

¹ **Visceral organ morphogenesis via calcium-patterned
2 muscle constrictions**

³ Noah P Mitchell,^{1,2} Dillon J Cislo,² Suraj Shankar^{1,3}
Yuzheng Lin,² Boris I Shraiman,¹ Sebastian J Streichan^{2,4*}

¹Kavli Institute for Theoretical Physics, University of California Santa Barbara,
Santa Barbara, CA 93106, USA

²Department of Physics, University of California Santa Barbara,
Santa Barbara, CA 93106, USA

³Department of Physics, Harvard University, Cambridge, MA 02138, USA

⁴Biomolecular Science and Engineering, University of California Santa Barbara,
Santa Barbara, CA 93106, USA

*E-mail: streicha@ucsb.edu.

⁴**Organ architecture is often composed of multiple laminar tissues arranged in
5 concentric layers. During morphogenesis, the initial geometry of visceral or-
6 gans undergoes a sequence of folding, adopting a complex shape that is vital
7 for function. Genetic signals are known to impact form, yet the dynamic and
8 mechanical interplay of tissue layers giving rise to organs' complex shapes re-
9 mains elusive. Here, we trace the dynamics and mechanical interactions of a
10 developing visceral organ across tissue layers, from sub-cellular to organ scale
11 *in vivo*. Combining deep tissue light-sheet microscopy for *in toto* live visualiza-
12 tion with a novel computational framework for multilayer analysis of evolving
13 complex shapes, we find a dynamic mechanism for organ folding using the
14 embryonic midgut of *Drosophila* as a model visceral organ. Hox genes, known**

15 regulators of organ shape, control the emergence of high-frequency calcium
16 pulses. Spatiotemporally patterned calcium pulses trigger muscle contractions
17 via myosin light chain kinase. Muscle contractions, in turn, induce cell shape
18 change in the adjacent tissue layer. This cell shape change collectively drives
19 a convergent extension pattern. Through tissue incompressibility and initial
20 organ geometry, this in-plane shape change is linked to out-of-plane organ
21 folding. Our analysis follows tissue dynamics during organ shape change *in*
22 *vivo*, tracing organ-scale folding to a high-frequency molecular mechanism.
23 These findings offer a mechanical route for gene expression to induce organ
24 shape change: genetic patterning in one layer triggers a physical process in the
25 adjacent layer – revealing post-translational mechanisms that govern shape
26 change.

27 Introduction

28 Visceral organ morphogenesis proceeds by the assembly of layered cell sheets into tubes, which
29 develop into complex shapes [1]. Through this process, genetic patterning instructs cellular
30 behaviors, which in turn direct deformations in interacting tissue layers to sculpt organ-scale
31 shape. This motif arises, for instance, in the coiled chambers of the heart, contortions of the gut
32 tube, and branching airways of the lung [2, 3, 4]. Meanwhile, elastic bilayer sheets highlight the
33 potential for mechanical interactions alone to generate nontrivial 3D shape transformations [5].
34 While studies of monolayer tissue development in planar geometries imaged near the embryo
35 surface or *ex vivo* have uncovered general principles [6, 7, 8, 9], following the dynamics of fully
36 3D visceral organ shape change has remained out of reach [4, 10]. Physical models inferred
37 from static snapshots of organ morphology have proven useful in this regard, but connecting
38 dynamics at the cellular and sub-cellular level with the dynamics of shape change at the organ

39 scale through live imaging remains a new frontier [11, 2, 12].

40 Uncovering cell and tissue dynamics in a shape-shifting organ presents several challenges.

41 A conceptual challenge is that visceral organs exhibit both genetic and mechanical interactions

42 between multiple tissue layers [13, 14]. Technical challenges arise as well, since their complex,

43 dynamic shapes develop deep inside embryos. Capturing dynamics *in vivo* therefore requires

44 imaging methods that overcome image degradation due to scatter [15] and a computational

45 framework for analysis of complex shapes.

46 The embryonic midgut – composed of muscle cells ensheathing an endodermal layer, linked

47 by extracellular matrix (Fig. 1A) – offers a system in which we can overcome these challenges

48 and probe *in toto* organ dynamics across tissue layers at sub-cellular resolution. Its size and the

49 molecular toolkit of the model system render the midgut ideal for light-sheet microscopy [16],

50 tissue cartography [17], and non-neuronal optogenetics [18]. Hox genes expressed in the mus-

51 cle layer are required for the midgut to form its four chambers, but the mechanism by which

52 genetic expression patterns are translated into tissue deformation, and in turn to organ shape,

53 remains unclear (Fig. 1B-C) [19, 20, 21, 22, 23, 24, 25]. Here we connect this genetic pat-

54 terning to mechanical interactions between layers during development and track the kinematic

55 mechanism linking mechanical action to organ shape transformations. We find that dynamic,

56 high-frequency calcium pulses drive patterned muscle contraction, inducing bending and con-

57 vergent extension in the endoderm to sculpt stereotyped folds.

58 **Results**

59 **Live deep tissue imaging reveals bilayer morphogenesis**

60 The midgut is a closed tube by stage 15 of embryonic development, residing 20-60 μ m below

61 the embryo surface [26]. The organ first constricts halfway along its length, then constricts

62 again to subdivide into four chambers (Video 1). Within 75 – 90 minutes after the onset of the

63 first fold, the constrictions are fully formed, and the organ begins to adopt a contorted shape.

