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Abstract—We consider the problem of binary string reconstruc-
tion from the multiset of its substring compositions, i.e., referred to
as the substring composition multiset, first introduced and studied
by Acharya et al. We introduce a new algorithm for the problem
of string reconstruction from its substring composition multiset
which relies on the algebraic properties of the equivalent bivariate
polynomial formulation of the problem. We then characterize spe-
cific algebraic conditions for the binary string to be reconstructed
that guarantee the algorithm does not require any backtracking
through the reconstruction, and, consequently, the time complex-
ity is bounded polynomially. More specifically, in the case of no
backtracking, our algorithm has a time complexity of Opn2

q in
practice, compared to the algorithm by Acharya et al., which has a
time complexity of Opn2 lognq, where n is the length of the binary
string. Furthermore, it is shown that larger sets of binary strings
are uniquely reconstructable by the new algorithm and without
the need for backtracking leading to codebooks of reconstruction
codes that are larger, by a linear factor in size, compared to the
previously known construction by Pattabiraman et al., while hav-
ing Opn2

q practical reconstruction complexity.

I. INTRODUCTION

The previous decade has seen a generation of vast amounts
of data [1]. However, traditional digital data storage tech-
nologies are approaching their fundamental density limits and
would not be able to keep up with the need for increasing
memory needs. This has led to a search for storage paradigms
that offer storage densities at the nanoscale. Several molecu-
lar paradigms with significantly higher storage densities have
been proposed recently [2]–[10]. DNA is one such promising
data storage medium, but it is prone to a diverse type of errors,
and has several scalability constraints including an expensive
synthesis and sequencing process. As an alternative, synthetic
polymers are emerging as the next-generation data storage
medium. They offer high storage density at low cost and low
readout latency. In such polymers, monomer units of different
masses, which represent the two bits 0 and 1, are assembled
into user-determined readable sequences. A common family
of technological methods for reading amino-acid sequences
(and other biomolecules) is mass spectrometry [11]. In tandem
mass spectrometry (MS/MS), the given sample is ionized and
randomly broken into substrings. The resulting mixture is an-
alyzed to yield the weights of the substrings generated which
are then used to reconstruct the recorded string. This problem
of recovering a polymer from its fragmented ions during mass
spectrometry is modeled into the problem of reconstructing a
string from the multiset of its substring compositions. In this
paper, we introduce a new algorithm to reconstruct a binary
string from the multiset of its substring compositions.
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The problem was first introduced in [12] and [13]. The main
results from [13] assert that binary strings of length ď 7, one
less than a prime, and one less than twice a prime are uniquely
reconstructable, from their substring composition multiset, up
to reversal. The authors of [13] also introduced a backtracking
algorithm for reconstructing a binary string from its substring
composition multiset. Later, the works of [14] and [15] viewed
the problem from a coding theoretic perspective and focused
on the problem of designing coding schemes of uniquely re-
constructable strings capable of correcting a single mass error
and multiple mass errors, respectively.

Two modelling assumptions are used in [13] and subse-
quently in [14], [15]: a) One can uniquely infer the composition
(number of monomers of each type) of a polymer from its
mass; and b) The masses of all the substrings of a polynomial
are observed with identical frequencies. For our line of work,
we again rely on these assumptions.

The algorithm we introduce in this paper, unlike the algo-
rithm in [13], which uses the combinatorial properties of the
composition multiset to reconstruct the binary strings, takes
a new approach by relying on the algebraic properties of the
equivalent bivariate polynomial formulation [13] of the prob-
lem. We thereby improve the in-practice time complexity of
the reconstruction process. However, in general, a drawback
of such algorithms is that they need backtracking which can
lead to reconstruction complexity that grows exponentially
with the length n, in a worst case sense. We then characterize
specific algebraic properties that guarantee no backtracking is
needed in our proposed algorithm. Although asymptotically, in
the case of no backtracking, our algorithm has a reconstruction
complexity of Opn2 log nq which is the same as the algorithm
of [13]; in practice our algorithm has a time complexity of
Opn2q, which is further improved as our algorithm naturally
allows parallel implementation. Moreover, the no backtrak-
ing condition of our algorithm is more general than that of
[13]. We also improve the time complexity in the case of back-
tracking. These results are specifically discussed in Remark 7,
Remark 8, and Remark 10. Our work extends the growing list
of recent work in string reconstruction problems [16]–[22].

