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This article presents a novel derivation for the governing equations of geometrically curved
and twisted three-dimensional Timoshenko beams. The kinematic model of the beam was
derived rigorously by adopting a parametric description of the axis of the beam, using
the local Frenet–Serret reference system, and introducing the constraint of the beam
cross ection planarity into the classical, first-order strain versus displacement relations
for Cauchy’s continua. The resulting beam kinematic model includes a multiplicative
term consisting of the inverse of the Jacobian of the beam axis curve. This term is not
included in classical beam formulations available in the literature; its contribution vanishes
exactly for straight beams and is negligible only for curved and twisted beams with slender
geometry. Furthermore, to simplify the description of complex beam geometries, the govern-
ing equations were derived with reference to a generic position of the beam axis within the
beam cross section. Finally, this study pursued the numerical implementation of the curved
beam formulation within the conceptual framework of isogeometric analysis, which allows
the exact description of the beam geometry. This avoids stress locking issues and the cor-
responding convergence problems encountered when classical straight beam finite elements
are used to discretize the geometry of curved and twisted beams. Finally, this article pre-
sents the solution of several numerical examples to demonstrate the accuracy and effective-
ness of the proposed theoretical formulation and numerical implementation.
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1 Introduction
Curved and twisted beams are commonly used in many applica-

tions in civil, mechanical, and aerospace engineering due to their
esthetics and unique load-bearing properties. Tall buildings with
curved and twisted columns have been designed and constructed
in many parts of the world in recent years [1–3]. This type of
columns not only leads to stunning building façades but they are
also efficient in resisting both gravity and lateral loads. In contrast,
straight columns are in most cases designed to only resist gravity
loads. Wind turbine blades and helicopter blades, which are com-
monly found in the energy industry and aerospace engineering,
can be also modeled as beam-like structures [4–6]. Straight beam
models have been used in the past in many of the dynamic and sta-
bility analyses of blades. However, the continuous effort on design
optimization of the aerodynamic and structural performances of
blades makes the beam geometry more complex; hence, analytical
methods for curved and twisted beams have become increasingly
prevalent. Geometrically curved and twisted smart beams that can
sense and respond to stimuli also gained attention recently [7,8].
The need for analytical capabilities for smart beams with curved

and twisted geometry has inspired many studies, including piezo-
electric and multiphysical behavior of smart beams [8,9].
Analysis methods for beams with increasing geometric complexi-

ties have been extensively studied by several authors in the past.
Reissner [10] presented a variational analysis of small deformations
of pretwisted elastic beams. Sandhu et al. [11] and Crisfield [12]
developed co-rotation formulations for a curved and twisted beam
element. Simo and Vu-Quoc [13] developed a geometrically exact
beam model including shear and torsion warping deformations. The
limitation of all the published formulations is that the kinematic
model that relates the strains at one point of a beam cross section
with the beam axis elastic deformation and elastic curvature is
assumed and only valid for slender geometries, as opposed to rigor-
ously derived from the continuum definition of strains. In addition,
these formulations assume the axis of the beam to coincide with the
centroid of the cross section and the local system of reference to be
theprincipal axes of inertia.This is convenient for analytical handcal-
culations, but it is instead cumbersome in computational analysis
because the cross-sectional geometrical properties need to be calcu-
lated before defining the beam axis. This is not convenient in
complex cases.
The classical finite-element formulation of beam theories uses

straight beam elements, in which the axial behavior is decoupled
from the transverse behavior. However, by using straight finite ele-
ments to approximate a curved beam, locking issues arise from the
interplay of shear and membrane behaviors. This leads to a spurious
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stiffer response and an overestimation of shear stresses. The funda-
mental underlying issue is that the axial and transverse behaviors
are not decoupled in the actual curved beam [14–17]. A solution
to this issue is to exactly describe the beam geometry via isogeo-
metric analysis (IGA).
Starting from the pioneering work of several researchers, e.g.,

Kagan et al. [18], Rogers [19], and Hughes et al. [20], isogeometric
analysis (IGA) uses nonuniform rational B-splines (NURBS) basis
functions to represent both the geometry and the field variables.
Among the studies of IGA in structural mechanics, shell element
and rod element formulations are frequently discussed. These
include the work of Kiendl et al. [21], Benson et al. [22], Echter
et al. [23], Auricchio et al. [24], Hu et al. [25], and Weeger et al.
[16]. The structural analysis of beams, especially those with
complex geometries, can be accurately performed with the help of
IGA, while the computational cost is significantly reduced compared
to IGA with solid elements. The isogeometric beam element formu-
lation of curved beams has been presented for both two-dimensional
and three-dimensional cases and for both Euler–Bernoulli beam and
Timoshenko beam in Refs. [15,26,27]. Locking issues as well as the
locking free formulations of curved beams are also discussed in the
literature and can be found in Refs. [14,28,29]. Nonlinear analysis
of isogeometric curved beams gain more attention nowadays and
are discussed in Refs. [30,31], among others.