64 Quantitative characterization of these dynamics requires extraction of the full organ's geometry, which is challenging due to tissue scatter. We overcome this challenge by *in toto* live 65 imaging using confocal multi-view light sheet microscopy [15]. In conjunction, we express 66 tissue-specific markers using the GAL4-UAS system [27] in *klarsicht* embryos [28], which exhibit 67 genetically-induced optical clearing (see Methods). To translate this volumetric data into 68 dynamics of the midgut surface, we combine machine learning [29] with computer vision techniques 69 [30, 31] using an analysis package dubbed 'TubULAR' [32]. In this way, we are able to 70 resolve sub-cellular structures with 1 minute temporal resolution (Fig. 1D and fig. S1-4, Video 71 2).

73 We find that gut morphogenesis is stereotyped and exhibits reproducible stages (Fig. 1E).
74 The surface area grows by $\sim 30\%$ during folding (stages 15a-16a) and remains constant by the
75 time constrictions are fully formed (16b), despite continued shape change. The enclosed volume
76 within the midgut decreases only gradually during this process, while the effective length of the
77 organ – the length along its curving centerline – triples (Fig. 1E, Methods).

78 **Endodermal cell shape change underlies tissue shape change**

79 How does this 3D shape change occur at the tissue and cellular scale? We first analyzed the
80 endoderm layer. Inspection of these cells reveals strikingly anisotropic cell shapes before con-
81 strictions begin (Fig. 1F and Fig. 2A-B). In order to quantify cell shape on this dynamic surface,
82 we cartographically project into the plane using TubULAR [32, 33]. This projection preserves
83 defines a global coordinate system in which we unambiguously define the anterior-posterior
84 (AP) and circumferential axes for all time points, even when the organ exhibits deep folds and
85 contortions (Fig. 2 - supplement 1 and [32]).

86 By segmenting cell shapes, we find that endodermal cells are strongly anisotropic, with an

87 average aspect ratio $a/b > 2$, and are globally aligned along the circumferential axis (Fig. 2A-
88 C). As constrictions develop, cells loose this anisotropy and even become elongated along the
89 AP axis in posterior regions (Fig. 2B-C and Fig. 2 - supplement 2A). Measurement of endoder-
90 mal cell orientations reveal that this effect is not due to rotations (Fig. 2D). As shown in Fig. 2
91 - supplement 2A, the initial anisotropy is patterned along the AP axis so that cells near two of
92 the constriction locations are most anisotropic. While we do not presently know the mechanism
93 of this patterning, it suggests these tissue regions may be primed for deformation by positional
94 information before constrictions begin. Subsequent cell shape change is greatest near each
95 constriction, as shown in Fig. 2 - supplement 2B.

96 Despite the large changes in aspect ratio, cell areas in the endoderm change only gradually
97 (Fig. 2E), such that cells converge along the circumferential axis while extending along the fold-
98 ing longitudinal axis. On a larger scale, the observed cellular deformation would collectively
99 generate tissue movement called convergent extension. At the same time, other processes –
100 such as oriented divisions or cell intercalations – could also contribute or counteract tissue-scale
101 convergent extension [34]. However, we find no signs of cell division during this process, con-
102 firming previous observations [26]. Moreover, though tracking quartets of cells in the anterior
103 midgut revealed widespread intercalations (also called T1 transitions), the orientations of these
104 events were not significantly biased for the early stages of constriction (Fig. 2 - supplement 3
105 and Video 3). This suggests that anisotropic cell shape change may be the primary contributor
106 to tissue-scale shape change. We next tested this hypothesis, asking how in-plane, cell-scale
107 shape change connects to out-of-plane, tissue-scale deformations during constrictions.

108 **Tissue-scale convergent extension via constriction**

To understand the kinematic mechanism underlying organ shape, we must bridge spatial scales
from cell deformation to meso-scale tissue deformation. Given that the midgut tissue is thin

compared to the organ radius, cells exert forces on one another primarily through in-plane interactions, but in-plane mechanical stress can couple to curvature to generate out-of-plane motion [35]. In a nearly incompressible tissue constricting out-of-plane, cells do not change area, but may change shape, collectively driving in-plane motion. In particular, the out-of-plane motion v_n would couple to in-plane motion \mathbf{v}_{\parallel} through the mean curvature H , such that

$$2Hv_n \approx \nabla \cdot \mathbf{v}_{\parallel}, \quad (1)$$

where $\nabla \cdot \mathbf{v}_{\parallel}$ is the in-plane divergence of the tissue motion along the surface. Such a kinematic constraint guides the shape changes that result from prescribed patterns of mechanical stresses in the tissue.

We hypothesized that the constricting midgut may behave as nearly incompressible, given that we found cell areas to vary only gradually during constrictions. To test this, we extract whole-organ tissue deformation patterns and find strong out-of-plane motion and in-plane dilatational flows concentrated near folds (Fig. 2A, Video 4, and Fig. 3 - supplement 1). Remarkably, we find that the pattern of out-of-plane deformation almost entirely accounts for in-plane dilatational motion in the gut, with only a small change in local tissue areas (Video 5). This tight link suggests that the tissue behaves as an incompressible medium. As shown in Fig. 3B, these terms match with 97% correlation, leaving a residual in-plane growth residue at the level of $\sim 1\%$ per minute. This slow residual area growth, which is primarily concentrated in the lobes of rounding gut chambers, accounts for the cellular area growth noted in Fig. 1E and the surface area growth in Fig. 2E.

