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Cellular mechanics drives epithelial morphogenesis, the process wherein cells collectively rearrange to
produce tissue-scale deformations that determine organismal shape. However, quantitative understanding
of tissue mechanics is impaired by the difficulty of direct measurement of stress in vivo. This difficulty has
spurred the development of image-based inference algorithms that estimate stress from snapshots of
epithelial geometry. Such methods are challenged by sensitivity to measurement error and thus require
accurate geometric segmentation for practical use. We overcome this difficulty by introducing a novel
approach—the variational method of stress inference (VMSI)—which exploits the fundamental duality
between stress and geometry at equilibrium of discrete mechanical networks that model confluent cellular
layers. We approximate the apical geometry of an epithelial tissue by a 2D tiling with circular arc polygons
in which arcs represent intercellular interfaces defined by the balance of local line tension and pressure
differentials between adjacent cells. The mechanical equilibrium of such networks imposes extensive local
constraints on circular arc polygon geometry. These constraints provide the foundation of VMSI which,
starting with images of epithelial monolayers, simultaneously approximates both tissue geometry and
internal forces, subject to the constraint of equilibrium. We find VMSI to be more robust than previous
methods. Specifically, the VMSI performance is validated by the comparison of the predicted cellular and
mesoscopic scale stress with the measured myosin II patterns during early Drosophila embryogenesis.
VMSI prediction of a mesoscopic stress tensor correlates at the 80% level with the measured myosin
distribution and reveals that most of the myosin activity in that case is involved in a static internal force
balance within the epithelial layer. In addition to insight into cell mechanics, this study provides a practical
method for nondestructive estimation of stress in live epithelial tissue.
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I. INTRODUCTION

Cell and tissue mechanics is an important factor that both
affects and regulates animal and plant development and
thus is a subject of active study in developmental biology
and biophysics, reviewed extensively in Refs. [1–7]. Here
we focus on the mechanics of animal epithelial cells that
compose tissues in the form of two-dimensional mono-
layers with tight junctions between adjacent cells and
adhesion (of the basal cellular surface) to the substrate
extracellular matrix [8].
In the absence of a rigid substrate, mechanical properties

of such monolayers are dominated by the tissue-wide
network formed by cytoskeletal cortices coupled by

intercellular adherens junctions [9–12]. Cytoskeletal cor-
tices are localized to the lateral sides of cells, just below the
apical surface, and are made of actin fibers cross-linked by
myosin II motors that actively generate tension within the
cortex. The shape of cells within the tissue is determined by
the balance of local actomyosin cytoskeletal contractility
and the intracellular osmotic pressure [13], which acts to
oppose the decrease in total cellular volume [14,15]. For
the purpose of tissue-scale mechanics, the full three-
dimensional force balance that shapes individual cells
can be approximated by an effective two-dimensional
model of the apical cytoskeletal network. In this simplified
2D view, the contractility of the junctional actomyosin
“belts” balances against an effective two-dimensional
pressure that prevents the collapse of the apical area under
cortical tension: this type of an approximation underlies the
widely used “vertex model” approach to epithelial cell
mechanics [1,16–18]. Vertex models, along with alternative
models of epithelial mechanics, are reviewed in detail
in Ref. [19].
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Measuring mechanical properties of cells and tissues
in vivo presents a considerable experimental challenge.
AFM [20] and optical tweezer contact microscopy [21]
have been used to probe the local rheology of individual
cellular interfaces at great resolution but do not provide a
direct readout of internal stress. The most common method
for detecting stress in vivo is UV laser ablation, in which
focused light “cuts” cytoskeletal bundles at the interface
between adjacent cells and the resultant retraction velocity
is used as a proxy for the local cortical tension [22].
Alternatively, UV laser ablation can be used to cut along
a closed contour and measure resulting deformation of the
enclosed 2D patch of cells, which provides an estimate of
local stress in the tissue [23]. This method is convenient, as it
does not require any special preparation of the sample;
however, it is destructive and hence does not allow meas-
urement of the global stress distribution across the tissue.
Other methods use genetically encoded Förster resonance
energy transfer tension sensors engineered into load carrying
proteins [24] or employ measurements of deformation with
implanted oil droplets [25,26]. These methods require
specially prepared samples and are technically challenging,
both in implementation and in quantitative interpretation. A
comprehensive review of experimental mechanical meas-
urement techniques may be found in Ref. [27].

The difficulty of direct experimental measurement of
mechanical stress in developing tissues has stimulated
alternative approaches that seek to leverage the avai-
lability of live imaging data [28–33]. For example,
Refs. [29,31] introduced a method for inferring cellular
stress from observed 2D cell geometry based on the
assumption that the tissue is instantaneously in a mechani-
cal equilibrium, described by a model parametrized
directly by intercellular pressure and tension. In the
simplest versions of the method [29,31], 2D geometry
was parametrized by a polygonal tiling generally used in
vertex models [1,16]. The validity of this approach, of
course, rests upon the accuracy of the assumptions and
approximations, which varies between tissues and con-
ditions and has to be evaluated in each case; recent studies
on force inference techniques show agreement [34]. The
major challenge to the approach stems from the sensitivity
to noise both in the measurement of cellular geometry as
well as on the chosen prior distribution on the boundary
conditions at the edge of the observed tissue domain.
These difficulties have necessitated additional assump-
tions, introduced to regularize the inference problem
[29,31,32]. A particularly direct generalization aims to
extract additional information from the image data, most
obviously provided by the observable curvature of cell
interfaces [29,35]: an example of such an approach is the
CellFIT toolkit [35]. Sensitivity to noise and the quality of
the underlying image analysis, however, remains a major
issue that impedes wide use of the method. Below, we
develop a new approach, improving the image-based

“mechanical inference” to the extent that makes it broadly
applicable in the practice of experimental data analysis.
Specifically, in this paper we explore the general con-

straints imposed by mechanical equilibrium on the geom-
etry of 2D cellular arrays that balance arbitrary interfacial
tension against differential cellular pressure. Our analysis
uncovers the mathematical duality between the geometry of
the cell array and a triangulation formed by the equilibrium
values of interfacial tensions [18], which in the general case
of nonuniform pressures turns out to be nonplanar. This
duality furnishes a set of highly nontrivial, local constraints
on cellular geometry that can be used to simultaneously
carry out image segmentation and infer internal forces. The
stability of our mechanical inference method is achieved
through a variational formulation of the inference problem.
The power of this approach is twofold: (i) our representa-
tion of tissue geometry is constrained to be in mechanical
equilibrium throughout the analysis and (ii) the inference is
overdetermined and thus more robust with respect to image
noise or information missing at the boundaries. As such, the
constrained variational approach provides a stringent,
quantitative assay for the compatibility of the network
geometry with force balance.
Using synthetic data as a comparative benchmark, we

show that our algorithm correctly infers mechanics under
arbitrary pressure differentials and moderate measurement
noise, performing better than existing methods. To illustrate
its practical utility, we apply the algorithm to live imaging
data from the early stages of Drosophila embryonic
development and demonstrate its ability to accurately
predict—based on cell geometry alone—the spatial dis-
tribution and anisotropy of myosin II, the molecular motor
known as a generator of mechanical stress in the developing
embryo [2,36–38]. Synthetic and real data tests suggest
practical utility for the new mechanical inference algorithm
as a tool for quantifying stress distribution in live tissue in
the absence of direct measurement of local forces. The code
used to segment apical cell morphology and to perform the
variational inference can be found on Github [39].