2 Generalized Beam Formulation
The underlying assumptions for the new beam formulation are

the same as those made in classical Timoshenko beam theory:
(1) the beam axis is orthogonal to the beam cross sections before
the deformation; (2) the cross sections remain planar and preserve
their shape and size during deformation; and (3) displacements
and rotations are small compared to the beam size (first-order
theory). The warping effects of the section planes are neglected in
this work. The authors recognize that warping effects might be
important particularly for open thin-walled cross sections, but
they leave this additional complexity to future work.

2.1 Geometry. The geometry of a curved and twisted beam can
be represented by the mathematical description of the beam axis and
its cross sections. The generic position, r(s), of a point on the beam
axis can be expressed as a function of the arc-length s, where s ∈
[0, L] → R3 and L denotes the initial length of the curve.
The vector r(s) allows calculating the Frenet–Serret local basis as

follows:

t(s) =
dr(s)/ds
‖dr(s)/ds‖ ; n(s) =

d2r(s)/ds2

‖d2r(s)/ds2‖ ; b(s) = t × n (1)

where t(s) is the unit vector tangent to the beam axis and orthogonal
to the cross section, n(s) is the normal unit vector, and b(s) is the
binormal unit vector. These mutually orthogonal unit vectors
form a local orthonormal basis Q(s) = {t, n, b} ∈ R3×3, which is
also assumed to provide the orientation of the cross section. At
any given location of the beam axis, the cross section is identical
in the local system of reference.
The position of any generic point P on a given cross section cen-

tered at r(s) is calculated as x(s, pn, pb)= r(s)+ p= r(s)+ pnn+ pbb.
The out-of-plane component of p is zero, pt= 0, because the cross
section is orthogonal to the beam axis in the undeformed configura-
tion (Fig. 1).
Finally, by using the Frenet–Serret formula [32], the derivatives

of t, n, b can be obtained as follows:

dt
ds
dn
ds
db
ds

⎡
⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎦ =

0 κ 0
−κ 0 τ
0 −τ 0

⎡
⎣

⎤
⎦ t

n
b

⎡
⎣

⎤
⎦ (2)

where κ(s) = ‖d2r(s)/ds2‖ is the curvature and τ(s)= dn(s)/ds · b is
the torsion of the curve.

2.2 Kinematics. According to the beam assumptions, the
displacement of a point at a generic cross section can be calculated
as u= u0+ θ× p, where u0(s)= [u0t, u0n, u0b]

T is the cross-sectional
translation, θ(s)= [θt, θn, θb]

T is the cross-sectional rotation with
reference to point O corresponding to the intersection between the
axis and the cross section (Fig. 1). Point O is any point in the
cross section and it does not need to be the cross section centroid.
The displacement gradient in the global reference system can be

calculated as ∇Xu = ∇tu · J−1, where ∇tu is the displacement gra-
dient in the local system of reference and J is the Jacobian of the
local to global transformation. According to Strang [33], one has

J−1 =
1
J

tT

JnT + τpbtT

JbT − τpntT

⎡
⎣

⎤
⎦ (3)

where J is the Jacobian determinant, J= 1− κpn. By virtue of Eq.
(3), the small strain tensor in the global system of reference reads

Fig. 1 Geometry and kinematics of a generic point P on a curved and twisted beam
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ϵ =
1
2

∇Xu + ∇XuT
( )

=
1
2J

[2 A − θbD + θnE( )t⊗ t + B − θtE − θbJ( )n⊗ t

+ C + θtD + θnJ( )b⊗ t

+ B − θtE − θbJ( )t⊗ n + C + θtD + θnJ( )t⊗ b] (4)

where A =
du0t
dpt

− κu0n

( )
+ κθt +

dθn
dpt

( )
pb −

dθb
dpt

pn, B=

κu0t +
du0n
dpt

− τu0b

( )
−

dθt
dpt

− κθn

( )
pb − τθtpn − κθbpn,

C = τu0n + du0b
dpt

( )
+ dθt

dpt
pn − τθtpb, D= τpb, and E=−τpn.

