] The only difference in S
[t]
Π at each iteration,

is S [t] and Ω
[t]
q . This corresponds to a uniformly random

selection of q out of K batches of the data which determine
the gradient at iteration t — all blocks are scaled by the same
factor

√︁
K/q in Ω

[t]
q . Let Q be the set of all subsets of NK

of size q. Then

E
[︁
ST
[t]S[t]

]︁
=
∑︂
S[t]∈Q

1(︁
K
q

)︁ · (︁S[t] · S[t]

)︁
=

1(︁
K
q

)︁ ∑︂
S[t]∈Q

∑︂
i∈S[t]

(︂√︁
K/q

)︂2
·ΠT

(Ki)
Π(Ki)

=

(︁
K−1
q−1
)︁(︁

K
q

)︁ K∑︂
i=1

K

q
·ΠT

(Ki)
Π(Ki)

=

(︁
K−1
q−1
)︁
· Kq(︁

K
q

)︁ K∑︂
i=1

ΠT
(Ki)

Π(Ki)

= ΠTΠ

= IN

where
(︁
K−1
q−1
)︁

is the number of sets in Q which include i, for
each i ∈ NK .

Proof. [Theorem 2] The only difference in S
[t]
Π at each itera-

tion, is S [t] and Ω
[t]
q . This corresponds to a uniformly random

selection of q out of K batches of the data which determine
the gradient at iteration t — all blocks are scaled by the same
factor

√︁
K/q in Ω

[t]
q . By (5), the gradient update is equal to

that of a batch stochastic steepest descent procedure.
We break up the proof of the second statement by first

showing that E
[︂
ĝ[t]
]︂
= g̃[t]; for g̃ the gradient in the basis

ΠU, and then showing that E
[︂
g̃[t]
]︂
= q

K · g
[t]
ls .

Let Q be the set of all subsets of NK of size q, ĝS[t]

the gradient determined by the index set S [t], and g̃
[t]
i the

respective partial gradients at iteration t. Then

E
[︂
ĝ[t]
]︂
=
∑︂
S[t]∈Q

1(︁
K
q

)︁ · ĝS[t]

=
1(︁
K
q

)︁ ∑︂
S[t]∈Q

∑︂
i∈S[t]

(︂√︁
K/q

)︂2
· g̃[t]i

=

(︁
K−1
q−1
)︁(︁

K
q

)︁ K∑︂
i=1

K

q
· g̃[t]i

=

K∑︂
i=1

g̃
[t]
i

= g̃[t]

where
(︁
K−1
q−1
)︁

is the number of sets in Q which include i, for
each i ∈ NK .

We denote the resulting partial gradient on the sampled
index set S [t] of the gradient on (1) at iteration t; i.e. g

[t]
ls ,

by gS[t] , and the individual partial gradients by g
[t]
i . Using the

same notation as above, we get that

E
[︂
g̃[t]
]︂
=
∑︂
S[t]∈Q

1(︁
K
q

)︁ · gS[t]

=
1(︁
K
q

)︁ ∑︂
S[t]∈Q

∑︂
i∈S[t]

g
[t]
i

=

(︁
K−1
q−1
)︁(︁

K
q

)︁ K∑︂
i=1

g
[t]
i

=
q

K
·

K∑︂
i=1

g̃
[t]
i

=
q

K
· g[t]

which completes the proof.

Proof. [Lemma 3] Since Π is an orthonormal matrix, the
solution of the least squares problem with the objective
LG(A,b;x) is equal to the optimal solution (1), as

x̂ = arg min
x∈Rd

∥G(Ax− b)∥22

= arg min
x∈Rd

∥Π(Ax− b)∥22

= arg min
x∈Rd

∥Ax− b∥22

= x⋆
ls .

Proof. [Corollary 4] We prove this by induction. From our
assumptions we have a fixed starting point x[0], for which
x̂[0] = x[0]. Our base case is therefore E[x̂[0]] = E[x[0]] = x[0].
For the inductive hypothesis, we assume that E[x̂[τ ]] = x[τ ]

for τ ∈ N.