II. MECHANICAL EQUILIBRIUM OF
2D CELL ARRAYS WITH INTERNAL

TENSION AND PRESSURE

In order to model the mechanical state of the 2D
epithelial tissue, we utilize a generalization of the standard
vertex model [16,29,35] which represents the epithelium
by a planar polygonal tiling parametrized solely by the
positions of vertices, the location where three or more cells
meet, hereafter denoted by ri. We approximate the geom-
etry of cells in the epithelial layer by a circular arc
polygonal (CAP) tiling, as shown in Fig. 1(a), replacing
the straight polygonal edges with circular arcs that corre-
spond to tensed interfaces balancing pressure differentials
between the adjacent cells as described by the Young-
Laplace (YL) law [35,40]. The equilibrium geometry of a
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CAP tiling is fully specified by the set of effective
interfacial tensions Tαβ, where α, β label the cells parti-
tioned by the given edge and the set of effective (2D)
hydrostatic pressures pα representing the contribution of
bulk stress from the cell to the 2D apical force balance.
The dimensionality of the space of generalCAP tilings is

given by the number of internal degrees of freedom (d.o.f.):
two positional d.o.f. for each vertex plus the radius of
curvature for each edge. The total count is 2vþ e ¼ 7c,
where c, e, v respectively denote the number of cells,
edges, and vertices within the tiling, which satisfy v ¼ 2c
and e ¼ 3c. (This count, which follows from Euler’s
formula [41], is exact on a torus and is approximate up
to the boundary corrections, for a large planar array).
Conversely, the mechanical state of the network is para-
metrized by eþ c ¼ 4c parameters corresponding to in-
dependent interfacial tensions and cell pressures. Since the
dimension of the space of all equilibriumCAP tilings, 4c, is
lower than the dimension of general CAP tiling space, 7c,
we conclude that mechanical equilibrium implies on
average three constraints per cell. Our analysis below
(i) defines a relation between the tiling geometry and
tensions and pressures and (ii) uncovers the geometric
constraints associated with mechanical balance. These
constraints on CAP geometry serve as the foundation for
our variational method of stress inference (VMSI).
Mechanical equilibrium of a CAP network is reached

when tensions balance at every vertex and interfacial

curvature obeys the Young-Laplace law, which relates
the radius of the circular arc forming interface αβ, Rαβ

to interfacial tension and the pressure differential across the
interface: Rαβ ¼ Tαβ=½pα − pβ�. Tension acts tangentially
along network edges: Figure 1(a) depicts an example of
force balance for vertex i due to tensions of interfaces that
connect it with adjacent vertices j, k, l. Specifically, tension
Tij in the edge connecting vertices i and j acts on vertex i
with the force vector Ti;j acting along the ij edge tangent at
vertex i (and pointing towards j). Similarly, we define the
force vector Tj;i acting on vertex j. Importantly, these two
vectors are not parallel, because CAP edges are generally
curved; however, both have the same magnitude equal to
the edge tension jTi;jj ¼ jTj;ij ¼ Tij. We note that an edge
can be labeled in two equivalent ways: either by the labels
of cells the edge partitions or the vertices that the edge
connects—e.g., edge ij in Fig. 1(a) separates cells
α, β—so we shall define Tij ¼ Tαβ and hereafter use both
schemes interchangeably to simplify labeling in different
contexts. Hence, force balance at vertex i requires

Ti;j þ Ti;k þ Ti;l ¼ 0 ð1Þ

(with j, k, l being vertices adjacent to i). Force balance can
be reinterpreted geometrically as a triangle formed by the
tension vectors incident on vertex i, with adjacent cells α, β,
γ, associated as the vertices of the “dual” tension triangle.
Crucially, as the local force balance triangles associated
with adjacent vertices share an edge, stitching together
force balance conditions on all network vertices defines a
tension triangulation dual to the CAP tiling. Dual triangu-
lation vertices correspond to cells and triangular faces
correspond to the vertices of the original CAP tiling. As
discussed further in the Appendix A, curved edges impose
angular “defects” between neighboring triangles, ulti-
mately resulting in nonplanarity of the dual triangulation,
depicted in Fig. 1(b).
We proceed to define the equilibrium constraints on

CAP geometry and define the explicit relations between
tensions, pressures, and geometric observables. By apply-
ing the sine law to an individual dual triangle [see
Fig. 1(b)], one can relate the ratio of tensions in adjacent
edges to the corresponding CAP angles, e.g., for the dual
triangle i (associated with adjacent cells α, β, γ):
Tαβ=Tαγ ¼ sinφi;γ= sinφi;β. Multiplying such ratios for a
set of triangles that share a dual triangulation vertex—i.e., a
cell—uncovers a nontrivial constraint on CAP tiling angles,

χα ≡
Y
i∈Vα

sinφi;γ

sinφi;β
¼

Y
i∈Vα

Tαγ

Tαβ
¼ 1; ð2Þ

where the product is taken over the set Vα of vertices i that
belong to cell α, while β and γ label other cells adjacent to i
in clockwise order, which means that each edge tension Tαβ

of the cell will appear exactly twice in the second product,

FIG. 1. Circular arc polygonal (CAP) tiling and its dual tension
triangulation. (a) Circular arc polygons provide an approximate
representation of the equilibrium geometry of a cell array, in
which edges are represented as circular arcs and vertices are loci
where three cells meet. ϕj;β ∼ π implies that Tij ≪ Tik; Til.
(b) Force balance at vertex i requires the three tension vectors
tangent to each edge to sum up to zero, which defines a local
triangle. As adjacent vertices in (a) share edges, the tension
triangles of each vertex form a triangulated surface—the dual
representation of force balance—with each triangular face cor-
responding to each vertex. Pressure differentials between cells
result in a nonflat dual triangulation. The height above the xy
plane is represented as gray scale. (c) In mechanical equilibrium,
the curvature of edge αβ is controlled by pressure differences
between adjacent cells, pα − pβ, and the interfacial tension Tαβ

by the Young-Laplace law [40].
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once in the numerator, and once in the denominator, leading
to the above equality to 1; see Fig. 1(b) for a depiction of
the geometry. Equation (2) defines c (one per cell) non-
trivial constraints on the angles of an equilibrium CAP
network which we recognize as the generalized form of the
geometric compatibility condition introduced in Ref. [18].
Provided that the geometric constraints on the CAP tiling
given by Eq. (2) are satisfied, the dual tension triangulation
specifies all Tαβ (up to an overall scale)—the key property
making inference possible.
Given the set of tensions Tαβ computable from the ten-

sion triangulation, pressures can be computed on the basis
of the Young-Laplace law, depicted in Fig. 1(c), by solving
a discrete Poisson equation on the dual triangulation:

X
fβgα

ðpα − pβÞ ¼
X
fβgα

Tαβ

Rαβ
: ð3Þ

Equation (3) represents c equations (one for each α) that
define c pressure unknowns up to the homogeneous
solution which has to be fixed by the boundary conditions
on pα.
Importantly, the YL law implies that Tαβ=Rαβ þ

Tβγ=Rβγ þ Tγα=Rγα ¼ 0 must be satisfied at each vertex
(e.g., vertex i shared by cells α, β, γ). Using the sine law on
the dual triangulation, this constraint is recast in the purely
geometric form,

sinðφi;γÞ
Rαβ

þ sinðφi;αÞ
Rβγ

þ sinðφi;βÞ
Rγα

¼ 0; ð4Þ

which defines v ¼ 2c (one per each vertex) geometric
constraints that account for the difference in the number of
pressure variables c and the number of Rαβ variables,
e ¼ 3c. Together, Eqs. (2) and (4) impose 3c constraints on
an equilibrium CAP network so that the dimensionality of
the latter is indeed given by 4c, which is equal to the total
number of tension and pressure variables. We note that
mechanical equilibrium considerations discussed above
cannot fix the overall scale of tensions and pressures
and, as evident from Eq. (3), even with fixed tensions,
pressure is defined only up to an additive constant.

