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Abstract
Mechanical interactions play a crucial role in epithelial morphogenesis, yet understanding the 
complex mechanisms through which stress and deformation affect cell behavior remains an open 
problem. Here we formulate and analyze the Active Tension Network (ATN) model, which 
assumes that the mechanical balance of cells within a tissue is dominated by cortical tension and 
introduces tension-dependent active remodeling of the cortex. We find that ATNs exhibit unusual 
mechanical properties. Specifically, an ATN behaves as a fluid at short times, but at long times 
supports external tension like a solid. Furthermore, an ATN has an extensively degenerate 
equilibrium mechanical state associated with a discrete conformal - “isogonal” - deformation of 
cells. The ATN model predicts a constraint on equilibrium cell geometries, which we demonstrate 
to approximately hold in certain epithelial tissues. We further show that isogonal modes are 
observed in the fruit y embryo, accounting for the striking variability of apical areas of ventral 
cells and helping understand the early phase of gastrulation. Living matter realizes new and exotic 
mechanical states, the study of which helps to understand biological phenomena.

Mechanics of growth and cellular rearrangement defines the shape of developing tissues, 
thereby playing a central role to morphogenesis. It has become a subject of intense study 
aiming to identify specific mechanical processes involved in cell and tissue-wide 
dynamics[1–4], uncover the regulatory mechanisms [5], and identify if and how the 
mechanical state of the tissue feeds back onto the larger developmental program [6–8].

An epithelial tissue is a monolayer of apico-basally polarized cells that are tightly connected 
to their lateral neighbors. Viewed from their apical sides, cells form an approximately 
polygonal tiling of the plane. Each cell has a cortical cytoskeleton consisting of actin-myosin 
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fibers [9, 10] localized along its perimeter just below the apical surface [11]. A cell’s cortical 
cytoskeleton is linked to those of the neighboring cells via cadherin-mediated adherens 
junctions [12], resulting in a mechanical network that ensures the integrity of the epithelial 
layer. The equilibrium geometry of cells is determined by the balance of cytoskeletal and 
adhesive forces [5] within the tissue. Unlike passive materials, cells actively regulate these 
forces through mechano-transduction and internal remodeling [13, 14], resulting in an 
intrinsically dynamic relation between stress and strain, and controllable plasticity, that can 
drive rearrangement of cells. Elucidating the manner in which cellular activity manifests 
itself in the collective properties of the tissue is critical to advancing our understanding of 
morphogenesis.

In this study we formulate a phenomenological model of an epithelial tissue as a two 
dimensional Active Tension Network (ATN), which in addition to cytoskeletal elasticity 
describes cytoskeletal re-modelling through myosin activity and dynamic recruitment of 
myosin to the cytoskeleton, thus capturing the plastic and adaptive response of cells to 
external stress. We shall explore static and dynamic properties of the ATN model, validate 
some of its predictions by comparing with live imaging data, and identify new directions of 
further study.

Formulation of the Active Tension Net Model
Epithelial monolayers can be approximately represented by two-dimensional polygonal 
tilings, parameterized by a set of vertex coordinates {ri} and are often described by Vertex 
Models [2, 15] which assume that the geometry of cells minimizes mechanical energy 
defined in terms of cell edge lengths (rij = |ri − rj|) and cell areas (Aα). We shall introduce a 
generalized class of vertex models by adding internal variables to capture active adaptation 
of the cytoskeleton. We begin by defining mechanical energy in its differential form [16]

dE[{ri}] = ∑
< i, j >

T ij drij +∑
α

pαdAα (1)

where tension, Tij, defines the change in mechanical energy in response to a change of edge 
length (drij) and the 2D ‘apical pressure’, pα, defines the response to a change in cortical 
area (dAα). Tension Nets correspond to the situation where pressure differentials between 
neighboring cells are negligible so that mechanical balance is dominated by cortical tension. 
In this limit pα ≈ p0 with p0 controlling the total area of cells, and preventing the collapse of 
the network under the action of tension.