It then follows that at step τ + 1 we have

E
[︁
x̂[τ+1]]︁ = E

[︁
x̂[τ ] − ξ̃τ · ĝ

[τ ]
]︁

= E
[︁
x̂[τ ]]︁− K

q
· ξτ · E

[︁
ĝ[τ ]
]︁

= x[τ ] − q

K
·
(︃
K

q
· ξτ
)︃
· g[τ ]ls

= x[τ ] − ξτ · g[τ ]ls

= x[τ+1]

which completes the inductive step.

Next, we provide the proof of Theorem 6. First, we to
present the key results regarding the leverage and block-
leverage scores of ΠA (Lemmas 12, 14).Throughout this
subsection, by ℓi we denote the ith leverage score of ΠA
for Π a random orthonormal matrix, i.e.

ℓi = ∥Ũ(i)∥22 = ∥eTi Ũ∥22 = eTi ŨŨ
T
ei (13)

where Ũ = ΠU; for U the reduced left orthonormal matrix
of A. By ei we denote the ith standard basis vector of RN .

Lemma 12. For each i ∈ NN , we have E[ℓi] = d
N .

Proof. By (13), we have

E[ℓi] = E
[︂
tr(eTi ŨŨ

T
ei)
]︂

= E
[︂
tr(eie

T
i · ŨŨ

T
)
]︂

=

N∑︂
j=1

1

N
· tr(ejeTj · ŨŨ

T
)

=
1

N
· tr

⎛⎝ N∑︂
j=1

eje
T
j · ŨŨ

T

⎞⎠
=

1

N
· tr
(︂
IN · ŨŨ

T
)︂

=
1

N
· tr
(︂
ŨŨ

T
)︂

=
d

N
.

Let ℓ̄i denote the ith normalized leverage score, i.e. ℓ̄i = ℓi
d .

The ιth normalized block-leverage score of A is denoted by
ℓ̀ι, i.e.

ℓ̀ι =
1

d
· ∥I(Kι)Ũ∥

2
F =

1

d
·
(︂ ∑︂

j∈Kι

ℓj

)︂
=
∑︂
j∈Kι

ℓ̄j . (14)

To prove Lemma our results, we first recall Hoeffding’s
inequality.

Theorem 13 (Hoeffding’s Inequality, [52]). Let {Xi}mi=1 be
independent random variables such that Xi ∈ [ai, bi] for all
i ∈ Nm, and let X =

∑︁m
i=1 Xi. Then

Pr
[︁⃓⃓
X − E[X]

⃓⃓
⩾ t
]︁
⩽ 2 · exp

{︄
−2t2∑︁m

j=1(ai − bi)2

}︄
.

Lemma 14. The normalized leverage scores {ℓ̄i}Ni=1 of ΠA
satisfy

Pr
[︁
|ℓ̄i − 1/N | < ϵ

]︁
> 1− 2 · e2ϵ

2/N

for any ϵ > 0.

Proof. [Lemma 14] We know that ℓi ∈ [0, d] for each i ∈ NN ,
thus ℓ̄i ∈ [0, 1] for each i. By Lemma 12, it follows that

E[ℓ̄i] = E[ℓi/d] =
1

d
· E[ℓi] =

1

N
.

Now, fix an ϵ > 0. By applying Theorem 13, we get

Pr
[︁
|ℓ̄i − 1/N | ⩾ ϵ

]︁
⩽ 2 · e−2ϵ

2/N

thus
Pr
[︁
|ℓ̄i − 1/N | < ϵ

]︁
> 1− 2 · e−2ϵ

2/N .

Lemma 15. For all ι ∈ NK and Kι ⊊ NN of size τ = N/K

Pr
[︂⃓⃓
ℓ̀ι − 1/K

⃓⃓
< τϵ

]︂
= Pr

[︂
ℓ̀ι <Nϵ 1/K

]︂
> 1−2τ ·e−2ϵ

2/N

for ϵ > 0.