In Section IV, we leverage the reconstruction code designs of
[14], by expanding codebooks of different sizes in certain spec-
ified ways followed by taking a union of them, in order to arrive
at a new codebook. The size of the new codebook is shown to be
linearly larger than the reconstruction code introduced in [14].
Furthermore, it is shown that both the codes of [14], and the
new code are reconstructable by our proposed reconstruction
algorithm with no backtracking.



II. PRELIMINARIES

A. Problem Formulation

Let s “ s1s2 . . . sn be a binary string of length n ě 2. We
will denote the contiguous substring sisi`1 . . . sj of s by sji
where 1 ď i ď j ď n. We will say that a substring sji has the
composition 1w0z where w and z denote the number of 1s and
0s in the substring respectively. The composition multiset Cpsq

of a sequence s is the multiset of compositions of all contigu-
ous substrings of s. For example, if s “ 1001, then Cpsq “

t01, 01, 11, 11, 0111, 0111, 02, 0211, 0211, 0212u.
A set of binary strings of fixed length is called a reconstruc-

tion code if the composition multisets corresponding to the
strings are distinct [14]. Note that a string s, and its reverse
string sr “ snsn´1 . . . s1 share the same composition multiset
and therefore cannot simultaneously belong to a reconstruc-
tion code. We restrict the analysis of reconstruction codes to
the subsets of strings of length n beginning with 1 and end-
ing at 0. This restriction only adds a constant redundancy to
the code while ensuring that a string and its reversal are not
simultaneously part of the code.

Definition 1. For a binary string s of length n and weight d, we
define a non-negative integer string Apsq “ a0a1 ¨ ¨ ¨ ad where
ai is the number of zeros between the ith and pi ` 1qth 1 in s.
That is

s “ 00 ¨ ¨ ¨ 0
loomoon

a0

1 00 ¨ ¨ ¨ 0
loomoon

a1

1 00 ¨ ¨ ¨ 0
loomoon

a2

1 ¨ ¨ ¨ 1 00 ¨ ¨ ¨ 0
loomoon

ad

.

Note that Apsq Ñ s is a bijection between non-negative in-
teger strings of length d ` 1, weight (sum of values) n ´ d, and
binary strings of length n, weight d.

We will also use the following notations in the subse-
quent sections: for a string s and the corresponding integer
string Apsq “ a0a1 . . . ad, we use Aj

i psq to denote the sub-
string aiai`1 . . . aj of Apsq and gji psq to denote the sum
ai ` ai`1 . . .` aj , where 0 ď i ď j ď d. Whenever clear from
the context, we omit the argument s. Observe that for any string
s with weight d, gd0 “ n ´ d. For instance, if s “ 10011010,
then Apsq “ 02011 and g31 “ 3.

B. Previous Work

In this section, we first review the results of [13] that de-
scribe the equivalent polynomial formulation of binary strings
and their composition multisets. This formulation is central to
the design of our Reconstruction Algorithm which we present
in the next section. We use several notations and terminologies
from [15] whose authors rely on this polynomial formulation to
design reconstruction codes capable of correcting multiple er-
rors. Thereafter, we revisit the design of a reconstruction code
introduced in [14].

Definition 2. For a binary string s “ s1s2 . . . sn, a bivariate
polynomial Pspx, yq of degree n is defined such that Pspx, yq “
řn

i“0 pPspx, yqqi, where pPspx, yqq0 “ 1 and pPspx, yqqi is de-
fined recursively as

pPspx, yqqi “

#

y pPspx, yqqi´1 if si “ 0,

x pPspx, yqqi´1 if si “ 1.
(1)

Pspx, yq contains exactly one term of total degree j where
0 ď j ď n and the coefficient of each term is 1. The term of the
polynomial with degree j is of the form xwyz where the sub-
string sj1 of s has composition 1w0z . For example, if we con-
sider the string s “ 1001, then we get Pspx, yq “ 1`x`xy`

xy2 ` x2y2.
Similar to the bivariate polynomial for a binary string,

we describe a bivariate polynomial Sspx, yq correspond-
ing to the composition multiset Cpsq of a binary string
s. We associate each element 1l0m of the multiset with
the monomial xlym. This is equivalent to saying that an
x corresponds to a 1 and a y corresponds to a 0 in ev-
ery monomial of Sspx, yq. As an example, for s “ 1001,
Cpsq “ t01, 01, 11, 11, 0111, 0111, 02, 0211, 0211, 0212u and
Sspx, yq “ 2x ` 2y ` 2xy ` y2 ` 2x2y ` x2y2.