III. VARIATIONAL APPROACH TO
IMAGE-BASED FORCE INFERENCE

In principle, one can infer the underlying balanced
mechanical state—the set of equilibrium interfacial ten-
sions fTαβg and pressures fpαg—by building the tension
triangulation: utilizing local edge angles at each vertex to
build each dual triangular face, and subsequently solving
Eq. (3) to obtain cell pressures. This approach is contingent
upon cell array geometry satisfying compatibility condi-
tions defined by Eqs. (2) and (4). In practice it suffers from
two major problems: (i) real cellular arrays undergoing

morphogenesis are expected to be close to, but not exactly
in, mechanical equilibrium, and (ii) the measurement
of array geometry from imaging data will always be
noisy and imperfect. As a result, an algorithm attempting
to stitch together a global tension triangulation could
rapidly accumulate errors that would dramatically impair
resulting inference.
Recognizing that mechanical equilibrium cell array is at

best an approximation to any observed epithelial tissue, it
makes sense to approach the inference problem in the
framework of least-squares fitting. Specifically, the idea is
to approximate the observed cell array with the closest
equilibrium CAP tiling. We begin by parametrizing the
CAP tiling by circular arc centroids ραβ (using from here on
the bold face font to denote 2D vectors) and the associated
radii of curvature Rαβ and minimize the variational pseu-
doenergy function,

E ¼ 1

2ne

X
ðα;βÞ

XNαβ

n

ðjrαβðnÞ − ραβj − RαβÞ2: ð5Þ

rαβðnÞ denotes the position of the nth pixel on edge α, β
obtained directly from the segmentation and Nαβ denotes
the number of pixels segmented per edge. Equation (5) has
a simple geometric interpretation—it penalizes the
Euclidean distance between the estimated and measured
circular arc for each pixel of a segmented edge. A graphical
example of the fitting is shown in Fig. 2(a).
Arc centroids ραβ and radii Rαβ enter as 2eþ e ¼ 9c

variational parameters in Eq. (5). Yet, to form a CAP array,

(a) (b)

FIG. 2. Determination of equilibrium CAP tilings. (a) Fitting an
equilibrium CAP tiling to imaging data. The best fit to raw data
(shown in gray scale) by an equilibrium CAP tiling found by
minimizing Eq. (5) is shown in red (with vertex positions in blue).
The CAP contour is close, but distinct from the result of standard
cell segmentation (see Sec. VII), here shown in green. (b) An
example of vertex position ri derived from the generalized
Voronoi construction—i.e., generating points qα displaced to
height zα above the plane and a metric rescaling pα. Each CAP
edge βγ is the locus of points with a fixed ratio of distances to a
corresponding pair of generating points—e.g., ffiffiffiffiffipβ

p dβ ¼ ffiffiffiffiffipγ
p dγ

in the above image. The vertex is defined by the intersection of all
three arcs. Parameters of this generalized Voronoi construction
(including pα) provide a convenient set of reduced variables used
in the minimization of Eq. (5).
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the three circles drawn from centroids corresponding to
edges that meet at one vertex must all pass through the same
point which defines that vertex. This implies v constraints,
reducing the number of d.o.f. to 9c − v ¼ 7c, which is
exactly the number necessary to describe a general CAP
tiling. We, however, wish to constrain our variational
approach further, to the subset of CAP tilings correspond-
ing to mechanical equilibrium, which has to satisfy geo-
metric constraints imposed by Eqs. (2) and (4).

To implement these constraints we express ραβ and
Rαβ in terms of a smaller number of independent variables
that explicitly restrict our variational search to the
4c-dimensional space of equilibrium CAP tilings. In
Appendix B, we demonstrate that all constraints are
explicitly solved by the following representation for arc
centroids,

ραβ ¼
pβqβ − pαqα
pβ − pα

; ð6Þ

and the radii of curvature,

Rαβ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pαpβjqα − qβj2
ðpα − pβÞ2

−
pαz2α − pβz2β
pα − pβ

s
; ð7Þ

in terms of 4c independent variables fqα; zα; pαg. These
variables preserve the geometric constraints defined by
Eqs. (2) and (4) and provide an explicit, local expression
for the tensions via the YL law and Eq. (7). [Note that these
expressions assume pα ≥ 0: since YL law involves only
pressure differences, Eq. (3) defines pressures only up to an
additive constant, which can be used to ensure that all pα’s
are non-negative.] Our parametrization shows that cent-
roids of edge circular arcs that meet at a vertex are collinear
at mechanical equilibrium, as previously noted in foams
[42]. We note that Eqs. (6) and (7) are explicitly invariant
with respect to rescaling of pα.
The dual variables defined above can be interpreted

geometrically in terms of the generalized Voronoi con-
struction that can be used to generate equilibrium CAP
tilings [see Fig. 2(b)]. Specifically, we define the distance
from point r in the plane to a generating point α positioned
at fqα; zαg, with zα denoting the height above the xy plane,
as shown in Fig. 2(b), as

d2αðrÞ ¼ jr − qαj2 þ z2α: ð8Þ

Each edge αβ of an equilibrium CAP tiling is the locus of
points r that satisfy pαd2αðrÞ ¼ pβd2βðrÞ relative to the
corresponding pair of generating points. The general
solution for the edge geometry is the circle with centroid
ραβ and radius Rαβ given by Eqs. (6) and (7), respectively.
The connection with the standard Voronoi construction
becomes evident when all pα are set to one and all zα are set
to zero, in which case the edge becomes a straight line

bisecting qα − qβ. In that case, qα are simply the vertices of
the dual Delaunay triangulation. (In the constant pressure
limit, z2α describe the isogonal deformations of the polygo-
nal cell arrays corresponding to equilibrium tension net-
works [18].)
We note that one can alternatively use the sum of

½pαd2αðrÞ − pβd2βðrÞ�2 on all edges (see Appendix B) as
an objective function analogous to Eq. (5) to be minimized
with respect to the dual variables fqα; zα; pαg. The two
minimization approaches are equivalent: in Appendix B
we show algebraically that ðjrαβðnÞ − ραβj − RαβÞ2 ¼
Aαβ½pαd2αðrÞ − pβd2βðrÞ�2 (with a prefactor Aαβ computed
in Appendix B). We note that the use of dual variables
Eqs. (6) and (7) to express ραβ and Rαβ ensures that even
when the latter two diverge as they do for a straight edge,
the corresponding terms in Eq. (5) stay finite and the
minimization is well defined.
The reduced variable representation given by Eqs. (6)

and (7) makes the task of finding the best-fitting equilib-
rium CAP tiling relatively straightforward. Given a gray
scale image of cellular boundaries in an epithelial mono-
layer, corresponding to a large number of cells (∼20–1000)
with interfaces resolved at a pixel level, we proceed
by minimization of Eq. (5) with respect to reduced
variables. Minimization of Eq. (5) is a nonlinear optimi-
zation problem subject to linear inequalities on z2α’s that
ensure positivity of the argument of the square root in
Eq. (7). Furthermore, we constrain all pressure values to be
absolute—i.e., pα ≥ 0—to ensure positive distance values
in the generalized Voronoi construction. We solve the
problem computationally using MATLAB’s implementation
of the interior-point algorithm. The simple choice of
starting the iteration with an estimate of fpα; qα; zαg
obtained from the observed set of network angles (as
explained in detail in Appendix C) was found to produce
reliable convergence. For approximately 1000 simulated
cells, the minimization takes ∼5 min on a MacBook Air
laptop.

IV. VALIDATION OF THE VARIATIONAL
INFERENCE METHOD

To evaluate the performance of the VMSI method, we
tested it against synthetically generated data. Specifically,
we performed a systematic sensitivity analysis of our
algorithm, and two previous inference schemes [32,35],
for cellular networks in the presence of variable noise and
pressure differentials. Under low noise and small intercel-
lular pressure differentials, all algorithms performed
equally well. However, as exemplified by Fig. 3, we found
the variational inference to be significantly more accurate in
the face of moderate to high measurement noise and large
pressure differentials. (See Appendix D for more details on
the performance of the VMSI algorithm in comparison to
Refs. [32,35].)
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The key to the improved performance is the overcon-
strained nature of the present formulation of the mechanical
inference problem, which combines the estimation of
geometric parameters with force inference into a single
variational analysis of imaging data. We found empirically
that the redundancy of parametrization not only stabilizes
the inference in the presence of noise, it also allows us to
infer forces at the boundary using just the cell morphology
in the 2D bulk. In short, the method is local and thus
immediately applicable to inference of tissue-scale stress,
as we discuss below.