Proof. [Lemma 15] By Lemma (14), it follows that

Pr
[︂⃓⃓
ℓ̀ι − 1/K

⃓⃓
< τϵ

]︂
> Pr

⎡⎣ ⋀︂
j∈Kι

{︁
|ℓ̄i − 1/N | < ϵ

}︁⎤⎦
>
(︂
1− 2 · e−2ϵ

2/N
)︂τ

⋊⋉
≈ 1− 2τ · e−2ϵ

2/N

where in ⋊⋉ we applied the binomial approximation.

The proof of Corollary 5 is a direct consequence of Lemma
15 and Theorem 16. We note that in our statement we make
the assumption that ℓ̀ι = 1/K for all ι, even though this is not
necessarily the case, as Lemma 15 allows a small deviation.
One could generalize Theorem 16 to accommodate sampling
according to approximate block-leverage scores, e.g. [53]. This
is not studied in our work.

Theorem 16. The sketching matrix SΠ constructed by sam-
pling blocks of A with replacement according to their normal-
ized block-leverage scores {ℓ̀ι}Kι=1 and rescaling each sampled

block by
√︂

1/(qℓ̀ι), is a (1±ϵ)-embedding of A; as defined in
(4). Specifically, for δ > 0 and q = Θ( dτ log (2d/δ)/ϵ2):

Pr
[︁
∥Id −UTST

ΠSΠU∥2 ⩽ ϵ
]︁
⩾ 1− δ.

APPENDIX B
PROOFS OF SECTION IV

In this appendix, we present two lemmas which we use
to bound the entries of V̂ := ĤDU, and its leverage scores
ℓi := ∥V̂(i)∥22, for which

∑︁N
i=1 ℓi = d. Leverage scores induce

a sampling distribution which has proven to be useful in linear
regression [3], [52]–[54] and GC [36]. From these lemmas, we
deduce that the leverage scores of ĤDA are close to being



uniform, implying that the block-leverage scores [36] are also
uniform, which is precisely what Lemma 20 states.

Lemma 19 is a variant of the Flattening Lemma [20], [52],
a key result to Hadamard based sketching algorithms, which
justifies uniform sampling. In the proof, we make use of the
Azuma-Hoeffding inequality; a concentration result for the
values of martingales that have bounded differences. We also
recall a matrix Chernoff bound [3, Fact 1], which we apply to
prove our subspace embedding guarantees. Finally, we present
proofs of Proposition 23 and Theorems 2, 6.

Lemma 17 (Azuma-Hoeffding Inequality, [52]). For zero
mean random variable Zi (or Z0, Z1, · · · , Zm a martingale
sequence of random variables), bounded above by |Zi| ⩽ βi

for all i with probability 1, we have

Pr

[︃⃓⃓ m∑︂
j=0

Zj

⃓⃓
> t

]︃
⩽ 2 exp

{︄
t2

2 ·
(︁∑︁m

j=0(βj)2
)︁}︄ .

Theorem 18 (Matrix Chernoff Bound, [3, Fact 1]). Let
X1, · · · ,Xq be independent copies of a symmetric random
matrix X ∈ Rd×d, with E[X] = 0, ∥X∥2 ⩽ γ, ∥E[XTX]∥2 ⩽
σ2. Let Z = 1

q

∑︁q
i=1 Xi. Then, ∀ϵ > 0:

Pr
[︂
∥Z∥2 > ϵ

]︂
⩽ 2d · exp

(︃
− qϵ2

σ2 + γϵ/3

)︃
. (15)

Lemma 19 (Flattening Lemma). For y ∈ RN a fixed (or-
thonormal) column vector of U, and D ∈ {0,±1}N×N with
random equi-probable diagonal entries of ±1, we have:

Pr
[︂
∥ĤD · y∥∞ > C

√︁
log(Nd/δ)/N

]︂
⩽

δ

2d
(16)

for 0 < C ⩽
√︁
2 + log(16)/ log(Nd/δ) a constant.