Because the organ is curved into a tube, constrictions converge the tissue along the circumferential axis, and tissue incompressibility couples inward motion to extension along the longitudinal axis to preserve areas (Fig. 3C). We dub this kinematic mechanism ‘convergent extension via constriction’: as the tissue constricts with an inward normal velocity, the length

127 of the tissue along the circumferential direction shortens while curves along the longitudinal
128 (AP) axis of the organ lengthen, keeping the areas of cells approximately constant (Fig. 3D-F
129 and Fig. 3 - supplement 3). As a consequence of tissue incompressibility and localized con-
130 strictions, the resulting area-preserving deformations are largest near constrictions (Fig. 3 -
131 supplement 4), mirroring the pattern of cell-scale deformations. Though the shape of the organ
132 becomes increasingly complex, in-plane deformations remain globally aligned in the material
133 coordinate system: the tissue converges and extends along the circumferential and longitudinal
134 axes, respectively, even as these axes deform in 3D space as morphogenesis proceeds (Fig. 3 -
135 supplement 4).

136 Finally, we find that tissue convergent extension is accounted for primarily by our previ-
137 ous measurement of cell shape change. Since the early stages of midgut constrictions have no
138 divisions or oriented cell intercalations, we hypothesized that cell shape change alone can ex-
139 plain the tissue scale convergent extension. Fig. 3 - supplement 5 shows a quantitative match
140 between cell shape changes and tissue convergent extension, indicating that local cell shape
141 changes primarily mediate tissue-scale convergent extension during the early stages of constrict-
142 tions. During stage 16b, the tight association between cell-scale and tissue-scale deformations
143 loosens, corresponding to contributions from cell intercalations [36].

144 In short, we established a link from endodermal cell shape change to tissue-scale folding –
145 in which incompressibility couples out-of-plane deformation to in-plane motion – resulting in
146 convergent extension via constriction (Fig. 3G). What mechanical process drives strong, local-
147 ized contractions at the folds?

148 **Muscle contractions drive cell and tissue shape change**

149 It is known that embryos with either disrupted muscle or endoderm structure fail to fold [37,
150 38, 39, 21], as do embryos lacking integrins linking the two layers [40]. This suggests that

151 gut morphogenesis requires an interaction between muscle and endodermal layers. At the same
152 time, hox genes – which are expressed exclusively in the muscle layer – have been linked to
153 the successful formation of specific folds (Fig. 4A-B) [41]. In particular, *Antp* mutants lack the
154 anterior fold lying near the center of the *Antp* domain (Fig. 4C), while *Ubx* mutants lack the
155 middle fold lying at the posterior edge of the *Ubx* domain (Fig. 4D). In this system, genetic
156 patterning of the endoderm occurs via genetic patterning from the muscle layer [19, 42], so it
157 is possible that constrictions result from a *genetic* induction process. Alternatively, *mechanical*
158 interactions between the layers could induce a program of convergent extension in the endoderm
159 – with patterned deformation of the muscle layer sculpting a passive, tethered endoderm [24] or
160 triggering active endodermal cell shape change.

161 To clarify the relationship between layers during constriction dynamics, we first measured
162 relative motion of the muscle layer against the endoderm. By tracking both circumferential
163 muscle nuclei and endoderm nuclei in the same embryo, we find that these two layers move
164 together, with initially close nuclei separating by $\sim 5\mu\text{m}$ per hour (Fig. 4E-F, Videos 6-7, and
165 Methods). This result is consistent with the notion that the two layers are tightly tethered by the
166 integrins and extracellular matrix binding the heterologous layers [40].

167 Based on this tight coupling, we hypothesized that muscle mechanically induces shape
168 change in the tethered endoderm. To test this hypothesis, we inhibited contractility of the mus-
169 cle layer by driving *UAS-CIBN UAS-CRY2-OCRL*, a two-component optogenetic construct that
170 recruits *OCRL* to the plasma membrane to dephosphorylate PI(4,5)P₂. This process has been
171 shown to abolish actomyosin contractility in other developmental contexts by releasing actin
172 from the plasma membrane [18]. Driving *CRY2-OCRL* with *Antp-GAL4* under continuous ac-
173 tivation of blue light reliably prevented anterior folding (Fig. 4G). Likewise, driving *CIBN* and
174 *CRY2-OCRL* under continuous blue light activation in muscle regions posterior to the anterior
175 fold using *Ubx-GAL4 M1* locally inhibited constriction dynamics. We note that *Ubx-GAL4*

176 *M1* embryos express *Ubx* in a larger domain than the endogenous WT *Ubx* domain due to
177 differences in its regulation [43], but *Ubx-GAL4 M1* embryos nonetheless execute all three
178 constrictions in the absence of *UAS-CRY2-OCRL* under similar imaging conditions. Inhibiting
179 contraction in selected regions therefore mimics the genetic mutants known to remove folds.

180 Given that muscle contractility is required, we asked if optogenetically inducing actomyosin
181 contraction in the muscle is sufficient to induce constrictions. Indeed, optogenetic activation us-
182 ing the *CIBN UAS-ρGEF2* system in the *Antp* region generates an anterior fold on demand on
183 the timescale of a few minutes, even if induced long before the constriction would normally be-
184 gin (Fig. 4G). Similarly, activation of the *Ubx-GAL4 M1* domain results in a nearly uniform con-
185 striction that dramatically alters the shape of the organ, forcing the yolk to flow into the anterior
186 chamber. Additional optogenetic experiments inhibiting contractility of all muscles likewise
187 led to folding defects ($N = 13$, *w;UAS-CIBN::GFP;Mef2-GAL4/UAS-CRY2-OCRL:mCherry*).
188 We conclude that muscle contractility is necessary for constrictions and inducing contraction
189 and the associated downstream behaviors is sufficient to generate folds.