V. LOCAL AND GLOBAL STRESS INFERENCE
AND ITS in vivo CORRELATES

The inferred set of interfacial tensions and cellular
pressures allows us to construct a stress tensor for an
epithelial layer in mechanical equilibrium. Over the 2D
“bulk” of cell α, the stress is isotropic and constant: σ ¼
pαδ (δ denotes the identity matrix) and σ ¼ Tαβ r̂αβ ⊗ r̂αβ
on edge αβ. Averaging over the cell area Aα,

σ̄α ¼ −pαδþ
X
fβgα

Tαβ

2Aα

Z
rαβ

drr̂αβ ⊗ r̂αβ; ð9Þ

where fβgα denotes all cells connected to cell α and
integration is taken along the circular arcs at the perimeter
of cell α (see Ref. [43]). In practice, it is useful to coarse
grain the tensor by averaging over neighboring cells to
obtain the continuum stress tensor [44]. In the following
section, we verify the utility of the proposed mechanical
inference by comparing the inferred stress tensor to known
biological correlates of stress.
We now assay the utility of the VMSI algorithm to

imaging data from in vivo epithelial monolayers. Ideally we
would test VMSI against direct measurements of stress.
Presently, the most reliable readout of local stress in live

tissue is provided by observed levels of (fluorescently
labeled) junctional myosin, which has been previously
demonstrated to correlate with local interfacial tension
measured by laser ablation [2]. We shall carry out the
comparison between inferred stress and observed myosin
level first on the scale of cells, then on the scale of the
whole tissue, using the data on earlyDrosophila embryonic
development.
During the initial stages of Drosophila embryonic

development, the ellipsoidal monolayer of epithelial cells
forming the embryo undergoes a series of nontrivial
mechanical transformations. Immediately following the
formation of the ventral furrow—the first step of gastru-
lation—the Drosophila embryo undergoes germ-band
extension (GBE): a major morphogenetic movement
involving a convergent extension of the lateral ectoderm,
which approximately doubles its length along the embryo’s
anterior-posterior (AP) axis. This process has been dem-
onstrated to be driven by the activity of the junctional pool
of myosin II, which exhibits a nonuniform and anisotropic
distribution on the surface of the embryo, in particular,
forming contractile supercellular cables that run along the
dorsal-ventral (DV) axis of the embryo [36,38,45]. Laser
ablation assays have demonstrated that these myosin
cables, associated with DV oriented edges, exhibit signifi-
cantly higher cortical tension than AP oriented cell junc-
tions [45,46]. The quantitative relation between myosin and
mechanical stress was further elaborated in our earlier study
of morphogenetic flow [36], which demonstrated that a
symmetric 2D tensor mab describing coarse-grained dis-
tribution of myosin is a useful proxy for the stress tensor.
Applying VMSI to the embryonic epithelium images

[36], we found that cell-array geometry observed over the
first 60 min of convergent extension is quite well approxi-
mated by an equilibrium cell network, hEi ≈ 1, which
means our best-fit equilibrium CAP geometry differs from
the image segmentation by on average one pixel per edge
(with the median pixel count per edge being 25). The
complete distribution of residuals over time can be found in
Appendix F.
Figure 4 shows results of the analysis on the lateral

ectoderm during GBE. Qualitatively, the inferred stress
exhibits anisotropic stress cables that run along the DVaxis
in agreement with previous studies [45]. For a quantitative
comparison, we compute the correlation coefficient of
tension inferred on individual cellular interfaces with the
myosin line density measured on the same interfaces: a
histogram of the calculated results for each time point is
shown in Fig. 4(c). The mean correlation coefficient,
ρ ∼ 0.4, is a twofold improvement over the earlier “matrix
inverse” method [29].
The observed correlation indicates that the inference

method is picking up underlying mechanical effects, albeit
statistically. There are, however, numerous sources of noise
that weaken correlation. To name two, (i) while the analysis

(a) (b)

FIG. 3. Validation of VMSI for force inference using synthetic
data. (a) Comparison of actual and inferred tensions based on the
matrix-inverse-type inference method introduced in Ref. [29]
made overdetermined using measured edge curvature data, as in
Ref. [35]. 10% noise was added to the synthetic input data (see
Appendix D for details). ρ denotes Pearson’s correlation coef-
ficient. (b) Same as (a) but using the VMSI on the same synthetic
data. Note the significant increase of the correlation coefficient.

NOLL, STREICHAN, and SHRAIMAN PHYS. REV. X 10, 011072 (2020)

011072-6



was carried out on a single snapshot, cell geometry is
fluctuating on the timescale of seconds, and (ii) linear
density of (fluorescent-labeled) myosin is not an exact
measurement of line tension. Most importantly, the
assumption that cells are in a mechanical equilibrium is
at best only an approximation: in the case of GBE, there is a
mean morphogenetic flow of cells indicating the presence
of unbalanced local forces within the tissue [36]. Below,
we demonstrate that accounting for this systematic
deviation from the mechanical equilibrium effect improves

the correlation between inferred stress and measured
myosin distribution at the mesoscopic scale.
Edge-by-edge comparison is the most exacting test, as it

is sensitive to local fluctuations. Myosin distribution,
however, also exhibits nontrivial variation over the surface
of the embryo [see Fig. 4(e)] and it is informative to
compare it with the inferred stress tensor coarse grained via
Eq. (9). In constructing the latter, it is helpful that VMSI
inference can be carried out locally on partially overlapping
image frames and “stitched” [depicted in Fig. 4(d); see

FIG. 4. Stress inference results compared to measured myosin distribution for the germ-band extension in Drosophila embryo. (a),(b)
Raw in toto images showing fluorescent-labeled membrane [mCherry, shown in (a)] and myosin [Sqh-GFP, shown in (b)] obtained using
light sheet microscopy and unrolled into the plane using ImSaNe [47]. Time corresponds to roughly 26 min after cephalic furrow (CF)
formation. (c) The correlation between myosin and inferred tensions comparing the matrix-inverse-based method defined in Ref. [29]
and the VMSI algorithm during the first 40 min of GBE. (d) An example of force inference, combining two overlapping image frames
used for the analysis, shown directly on the embryo and on a cylindrical projection with the ventral line cut and mapped onto the top and
bottom edges of the image with the dorsal side along the midline. Inset: Color-coded relative edge tension (in arbitrary units, arb. units)
inferred by the VMSI algorithm. The inferred mechanics displays stress cables as expected for the lateral region of the embryo at the
time considered. (e) The mesoscopic anisotropy of myosin, 26 min post CF formation, shown on the embryo and its cylindrical
projection. Anisotropy is largest in the lateral region. The principal axis of myosin in this region points along the DVaxis. (f) The spatial
distribution of the normalized rms difference [ΔðrÞ] between the VMSI inferred stress tensor and the measured total myosin tensor (at
26 min post CF). Both tensor fields are represented as ellipses for direct comparison. The large discrepancy (Δ ∼ 0.8) found in the
vicinity of the anterior and posterior poles (mapped to the left and right edges of the cylindrical projection) is due to the poor imaging of
the poles. The large discrepancy in the center of the dorsal region is real and can be explained by the difference between the total and
“balanced” myosin distributions as explained in the text.
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Appendix E for details] into a continuous coarse-grained
stress field for the whole surface of the embryo. In Fig. 4(f)
we compare the inferred coarse-grained stress tensor with
the measured coarse-grained myosin tensor [36]. Both
myosin and inferred stress are enriched in the lateral
ectoderm and are anisotropic along the DV axis, with
the quantitative agreement at the level of about 60% [which
corresponds to average Δ ∼ 0.4 in Fig. 4(f)].
To more exactly quantify the difference between the

measured myosin tensorm (as defined in Ref. [36]) and the
inferred stress tensor σ, we defined a normalized root-
mean-square (rms) deviation:

ΔðrÞ≡
�hTrðm − λσÞ2ir

hTrðm2Þir

�
1=2

; ð10Þ

where h� � �ir denotes averaging over a coarse-grained
region centered at location r and λ is the unknown overall
scaling factor relating myosin and stress, which we chose
so as to minimize the global average of Δ. Hence, 1 − ΔðrÞ
is the measure of local agreement (in both magnitude and
anisotropy) between of σ and m within a coarse-graining
region centered at position r.