Finally, the components of the strain tensor in the local system of
reference can be calculated as follows:

εtt = tT · ϵ · t

=
1
J

du0t
dpt

− κu0n

( )
− τθn +

dθb
dpt

( )
pn + κθt +

dθn
dpt

− τθb

( )
pb

[ ]
(5)

γtn = nT · ϵ · t + tT · ϵ · n

=
1
J

κu0t +
du0n
dpt

− τu0b

( )
− θb −

dθt
dpt

− κθn

( )
pb

[ ]
(6)

γtb = bT · ϵ · t + tT · ϵ · b

=
1
J

τu0n +
du0b
dpt

( )
+ θn +

dθt
dpt

− κθn

( )
pn

[ ]
(7)

while ɛnn= nT · ϵ · n= 0, ɛbb= bT · ϵ · b= 0, and γnb= bT · ϵ · n+
nT · ϵ · b= 0.
The strain tensor ϵ in the local system of reference can be then

contracted in a 3 × 1 vector ϵ with nonzero components as follows:

ε =
1
J
(ε0 + χ × p) (8)

where ϵ0= du0/d s− θ× t is the generalized beam strain vector and χ
is the beam torsional/flexural curvature vector. Note that the deriva-
tion of Eq. (8) used the condition d pt= ds.
Equation (8) differs from the strain definition in classical Timo-

shenko beam formulations, which do not have the multiplier term
1/J= 1/(1− κpn).
One has J= 1 for a straight beam (κ= 0) and J≈ 1 if κh≪ 1,

where h is the characteristic size of the cross section. However,
the effect of J on the local strains cannot be neglected for large
values of κh, which occurs in the case of stocky geometries. The
definition of κh as the curviness of the beam was first introduced
by Borkovic et al. [34]. Equation (8) leads to cross-sectional
strain profiles that are nonlinear. From a physical point of view,
this is due to the fact that material fibers away from the geometrical
center of curvature are longer than materials fibers closer to the
radius of curvature in their undeformed configuration. For a circular
beam of radius R with a rectangular cross section of depth h,
the error in the strain calculation without the curvature effect is
50h/R%, that is, for example, 5% for h/R= 0.1 and 50% for h/R= 1.

2.3 Equilibrium. The equilibrium of a geometrically curved
and twisted beam can be derived from the principle of the virtual
work. The variation of the internal work can be calculated as follows:

δWint =
∫
V
σttδεtt + τtnδγtn + τtbδγtb
( )

dV

=
∫
V
σttδεtt + τtnδγtn + τtbδγtb
( )

Jdptdpndpb

=
∫
l

∫
A
σttδεtt + τtnδγtn + τtbδγtb
( )

JdAds

=
∫
l

∫
A

{
σtt

dδu0t
ds

− κδu0n

( )
−

dδθb
ds

+ τδθn

( )
pn + κδθt +

dδθn
ds

− τδθb

( )
pb

[ ]

+ τtn κδu0t +
dδu0n
ds

− τδu0b − δθb

( )
−

dδθt
ds

− κδθn

( )
pb

[ ]

+ τtb τδu0n +
dδu0b
ds

+ δθn

( )
+

dδθt
ds

− κδθn

( )
pn

[ ]}
dAds (9)

One can then introduce the following definitions of stress resultants:

N =
∫
A
σttdA Qn =

∫
A
τtndA Qb =

∫
A
τtbdA

Mt =
∫
A
τtbpn − τtnpb
( )

dA Mn =
∫
A
σttpbdA Mb = −

∫
A
σttpndA

(10)

By substituting the stress resultants into Eq. (9), and by integrating by parts, the variation of the internal work becomes

δWint = Nδu0t + Qnδu0n + Qbδu0b +Mtδθt +Mnδθn +Mbδθb( )|Γh

+
∫
l

−
dN

ds
+ κQn

( )
δu0t + −κN −

dQn

ds
+ τQb

( )
δu0n

[

+ −τQN −
dQb

ds

( )
δu0b + −

dMt

ds
+ κMn

( )
δθt

+ −κMt −
dMn

ds
+ τMb + Qb

( )
δθn + −τMn −

dMb

ds
− Qn

( )
δθb

]
ds (11)
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where Γh is the boundary with prescribed tractions. Since the
variation of the external work has the form
δWext =

�
l

(
qtδu0t + qnδu0n + qbδu0b + mtδθt + mnδθn + mbδθb

)
ds,

the equilibrium equations at any given cross section can be
written as follows:

dN

ds
− κQn

( )
+ qt = 0

κN +
dQn

ds
− τQb

( )
+ qn = 0

τQN +
dQb

ds

( )
+ qb = 0

dMt

ds
− κMn

( )
+ mt = 0

κMt +
dMn

ds
− τMb

( )
− Qb + mn = 0

τMn +
dMb

ds

( )
+ Qn + mb = 0

(12)