We will use the following identity from [13]:

Ps px, yqPs

ˆ

1

x
,
1

y

̇

“ pn ` 1q`Sspx, yq`Ss

ˆ

1

x
,
1

y

̇

. (2)

Definition 3. For a polynomial fpx, yq, let f˚px, yq be the
polynomial (also known as reciprocal polynomial) defined as:

f˚px, yq
def
“ xdegxpfqydegypfqf

ˆ

1

x
,
1

y

̇

. (3)

Definition 4. For a binary string s of length n, and the corre-
sponding polynomial Pspx, yq, we define a polynomial Fspx, yq

as:
Fspx, yq

def
“ Pspx, yqP˚

s px, yq. (4)

Rewriting equation (2), and using the definition in equa-
tion (4), we obtain

Fspx, yq “ xdxydy pn ` 1 ` Sspx, yqq ` S˚
s px, yq; (5)

where dx and dy denote the degrees of x and y in the polyno-
mial Pspx, yq.

Remark 1. This result shows that that the polynomial Fspx, yq

and Sspx, yq have a unique correspondence between them.
Specifically, the polynomial Fspx, yq uniquely determines the
polynomial Sspx, yq or equivalently, the composition multiset.

Now we look at the reconstruction code introduced in [14].
The code design uses Catalan-type strings to construct a code-
book in which, for a given codeword and any same length
prefix-suffix substring pair of this string, the two substrings
have different weights.

Definition 5 ( [14]). For reconstruction code SRpnq of even
length (n even):

SRpnq
def
“ ts P t0, 1un, such that s1 “ 0, sn “ 1,

D I P t2, 3, . . . , n ´ 1u, such that

for all i P I, si ‰ sn`1´i

for all i R I, si “ sn`1´i

srn{2sXI is a Catalan Type Stringu.

For reconstruction code SRpnq of odd length (n odd):

SRpnq
def
“ ts

pn´1q{2
1 0sn´1

pn`1q{2, s
pn´1q{2
1 1sn´1

pn`1q{2

, where s P SRpn ´ 1qu.



Using this codebook SRpnq, in Section IV, we design a
new reconstruction code which is uniquely reconstructable
by the Reconstruction Algorithm. We will use the following
property of SRpnq in our construction and to show that the
reconstruction code we introduce is linearly larger than SRpnq.

Theorem 1 ( [14], Lemma 1). For a string s P SRpnq, for all
prefix-suffix pairs of length 1 ď j ď n ´ 1, one has wtpsj1q ‰

wtpsnn`1´jq.

III. RECONSTRUCTION ALGORITHM

As discussed in Section II-A, we only work with binary
strings beginning with 1 and ending with 0. In other words,
only strings s “ s1 . . . sn with s1 “ 1, sn “ 0 are considered.
In this section, we introduce a new reconstruction algorithm to
recover such strings from a given composition multiset. Given
a composition multiset, our reconstruction algorithm succes-
sively reconstructs Apsq “ a0 . . . ad, starting from both ends
and then progressing towards the center, i.e., a0 and ad are
covered first, followed by a1 and ad´1, etc.; and then back-
tracks when there is an error. The algorithm takes as input the
polynomial F px, yq which can be derived from the given com-
position multiset (Remark 1). The algorithm will return the set
of strings which have the given composition multiset. We will
use the fact that for a string s with the given composition mul-
tiset, we must have Fspx, yq “ F px, yq. Remark 1 guarantees
that the set of strings recovered in this way indeed have the
desired composition multiset.

Before the algorithm is discussed, we first show how certain
parameters of a string s with the given composition multiset can
be readily recovered from the polynomial F px, yq. These pa-
rameters will be subsequently used as inputs to the algorithm.