A. Comparison of inferred stress to
balanced myosin tensor

In general, the inferred stress tensor is consistent with
the measured myosin tensor—both exhibit strong
anisotropy localized to the lateral ectoderm, with principal
axis along the DV axis. The most substantial disagree-
ment between the inferred stress and measured myosin
tensors, as shown in Fig. 4(f), is localized at the center of
the dorsal side of the embryo; myosin is spatially inho-
mogeneous along the DV axis (high at the lateral sides) in
contrast to the inferred stress tensor, observed to be
constant along the DV axis. A plausible explanation for
this discrepancy is that the stress tensor is inferred under the
assumption of mechanical equilibrium, while the measured
myosin tensor is not fully balanced as it is known to drive
the early morphogenetic flow [36].
Our previous study [36] related observed mesoscale

myosin distribution m and observed morphogenetic flow,
by focusing on the divergence of the myosin tensor ∇ ·m
which corresponds to the “unbalanced” internal stress
within the tissue that generates cellular flow. (Note that,
following Ref. [36], we assume σ ∼m.) However, only a
fraction of myosin contributes the unbalanced stress, the
rest generates internal stress which obeys force balance:
m ¼ mU þmB. The “balanced” fraction of myosin mB is,
by definition, divergenceless, ∇ ·mB ¼ 0, and is explicitly
the component of the overall myosin tensor that is expected
to correlate with the predictions of VMSI-based inference.
To decompose measured myosin tensor [36] into “bal-

anced” and “unbalanced” components, we note that any 2D
symmetric tensor can be represented by a vector field  u and
a scalar field ϕ in the following form:

mab ≡ ½∇aub þ∇bua� þ εacεbd∇c∇dφ; ð11Þ

where we have introduced component notation for
convenience—i.e., a, b index spatial component. εac ¼
−εca denotes the antisymmetric unit tensor. Conversely, the
divergence of the last term is zero and it can be identified as
mab

B , the balanced component of the myosin tensor. Taking
the divergence of Eq. (11) yields a partial differential
equation for the vector field ub:

∇2ub þ∇b∇aua ¼ ∇amab; ð12Þ

which was solved using the same method as in Ref. [36];
see Sec. VII. [Strictly speaking, Eq. (12) defined ua only up
to harmonic gradients, ua → ua þ∇aψ þ εac∇cω, with
∇2ψ ¼ ∇2ω ¼ 0. Since the only solution to the latter
equations on a closed surface of genus zero is a constant,
our solution for ua is unique.] Equations (11) and (12)
provide an explicit determination of the balanced compo-
nent of myosin tensor:

mab
B ≡mab − ½∇aub þ∇bua�: ð13Þ
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FIG. 5. Balancedmyosinversus totalmyosin. (a) Themagnitude
of the myosin tensor measured in Ref. [36] 33 min after the
formation of the ventral furrow. (b) Same for the balanced
component myosin tensor, defined by Eq. (13), at the same time.
Note that the balancedmyosin is approximately constant along the
DVaxis in contrast with the total myosin displayed in (a). (c) The
magnitude of the inferred stress tensor at the same time point. Note
greater similaritywith (b) thanwith (a). The dotted gray box shows
the region that was amenable to image segmentation. (d) The
averagemisalignment Eq. (10) between inferred stress andmyosin
tensors [balanced (total) displayed as solid (dashed) orange lines].
The balanced fraction ofmyosin is shown in blue. As expected, the
inferred stress tensor provides a better approximation for the
balanced component of myosin tensor then for the total.
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Figure 5 displays the distribution ofmab
B on the surface of

the embryo and compares it with the total myosin distri-
bution and the inferred stress. As shown in Fig. 5(d),
balanced myosin dominates, accounting for more than 80%
of the total, but the unbalanced component increases with
time, especially upon the onset of the GBE [10 min post
Cephalic Furrow (CF)]. Specifically, during GBE the
alignment of our inferred stress tensor relative to the total
myosin tensor decreases to ∼60%, consistent with the
higher fraction of unbalanced myosin and thus morpho-
genetic flow. Most interestingly, we find that removing the
unbalanced component from the myosin distribution being
compared to the inferred stress substantially increases the
agreement between the two [see Fig. 5(d)]. This is expected
since the inference algorithm assumes mechanical equilib-
rium and therefore can only pick up the balanced part of
stress.

B. Principal stress axis predicts mitotic orientation

Let us now provide an example of how our variational
stress inference can be used to study interesting questions
concerning mechanical control of biological phenomena. It
is known that the spatiotemporal patterning and orientation
of cell divisions plays an important role in morphogenesis
[48]. Mitotic domains of synchronously dividing cells
partition the Drosophila embryo in a highly regular manner
that directly shapes eventual larval segments [49].
Additionally, the patterning of mitotic spindle orientation
has been suggested to contribute to elongation of the
posterior region of the lateral ectoderm [50]. While the
upstream signal that instructs the orientation of the cell
cleavage plane is unknown, studies suggest that mechanical
tension within the tissue contributes to spindle alignment
[51–53] in the dividing cell. Additional evidence that
interphase cell strain orients mitotic cells by recruitment
of Mud (a protein important for spindle orientation) to
tricellular junctions was reported in Ref. [54].
To test the hypothesis that the cell cleavage axis tends to

align with local tension within cells, we analyzed 70
tracked divisions in mitotic domains 6 and 11 (as defined
in Ref. [49]) during the late phase of GBE [20–35 min post
cephalic furrow (CF) formation]. Figures 6(a) and 6(b)
provide an example of using the VMSI method to infer
tensions in individual interfaces of a cellular network. The
cell cleavage axis was compared directly to the orientation
of the tension axis determined from the inferred stress
tensor, Eq. (9). We found that cell cleavage indeed
correlates strongly with inferred tension and that the
principal axis of stress is a much better predictor of spindle
orientation at the time of division than the commonly used
“long axis” defined directly by cell elongation. Further-
more, the VMSI-based inference was more accurate (based
upon 95% confidence intervals using t-test) than the earlier
“matrix inverse” approach of Ref. [29]. The improved
accuracy is due to the VMSI’s ability to capture large

pressure differentials between cells in morphologically
heterogeneous cell arrays, as exemplified by Fig. 6(a).

VI. DISCUSSION

The VMSI algorithm described here was based on the
model that assumed that (i) the 2D epithelial cell array is
instantaneously in an approximate mechanical equilibrium
and (ii) cell mechanics can be approximated by the balance
of cytoskeletal tension localized at cell interfaces (and
varying from one edge to another) and the effective areal
pressure (preventing collapse of the apical surface of cells).
Together, these assumptions place a nontrivial constraint on
cell geometry that is readily testable solely on the basis of
imaging data. The existence of local geometric constraints
facilitated the formulation of a local mechanical inference
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FIG. 6. Correlation of inferred stress and cell-division axis.
(a) Confocal image of the Drosophila lateral ectoderm, near the
cephalic furrow, during the late phase of germ-band extension
(GBE) at the onset of cell divisions, approximately 45 min after
the formation of the cephalic furrow. (b) An overlay of inferred
tensions on the CAP array. Note that a low-tension edge (dark
red) meets two high-tension edges; the latter meet at an angle
close to π while low-tension edge is nearly perpendicular.
(c) Same as (b) but with the average stress tensor for each cell
plotted as an ellipse. The major or minor axis of the ellipse
corresponds to the principal axes of stress. (d) Comparison of the
cell cleavage axis for cell division events (within mitotic domains
6 and 11 [49]) and the principal (extension) axis of inferred local
stress (using different methods). Stress for mitotic cells was
estimated 5 min before the registered time of division. While
VMSI-based analysis finds significant correlation, predictions
based on the extended “matrix inverse” [29,35] or cell elongation
axis are not distinguishable from random (shown as dashed
gray line).
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scheme that combined the estimation of stress with the
simultaneous determination of the best-fit cell geometry
from imaging data. The assumption of mechanical equi-
librium implies that the body force is zero locally within
the tissue; hence our inference provides us a measurement
of the local stress tensor, not the underlying forces. The
method was observed to be a significant improvement over
similar methods, both at the scale of individual cells and at
the mesoscopic scale. We found much stronger agreement
in between the coarse-grained mesoscopic stress and
myosin relative to the comparison at the cellular scale.
While our analysis focused on cellular arrays with