2.4 Elastic Behavior. In the linear elastic regime, one can
write the stresses as σtt=Eɛtt, τtn=Gγtn, and τtb=Gγtb, where E is
the elastic modulus, G=E/(2+ 2ν) is the elastic shear modulus, and
ν is Poisson’s ratio.
In terms of stress resultants versus generalized strains and curva-

tures, the elastic behavior can be written as f=Eη. f= [N, Qn, Qb,
Mt, Mn, Mb]

T is the stress resultant vector, η= [ɛ0tt, γ0tn, γ0tb, χt,
χn, χb]

T is the generalized strain vector, and E is the sectional stiff-
ness matrix, which reads

E =

EA∗ 0 0 0 ES∗n −ES∗b
0 GA∗

n 0 −GS∗n 0 0
0 0 GA∗

b GS∗b 0 0
0 −GS∗n GS∗b GI∗tt 0 0

ES∗n 0 0 0 EI∗nn −EI∗nb
−ES∗b 0 0 0 −EI∗nb EI∗bb

⎡
⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎦ (13)

where

A∗ =
∫
A

1
1 − κpn

dA A∗
n = αnA

∗ A∗
b = αbA

∗

S∗n =
∫
A

pb
1 − κpn

dA S∗b =
∫
A

pn
1 − κpn

dA I∗tt =
∫
A

p2n + p2b
1 − κpn

dA

I∗nn =
∫
A

p2b
1 − κpn

dA I∗bb =
∫
A

p2n
1 − κpn

dA I∗nb =
∫
A

pnpb
1 − κpn

dA

(14)

The coefficients αn and αb are the shear correction factors in the n
and b local directions, respectively [35]. They take into account
that the actual shear stress distribution cannot be uniform over the
cross section, and they depend on the shape of the cross sections.
The definitions in Eq. (14) are generalized versions of the cross-
sectional properties (area, first-order, and second order area
moments), which take into account, again, the effect of the local
to global transformation via the term J= 1− κpn. Finally, the
beam stiffness matrix in Eq. (14) is not diagonal. Indeed, the equiv-
alent first-order area moments S*n and S*b are not zero because the
beam axis intersects the cross section in a point that, in general, is
not its centroid. In addition, the equivalent mixed moment of
inertia I*nb is nonzero because the two local axes n and b are not,
in general, principal axes of inertia.

3 Isogeometric Implementation
Following Hughes et al. [20], this study employs NURBS (non-

uniform rational B-spline) as shape functions to interpolate both the
beam geometry and the unknown fields. This technique is known in
the literature as isogeometric analysis (IGA). The main advantage of
IGA is the accurate and sometimes exact representation of the
geometry: This is a critical aspect for the simulation of spatially
curved and twisted beams. Furthermore, a unique advantage of
IGA compared to the classical finite-element (FE) method is the
possibility of global regularity refinement, which enables high-
order interpolation of unknown fields without significantly increas-
ing the computational cost [20,36,37].
A NURBS basis function on the parametric domain Ω̂ =

ξ1, ξm
[ ]

⊂ R can be defined by specifying a knot vector with a non-
decreasing order Ξ = {ξ1, ξ2, . . . , ξm}, an associated set of B-spline
basis functions N p

I and a set of NURBS weights {wI}, where I is the
Ith knot, n is the number of basis functions, and p is the polynomial
order. In IGA, the relation m= n+ p+ 1 always holds. The B-spline
basis function N p

I can be constructed starting from p= 0 with
N0
I (ξ) = 1, if ξ∈ [ξI, ξI+1[, otherwise N0

I (ξ) = 0.
For p≥ 1, it can be defined recursively using the Cox-de Boor

formula:

N p
I (ξ)=

ξ − ξI
ξI+p − ξI

NI,p−1(ξ) +
ξI+p+1 − ξ

ξI+p+1 − ξI+1
NI+1,p−1(ξ) if ξ ∈ ξI , ξI+p+1]

[
0 otherwise

⎧⎨
⎩

(15)

When p= 0, NI,0(ξ) are piecewise constant functions; when p= 1,
NI,0(ξ) are the same basis functions of classical constant-strain
finite elements. B-spline basis functions are linearly independent
and have a partition of unity property, and their support is
compact. However, they, in general, do not satisfy the Kronecker
delta property [38].
The NURBS basis function then can be written as follows:

Rp
I (ξ) =

NI,p(ξ)wI∑n
J=1 NJ,p(ξ)wJ

(16)

where weights wI are selected depending on the type of curve to be
represented exactly. Note that when all weights wI are equal to 1, the
NURBS basis function reduces to the B-spline basis function,
which can be seen as a subset of the NURBS basis function.
One then defines the nonzero entries in the knot vector Ξ to span

the parametric domain, Ω̂ = [0, 1] if normalized. The element after
spatial discretization in the parametric domain now can be defined
as a span of the unique entries of the knot vector
Ω̂e = ξI , ξI+1

[ ]
(ξI ≠ ξI+1, I = p + 1, p + 2, . . . , ns), where ns

is the number of unique knots.
Another domain that is commonly used for numerical quadrature

is referred to as the parent domain Ω̃ = [ − 1, 1]. It is worth men-
tioning that the parent domain in IGA is always referred to as the
parametric domain in conventional FE formulations, and the para-
metric domain used in IGA is absent in the FE context. The para-
metric domain is essentially an additional domain in IGA, and
hence, an additional mapping is needed. Figure 2 illustrates the
spatial mapping from the parent domain to the physical domain
via the parametric domain. The mapping from the parent domain
Ω̃ to the elemental parametric domain Ω̂e, φ̂e : Ω̃ → Ω̂e and the
mapping from the parametric domain Ω̂ to the physical
domain Ω, φ : Ω̂ → Ω are assumed to be sufficiently smooth and
invertible [39].
As mentioned earlier, considering a spatially curved beam in the

physical domainΩ ⊂ R3, IGA requires a set of control points PI, the
corresponding weights of the control points wI, a knot vector
Ξ = ξ1, ξ2, . . . , ξI+p+1

[ ]
(I = 1, 2, . . . , n), the number of control

points n, and the polynomial order p. This information is commonly
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found in most CAD software applications and packages and must be
imported before the analysis.
The geometry, displacements, and rotations are interpolated by

NURBS basis functions and the values at the control points. For
the geometry, one has

r(s) =
∑n
I=1

Rp
I (s)PI (17)

Over each element domain Ωe∈ [sI, sI+1], displacements and rota-
tions read

uh(s) =
∑p+1
I=1

Rp
I (s)uI = Ne(s)ue (18)

θh(s) =
∑p+1
I=1

Rp
I (s)θI = Ne(s)θe (19)

From Eqs. (18) and (19), one obtains

ηh(s) =
∑p+1
I=1

Be
I (s)dI (20)

where dI = [uTI , θ
T
I ]

T, and

Be
I =

dRp
I

ds
−κRp

I 0 0 0 0

κRp
I

dRp
I

ds
−τRp

I 0 0 −Rp
I

0 τRp
I

dRp
I

ds
0 Rp

I 0

0 0 0
dRp

I

ds
−κRp

I 0

0 0 0 κRp
I

dRp
I

ds
−τRp

I

0 0 0 0 τRp
I

dRp
I

ds

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(21)

It is worth noting that the smoothness condition for the classical
Galerkin approach used in this study requires shape functions with
only C0 continuity; this is typical of Timoshenko beam numerical
implementations. However, the smoothness for the Frenet–Serret
local basis requires C2 continuity. Since the NURBS basis function
Rp
I (s) is C

p−k continuous, at least p= 2 degree shape functions are
needed to exactly capture the geometry of the beam.

Finally, by using the weak form of the equilibrium equations, one
can compute the element stiffness matrix and nodal load vectors as
customarily done in Galerkin FE implementations [27,39].

4 Numerical Examples
To verify the proposed beam formulation, numerical examples of

3D beams with various geometrical complexities are presented in
this section. Three different geometries are included: (1) a curved
cantilever arch, (2) a circular balcony, and (3) a helical rod. They
all represent respective complexities in terms of geometry and
boundary conditions. One additional numerical example of a
curved cantilever arch with a cruciform cross section is provided
as well, to investigate the capability of using the new beam formu-
lation for beam problems with irregular cross-sectional shapes.