Proof. [Lemma 19] Fix i and define Zj = ĤijDjjyj for
each j ∈ NN , which are independent random variables. Since
Djj = D⃗j are i.i.d. entries with zero mean, so are Zj .
Furthermore |Zj | ⩽ |Ĥij | · |Djj | · |yj | = |yj |√

N
, and note that

N∑︂
j=1

Zj = (ĤDy)i =

N∑︂
j=1

ĤijDjjyj = ⟨Ĥ(i) ⊙
D⃗⏟ ⏞⏞ ⏟

diag(D),y⟩

where ⊙ is the Hadamard product. By Lemma 17

Pr

[︃⃓⃓⃓ N∑︂
j=1

Zj

⃓⃓⃓
> ρ

]︃
⩽ 2 exp

{︄
−ρ2/2∑︁N

j=1(yj/
√
N)2

}︄

= 2 exp

{︃
−Nρ2

2 · ⟨y,y⟩

}︃
♭
= 2 · e−Nρ2/2 (17)

where ♭ follows from the fact that y is a column of U. By

setting ρ = C
√︂

log(Nd/δ)
N , we get

Pr

⎡⎣⃓⃓⃓ N∑︂
j=1

Zj

⃓⃓⃓
> C

√︃
log(Nd/δ)

N

⎤⎦ ⩽ 2 exp

{︃
−C2 log(Nd/δ)

2

}︃

= 2

(︃
δ

Nd

)︃C2/2 ♮

⩽
δ

2Nd

where ♮ follows from the upper bound on C. By applying the
union bound over all i ∈ NN , we attain (16).

Lemma 20. For all i ∈ NN and {ei}Ni=1 the standard basis:

Pr
[︂√︁

ℓi ⩽ C
√︁
d log(Nd/δ)/N

]︂
⩾ 1− δ/2

for ℓi = ∥V̂(i)∥22 the ith leverage score of V̂ = ĤDU.

Proof. [Lemma 20] It is straightforward that the columns of
V̂ form an orthonormal basis of A, thus Lemma 19 implies
that for j ∈ Nd

Pr
[︂
∥V̂ · ej∥∞ > C

√︁
log(Nd/δ)/N

]︂
⩽

δ

2d
.

By applying the union bound over all entries of V̂
(j)

= V̂ ·ej

Pr

[︄ |(ĤDU)ij |⏟ ⏞⏞ ⏟
|eTi · V̂ · ej | > C

√︃
log(Nd/δ)

N

]︄
⩽ d · δ

2d
= δ/2 . (18)

We manipulate the argument of the above bound to obtain

∥eTi · V̂∥2 =
(︂ d∑︂

j=1

(ĤDU)2ij

)︂1/2
> C

√︃
d · log(Nd/δ)

N
,

which can be viewed as a scaling of the random variable
entries of V̂. The probability of the complementary event is
therefore

Pr
[︂
∥eTi · V̂∥2 ⩽ C

√︁
d log(Nd/δ)/N

]︂
⩾ 1− δ/2

and the proof is complete.

Remark 21. The complementary probable event of (18) can
be interpreted as ‘every entry of V̂ is small in absolute value’.

Lemma 22. For all ι ∈ NK and Kι ⊊ NN of size τ = N/K

Pr
[︂
ℓ̃ι ⩽ C2d · log(Nd/δ)/K

]︂
> 1− τδ/2 .

for 0 < C ⩽
√︁

2 + log(16)/ log(Nd/δ) a constant.

Proof. [Lemma 22] For α := C2d · log(Nd/δ)/N

Pr
[︁
ℓ̃ι ⩽ τ · α

]︁
> Pr

[︁
{ℓj ⩽ α : ∀j ∈ Kι}

]︁ ♢
> (1− δ/2)τ

where ♢ follows from Lemma 20. By the binomial approxi-
mation, we have (1− δ/2)τ ≈ 1− τδ/2.