Vertex dynamics is relaxational and is given by

ν ddt ri = − ∂ri
E = ∑

{ j}i
T ijr ji = ∑

{ j}i
Tij (2)
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where {j}i denotes the set of all vertices connected to vertex i, r̂ji is a unit vector in the 
direction from ri to rj, and ν represents the effective friction (e.g. [21]) which determines the 
timescale of mechanical relaxation. Mechanical equilibrium of a Tension Net is reached 
when tensions balance, which geometrically means that for each vertex i, the three 
corresponding tension vectors Tij, Tik, Til form a triangle. Since adjacent vertices share an 
edge, global tension balance implies that the set of Tij’s defines a triangulation as shown in 
Fig. 1a,b [17, 18].

Microscopically, each edge in this network represents the mechanically coupled actomyosin 
bundles of neighboring cells, connected to each other via adherens junctions along the cell-
cell interface, as shown schematically in Fig. 2a. Vertices serve as physical barriers to the 
lateral movement of cadherin clusters and contracting actomyosin bundles [19, 20]. The 
coupled actomyosin bundles along the cell edge form a natural mechanical unit - an “active 
edge” in Fig 2a - which carries tension. Edge tension, Tij, depends on the edge length rij as 
well as on the intrinsic variables representing the local state of the actomyosin bundle and 
cadherin-mediated adhesion between cells. Specifically, we assume a simple elastic form, Tij 
= K(rij − ℓij), parameterizing the internal state of each interface by an intrinsic “rest length” ℓij 
of the underlying actomyosin filament, itself a dynamical variable governed by

ℓij
−1 d

dtℓij = τℓ
−1W

T ij
mijaTs

(3)

The generic features of the “walking kernel” W(x), illustrated in Fig. 2b, are based on 
single-molecule experiments [22, 23]: myosins can walk, contracting the actin bundle, 
unless the load per myosin, Tij/amij, reaches the “stall force” level Ts, above which the 
filament elongates as motors slip backwards [24]. Here mij is the average myosin line-
density along the edge and a is the length scale over which motors share mechanical load.

Eqs. (2, 3) define the dynamics of a Tension Net with a specified myosin distribution on 
interfaces. The fixed point of these equations is reached when i) tensions balance at all 
vertices and ii) all edges are at their stall tension, set by the local myosin (linear) density (Tij 
= aTsmij). Global tension balance requires the set of Tij’s to form a triangulation and 
therefore edge tensions, and hence myosin levels, cannot be prescribed independently. How 
can mechanical equilibrium be achieved? At this point we recall that myosin distribution 
within tissues is not fixed and is known to respond to mechanical cues [8, 25], although the 
exact form of this mechanical feedback is not fully understood. Here we propose a particular 
form of mechanical feedback on myosin, that will ensure convergence to a balanced state. 
The latter is achieved if myosin recruitment depends on the internal strain rate of each 
filament:

mij
−1 d

dtmij = αℓij
−1dℓij

dt (4)
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with α parameterizing the rate of myosin recruitment, which we assume to be slow relative 
to both mechanical relaxation and actomyosin contractility. This form of mechanical 
feedback recruits myosin to overloaded slipping bundles and reduces myosin on underloaded 
contracting bundles until the stall condition is reached, bringing the system to equilibrium. 
The “Dynamic Recruitment” hypothesis, defined by Eq (4), is dictated by the requirement of 
ATN stability and should be regarded as a prediction of the model to be tested by future 
experiments.

Equilibrium Manifold of a Tension Net
The ‘duality’ between an equilibrium tension net and the corresponding triangulation of the 
tension plane (see Fig. 1ab) implies the existence of certain constraints on cell geometry. Let 
θiβ be the angle at vertex i belonging to cell β; its complement π − θiβ is the corresponding 
angle of the dual triangle in the tension plane (Fig. 1ab). By applying the law of sines to the 
triangles surrounding dual vertex α one discovers the following constraint, true for every 
cell:

χα = ∏
i ∈ 𝒱α

sin θiγ
sin θiβ

= 1 (5)

The product is taken over the set α of vertices i that belong to cell α, while β and γ label 
other cells adjacent to i in clockwise order (Fig. 1a, see the SI for a full derivation). An array 
with all χα = 1 is geometrically compatible with tension-balance. Since χα can be readily 
measured, the compatibility constraint allows one to quantitatively assess whether a given 
cell array is consistent with a balanced tension net.

The geometry of the dual triangulation also constrains possible sets of balanced tensions. A 
triangulation is specified by the positions of its c (the number of polygonal cells in the array) 
vertices, and hence has 2c independent degrees of freedom. This number is smaller than the 
number of edges e = 3c (assuming all vertices in the cell array are three-fold), which means 
that Tij’s can’t be prescribed independently: the balanced set satisfies c constraints.