190 We then asked how these macro-scale perturbations on organ shape are linked to cell shapes
191 in the endoderm. In contrast with the wild-type, endodermal cell shape changes are signifi-
192 cantly reduced under optogenetic inhibition of muscle contractility. As shown in Fig. 4H-I, cell
193 segmentation of the endoderm during optogenetic inhibition of muscle contraction in the *Antp*
194 domain reveals nearly constant aspect ratios: the endoderm cells near the *Antp* domain undergo
195 reduced convergent extension when muscle contraction is locally disrupted (single-sided z-test:
196 $p = 1 \times 10^{-6}$ for difference after 1 hr, $p = 1 \times 10^{-22}$ for sustained difference between curves,
197 see Methods). We also observe analogous reduction of endodermal cell shape change in *Antp*
198 mutants, which lack anterior folds (Fig. 4I, single-sided z-test: $p = 7 \times 10^{-3}$ for difference after
199 1 hr, $p = 4 \times 10^{-9}$ for sustained difference between curves). Thus, the endodermal program of
200 convergent extension is induced by mechanical interaction with the contracting muscle layer.

201 **Calcium pulses spatiotemporally pattern muscle contractility**

202 What mechanism triggers muscle contractions, allowing such sharp folds to arise? Recent stud-
203 ies have shown that calcium signaling triggers muscle contractions in a wide range of con-
204 texts [44]. If hox genes use calcium signaling to pattern muscle contraction in the midgut, we
205 would predict that calcium pulses appear near localized constrictions. Furthermore, hox gene
206 mutants lacking folds would not exhibit localized calcium pulses, and inhibition of the cell
207 biological mechanism translating calcium into mechanical contraction should likewise inhibit
208 constrictions.

209 To test for a link from hox genes to organ shape through this mechanism, we first imaged a
210 fluorescent probe of calcium dynamics (*GCaMP6s*) in the muscle layer. As shown in Fig. 5A-E
211 and Video 8, dynamic calcium pulses appear in the muscle layer in regions localized near all
212 three midgut constrictions. Additionally, these calcium pulses are patterned in time, appearing
213 only at the onset of constriction for each fold (fig. S17).

214 To test whether hox genes pattern shape change through calcium dynamics, we measured
215 *GCaMP6s* activity in flies mutant for *Antp* that lack an anterior constriction. As shown in Fig. 5F,
216 we found that calcium activity was almost entirely absent during stages 15-16. Calcium activ-
217 ity is strongly reduced at the location of the missing anterior constriction (single-sided z-test:
218 $p = 2 \times 10^{-8}$) and subsequent calcium pulses are repressed within the vicinity of the region
219 for the hour after the constriction would normally initiate (single-sided z-test: $p = 1 \times 10^{-13}$
220 within 50 μm , Video 9 and Fig. 5 - supplement 3). The hox gene *Antp* is therefore upstream of
221 dynamic calcium pulses.

222 Importantly, we also find that in wild-type embryos, knock-downs of calcium signaling re-
223 move folds. In smooth muscle cells, calcium is known to trigger muscle contraction by binding
224 to calmodulin, which in turn binds to myosin light chain kinase (MLCK) to trigger myosin
225 light chain phosphorylation [45], and cytoplasmic calcium is transported from the cytosol into

226 the sarcoplasmic reticulum for storage under regulation of SERCA [44]. Driving a dominant
227 negative form of SERCA previously shown to exhibit temperature-sensitive expression under
228 *Mef2-GAL4* [46], we find that disrupting calcium signaling via heatshock beginning at stages
229 13-15a suppressed midgut constrictions ($p = 7 \times 10^{-9}$, Fig. 5G, Video 10). Separately, inter-
230 rupting the production of MLCK in the muscle via RNA interference demonstrates a similar
231 reduction in folding behavior ($p = 2 \times 10^{-4}$, Fig. 5G). From this we infer that spatially local-
232 ized calcium dynamics – under the control of hox gene patterning – triggers MLCK signaling
233 leading to muscle contractions (Fig. 5H).

234 Discussion

235 Here we studied morphogenesis of an organ in which heterologous tissue layers generate com-
236 plex shape transformations. We found that convergent extension and sharp folds in the en-
237 dodermal layer are triggered by mechanical interaction of muscle contractility together with
238 tissue incompressibility, and patterns of calcium signaling regulate contractility in muscle cells
239 according to hox-specified information (Fig. 5H).

240 Though correspondences between hox genes and cell fates have been established for decades [26],
241 understanding the physical processes driven by hox genes remains an active area of research.
242 Here we demonstrated a link from genes to tissue morphodynamics through active forces, con-
243 necting hox genes to a mechanical induction cascade across layers that integrates high frequency
244 calcium pulses to advance reproducible morphogenesis of complex 3D shape. While calcium
245 dynamics have known roles in early developmental stages of diverse organisms [47, 48, 49, 50]
246 – including influencing the organization of muscle fibers in the midgut [14] and determining
247 cell fates in heart valves [51] – our findings suggest a direct influence of calcium on shape,
248 wherein pulses trigger a program of irreversible tissue deformation. These calcium-patterned
249 muscle contractions control 3D shape through a mechanical cascade across tissue layers, with

250 broad relevance to tissue engineering and organ morphogenesis in other organisms.