Define the symmetric matrices

Xi =

(︃
Id −

N

τ
· V̂

T

(Ki)V̂(Ki)

)︃
=
(︂
Id −K · V̂

T

(Ki)V̂(Ki)

)︂
(19)

where V̂(Ki) = V̂(Kι) is the submatrix of V̂ corresponding to
the ith sampling trial of our algorithm. Let X be the matrix
r.v. of which the Xi’s are independent copies. Note that the
realizations Xi of X correspond to the sampling blocks of the
event in (4). To apply Theorem 18, we show that the Xi’s



have zero mean, and we bound their ℓ2-norm and variance.
Their ℓ2-norms are upper bounded by

∥Xi∥2 ⩽ ∥Id∥2 + ∥
N

τ
· V̂

T

(Ki)V̂(Ki)∥2

= 1 +
N

τ
· ∥V̂(Kι)∥

2
2

⩽ 1 +
N

τ
· max
ι∈NK

{︂
∥I(Kι) · V̂∥

2
2

}︂
⩽ 1 +

N

τ
· max
ι∈NK

{︂
∥I(Kι) · V̂∥

2
F

}︂
[∥A∥2 ⩽ ∥A∥F ]

$
⩽ 1 +

N

τ
·
(︃
|Kι| · max

j∈NN

{︂
∥eTj · V̂∥22

}︂)︃
⩽ 1 +

N

τ
·
(︁
τ · (C2 · d log(Nd/δ)/N)

)︁
[Lemma 19]

= 1 + C2 · d log(Nd/δ) (20)
= 1 +Nα

for α = C2d · log(Nd/δ)/N where in $ we used the fact that

∥I(Kι) · V̂∥
2
F =

∑︂
j∈Kι

∥eTj · V̂∥22 ⩽ |Kι| ·max
j∈Kι

{︂
∥eTj · V̂∥22

}︂
.

From the above derivation, it follows that

∥V̂(Ki)∥22 = ∥V̂
T

(Ki)V̂(Ki)∥2
⩽

τ

N
·
(︁
1 + C2 · d log(Nd/δ)− ∥Id∥2

)︁
= τC2d/N · log(Nd/δ)

= τα

for all ι ∈ NK . By setting τ = 1, we get an upper bound on
the squared ℓ2-norm of the rows of V̂:

∥V̂l∥22 = ∥V̂lV̂
T

l ∥2 = ∥V̂
T

l V̂l∥2 ⩽ α (21)

where V̂l = V̂(l), for all l ∈ NN .
Next, we compute E := E[XTX+ Id] and its eigenvalues.

By the definition of X and its realizations:

XT
i Xi =

(︂
Id −N/τ · V̂T

(Ki)V̂(Ki)

)︂T

·
(︂
Id −N/τ · V̂T

(Ki)V̂(Ki)

)︂
= Id − 2 · N

τ
· V̂T

(Ki)V̂(Ki) +

(︃
N

τ

)︃2

· V̂T

(Ki)V̂(Ki)V̂
T

(Ki)V̂(Ki)

thus E is evaluated as follows:

E[XTX+ Id] = 2Id − 2 · (N/τ) · E
[︂
V̂

T

(Ki)V̂(Ki)

]︂
=+ (N/τ)2 · E

[︂
V̂

T

(Ki)V̂(Ki)V̂
T

(Ki)V̂(Ki)

]︂
= 2Id − 2 · (N/τ) ·

(︂∑︁K
j=1K

−1 · V̂T

(Kj)V̂(Kj)

)︂
=+ (N/τ)2 ·

(︂∑︁K
j=1K

−1 · V̂T

(Kj)

(︂
V̂(Kj)V̂

T

(Kj)

)︂
V̂(Kj)

)︂
= 2Id − 2 ·

(︂∑︁N
l=1V̂

T

l V̂l

)︂
+ (N/τ) ·

(︂∑︁N
l=1V̂

T

l

(︂
V̂lV̂

T

l

)︂
V̂l

)︂
= K ·

(︂∑︁N
l=1⟨V̂l, V̂l⟩ · V̂

T

l V̂l

)︂
where in the last equality we invoked

∑︁N
l=1 V̂

T

l V̂l = Id.