The above counting argument further implies that the map between cell geometry and 
tension triangulation is highly degenerate. The number of degrees of freedom of a 
compatible cell array is given by 2υ − c = 3c (υ being the number of vertices of the cell 
array), which is c degrees of freedom larger than that of the dual triangulation. Hence, a 
given set of balanced tensions corresponds to a manifold of nets with one degree of freedom 
per cell. Specifically, as long as none of the vertex angles are perturbed, we can freely 
“inflate” or “deflate” cells, as illustrated in Fig. 3a, with no cost of energy and thus without 
disturbing mechanical equilibrium and the underlying tension triangulation. Quite generally 
such angle preserving - hereafter referred to as “isogonal” deformations have the form

δri = Sαβγ
−1 [TijΘβ + TikΘα + TilΘγ] (6)
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where δri denotes the displacement of vertex i shared by cells α, β, γ and Sαβγ (Fig. 1ab) is 
the area of the vertex’s dual triangle. {Θα} parameterize the c-dimensional manifold of 
equilibrim states. Tensions {Tij, Tik, Til} capture the implicit geometric constraints within 
tension nets central to the structure of the isogonal modes: note for example that δri = 0 for 
Θα = Θβ = Θγ. The compatibility condition (see Eq. 5) satisfied by equilibrium tension nets 
is essential for allowing such isogonal modes to exist. Because they do not invoke a 
restoring force, isogonal deformations are easily excitable “soft modes” and are expected to 
dominate observed fluctuations of tension nets close to mechanical equilibrium. We note 
that isogonal modes can be thought of as a discrete manifestation of the conformal 
symmetry that appears in 2D continuum elasticity in the limit of a vanishing bulk modulus 
(see SI for details). Isogonal modes also generalize the isoperimetric “breathing modes” of a 
hexagonal lattice [26].

Dynamical properties of Active Tension Nets
Let us consider the dynamics of small perturbations around a mechanical equilibrium state, 
which can be described by linearizing Eqs. (2–4). While detailed calculations are carried out 
in the SI, the key features can be understood from a vastly simpler analysis of a 1D “Active 
Tension Chain” model which has the form

d
dt δTn = D∇2δTn − κ(δTn − δmn) (7)

d
dt δmn = α(δTn − δmn) (8)

where δTn and δmn are deviations from the equilibrium state and n is an integer indexing 
edges along the chain (note that we have rescaled δmn with Tsa to give it the units of 
tension). ∇2δTn = δTn+1 + δTn−1 − 2δTn is the discrete Laplacian in 1D and {D, κ, ᾱ} are 
parameters derived (in the SI) by linearization of Eqs. (2–4). Eq. 7 is recognized as the 
Maxwell model of viscoelasticity forced by myosin perturbations δmn. A static local forcing 
δm0 (in Eq. 7) would generate a persistent flow (i.e. non-zero rate of strain) and 
exponentially localized perturbations of tension with “screening length” λ = D/κ. At long 
times myosin recruitment, Eq. 8, (with ᾱ ≪ κ) ensures that the chain converges towards 
mechanical equilibrium δmn = δTn = TB where TB is external tension at the boundaries. 

Relaxation towards this equilibrium is governed by ddtδmn ≈ ακ−1D∇2δTn and 

d
dtδrn ≈ ακ−1D∇2δTn where ddtδrn is the deformation rate of edge n. Hence despite the ATN’s 

viscoelastic response and floppy modes at short times, the long time behavior is effectively 
elastic with Keff ~ ᾱκ−1D. An analogous crossover from fluid-like response at intermediate 
times to solid-like behavior at long times occurs in the fully two-dimensional ATN (see Fig. 
3cd).
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ATN predictions and the Ventral Furrow (VF) formation in Drosophila 
embryo

One of the striking predictions of the ATN model is the existence of the isogonal soft modes 
that allow easy variability of cell area. Extreme variability of apical cell area has been 
observed at the beginning of the gastrulation process in Drosophila, when cells along the 
ventral midline of the embryo constrict their apical surfaces, initiating the formation of a 
furrow that subsequently internalizes the future mesoderm [27], as shown in Fig. 4ab. This 
apical constriction was shown to be driven by pulsed contractions of the medial actomyosin 
network (located near the apical cell surface) that pull on the cortical cytoskeleton. The 
process has been described as a “ratchet” [28]: medial myosin pulses cause transient 
constrictions subsequently stabilized by the retracted cytoskeletal cortex.