4.1 Curved Cantilever Arch. The first example is a cantilever
quarter circle arch subjected to an in-plane tip load. The geometry of
the quarter circle arch axis can be categorized as an in-plane curve
with a constant curvature κ and zero torsion τ= 0 along the
arc-length. The quarter circle arch of curvature radius R has a rect-
angular cross section with the dimensions of h×w. The curved arch
is clamped at one end and loaded at the other end with a concen-
trated force F pointing toward its curvature center (see Fig. 3(a)).
A representative convergence study for the classical beam formu-

lation (1/J= 1) with a slenderness ratio h/R= 0.1 is first performed,
to investigate the convergence properties of IGA beam simulations
using both the standard h- (mesh size) and p- (degree of basis func-
tions) refinements. The L2-norm relative errors of nodal displace-
ments u1, u2, and nodal rotation θ3 versus the mesh size with
quadratic and cubic NURBS basis functions are reported in
Figs. 3(b)–3(d), respectively. The L2-norm relative error can be cal-
culated as follows: ‖B −Bh‖/‖B‖, whereBh denotes the numerical
values and B denotes the reference values reported in Cazzani et al.
[15]. It can be observed that higher degrees of the basis functions lead
to higher convergence rates, as well as more accurate results.
The influence of the multiplier term 1/J in the new beam formu-

lation is then investigated by comparing the beam simulations of the
new beam formulation with those of the classical beam formulation
(1/J= 1) and those of 3D solid finite elements. Beams with slender-
ness ratios h/R ranging from 0.1 to 1.0 were simulated. Figures 3(e)
and 3( f ) report the normalized, dimensionless x1-displacements
uA1 = uA1,ori · [Ewh3/(FR3)] and x2-displacements uA2 = uA2,ori ·
[Ewh3/(FR3)] at point A on the edge center of the tip cross
section (see Fig. 3(a)), respectively, where uA1,ori, u

A
2,ori, E, w, h, F,

and R are the original x1 displacement; x2 displacement at point
A; beam elastic modulus; cross-sectional width, height, and magni-
tude of applied load; and curvature radius, respectively. The new
beam formulation and classical beam formulation results were
obtained with 16 IGA beam elements with cubic NURBS basis
functions; the 3D finite-element solution was calculated by using
1024 × 16 × 16 solid finite elements. It is worth noting that the
results of the new beam formulation are relatively close to the
reference 3D FE results, while the classical beam formulation with
1/J= 1 is inadequate to accurately simulate the beam deflections.
This is particularly true for slenderness ratios h/R>0.5 (thick beams).
The difference between the beam solutions and the 3D

finite-element solution is due to two limitations of the Timoshenko
beam theory: (1) the higher the slenderness ratio is, the harder the
shape of the beam sections can be approximated by a plane, and
the planar integration used in sectional stress calculations is not
accurate anymore; (2) the change in the reference length in strain
calculations is more significant for higher slenderness ratio cases.
While the new beam formulation adopts the multiplier term 1/J to
resolve the second issue, the classical beam formulation basically
has no mitigation for any of the issues mentioned earlier.
Another set of simulations was conducted for beams with the

same geometry but with arbitrary positions of the beam axis.
Figures 4(a)–4(c) show curved arches that are simulated with the

Fig. 2 A schematic diagram of the mapping between domains
for an IGA beam
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Fig. 3 Cantilever circular arch example: (a) geometry and boundary conditions, (b)–(d) convergence studies of the relative
L2-norm error in nodal x1 displacement u1, x2 displacement u2, and x3 rotation θ3 for h/R=0.1, respectively, (e) and (f) com-
parisons of normalized x1 displacement uA

1 and x2 displacement uA
2 at a generic point A, using the generalized beam formulation

(1/J≠1), the classical beam formulation (1/J=1), and the reference 3D solid FE method values

Fig. 4 Arbitrarily positioned beam axis for the circular cantilever arch: (a)–(c) diagrams of beam with axis located at the
center, top, and bottom of the cross section, respectively, (d) locations of the beam axis on the beam section, (e) and
(f) normalized tip x1 displacement utip

1 and tip x2 displacement utip
2 versus slenderness ratio with various locations of the

beam axis
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beam axis located at the center, top, and bottom of the cross section,
respectively; a diagram of all the locations of the beam axis consid-
ered in this comparison is shown in Fig. 4(d ); and the local coordi-
nates of the generic point (denoted “X” in Fig. 4(d )) are: [−0.25h,
0.25w]. It is worth noting that for the cases with the beam axis that
does not intersect the cross section at the centroid location, a
bending moment M=d ×F must be applied, where d is the axis
eccentricity. This ensures that the solved physical problem is
always the same, i.e., the cantilever circular arch with radial load
applied at the centroid of the cross section. Figures 4(e) and 4( f )
report the normalized tip x1 displacement utip1 and tip x2 displace-
ment utip2 versus slenderness ratio with different positions of the
beam axis. Similar to the results shown in Figs. 3(e) and 3( f ), the
dimensionless, normalized displacements are calculated as
follows: utip1 = utip1,ori · [Ewh3/(FR3)] and utip2 = utip2,ori · [Ewh3/(FR3)],
where utip1,ori and u

tip
2,ori are the original x1 displacement and x2 displa-

cement at the centroid at the free-tip section, respectively. The over-
lapped results of variously positioned beam axes in Figs. 4(e) and
4( f ) show that the new beam formulation can account for the
effect of changing positions (and hence changing reference
length in strain calculations) of the beam axis on the beam compu-
tations, which can be considered as one of the advantages of the
new beam formulation over the classical beam formulation as
the location of the beam axis can be arbitrarily selected within the
cross section.