In order to bound the variance of the matrix random variable
X, we bound the largest eigenvalue of E; by comparing it to
the matrix

F = Kα ·

(︄
N∑︂
l=1

V̂
T

l V̂l

)︄
= Kα · Id

whose eigenvalue Kα is of algebraic multiplicity d. It is clear
that E and F are both real and symmetric; thus they admit an
eigendecomposition of the form QΛQT . Note also that for all
y ∈ Rd:

yTEy = K · yT

(︄
N∑︂
l=1

V̂
T

l

(︂
V̂lV̂

T

l

)︂
V̂l

)︄
y

♯
= K ·

N∑︂
l=1

⟨y, V̂l⟩2 · ∥V̂l∥22

♭
⩽ Kα ·

N∑︂
l=1

⟨y, V̂l⟩2 (23)

= Kα ·
N∑︂
l=1

yT V̂
T

l · V̂ly

= yT

(︄
Kα ·

N∑︂
l=1

V̂
T

l · V̂l

)︄
y

= yTFy

where in ♭ we invoked (21). By ♯ we conclude that yTEy ⩾ 0,
thus F ⪰ E ⪰ 0.

Let wi, zi be the unit-norm eigenvectors of E,F corre-
sponding to their respective ith largest eigenvalue. Then

wT
i

(︁
QEΛEQ

T
E

)︁
wi = eTi ·ΛE · ei = λi =⇒

and by (23) we bound this as follows:

λi = wT
i Ewi ⩽ Kα ·

N∑︂
l=1

⟨wi, V̂l⟩2 .

Since

w1 = arg max
v∈Rd

∥v∥2=1

{︁
vTEv

}︁
=⇒ ∥E∥2 = λ1 = wT

1 Ew1 ,

and F ⪰ E ⩾ 0, it follows that

∥E∥2 = wT
1 Ew1 ⩽ wT

1 Fw1

⩽ arg max
v∈Rd

∥v∥2=1

{︁
vTFv

}︁
= ∥F∥2 = Kα .

In turn, this gives us

∥E[XTX]∥2 = ∥E− Id∥2
⩽ ∥E∥2 + ∥Id∥2
⩽ ∥F∥2 + 1

= Kα+ 1

⩽ C2K
d

N
log(Nd/δ) + 1

= C2 d

τ
log(Nd/δ) + 1 (24)



hence ∥E[XTX]∥2 = O
(︁
d
τ log(Nd/δ)

)︁
.

We now have everything we need to apply Theorem 18.

Proposition 23. The block-SRHT SΠ guarantees

Pr
[︂
∥Id−UTST

ΠSΠU∥2 > ϵ
]︂
⩽ 2d·exp

{︄
−ϵ2 · q

Θ
(︁
d
τ · log(Nd/δ)

)︁}︄
for any ϵ > 0, and q = r/τ > d/τ .

Proof. [Proposition 23] Let {Xi}qi=1 as defined in (19) denote
q block samples. Let j(i) denote the index of the submatrix
which was sampled at the ith random trial, i.e. Kj(i) = Ki

j(i).
We then get

Z =
1

q

t∑︂
i=1

Xj(i)

=
1

q
·

q∑︂
i=1

(︃
Id −

N

τ
· V̂T

(Kj(i))
V̂(Kj(i))

)︃

= Id −
q∑︂

i=1

(︂√︁
N/r · V̂(Kj(i))

)︂T

·
(︂√︁

N/r · V̂(Kj(i))

)︂
= Id −

q∑︂
i=1

(︂√︁
N/r · I(Kj(i))

· V̂
)︂T

·
(︂√︁

N/r · I(Kj(i))
· V̂

)︂
= Id −

(︂
ΩqĤDU

)︂T

·
(︂
ΩqĤDU

)︂
= Id −UTST

ΠSΠU .

We apply Lemma 18 by fixing the terms we bounded: (20)
γ = C2d log(Nd/δ) + 1, (24) σ2 = C2 d

τ log(Nd/δ) + 1, and
fix q and ϵ. The denominator of the exponent in (15) is then(︁
C2d/τ · log(Nd/δ) + 1

)︁
+
(︁
(C2d log(Nd/δ) + 1) · ϵ/3

)︁
=

= C2d/τ · log(Nd/δ) ·
(︁
1 + ϵτ/3

)︁
+ (1 + ϵ/3)

= Θ

(︃
d

τ
log(Nd/δ)

)︃
and the proof is complete.

Proof. [Theorem 6] By substituting q in the bound of Propo-
sition 23 and taking the complementary event, we attain the
statement.