For a string s “ s1 . . . sn with s1 “ 1, sn “ 0, the correspond-
ing non-negative integer string Apsq (Definition 1) is such that
a0 “ 0 and ad ě 1. Using Definitions 2 and 3,

Pspx, 1q “ 1 ` pa1 ` 1qx ` ¨ ¨ ¨ ` pad ` 1qxd, (6)

P˚
s px, 1q “ pad ` 1q ` pad´1 ` 1qx ` ¨ ¨ ¨ ` xd. (7)

Since a string s with the given composition multiset must
have Fspx, yq “ F px, yq, F px, 1q “ Pspx, 1qP˚

s px, 1q. There-
fore, using equations (6) and (7), the weight of the string s and
ad (where Apsq “ a0 . . . ad) can be recovered as follows:

wtpsq “ d “
degF px, 1q

2
, (8)

F p0, 1q “ ad ` 1. (9)

The algorithm will utilize the polynomial formulation of the
problem by mapping them to elements of a polynomial ring by
considering the coefficients as elements of a sufficiently large
finite field, i.e., Fq with q being a prime number greater than n.
Let λ P Fq be a fixed primitive element of this field.

Definition 6. Given a1, . . . , aj and ad, . . . , ad´j in N Y t0u;
define the polynomials αjpyq and βjpyq as follows:

αjpyq “ yg
j´1
0 ` y1`gj´1

0 ` ¨ ¨ ¨ ` yg
j
0 , (10)

βjpyq “ yg
d
d´j`1 ` y1`gd

d´j`1 ` ¨ ¨ ¨ ` yg
d
d´j ; (11)

where glk denotes the sum ak ` ak`1 . . . ` al (defined in Sec-
tion II-A).

Then, using Definitions 2 and 3, αjpλq and βjpλq denote the
coefficient of xj in Pspx, λq and P˚

s px, λq, respectively. In par-
ticular,

α0pλq “ 1, and αdpλq “ λn´d´ad ` ¨ ¨ ¨ ` λn´d; (12)

βdpλq “ λn´d, and β0pλq “ 1 ` ¨ ¨ ¨ ` λad . (13)

Remark 2. αjpγq and βjpγq correspond to the coefficients of
xj in Pspx, γq and P˚

s px, γq, respectively, for all γ P Fq . For in-
stance, putting γ “ 1 gives αjp1q “ aj`1 and βjp1q “ ad´j`

1 which are the coefficients of xj in the polynomials Pspx, 1q

(equation (6)) and P˚
s px, 1q (equation (7)), respectively.

The reconstruction algorithm will find aj and ad´j together
at step j. Note that αipyq is defined using gi0 and gi´1

0 , and
therefore, can be obtained by knowing the elements a1, . . . , ai.
Similarly, βipyq can be obtained from ad, . . . , ad´i. Hence, for
a string s, by the end of step j ´ 1 of the algorithm, the poly-
nomials α0pyq, . . . , αj´1pyq and β0pyq, . . . , βj´1pyq are well
defined.

Definition 7. Let rjpyq denote the coefficient of xj in F px, yq.
Then rjpyq can be treated as a polynomial in y. At the
end of step j ´ 1, for polynomials α0pyq, . . . , αj´1pyq and
β0pyq, . . . , βj´1pyq, define the polynomial fjpyq as follows:

fjpyq
def
“ rjpyq ´

j´1
ÿ

k“1

αkpyqβj´kpyq. (14)

At step j, the algorithm finds aj and ad´j . If a1, . . . , aj´1

and ad, . . . , ad´j`1 are identified correctly, then for the cor-
rect pair paj , ad´jq, the coefficient of xj in Fspx, yq P Fqrxs

is
řj

i“0 αipyqβj´ipyq. Since Fspx, yq “ F px, yq, we must
have

řj
i“0 αipyqβj´ipyq “ rjpyq. Since we already know

α0pyq, . . . , αj´1pyq and β0pyq, . . . , βj´1pyq by step j ´ 1; a
correct paj , ad´jq must satisfy

fjpyq “ α0pyqβjpyq ` αjpyqβ0pyq. (15)

By noting that the degrees of both sides should be equal, we
have

degpfjq “ maxtdegpα0βjq, degpαjβ0qu

“ maxtgdd´j , g
j
0 ` adu.