threefold vertices, our arguments generalize to an admix-
ture of higher-order vertices. A fourfold vertex corresponds
to a removal of an edge from a threefold network resulting
in the coalescence of a pair of threefold vertices: two force
balance constraints on the array are lost when two vertices
merge into one. (The loss of the curvature measurement on
the removed edge is offset by the reduction in the number
of edge tension “unknowns.”) However, the effect is
localized to the four adjacent cells while, critically,
VMSI on any 4 cells is overconstrained by 3 × 4 ¼ 12
equations. Hence, loss of two constraints will not desta-
bilize the local (and thus global) inference. Mathematically,
VMSI would remain overconstrained (although to a lesser
degree) even if all of the vertices were fourfold. The utility
of the geometric constraints identified in the present study
is that they provide a direct way to test whether an observed
cell array at least approximately satisfies the constraints of
mechanical equilibrium, purely on the basis of cell mor-
phology and image analysis.
In addition to testing the validity of the VMSI-based

force inference, our analysis of myosin and inferred stress
distributions in Drosophila embryo has revealed that
despite the dynamical nature of GBE, the epithelial shell
of the embryo maintains approximate mechanical equilib-
rium, in the sense that mechanical stress associated with the
observed myosin distribution is mostly (at the 80% level)
balanced internally and does not contribute to cellular flow.
This result also holds at the cellular scale, albeit with less
statistical significance. The above conclusion is reached by
a direct analysis of the measured myosin tensor, Eq. (13).
Quite remarkably, the presence of this balanced internal
stress is also correctly inferred from the VMSI-based
analysis of cell geometry across the surface of the embryo.
The conclusion that tissue flow coexists with approximate
internal force balance within a rearranging array of cells
provides an interesting insight into the mechanics of
tissues.
According to Ref. [36], the unbalanced myosin acts as a

driver of global morphogenetic flow. Our analysis above
decomposed myosin into balanced and unbalanced com-
ponents; regions with substantial unbalanced to balanced
fractions are then putative “drivers” of the overall mor-
phogenetic flow. Disregarding the errors at the anterior and
posterior poles that arise from image resolution issues,

the largest deviation from mechanical balance is found
along the dorsal surface [see Figs. 5(a)–5(c) and Fig. 4(f)],
where total myosin falls below the level needed for
internal force balance, as predicted by the balanced
component. This suggests an important role for DV
patterning in the convergent extension flow. We believe
the ability to estimate global patterns of balanced and
unbalanced stress on arbitrary two-dimensional surfaces
opens up a novel method in which one can identify the
factors that drive morphological change.
We expect the VMSI-based force inference to be

immediately useful for experimentalists studying tissue
mechanics and the mechanics of morphogenesis of entire
organs.

VII. MATERIALS AND METHODS

Confocal microscopy.—Raw data shown in Fig. 4 were
taken on a Leica SP8 confocal microscope equipped with
two HyD detectors, a 40×, NA 1.1 water immersion
objective, and 561 nm laser line.
Light sheet imaging.—In toto images for Figs. 5 and 6

were taken on a custom-built multiview light sheet micro-
scope described in Ref. [55]. Briefly, the setup consisted of
two excitation and two detection arms. On each detection
arm, the microscope was equipped with a water-dipping
lens (Apo LWD 25×, NA 1.1, Nikon Instruments, Inc.),
a filter wheel (HS-1032, Finger Lakes Instrumentation
LLC) with emission filters (BLP02-561R-25, and
BLP01-488R-25, Semrock, Inc), a tube lens (200 mm,
Nikon Instruments, Inc.), and a sCmos camera (Hamamatsu
Flash 4.0 v3). In this way an effective pixel size of 0.26 μm
was achieved. Illumination consisted of a water-dipping
objective (CPI Plan Fluor 10×, NA 0.3, Nikon Instruments,
Inc), a tube lens (same as above), a scan lens (S4LFT0061/
065, Sill optics GmbH Co. KG), and a galvanometric
scanner (6215h Cambridge Technology, Inc.). Illumination
was based on laser lines (06-MLD 488 nm, Cobolt AB, and
561 LS OBIS 561 nm, Coherent, Inc.). 3D volumes were
generated by translating samples through the sheet using a
linear piezostage (Physik Instrumente P-629.1CD con-
trolled by C-867). Multiple views were generated by a
rotation stage (Physik Instrumente U-628.03, C-867 con-
troller), combined with a linear actuator (M-231.17, C-863
controller). Electronic control of the microscope was based
on μ MANAGER [56] and a custom-written MATLAB code.
Fusion of individual views taken at 45° angles was carried
out using FIJI multiview fusion plug-ins [57]. Cartographic
projections where generated using ImSaNe [47], a custom
MATLAB package for analyzing 3D images [44].
Fly stocks.—Sqh-GFP; membrane-mCherry.
Numerical solution of Eq. (12).—A 2D triangulated

mesh of the embryo surface was constructed using
ImSaNe [47], and FELICITY [58]—a finite element software
package for MATLAB—was utilized to solve partial
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differential equations and compute surface derivatives. See
Ref. [36] for a detailed description of the method.
Image segmentation.—In vivo data were segmented

using a custom pipeline implemented in MATLAB, available
on Github [39] under the “seg” workspace. ilastik, a
supervised machine-learning classifier, was used as a
preprocessing step for each image, followed by the appli-
cation of a Laplacian of Gaussian filter (MATLAB), with the
kernel size chosen to be ∼5 cell diameters. The resultant
image was segmented using the watershed algorithm
(MATLAB).
Vertices were defined as branch points of the resultant

skeletonization—edges are segmented as the set of boun-
dary pixels that run between two such branch points. Our
CAP is parametrized by not only vertex position but also
edge curvature. Each edge was fit to a circular arc using the
Pratt method, which is robust for small angle samplings of
the underlying circle. Interfacial myosin concentration was
measured by dilation of each segmented edge by 2 pixels
and averaging over the resulting set of pixels in the myosin
channel. All segmentation information is stored within a
custom data structure and can be immediately used for the
VMSI inference. The code needed for the VMSI inference
can be found at the same aforementioned Github repository
[39] under the “fitDual” workspace.
Cell divisions during late germ-band extension were

registered by tracking cells. Cell tracking was achieved by
computing pixel overlaps between segmented cells in
subsequent time points—cells were paired based upon
the cell they most overlap with in the succeeding frame.
Mitotic cells were defined as tracking events where two
cells overlapped with one in the previous time point. The
tracking was manually curated to ensure no false divisions
were called. The long axis and the principal stress axis were
computed at approximately 5 min before the tracked cell
cleavage event. Supplemental figures pertaining to the
dynamics of cellular geometry proceeding the division
are included in Appendix F.
3D reconstruction.—ImSaNe [47] was used to measure,

parametrize, and store the surface and embedding coor-
dinates of theDrosophila embryonic surface. Segmentation
of cells was done using the cylindrical mapping of the
embryo. The 3D vertex positions were subsequently
estimated using the embedding grids obtained from the
ImSaNe algorithm.
We computed the mesoscopic myosin distribution in the

same way as detailed in Ref. [36]. The output from the
automated segmentation of myosin is a summation over
microscopic nematic tensors of the form

mabðrÞ ¼
X
hi;ji

mijn̂aijn̂
b
ijδ

2ðr − rijÞ: ð14Þ

This was averaged using a Gaussian filter.
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APPENDIX A: NONPLANARITY OF TENSION
TRIANGULATIONS

As stated in the main text, the tension triangulation
“dual” to a CAP tiling is not planar. It follows from the
definition of the dual triangulation—i.e., by rotating
tension vectors which meet at a vertex by π=2—that the
angles of each triangle are complements of angles at CAP
vertices: ϕ̄iα ¼ π − ϕiα. We note that if the edges of the
polygonal tiling were straight, then

P
i ϕ̄iα ¼ 2π, corre-

sponding to a planar triangulation as discussed in Ref. [18].
However, in an equilibrium CAP network, tension vectors
acting at either end of an interface are no longer parallel:
because of interfacial curvature, the tension vector acting
on vertex i (on edge αβ) is rotated by an angle Δφαβ ¼
lαβ=Rαβ relative to the tension vector at vertex j, where lαβ

is the physical arc length of the circular edge. This results in
the nonplanarity of the tension triangulation manifested by
the “deficit” angle for each cell Δφα defined as the sum of
curvature contributions from all edges that compose the
cell:

Δφα ¼
X
fβgα

lαβ

Rαβ
: ðA1Þ

The deficit angle Δφα associated with cell α is the discrete
Gauss curvature for the corresponding vertex in the dual
triangulation. The dual tension triangulation is in one-to-
one correspondence with angles of the cellular array.