4.2 Circular Balcony. The second example is a semi-circular
balcony subjected to an out-of-plane distributed load. The geometry
of the circular balcony can be described by the expression x1(s)=
Rcos(s/R), x2(s)=Rsin(s/R), where R is the radius of the curvature
and s is the arc-length. The dimensions of the circular balcony are
selected to be consistent with the dimensions R= 3m, h= 0.3m,
and w= 0.3m of a numerical example in the study by Zhang
et al. [27]. The semi-circular structure was clamped at both ends;

a uniformly distributed load q= 5 kN/m was applied in the negative
x2 direction (Fig. 5(a)). After a convergence study, a mesh of 32 ele-
ments with the cubic basis functions was selected. The calculated
local displacement ub, the local rotation about t-axis θt, and the
local rotation about n-axis θn versus the arch length swith the afore-
mentioned mesh are compared with the values in the study by
Zhang et al. [27] and are reported in Figs. 5(b)–5(d ), respectively.
Because the slenderness ratio of the curved arch (h/R= 0.1 for
this example) is small, the differences between the results calculated
by the new beam formulation and those calculated by the classical
beam formulation are negligible. An excellent overall agreement
shows that the current formulation has high accuracy with a rela-
tively few number of elements and low degrees of the basis
functions.

4.3 Helical Rod. The next example is a helical rod subjected
to a tip load. The helical rod has the expression x1(s)= acos(s/c),
x2(s)= asin(s/c), x3(s)= b s/c, where a= 2, b= 3/2π and
c =

��������
a2 + b2

√
= 2.06, the beam axis has a curvature radius of 2m,

a total height of H= 3m, and can be categorized as a 3D structure
with a constant curvature κ and torsion τ along the arc-length. The
cross section is circular with a diameter d, which is constant along
the arc-length. Varying diameters d were selected to make the slen-
derness ratios equal to d/H= 0.33, 0.1, 0.05, 0.033, and 0.01,
respectively. The curved beam is fixed at one end and loaded at
the other end with concentrated force F= 10 kN in the negative x2
direction (Fig. 6(a)). The global vertical displacement u2 and rota-
tion about x2-axis θ2 versus the arch length s of the beam axis for
slenderness ratio d/H= 0.05 are as shown in Figs. 6(b) and 6(c),
respectively. The comparison of the tip displacement and rotation
for the beams with arbitrarily positioned beam axis is shown in
Figs. 6(d )–6( f ). Figure 6(d ) shows the positions of the beam axis
in this comparison, the local n− b coordinates of the generic
point (denoted “X” in Fig. 6(d )) is: [0.25d, 0.25d ].

Fig. 5 Circular balcony example: (a) geometries and boundary conditions and
(b)–(d) local displacement ub, local rotation about t-axis θt, and local rotation
about n-axis θn versus the arch length s of the beam axis by comparing with the
results in Ref. [27], respectively
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Fig. 6 Helical rod example: (a) geometries and boundary conditions, (b) and (c) global vertical displacement u2 and rotation
about x2-axis θ2 versus the arch length s (d/H=0.05), (d) diagramof the different locations of the beam axis on the circular cross
section, (e) and (f) normalized tip x2 displacement utip

2 and tip rotation around x2-axis θtip2 versus slenderness ratio with various
locations of the beam axis

Fig. 7 Irregular cross section example: (a) initial and deformed shapes of the quarter circle arch with an irregular cross
section, (b) “tri-webs” cross section, (c) and (d) displacement u2, rotation around x2-axis θ2 versus the arch length s with
the 1024 beam elements and the 6th degree of the basis functions, respectively, (e) and (f) convergence studies of relative
L2-norm error in nodal displacements u2, and nodal rotations θ2 toward results in (c) and (d), respectively
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Figures 6(e) and 6( f ) report the normalized, dimensionless tip
displacement utip2 = utip2,ori · [Ed4/(FH3)] and rotation θtip2 = θtip2,ori ·
[Ed4/(FH2)] versus slenderness ratio with various beam axes,
where utip2,ori, θ

tip
2,ori, E, d, F, and H are the original x2 displacement,

rotation around x2-axis at the centroid at the free-tip section,
beam elastic modulus, cross-sectional diameter, magnitude of
applied load, and total height of the beam, respectively. Again,
the overlapping results of the helical rod show that the new beam
formulation can accurately simulate beam deflections with arbi-
trarily selected positions of the beam axis.