251 At the cellular level, a remaining question is how the midgut selects precise positions and
252 times for localized calcium activity despite broad hox gene domains that vary slowly with time.

253 For example, the anterior fold forms near the center of the *Antp* domain. Do cells sense subtle
254 gradients of *Antp*, or does more refined patterning downstream of hox gene expression specify
255 this location [52]? One available avenue for the latter possibility is that hox genes govern the
256 formation of anatomical structures that may transmit signals from the soma to trigger calcium
257 pulses [53].

258 At the tissue level, a remaining question is to what extent endodermal cells actively respond
259 to muscle contraction, rather than passively deforming. For instance, there could be a mechani-
260 cal signaling pathway provoking contractile behavior in endodermal cells, or even a mechanical
261 induction loop between layers regulating morphological progression. Our findings open new
262 avenues to study how dynamic interactions between layers encode complex shapes of visceral
263 organs.

264 Acknowledgments

265 This research was supported by NIH Grant No. R35 GM138203 and NIH Grant No. R00
266 HD088708, and was supported in part by the National Science Foundation Grant No. NSF
267 PHY-1748958. We thank members of the Streichan and Shraiman labs, Eric Wieschaus, and
268 Zvonimir Dogic for valuable insights, discussions, and suggestions. Isaac Breinyn aided in
269 early exploration of the system. Matt Lefebvre, Isaac Breinyn, and Sophie Streichan aided in
270 handling several stocks, crosses, and reagents. We acknowledge Ben Lopez in the NRI-MCDB
271 Microscopy Facility for support and maintenance of the Resonant Scanning Confocal supported
272 by the NSF MRI grant DBI-1625770. The authors acknowledge the use of the Microfluidics
273 Laboratory (Innovation Workshop) within the California NanoSystems Institute, supported by

274 the University of California, Santa Barbara and the University of California, Office of the Pres-
275 ident. NPM acknowledges support from the Helen Hay Whitney Foundation. SS acknowledges
276 support from the Harvard Society of Fellows.

277 **References**

278 [1] Nelson, C. M. & Gleghorn, J. P. Sculpting Organs: Mechanical Regulation of Tissue
279 Development. *Annual Review of Biomedical Engineering* **14**, 129–154 (2012).

280 [2] Savin, T. *et al.* On the growth and form of the gut. *Nature* **476**, 57–62 (2011).

281 [3] Le Garrec, J.-F. *et al.* A predictive model of asymmetric morphogenesis from 3D recon-
282 structions of mouse heart looping dynamics. *eLife* **6**, e28951 (2017).

283 [4] Metzger, R. J., Klein, O. D., Martin, G. R. & Krasnow, M. A. The branching programme
284 of mouse lung development. *Nature* **453**, 745–750 (2008).

285 [5] van Rees, W. M., Vouga, E. & Mahadevan, L. Growth patterns for shape-shifting elastic
286 bilayers. *Proceedings of the National Academy of Sciences* **114**, 11597–11602 (2017).

287 [6] Irvine, K. & Wieschaus, E. Cell intercalation during Drosophila germband extension and
288 its regulation by pair-rule segmentation genes. *Development* **120**, 827–841 (1994).

289 [7] Streichan, S. J., Lefebvre, M. F., Noll, N., Wieschaus, E. F. & Shraiman, B. I. Global
290 morphogenetic flow is accurately predicted by the spatial distribution of myosin motors.
291 *eLife* **7**, e27454 (2018).

292 [8] Saadaoui, M., Rocancourt, D., Roussel, J., Corson, F. & Gros, J. A tensile ring drives
293 tissue flows to shape the gastrulating amniote embryo. *Science* **367**, 453–458 (2020).

294 [9] Rauskolb, C., Sun, S., Sun, G., Pan, Y. & Irvine, K. D. Cytoskeletal Tension Inhibits
295 Hippo Signaling through an Ajuba-Warts Complex. *Cell* **158**, 143–156 (2014).

296 [10] Pérez-González, C. *et al.* Mechanical compartmentalization of the intestinal organoid
297 enables crypt folding and collective cell migration. *Nature Cell Biology* **23**, 745–757
298 (2021).

299 [11] Vignes, H. *et al.* Extracellular mechanical forces drive endocardial cell volume de-
300 crease during zebrafish cardiac valve morphogenesis. *Developmental Cell* **57**, 598–609.e5
301 (2022).

302 [12] Shyer, A. E. *et al.* Villification: How the Gut Gets Its Villi. *Science* **342**, 212–218 (2013).

303 [13] Sivakumar, A. & Kurpios, N. A. Transcriptional regulation of cell shape during organ
304 morphogenesis. *Journal of Cell Biology* **217**, 2987–3005 (2018).

305 [14] Huycke, T. R. *et al.* Genetic and Mechanical Regulation of Intestinal Smooth Muscle
306 Development. *Cell* **179**, 90–105.e21 (2019).

307 [15] de Medeiros, G. *et al.* Confocal multiview light-sheet microscopy. *Nature Communica-
308 tions* **6**, 8881 (2015).

309 [16] Krzic, U., Gunther, S., Saunders, T. E., Streichan, S. J. & Hufnagel, L. Multiview light-
310 sheet microscope for rapid in toto imaging. *Nature Methods* **9**, 730–733 (2012).

311 [17] Heemskerk, I. & Streichan, S. J. Tissue Cartography: Compressing Bio-Image Data by
312 Dimensional Reduction. *Nature methods* **12**, 1139–1142 (2015).