APPENDIX C
PROOFS OF SECTION V

Proof. [Theorem 8] Denote the application of Π to a matrix
M by EncΠ(M) = ΠM. We will prove secrecy of this
scheme, which then implies that a subsampled version of the
transformed information is also secure. Let À = EncΠ(A)
and b̀ = EncΠ(b).

The adversaries’ goal is to reveal A. To prove that EncΠ
is a well-defined security scheme, we need to show that an
adversary cannot learn recover A; with only knowledge of
(À, b̀).

For a contradiction, assume an adversary is able to recover
A after only observing (À, b̀). This means that it was able
to obtain Π−1, as the only way to recover A from À is
by inverting the transformation of Π: A = Π−1 · À. This

contradicts the fact that only (À, b̀) were observed. Thus,
EncΠ is a well-defined security scheme.

It remains to prove perfect secrecy according to Definition
7. Observe that for any Ū ∈M and Q̄ ∈ C

Pr
Π←K

[︁
EncΠ(Ū) = Q̄

]︁
= Pr

Π←K

[︁
Π · Ū = Q̄

]︁
= . (25)

. = Pr
Π←K

[︂
Π = Q̄ · Ū−1

]︂
♯
=

1

|ÕA|
=

1

|K|
(26)

where ♯ follows from the fact that Q̄ · Ū−1 is fixed. Hence,
for any U0,U1 ∈M and Q̄ ∈ C we have

Pr
Π←K

[︁
EncΠ(U0) = Q̄

]︁
=

1

|K|
= Pr

Π←K

[︁
EncΠ(U1) = Q̄

]︁
as required by Definition 7. This completes the proof.

We note that through the SVD of À, the adversaries can
learn the singular values and right singular vectors of A, since

À = (Π ·UA) ·ΣA ·VT
A = UÀ ·ΣA ·VT

A . (27)

Recall that the singular values are unique and, for distinct pos-
itive singular values, the corresponding left and right singular
vectors are also unique up to a sign change of both columns.
We assume w.l.o.g. that VÀ = VA and UÀ = Π ·UA.

Geometrically, the encoding EncΠ changes the orthonormal
basis of UA to UÀ, by rotating it or reflecting it; when det(Π)
is +1 or -1 respectively. Of course, there are infinitely many
ways to do so, which is what we are relying the security of
this approach on.

Furthermore, unless UA has some special structure (e.g.,
triangular, symmetric, etc.), one cannot use an off-the-shelf
factorization to reveal UA. Even though a lot can be revealed
about A, i.e. ΣA and VA, we showed that it is not possible
to reveal UA; hence nor A, without knowledge of Π.

Proof. [Corollary 10] The proof is identical to that of Lemma
19. The only difference is that the random variable entries
Z̃j = H̃ijDjjyj for j ∈ NN and the fixed i now differ,
though they still meet the same upper bound

|Z̃j | ⩽ |H̃ij | · |Djj | · |yj | =
|yj |√
N

.

Since (17) holds true, the guarantees implied by flattening
lemma also do, thus the sketching properties of the SRHT
are maintained.

Remark 24. Since the Lemma 19 and Corollary 10 give
the same result for the block-SRHT and garbled block-SRHT
respectively, it follows that Theorem 6 also holds for the
garbled block-SRHT.

Definition 25 (Ch.3 [51]). A security scheme is computa-
tionally secure if any probabilistic polynomial-time adversary
succeeds in breaking it, with at most negligible probability.
By negligible, we mean it is asymptotically smaller than any
inverse polynomial function.

Proof. [Theorem 11] Assume w.l.o.g. that a computationally
bounded adversary observes Π̃A, for which ˜︁Ar = SΠ ·A =



Ωq · (Π̃A) is the resulting sketch of Algorithm 1, for Π̃ ∈
H̃N . To invert the transformation of Π̃, the adversary needs
knowledge of the components of Π̃, i.e. Ĥ and P. Assume
for a contradiction that there exists a probabilistic polynomial-
time algorithm which, is able to recover A from Π̃A. This
means that it has revealed P, so that it can compute

Π̃
T
=Π̃

−1⏟ ⏞⏞ ⏟
(DĤPT ) ·(PĤD) ·A = Π̃

−1 · Π̃ ·A = A ,

which contradicts the assumption that the permutation P is a
OWF. Specifically, recovering A by observing Π̃A requires
finding P in polynomial time.