4.4 Beams With Arbitrarily Positioned Beam Axis and
Irregular Cross Sections. One additional numerical example is
provided to demonstrate the possibility of simulating beams with
irregular cross sections with the generalized beam formulation. A
cantilever quarter circle arch with a “tri-webs” cross section sub-
jected to an in-plane tip load was simulated (see Fig. 7(a)). A
clamped-free boundary condition was used, and a tip concentrated
force F acted at the free end toward the curvature center. The shape
of the cross section can be approximately seen as an assembly of
three rectangles with dimensions wi × hi (i= 1, 2, 3), the beam
axis passes through the mid-point of the bottom edge of each rect-
angle, each rectangle rotates counter-clockwise around the beam
axis with angle θi within the local coordinate system n− b, and
the overlapped area can be neglected if one assumes wi≪ hi, as
shown in Fig. 7(b). The sectional properties of the “tri-webs”
cross section can be calculated by taking the superposition of
those properties of each web, i.e., A∗ =

∑3
i=1 A

∗
i , S∗n

∑3
i=1 S

∗
ni,

I∗bb
∑3

i=1 I
∗
bbi, etc. The shear coefficient has no general estimation

for the irregular cross sections, but it can always be evaluated by
the ratio of the average shear strain on a section to the shear
strain at the shear center. After calculation, approximate shear coef-
ficients αn= 0.4 and αb= 0.35 are used.
The beam dimensions in this numerical example are: radius of

curvature R= 5m, web dimensions h1= 0.8, h2= 0.5, h3= 0.3m,
w1= 0.08, w2= 0.05, w3= 0.03m, rotation angles θ1= 1π/3, θ2=
7π/8, θ3= 13π/8. The material properties used are as follows:
elastic modulus E= 200GPa and Poisson’s ratio ν= 0.3. The
applied tip load was F= 10 kN. Because of the absence of the ref-
erence solutions, the results of the IGA beam simulation with the
finest mesh (1024 elements) and the highest degree of the basis
functions (6th degree) are used as the reference solution. The
initial and deformed shapes of the circular arch corresponding to
the reference solution are shown in Fig. 7(a), and the deformation
is multiplied with the scale factor 100. It can be observed that the
in-plane load F leads to not only the in-plane bending of the
beam but also in the out-of-plane bending and the torsion around
the beam axis, and this reflects the fully coupled behaviors of the
beam with an irregular cross section. The displacement u2 and rota-
tion around x2-axis θ2 along the arch length s of the beam axis are
shown in Figs. 7(c) and 7(d ), respectively. With the reference solu-
tions, the convergence studies of the L2-norm relative errors of
nodal displacements u2, and nodal rotation θ2 versus the mesh
size are reported in Figs. 7(e) and 7( f ).

5 Conclusion
In this study, a new generalized Timoshenko beam formulation

was developed to accurately capture the deformation of geometri-
cally curved and twisted beams. The proposed beam formulation
employs a parameterization of the beam axis with its arc-length
and a local system of reference described by the Frenet–Serret
basis. Furthermore, a beam kinematic model, more accurate than
the ones currently available in the literature, is derived rigorously
imposing the kinematic constraints dictated by the Timoshenko
beam assumptions. Compared to existing formulations, the
derived kinematic model features the effect of the initial curvature
of the beam via a multiplicative term and leads to a nonlinear

distribution of strains over the cross section. The resulting theory
was implemented using isogeometric analysis and was used to
solve four examples with various degrees of complexity.
From the obtained results one may draw the following

conclusions.

(1) The generalized Timoshenko beam formulation presented in
this article allows the seamless analysis of spatially curved
and twisted beam geometry.

(2) The beam geometry can be directly imported and used from
CAD software packages without the need of any preprocess-
ing including precalculation of cross section centroids and/or
principal axis of inertia.

(3) The axis of the beam can intersect the cross section at any
generic point of the cross-sectional plane. This simplifies
the analysis of beams with complex cross sections.

(4) The IGA implementation of the proposed formulation leads
to optimal convergence.

(5) The numerical results are free of any stress locking issue.
(6) The obtained results are more accurate than the ones obtained

with classical Timoshenko beam for a wide range of slender-
ness ratios.
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