Here, we propose an alternative interpretation of the phenomenon in terms of the ATN 
model. If we assume that the cortical myosin concentrations are relatively static over the 
timescale of medial myosin pulsing, the ATN model predicts that any transient perturbation 
of mechanical balance due to medial myosin contractions would leave behind an isogonal 
deformation of the cell array, as it returns to mechanical balance dominated by cortical 
tensions that remain unchanged. Hence we predict that cell deformation during the early 
stages of ventral furrow formation should be well described by motion along an isogonal 
manifold.

The proposed model is predicated on the applicability of the tension net hypothesis that 
underlies the ATN model. While it is not yet possible to measure all internal tensions in a 
living tissue, Eqn. 5 provides us with a quantitative assay of the validity of the balanced 
tension net approximation in the ventral furrow using apical geometry alone. Exact 
satisfaction of the constraint log χ = 0 is not anticipated owing to the errors associated with 
the acquisition and analyses of imaging data, as well as due to cell array fluctuations that 
result in deviations from tension balance. Yet even if tension-balance is only approximate, 
we expect that the empirical log χ distribution would be closer to zero than the “control 
distribution” computed for a random cell array (see the SI for details). Fig. 4d presents the 
result of such an analysis for the VF. Based on ~ 5000 cells, we find a statistically significant 
(Kolmogorov-Smirnov [29] p < 10−9) accumulation of log χ near zero with respect to the 
null – consistent with an approximate tension balance within the tissue. This finding is non-
trivial, as results of the same analysis for Drosphila larval wing imaginal disc [30], Fig. 4e, 
yielded no statistically significant tendency towards log χ ≈ 0. See the SI for further 
discussion of the statistical test and the analysis of other tissues.

We further quantified the early VF formation process using time-lapse imaging of 
fluorescently-labelled myosin and cell membranes (see Methods). Relative levels of cortical 
myosin (excluding an overall magnitude increase [28] that does not affect local tension 
balance) and edge orientations do not change significantly over the course of VF formation, 
despite large changes in edge lengths (Fig. 4c). This finding, together with the approximate 
“compatibility” of embryonic mesoderm (Fig. 4d), lend strong support to the validity of the 
assumptions underlying the ATN model interpretation of the VF formation process in terms 
of isogonal deformations driven by transient medial myosin pulses.
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Analyzing five movies of VF formation (as in Fig 4ab) we found that isogonal deformations 
Δriso, found by least squares analysis of Eq. 6, consistently account for ~85% of the 
measured vertex displacements, Fig. 4g (see SI for more details). The spatial profile of 
{Θα}, integrated over the course of VF dynamics is approximately parabolic (see Fig. 4f), 
giving rise to isogonal, but anisotropic, constriction of cells with the long axis of cells 
oriented along the anterior-posterior direction [27]. Thus, the mesoderm during VF 
formation indeed appears to behave as a transiently perturbed ATN, owing along the 
isogonal manifold comprised of the degenerate set of its (mechanical) equilibrium states (see 
Fig. 3b). The ATN model provides a reduced set of degrees of freedom that accurately 
describe the dynamics of VF formation.

Finally we discuss the phenotypes of twist and snail mutants [28]. snail embryos fail to 
coalesce medial myosin structures and do not initiate pulsed contraction of cells [28]: hence 
snail embryos simply lack the transient perturbations necessary to induce isogonal “flow” 
along the equilibrium manifold. Conversely, twist embryos exhibit pulsed apical contraction 
of cells but are unable to fully stabilize the constricted state [28]. These mutants also appear 
to have reduced tension in the cortical cytoskeleton and exhibit strongly curved cell-cell 
interfaces. The latter fact suggests relatively large differences in pressures between adjacent 
cells, in which case contribution of pressure to local force balance cannot be neglected. 
Pressure variation lifts the degeneracy of the ATN mechanical equilibrium manifold so that 
isogonal deformations experience a restoring force, thus limiting the response to transient 
perturbations (see the SI for an extended discussion).