(16)

Furthermore, observe that αip1q “ βd´ip1q “ 1 ` ai and
hence, fjp1q “ βjp1q ` pad ` 1qαjp1q. From this we obtain:

fjp1q “ p1 ` ad´jq ` pad ` 1q paj ` 1q . (17)

Since any correct pair paj , ad´jq must satisfy equations (16)
and (17), we will use these to compute the possible values for
the pairs paj , ad´jq.

Remark 3. Note that equations (16) and (17) can have at most
two solutions and thus the pair paj , ad´jq at step j can take at
most two possible values.

If a1, . . . , aj´1 and ad, . . . , ad´j`1 are identified correctly,
then the polynomials αjpyq and βjpyq obtained from a cor-
rect pair paj , ad´jq must satisfy equation (15). In particular,
in Proposition 2, we show that verifying the equation (15) for



y “ λ and y “ λ´1, where λ is a primitive root of Fq , is
enough to say that equation (15) holds for all y.

Note that the algorithm gives us the set of strings with
Fspx, yq “ F px, yq. And Remark 1 shows that such strings
indeed share the same composition multiset.

Algorithm 1 Reconstruction Algorithm

Input : Polynomial F px, yq, array A of size d initialized with
Ards “ ad and Aris “ 0 for all 0 ď i ď d ´ 1,

Output: Codestrings s P t0, 1un

Function Reconstruction(j, F , M):

if j “ d{2 then
if M corresponds to some binary string s then

S = s
else

S = empty set
return S

Compute degpfjq and fjp1q

aj “ degpfjq ´ pgj´1
0 ` adq

ad´j “ fjp1q ´ 1 ´ pad ` 1q paj ` 1q

if aj ě 0, ad´j ě 0, α0pλqβjpλq ` αjpλqβ0pλq “ fjpλq,
and α0pλ´1qβjpλ´1q`αjpλ´1qβ0pλ´1q “ fjpλ´1q then

M rjs “ aj ,M rd ´ js “ ad´j

S “ Reconstruction(j ` 1, F , M)

ad´j “ degpfjq ´ gdd´j`1

aj “ pfjp1q ´ 1 ´ ad´jq{pad ` 1q

if aj P N Y t0u, ad´j ě 0, α0pλqβjpλq ` αjpλqβ0pλq “

fjpλq, and α0pλ´1qβjpλ´1q ` αjpλ´1qβ0pλ´1q “

fjpλ´1q then
M rjs “ aj ,M rd ´ js “ ad´j

S “ S Y Reconstruction(j ` 1, F , M)
return S

Remark 4. From equations (10), and (11), we see that
αkpλq and βlpλq are of the form λa

pλb
´1q

λ´1 “ λa`b1

, where
λb

´1
λ´1 “ λb1

. Assuming addition happens in Oplog nq time,
pre-storing b1 corresponding to b; αkpλqβj´kpλq can be
evaluated in Oplog nq as a power of λ and consequently,
řj´1

k“1 αkpλqβj´kpλq can be calculated in Opj log nq time and
Opnq space. If the coefficient ak,l of xkyl of the polynomial
F px, yq are stored in a matrix, then aj,lλ

l can be calculated
in Oplog nq time, and the n row values can be summed in
Opn log nq time. Thus fjpλq can be calculated in Opn log nq

time.

Remark 5. For practically relevant values of n, addition can
be considered an Op1q process. For example, on a 32-bit sys-
tem, two 32 bit numbers can be added in one cycle, and there-
fore for log n ă 32, addition can be assumed to be an Op1q pro-
cess, and therefore for practical values of n, calculating fjpλq

is an Opnq process.

Remark 6. Since the degree and the coefficients of the polyno-
mial fjpyq (Definition 7) are always non-negative integers less

than n, degpfjq “ tlogn`1pfjpn ` 1qqu.

Remark 7. Backtracking is possible even when the string is
uniquely reconstructable. Assuming no back-tracking, time
complexity of the algorithm is Opdn log nq “ Opn2 log nq.
This is same as the time complexity of the backtracking al-
gorithm proposed by Acharya et. al. in [13]. For practical
values of n, our algorithm shows an improved complexity of
Opdnq “ Opn2q. Furthermore, in the case of no backtrack-
ing, the reconstruction algorithm can be implemented over
Opn log nq latency by executing additions in parallel while
calculating fjpλq etc.