APPENDIX B: REDUCED VARIABLES SOLVE
GEOMETRIC CONSTRAINTS OF
EQUILIBRIUM CAP ARRAYS

In this Appendix, we show that reduced variables
fqα; zα; pαg introduced in Eqs. (6) and (7) explicitly resolve
geometric constraints implied by mechanical equilibrium,
as observed for soap foams in Ref. [42]. We begin by noting
that the tension vector Ti;j found in Eq. (1) is tangent to the
circular arc radius, depicted in Fig. 1(c), and can be
rewritten using the YL law in the form

Ti;j ¼ ẑ ∧ ½ri − ραβ�ðpα − pβÞ; ðB1Þ

where the sign of pα − pβ ensures the correct direction of
the vector. Substituting into Eq. (1) we rewrite the force
balance for vertex i as
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½pβ − pα�ρβα þ ½pα − pγ�ραγ þ ½pγ − pβ�ργβ ¼ 0; ðB2Þ

which, quite remarkably, means that in mechanical equi-
librium the centroids of all three interfacial circular arcs
meeting at a vertex are constrained to be collinear.
Next we note that force balance equations rewritten in

this form are trivially solved by ρβα given by Eq. (6), as the
left-hand side of the equation would have two factors of
each pαqα with opposing signs.
In order for all three incident edges, corresponding to

collinear centroids, to intersect at a single point uniquely
defining a CAP vertex, their respective radii must obey

ΔpαβðR2
αβ − ρ2αβÞ þ ΔpβγðR2

βγ − ρ2βγÞ
þ ΔpγαðR2

γα − ρ2γαÞ ¼ 0; ðB3Þ

which imposes v constraints on e curvature variables.
One can verify by direct substitution that ρβα and Rαβ

defined by Eqs. (6) and (7) explicitly satisfy Eq. (B3).
The appearance of zα d.o.f. is explained by observing that,
given any set of R2

αβ that solves Eq. (B3), we can generate
another geometrically compatible cell array by transform-
ing R2

αβ → R2
αβ þ ½ðpαz2α − pβz2βÞ=ðpα − pβÞ�. Hence, zα

provide an explicit parametrization of the c-dimensional
manifold of solutions of Eq. (B3) that share the same set of
edge centroids but have different radii.
We conclude this Appendix by directly relating the

psuedoenergy Eq. (5) minimization, that we used to frame
our variational approach, to the generalized Voronoi con-
struction based on distances defined by Eq. (8). The latter
construction corresponds to minimization of

E ¼
X
ðα;βÞ

ðpαd2α − pβd2βÞ2

¼
X
ðα;βÞ

ðpα − pβÞ2½jr − ραβj2 − R2
αβ�2

¼
X
ðα;βÞ

A−1
αβ ½jr − ραβj − Rαβ�2; ðB4Þ

where all prefactors A−1
αβ ¼ ðpα − pβÞ2½jr − ραβj þ Rαβ�2

which, upon reexpression in terms of dual variables
using Eqs. (6) and (7) are seen to be explicitly positive,
remain perfectly finite in the “straight edge” limit of
jpα − pβj → 0. Hence, minimization of E is equivalent to
minimization of E in Eq. (5).

APPENDIX C: INITIAL CONDITION
FOR THE VMSI

The initial condition for the variational parameters used
in the minimization of Eq. (5) is obtained piecewise; we
first approximate fqα; pαg independent of zα by fitting edge
centroids ραβ. As depicted in Fig. 2, the vector pointing
from each arc’s centroid to either of the attached vertices,

ri − ραβ, is orthogonal to the local tangent of edge rαβ.
Analogous to the main text, we denote the measured
tangent of edge αβ at vertex i as τ̂i;j.
The orthogonality between the fit radial vector ri − ραβ

and the measured τ̂i;j can be imposed variationally on
our parameters. It is convenient to introduce the shorthand
notation ti;j ≡ ðpα − pβÞri − ½pαqα − pβqβ�; see Fig. 7
for a graphical depiction of the relevant definitions.
Initial estimates for qα,pα are thus obtained by minimiza-
tion of

EI ¼
1

ne

X
hα;βi

½ti;j · τ̂i;j�2 þ ½tj;i · τ̂j;i�2: ðC1Þ

The solution is constrained so that the ratio of the average
magnitude of jti;jj to the average pressure differential
jpα − pβj equals the averaged measured radius of curvature
in the image to ensure we do not pick the trivial solution
(qα ¼ qβ, pα ¼ pβ). Rαβ is segmented from the image by
fitting each edge to a circle using the Pratt method.
It is instructive to consider what happens on a straight

edge, since the divergence of corresponding Rαβ may seem
problematic. In that case the two tangents at end points
(see Fig. 7) are antialigned τ̂i;j ¼ −τ̂j;i. Hence, minimiza-
tion of the EI contribution of that edge requires ti;jjjtj;i,
which in turn requires that jpα − pβj → 0 so that ti;j · τ̂i;j ¼
ðqβ − qαÞ · τ̂i;j ¼ 0. If all edges were straight this would
result in a generalized Voronoi construction with qα as
centroids (and zα ¼ 0Þ. Critically, because our minimiza-
tion variables fqα; pα; zαg remain finite and well defined in
the limit of straight edges, there are no difficulties asso-
ciated with divergent Rαβ.
The initial estimate of z2α is obtained from the variational

parameters obtained above by inverting the linear set of
equations defined by Eq. (7):

FIG. 7. An illustration of the definitions used in the procedure
to find an initial estimate of fpα; qαg, plotted on top of simulated
data. The segmentation is shown in red while the idealized edge
(to be fitted) is shown in light blue. The tangent vectors τi;j are
estimated from the segmentation. The minimization of EI

[Eq. (C1)] finds fpα; qαg minimizing the overlaps t̂j;i · τ̂j;i.
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pβz2β − pαz2α ¼
pαpβjqα − qβj2 − ðpα − pβÞ2R2

αβ

pα − pβ

¼ ½pα − pβ�½r2ij þ qα · qβ�

þ 2½pβqβ − pαqα� ·
�
rij −

qα þ qβ
2

�
: ðC2Þ

We have included (on the second line) the algebraic
transformation explicitly eliminating Rαβ from the system
of equations determining zα.
Finally, we use the freedom of shifting all pα by a

constant, to ensure pα > 0, and we fix the arbitrary overall
scale of pressure and tension by imposing the constraint
that

P
α pαz2α ¼ 1.

APPENDIX D: In silico BENCHMARK
OF VMSI ALGORITHM

To test the robustness of the VMSI inference, synthetic
data were generated by initializing a triangular lattice of
∼120 generating points qα within a rectangle of size
½1; ffiffiffi