Finally, we show that ĝ[t] = g[t], which we claimed
in Subsection V-B. Since Π ∈ ON (R) for the suggested
projections (except that random Rademacher projection), we
have ΠTΠ = IN . It then follows that

ĝ[t] = 2 ·
K∑︂
j=1

Ã
T

j

(︂
Ãjx

[t] − b̃j

)︂
= (ΠA)

T ·
(︂
ΠAx[t] −Πb

)︂
= AT ·

(︁
ΠTΠ

)︁
·
(︂
Ax[t] − b

)︂
= g[t]

and this completes the derivation.

A. Counterexample to Perfect Secrecy of the SRHT

Here, we present an explicit example for the SRHT (which
also applies to the block-SRHT), which contradicts Definition
7. Therefore, the SRHT cannot provide perfect secrecy.

Consider the simple case where N = 2, and assume that
Ĥ2 ∈ ÕA. Since (ÕA, ·) is a multiplicative subgroup of
GL2(R), we have I2 ∈ ÕA. Let U0 = I2 and U1 = Ĥ2.

For d1, d2 i.i.d. Rademacher random variables and

D =

(︃
d1 0
0 d2

)︃
,

it follows that

C0 =
(︂
Ĥ2D

)︂
·U0 = Ĥ2D =

1

2

(︃
d1 −d2
d1 d2

)︃
and

C1 =
(︂
Ĥ2D

)︂
·U1 =

1

2

(︃
1 −1
1 1

)︃(︃
d1 0
0 d2

)︃(︃
1 −1
1 1

)︃
=

1

2

(︃
1 −1
1 1

)︃(︃
d1 −d1
d2 d2

)︃
=

1

2

(︃
d1 − d2 −d1 − d2
d1 + d2 −d1 + d2

)︃
.

It is clear that C0 always has precisely two distinct entries,
while C1 has three distinct entries; with 0 appearing twice for
any pair d1, d2 ∈ {±1}. Therefore, depending on the observed
transformed matrix, we can disregard one of U0 and U1 as
being a potential choice for Π.

For instance, if C̄ is the observed matrix and it has two
zero entries, then

Pr
Π←HN

[︁
Π ·U1 = C̄

]︁
> Pr

Π←HN

[︁
Π ·U0 = C̄

]︁
= 0

which contradicts (9).
Note that even if we apply a permutation, as in the case

of the garbled block-SRHT, we still get the same conclusion.
Hence, the garbled block-SRHT also does not achieve perfect
secrecy.

B. Analogy with the One-Time-Pad

It is worth noting that the encryption resulting by the mul-
tiplication with Π; under the assumptions made in Theorem
8, bares a strong resemblance with the one-time-pad (OTP).
This is not surprising, as it is one of the few known perfectly
secret encryption schemes.

The main difference between the two, is that the spaces we
work over are the multiplicative group (ÕA, ·) whose identity
is IN in Theorem 8, and the additive group

(︁
(Z/2Z)ℓ,+

)︁
in

the OTP; whose identity is the zero vector of length ℓ.
As in the OTP, we make the assumption that K,M, C are

all equal to the group we are working over; ÕA, which it is
closed under multiplication. In the OTP, a message is revealed
by applying the key on the ciphertext: if c = m⊕k for k drawn
from K, then c⊕k = m. Analogously here, for Π drawn from
ÕA: if C̄ = Π ·UA, then C̄

T ·Π = (UT
A ·ΠT ) ·Π = UT

A.
An important difference here is that the multiplication is not
commutative.

Also, for two distinct messages m0,m1 which are encrypted
with the same key k to c0, c1 respectively, it follows that c0⊕
c1 = m1 ⊕m2 which reveals the XOR of the two messages.
In our case, for the bases U0,U1 encrypted to C0 = ΠU0

and C0 = ΠU1 with the same projection matrix Π, it follows
that CT

0 ·C1 = UT
0 ·U1.
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