From Remark 3, we know that the reconstruction algorithm
has at most two valid choices for the pair paj , ad´jq at step j,
and therefore can have at most two branches at any step. If both
the conditions are satisfied i.e. the algorithm branches; then our
algorithm must choose one direction to proceed. If the algo-
rithm has no valid choices at a particular step, the algorithm
comes back to the last branch (not taken yet) where both condi-
tions were satisfied and takes the alternate path. In this case, if
neither of the two conditions are satisfied, then assuming the in-
put composition multiset doesn’t have any errors, our algorithm
must have taken some wrong branch in the past (when it had a
choice). Therefore, for neither of the two conditions to be satis-
fied, the algorithm must have branched somewhere in the past,
i.e. it there must have been some step j in the past where both
conditions were satisfied.

We say that a string s pauses at step j if the algorithm has
two valid choices for the pair paj , ad´jq of the string Apsq at
step j. As explained above, if a string at some step has no valid
choices for the pair paj , ad´jq, it must have paused at some step
i ă j. Therefore, characterizing algebraic conditions for strings
to avoid pausing at any step will guarantee that the algorithm
doesn’t need to backtrack. This motivates the design of our Re-
construction Code (Definition 12). Furthermore, avoiding back-
tracking ensures that the string is uniquely reconstructed from
its composition multiset. Proposition 2 gives algebraic condi-
tions which characterize the strings that branch at some given
step j. The detailed proofs can be found in the extended version
of our paper [23].

Proposition 2. Let the bi-variate polynomial corresponding
to a string s be Fspx, yq. Then the reconstruction algorithm
pauses at step j if and only if the string s satisfies either of the
following two relations:

gj0 ´ gdd´j “ a0 ` 1 “ 1 and aj ě 1 (18)

gdd´j ´ gj0 “ ad ` 1 and ad´j ě ad ` 1 (19)

Moreover, when the reconstruction algorithm pauses at step j,
it has exactly two choices for the tuple paj , ad´jq.

Proof sketch: The algorithm pauses at step j, if there exist
two pairs of 2-tuples, say paj , ad´jq and pa1

j , a
1
d´jq such that

both of them satisfy equation (15) for y “ λ and y “ λ´1. Us-
ing equations (16), (17), and the corresponding two expressions
for the polynomial evaluations fjpλq and fjpλ´1q; we get four
equations in four variables which give the required result.

Corollary 3. If a binary string s of length n, which begins with



1 and ends with 0, is such that for all prefix-suffix pairs of length
1 ď j ď n, one has wtpsj1q ‰ wtpsnn`1´jq, then s is uniquely
reconstructable by this reconstruction algorithm.

Remark 8. Corollary 3 implies that our algorithm uniquely
reconstructs the codewords of the reconstruction code de-
scribed in [14] (revisited in Section II-B) without backtracking.
In Remark 7 we showed the reconstruction algorithm pre-
sented in this paper has a worst-case time complexity of Opn2q

when there is no backtracking compared to the reconstruction
algorithm in [13] which has a time complexity of Opn2 log nq.

Definition 8. We will call the strings which satisfy condi-
tion (18) for some 0 ă j ă d{2 as type-1 strings, and the
strings which satisfy condition (19) for some 0 ă j ă d{2 as
type-2 strings.

Remark 9. A string can be a type-1 string, a type-2 string, both
a type-1 and a type-2 string, or be of neither type.

Remark 10. If we define ls as defined in [13], that is

ls
def
“

ˇ

ˇti ă n{2 : wpsi1q “ wpsn`1´iq and si`1 ‰ sn´iu
ˇ

ˇ ;

by proof of Corollary 3, each time the string s pauses at some
step j, we have j P I . Furthermore, for every j P I , the string
is a type-1 string. Therefore the number of branches in case of
backtracking in our algorithm is less than or equal to the num-
ber of branches of the backtracking algorithm in [13]. Thus our
algorithm is able to find s before depth ls ` 1 and therefore the
time complexity of our algorithm is Op2lsn2q compared to the
algorithm in [13] whose time complexity is Op2lsn2 log nq.