313 [18] Guglielmi, G., Barry, J. D., Huber, W. & De Renzis, S. An Optogenetic Method to Mod-
314 ulate Cell Contractility during Tissue Morphogenesis. *Developmental Cell* **35**, 646–660
315 (2015).

316 [19] Bienz, M. Induction of the endoderm in Drosophila. *Seminars in Cell & Developmental*
317 *Biology* **7**, 113–119 (1996).

318 [20] Hoppler, S. & Bienz, M. Specification of a single cell type by a Drosophila homeotic
319 gene. *Cell* **76**, 689–702 (1994).

320 [21] Wolfstetter, G. *et al.* Fusion of circular and longitudinal muscles in Drosophila is indepen-
321 dent of the endoderm but further visceral muscle differentiation requires a close contact
322 between mesoderm and endoderm. *Mechanisms of Development* **126**, 721–736 (2009).

323 [22] Bienz, M. & Tremml, G. Domain of Ultrabithorax expression in Drosophila visceral
324 mesoderm from autoregulation and exclusion. *Nature* **333**, 576–578 (1988).

325 [23] Immerglück, K., Lawrence, P. A. & Bienz, M. Induction across germ layers in Drosophila
326 mediated by a genetic cascade. *Cell* **62**, 261–268 (1990).

327 [24] Reuter, R. & Scott, M. Expression and function of the homoeotic genes Antennapedia and
328 Sex combs reduced in the embryonic midgut of Drosophila. *Development* **109**, 289–303
329 (1990).

330 [25] Panganiban, G., Reuter, R., Scott, M. & Hoffmann, F. A Drosophila growth factor ho-
331 molog, decapentaplegic, regulates homeotic gene expression within and across germ lay-
332 ers during midgut morphogenesis. *Development* **110**, 1041–1050 (1990).

333 [26] Bate, M. & Martinez Arias, A. (eds.) *The Development of Drosophila melanogaster* (Cold
334 Spring Harbor Laboratory Press, 1993).

335 [27] Brand, A. & Perrimon, N. Targeted gene expression as a means of altering cell fates and
336 generating dominant phenotypes. *Development* **118**, 401–415 (1993).

337 [28] Welte, M. A., Gross, S. P., Postner, M., Block, S. M. & Wieschaus, E. F. Developmental
338 Regulation of Vesicle Transport in Drosophila Embryos: Forces and Kinetics. *Cell* **92**,
339 547–557 (1998).

340 [29] Berg, S. *et al.* ilastik: interactive machine learning for (bio)image analysis. *Nature Meth-
341 ods* **16**, 1226–1232 (2019).

342 [30] Márquez-Neila, P., Baumela, L. & Alvarez, L. A Morphological Approach to Curvature-
343 Based Evolution of Curves and Surfaces. *IEEE Transactions on Pattern Analysis and
344 Machine Intelligence* **36**, 2–17 (2014).

345 [31] Chan, T. & Vese, L. Active contours without edges. *IEEE Transactions on Image Pro-
346 cessing* **10**, 266–277 (2001).

347 [32] Mitchell, N. P. & Cislo, D. J. Tubular: Tracking deformations of dynamic tissues and
348 interfaces in 3d. *bioRxiv* (2022). 10.1101/2022.04.19.488840.

349 [33] Aigerman, N. & Lipman, Y. Orbifold Tutte embeddings. *ACM Transactions on Graphics
350* **34**, 190:1–190:12 (2015).

351 [34] Etournay, R. *et al.* Interplay of cell dynamics and epithelial tension during morphogenesis
352 of the Drosophila pupal wing. *eLife* **4**, e07090 (2015).

353 [35] Arroyo, M. & DeSimone, A. Relaxation dynamics of fluid membranes. *Physical Review
354 E* **79**, 031915 (2009).

355 [36] Blanchard, G. B. *et al.* Tissue tectonics: morphogenetic strain rates, cell shape change and
356 intercalation. *Nature Methods* **6**, 458–464 (2009).

357 [37] Bilder, D. & Scott, M. P. Genomic Regions Required for Morphogenesis of the Drosophila
358 Embryonic Midgut. *Genetics* **141**, 1087–1100 (1995).

359 [38] Wolfstetter, G. *et al.* The scaffolding protein Cnk binds to the receptor tyrosine kinase Alk
360 to promote visceral founder cell specification in *Drosophila*. *Science Signaling* **10** (2017).

361 [39] Singer, J. B., Harbecke, R., Kusch, T., Reuter, R. & Lengyel, J. A. *Drosophila* brachy-
362 teron regulates gene activity and morphogenesis in the gut. *Development* **122**, 3707–3718
363 (1996).

364 [40] Devenport, D. & Brown, N. H. Morphogenesis in the absence of integrins: mutation of
365 both *Drosophila* Beta subunits prevents midgut migration. *Development* **131**, 5405–5415
366 (2004).

367 [41] Tremml, G. & Bienz, M. Homeotic gene expression in the visceral mesoderm of
368 *Drosophila* embryos. *The EMBO Journal* **8**, 2677–2685 (1989).

369 [42] Mendoza-Garcia, P. *et al.* DamID transcriptional profiling identifies the Snail/Scratch tran-
370 scription factor Kahuli as an Alk target in the *Drosophila* visceral mesoderm. *Development*
371 **148**, dev199465 (2021).

372 [43] Garaulet, D. L., Foronda, D., Calleja, M. & Sánchez-Herrero, E. Polycomb-dependent
373 Ultrabithorax Hox gene silencing induced by high Ultrabithorax levels in *Drosophila*. *De-
374 velopment* **135**, 3219–3228 (2008).