3
p

=2�. Using generalized Voronoi construction defined
in the main text, one can easily generate arbitrary CAP
networks—i.e., for any set fqα; pα; zαg—in mechanical
equilibrium. Edges within the CAP network are defined by
pαd2α ¼ pβd2β via Eq. (8). This procedure is repeated for
each point q. The minimum of fd2αg for each spatial
location is taken—the net result is a scalar field that
measures the minimum weighted distance away from
any triangulation vertex, d2ðrÞ ¼ minα d2αðrÞ. An example
of the above procedure is shown in Fig. 8(a). Edges are
“ridges” representing local maxima d2ðrÞ that are found
easily using the watershed algorithm—Fig. 8(b) shows an
example. The resultant equilibrium network can then be

immediately calculated from the original parameters for
fqαg, fpαg, and fzαg.
Intracellular pressures pα were sampled from a uniform

distribution to generate lattices of varying curvature. For
simplicity, all zα were held to zero to keep the number of
simulation parameters small. White noise was added to
both vertex position ri as well as position of edge centroids
ραβ to simulate the effects of measurement and segmenta-
tion inaccuracy.
We benchmarked the relative efficacies, as a function of

measurement noise and the contribution of pressure to
mechanical balance, of three mechanical inverse algo-
rithms: (i) the matrix inverse described in Ref. [32], (ii) an
implementation of the extended matrix inverse on the
curved cellular network as described in Ref. [35], and
(iii) the proposed VMSI inference described in the
main text.
The resultant correlation between the generated and

inferred tensions and pressures is shown in Fig. 9 for
the three algorithms, respectively. In general, we found all
three algorithms performed well in the regime of low noise
and low pressure—an example of a lattice in this regime is
shown in Fig. 10(a). However, as pressure started to
contribute non-negligibly to the mechanical balance of
the network [see example in Fig. 10(b)], we observed that
using only vertex positions (without curvature data) [32]
produced noisier results, as shown in Fig. 9(a). By contrast,
(our implementation of) the CellFIT algorithm [35] was more
accurate in inferring mechanical parameters as pressure
differentials increased, as inclusion of curvature data

(a) (b)

FIG. 8. (a) An example plot of the image of weighted distance
from each generating point produced using MATLAB’s bwdist
function and the algorithm described. The locations of the
generating points qα are shown as blue dots. (b) The resultant
CAP network. The segmentation output from MATLAB’s water-
shed algorithm is used to infer the triangulation topology. This is
then passed into our forward equations to generate the exact
positions of vertices and curvatures of edges. The result, using the
original values for the generating points and the measured
triangulation topology, is overlayed in blue over the original
distance map.

(a) (b)

FIG. 9. Correlation between inferred tensions and pressures
against the known synthetic values for three mechanical inference
schemas—CVMI (blue), our implementation of the CellFIT
method [35] (orange), and the inverse used within Ref. [32]
(green)—as a function of the contribution of pressure to
mechanical balance (a) and the strength of random perturbations
to vertex position (b). Panel (a) represents a simulated lattice with
constant noise of 0.03 (strength of perturbation is normalized to
the average edge length). Similarly, panel (b) is taken at a finite
average pressure differential of 0.03 (average ratio of edge length
to radius of curvature). All algorithms were run on the same
synthetic datasets. Each curve depicts the mean and variance of
100 networks of size ∼120 cells generated with equivalent
parameters as described in the text.
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correctly imposes mechanical balance on the tangential
edge network. However, we found the CellFIT algorithm
more sensitive to simulated measurement noise than VMSI,
seen in the decrease in accuracy given by the red curve in
Fig. 9(b) as one moves to the higher simulated noise values.
We conclude that the VMSI algorithm is more accurate in
inferring the simulated mechanical parameters over the
tested regime, albeit at the cost of the computation time
required to perform the nonlinear least-squares regression.

APPENDIX E: VMSI ALGORITHM APPLIED
TO CURVED SURFACES

The VMSI can be easily extended to formulate a
tractable inference scheme for the balanced mechanical
stress within a curved tissue’s tangent plane. Because of the
inclusion of edge curvature information, the inverse is
extensively overdetermined, which allows one to simulta-
neously infer both bulk and boundary stress using infor-
mation of just bulk geometry. Consequently, the global
mechanical state can be “stitched” together by inferring
stress on local patches of cells that can, with good
approximation, be treated as planar.
The blue cell array depicted in Fig. 11(b) denotes the

“true” apical surface of the epithelial tissue. Provided the
area of interest is much smaller than the surface’s radius
of curvature, we can fit a well-defined tangent plane to
the patch. Let Rn

i denote the 3D position of the ith vertex
within patch n—it is a matrix of size 3vn, where vn is the
number of vertices contained in patch n. The best-fit triad
of vectors is obtained easily via an singular value decom-
position, Rn

i ¼ UiΣVT
n

The approximate planar graph of patch n, shown as the
black cell array in Fig. 11(b), is obtained by projecting Rn

i
onto the two principal components; VMSI is applied on the
distortion. Importantly, the set of inferred tensions and
pressures within each patch is unique up to an overall
scale and thus there exists an undetermined relative scale

between each patch—denoted λn. We fix such scales by
defining each patch to overlap by 1=4 their linear extent
such that a subset of edges is involved in multiple inferred
regions. Hence, the scale λn for each patch is found by
minimizing the squared difference between inferred ten-
sions of edges shared by adjacent patches globally, subject
to the constraint that the average scale is 1 to ensure a
nontrivial solution, λn ≠ 0.
This was used to define the patch size used in the

empirical measurements during Drosophila embryogen-
esis. The outlined procedure was validated in silico for
synthetic spherical embryos containing roughly 3000 cells,
with mechanics patterned by a vertex model minimized
on the surface of a sphere. An example of a simulated
embryo with azimuthal pattern of tension is shown in
Fig. 11(a), both in the embedding space and in the
cylindrical unwrapping of the sphere, analogous to the
data shown for the Drosophila embryo. As shown in
Fig. 11(c), excellent agreement between the inferred and
known tensions was found provided the patch size was
small compared to surface curvature. The inset shows
this occurred when the defined patches contained 100
or fewer cells. This was used to define the patch size
used in the empirical measurements during Drosophila
embryogenesis.

(a) (b)

FIG. 10. Two examples of simulated CAP networks used in the
in silico verification presented in Appendix D with varying
average pressure differences. Networks (a) and (b) were gen-
erated with varying degrees of intracellular pressure differentials.
The average edge curvatures, normalized to edge length—i.e.,
Rαβ=rαβ—for (a) and (b) are 0.01 and 0.20, respectively.
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(c)

FIG. 11. (a) A synthetic spherical embryo of ∼3000 cells,
plotted both in the embedded space, as well as the cylindrical
unwrapping analogous to the embryonic data shown in the main
text. Simulated interfacial tensions are plotted as a heat map in
both domains. (b) Graphical depiction of the process used to infer
stresses in the tangent plane of a small region of cells. All cells are
segmented in 3D using ImSaNe [47]. Each local cellular patch is
projected from the 3D embedding space onto the 2D plane that
minimizes the sum of squares of deviation. The resulting
projection is used as an input into the VMSI method. (c) Scatter
plot between the inferred tensions using the work flow outlined
and the known tensions shown in (a). The inset displays the
dependence on the number of patches used to cover the sphere. As
was expected, correlation is monotonic with sampling resolution.

NOLL, STREICHAN, and SHRAIMAN PHYS. REV. X 10, 011072 (2020)

011072-14



APPENDIX F: RESIDUALS OF VMSI
ALGORITHM DURING GBE

The quality of VMSI fitted equilibrium CAP network to
the observed cellular array can be obtained directly from
the residual energy from minimization of Eq. (5). The
minimized energy is the average squared difference (in
pixels) between the segmented and fitted edges. Hence, an
estimate of the overall relative error can be obtained by
normalizing the final energy by the average segmented
edge length in the cell array. Figure 12 compares result of
image segmentation obtained by VMSI (a) and plots
relative error as a function of time during the GBE process.

We note that the beginning and middle of GBE are well
approximated by a CAP network in cell array, however, the
relative error raises to ∼12% at late times, consistent with
the coarse-grained myosin measurements in Fig. 5(d).

APPENDIX G: DYNAMICS OF MITOTIC
CELLS IN LATE GBE

In this appendix, we discuss how we choose the time for
the measurement of the long axis of premitotic cells which
used in the comparison to the final mitotic axis—i.e., the
measurement reported in Fig. 6(d).
Our goal was to utilize the long axis observed immedi-

ately before nuclear envelope breakdown and the sub-
sequent apical rounding. Figure 13 displays the dynamics
of both the average and standard deviation of cellular apical
area (A), eccentricity (B), and the change of long 4 axis’
orientation (C) across all tracked mitotic cells.
We observed a reproducible linear increase of apical area

which begins to ramp approximately 5 min before mitosis.
Additionally, cell eccentricity was found to start decreasing
at roughly the same time. As no significant drift in the
orientation long axis was observed over this time frame,

5 min before mitosis was chosen as a reliable time to
measure the premitotic long axis.
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