IV. RECONSTRUCTION CODE

In this section, we describe a new reconstruction code
T pnq such that the codewords are uniquely reconstructable
by our Reconstruction Algorithm without backtracking. The
codebook design relies on the property (Theorem 1) of the re-
construction code SRpnq introduced in [14], which showed
that all same length prefix-suffix substring pairs have differ-
ent weights. We review other relevant properties of this code
design in Section II-B. We exploit the more general condi-
tion for reconstruction without backtracking of our algorithm
(Proposition 2) and construct new codewords that may violate
Theorem 1, that is have some prefix-suffix substring pairs of
the same weight, and yet can be uniquely reconstructed by our
algorithm without backtracking. We define the following three
kinds of sets whose construction uses this SRpnq. The recon-
struction code T pnq will be defined as the union of these sets.
Note that, any codebook with all codewords beginning at 1 and
ending with 0, and satisfying Theorem 1 can be extended in a
similar way.

Definition 9. The set Pn is defined as a set of binary strings of
length n which begin at 1, end at 0, and is such that the reverse
of a string lying in this set lies in SRpnq (Definition 5):

Pn “ ts P t0, 1un, such that sR P SRpnqu. (20)

Definition 10. The set Qn is defined as a set of binary strings
of length n which both begin and end with the substring 1k0,

for some k ă n{2, and has the substring sn´k
k`1 P SRpn ´ 2kq:

Qn “

pn´2q{2
ď

k“1

ts P t0, 1un, such that sk`1
1 “ 1k0,

snn´k “ 1k0, and sn´k
k`1 P SRpn ´ 2kqu. (21)

Definition 11. The set Rn is defined as a set of binary strings
of length n which begin with the substring 1k0, and end with the
substring 1k00 for some k ă pn ´ 1q{2, and has the substring
sn´k´1
k`1 P SRpn ´ 2k ´ 1q:

Rn“

pn´3q{2
ď

k“1

ts P t0, 1un, such that sk`1
1 “ 1k0, snn´k´1 “ 1k00

, and sn´k´1
k`1 P SRpn ´ 2k ´ 1qu. (22)

Remark 11. Looking at the pn´1qth bit, note that Qn XRn “

ϕ. Moreover, by definition of Qn, Pn X Qn “ ϕ.

Definition 12. The reconstruction code T pnq is defined as:

T pnq “ Pn Y Qn Y Rn. (23)

We already know that strings of Pn are reconstructable with-
out backtracking. In the following lemma, we show that Qn and
Rn have no type-2 strings. Therefore, if the algorithm pauses
at some step j, we know that the string is a type-1 string and
therefore must satisfy condition (18). Thus we can uniquely de-
termine paj , ad´jq and don’t need to backtrack.

Proposition 4. If a string s P T pnq such that s pauses at step
j for some 0 ă j ă d{2, then s is a type-1 string.

Proof: We will show that s P Qn cannot be a type-2 string.
The proof for Rn is similar. Observe that F p1, 0q “ k ` 1,
where sk`1

1 “ 1k0; and hence we can retrieve k and therefore
sk1 . Note that gj0 “ 0 and gdd´j “ 1 for 1 ď j ă k. Using
Proposition 2, the algorithm does not pause at step any j for
1 ď j ă k.

If possible, let s P Qn be a type-2 string that pauses at some
step j ě k. Then the string satisfies the Condition 19. Using
ad´j ě ad ` 1 ě 2,

wt
´

s
1`j`gj

0

k`1

¯

“ j ` 1 ´ k “ wt
´

sn´k`1
n`1`ad´j´gd

d´j

¯

contradicting sn´k
k`1 P SRpn ´ 2kq.

Theorem 5. Given n ą 6, there exists a constant c “ 1.025
such that |T pnq| ě c|SRpnq|.

Proof sketch: Using Remark 11, we note that |T pnq| ě

|Pn|`|Qn| ě |SRpnq|`|SRpn´2q|. Using bounds on the size
of SRpnq and well known inequalities for the central binomial
coefficient, we show that |SRpn´2q|

|SRpnq|
ě 1

40 .
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