375 [44] Kuo, I. Y. & Ehrlich, B. E. Signaling in Muscle Contraction. *Cold Spring Harbor Per-
376 spectives in Biology* **7**, a006023 (2015).

377 [45] Hill-Eubanks, D. C., Werner, M. E., Heppner, T. J. & Nelson, M. T. Calcium Signaling in
378 Smooth Muscle. *Cold Spring Harbor Perspectives in Biology* **3**, a004549 (2011).

379 [46] Kaneko, M., Desai, B. S. & Cook, B. Ionic leakage underlies a gain-of-function effect of
380 dominant disease mutations affecting diverse p-type atpases. *Nature Genetics* **46**, 144–151
381 (2014).

382 [47] Wallingford, J. B., Ewald, A. J., Harland, R. M. & Fraser, S. E. Calcium signaling during
383 convergent extension in Xenopus. *Current Biology* **11**, 652–661 (2001).

384 [48] Strutt, D. Frizzled signalling and cell polarisation in Drosophila and vertebrates. *Devel-
385 opment* **130**, 4501–4513 (2003).

386 [49] Li, T. *et al.* Calcium signals are necessary to establish auxin transporter polarity in a plant
387 stem cell niche. *Nature Communications* **10**, 726 (2019).

388 [50] Brodskiy, P. A. *et al.* Decoding Calcium Signaling Dynamics during Drosophila Wing
389 Disc Development. *Biophysical Journal* **116**, 725–740 (2019).

390 [51] Fukui, H. *et al.* Bioelectric signaling and the control of cardiac cell identity in response to
391 mechanical forces. *Science* (2021).

392 [52] Bilder, D. & Scott, M. P. Hedgehog and Wingless Induce Metameric Pattern in the
393 Drosophila Visceral Mesoderm. *Developmental Biology* **201**, 43–56 (1998).

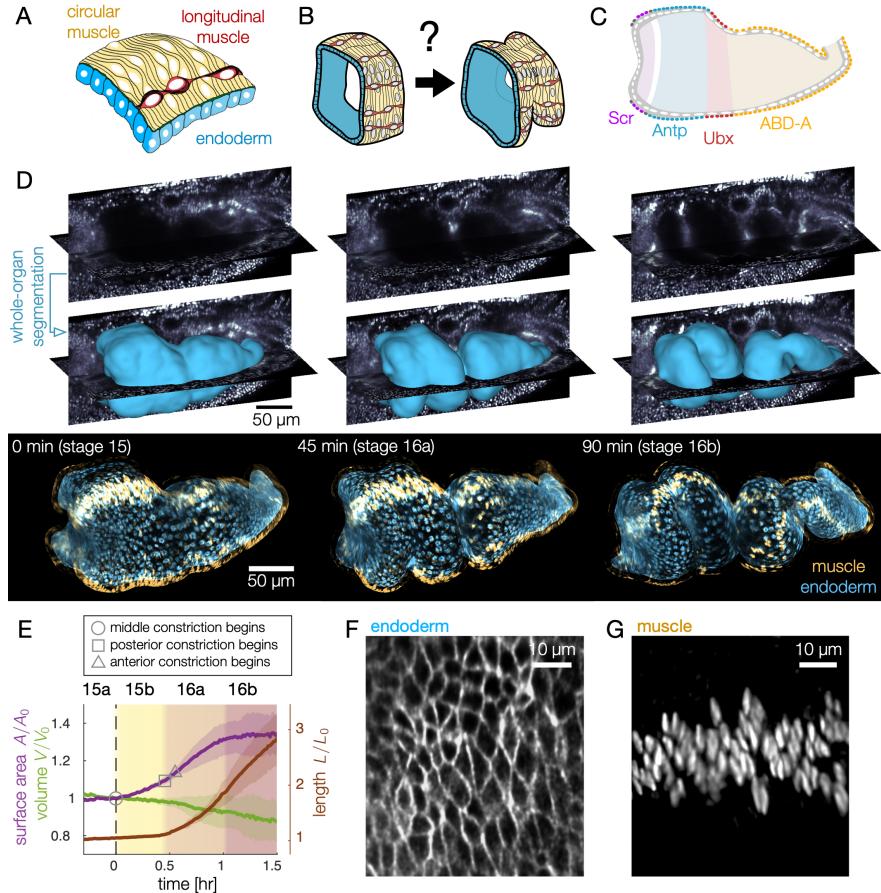
394 [53] Bataillé, L., Frendo, J.-L. & Vincent, A. Hox control of Drosophila larval anatomy; The
395 Alary and Thoracic Alary-Related Muscles. *Mechanisms of Development* **138**, 170–176
396 (2015).

397 [54] Izquierdo, E., Quinkler, T. & De Renzis, S. Guided morphogenesis through optogenetic
398 activation of Rho signalling during early Drosophila embryogenesis. *Nature Communica-
399 tions* **9**, 2366 (2018).