“Dynamic Recruitment” hypothesis
The ATN model presented in this study describes epithelial tissue dynamics in terms of three 
processes: i) fast relaxation towards mechanical equilibrium dominated by cortical tension, 
ii) myosin driven rearrangements of the cortex on an intermediate time scale, and iii) on the 
slowest timescale, Dynamic Recruitment (or reduction) of myosin that is driven by the 
internal rate of strain in the cortex, Eq. (4). The first two alone would result in a viscoelastic 
fluid behavior (driven by myosin generated internal forces). The unusual behavior arises 
from the assumed Dynamic Recruitment of myosin, which dramatically changes the 
asymptotic behavior so that while being able to flow at short times, ATNs, like solids, can 
support external stress at long times. While the presented measurements suggest the validity 
of tension-balance in describing the mechanical equilibrium of an epithelial tissue, new 
experiments will be needed to test the Dynamic Recruitment hypothesis, which was 
introduced to explain how myosin levels at different interfaces can be coordinated to attain 
tension balance across a tissue.

Materials and Methods
The following fly stocks where used for ventral furrow live recordings: Spider-GFP [32], 
sqh-GFP;membrane-mCherry [31]. Embryos where dechoreonated following standard 
protocols, and mounted in Matek Dishes for imaging. Images where acquired on a Leica 
SP8 confocal, with a 40x/N.A. 1.1 objective water immersion objective. See SI for details on 
image analysis and numerical simulation of ATN dynamics.
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The data that support the figures and other findings of this study, as well as the MATLAB 
code used to perform simulations of ATN dynamics, are available from the corresponding 
author upon request.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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FIG. 1. 
Force balance in a tension net defines a triangulation of the “tension plane”. (A) 2D array of 
cells represented by a polygonal tiling. In mechanical equilibrium tensions balance at each 
vertex. (B) Equilibrated tensions form a triangulation, with triangle angles supplementary to 
the angles at the corresponding vertex.
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FIG. 2. 
Role of myosin motors in the ATN model. (A) Schematic of the basic active element of a 
tension network: actomyosin cables on apposing interfaces are cross-linked by cadherin 
dimers; (B) Dependence of the actomyosin bundle contraction rate on mechanical load: the 
“walking kernel” W(x), see Eq. (3), changes sign from contraction to elongation when 
mechanical load per myosin T/am exceed the stall load Ts.
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FIG. 3. 
Mechanical properties of an ATN. (A) Cartoon of an isogonal ‘breathing mode’ of a cell in a 
tension net. (B) Because ATN equilibrium is a manifold rather than a point, after a transient 
perturbation the system does not necessarily return to the same state, resulting in an 
‘isogonal’ transformation. (C) Amplitude and (D) phase of the longitudinal strain (as a 
function of position) in response to periodic uniaxial forcing TB cosωt applied at the 
boundaries (κ = 10−2 and ᾱ = 10−4). As the frequency ω decreases below ᾱ the phase shifts 
from π/2 to 0 indicating crossover from viscous fluid behavior to an elastic solid. This 
contrasts with the conventional Maxwellian viscoelasticity crossover towards elasticity with 
ω increasing above κ (see SI for details).
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FIG. 4. 
Experimental tests of ATN model predictions. (A–B) Ventral view of Drosophila embryo 
(imaged using Spider-GFP marking cell membranes) at the beginning of VF formation (A) 
and 4 minutes later (B). Note the variability of apical cell area in (B). (C) The measured 
changes in edge length Δrij, edge orientation angle Δθij and relative myosin level Δmij 
during VF formation: red lines denote the means (with pink haloes giving 95% confidence 
intervals on the mean given by the t-test) and blue boxes denote one standard deviation. 
Edge length shrinks by ~ 75% while relative changes in cortical myosin and edge orientation 
are considerably smaller. (D–E) Test of compatibility (Eq.5) compares the PDF of the 
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measured log χ’s (blue) with the control distribution (red) defined by permuting angles. 
Embryonic mesoderm (D) exhibits a strong tendency towards compatibility (log χ ≈ 0) 
while epithelium of the third instar imaginal wing disc (E), does not. (F) Spatial profile of 
the isogonal mode amplitude, {Θα} describes increasing anisotropic compression of cells 
towards ventral midline. (G) Fraction of measured deformation (Δr) captured by isogonal 
deformation (Δriso) obtained via least squares minimization of Eq.6. Each color represents 
an independent measurement with 200 cells. Inset: a graphical comparison for a sample fit.
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