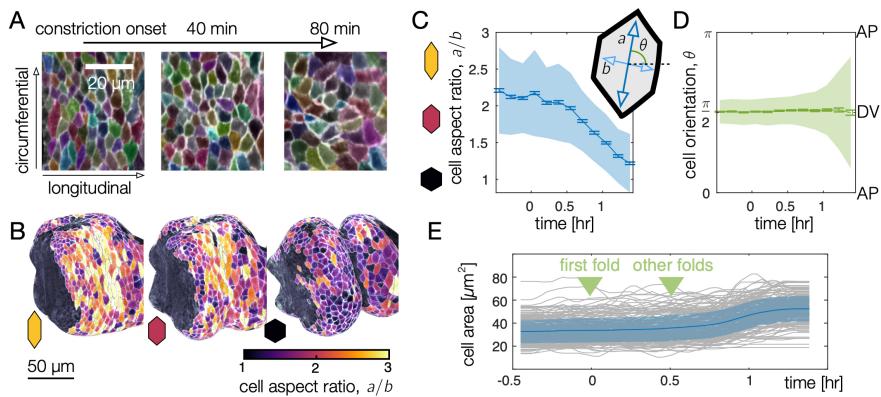
400 [55] Crickmore, M. A., Ranade, V. & Mann, R. S. Regulation of Ubx Expression by Epigenetic
401 Enhancer Silencing in Response to Ubx Levels and Genetic Variation. *PLOS Genetics* **5**,
402 e1000633 (2009).

403 [56] Preibisch, S. *et al.* Efficient Bayesian-based multiview deconvolution. *Nature Methods*
404 **11**, 645–648 (2014).

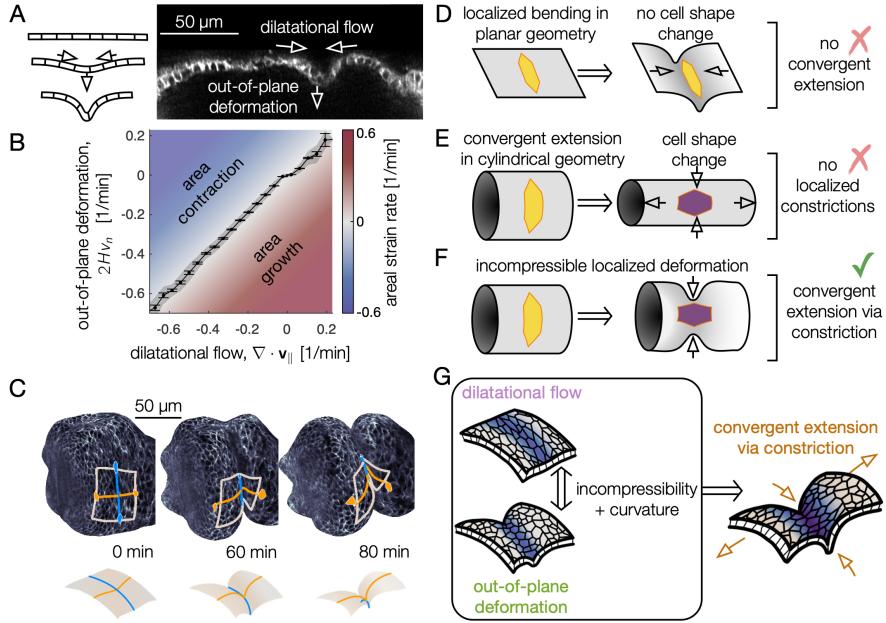
405 [57] Phelps, C. B. & Brand, A. H. Ectopic Gene Expression in Drosophila Using GAL4 System.
406 *Methods* **14**, 367–379 (1998).

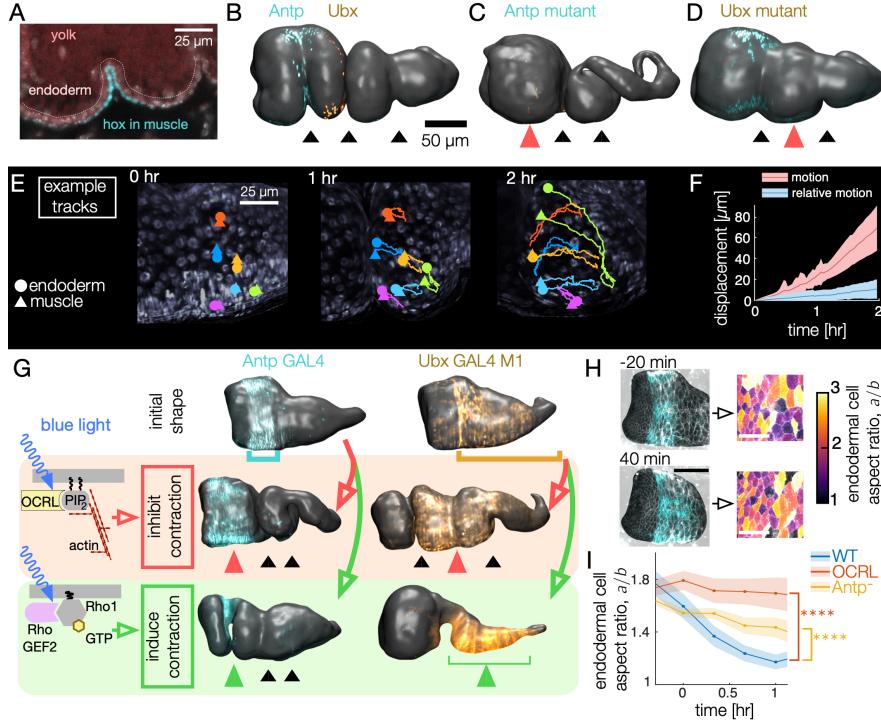

407 [58] Team, T. G. D. GIMP (2019).

408 [59] Crane, K., de Goes, F., Desbrun, M. & Schröder, P. Digital geometry processing with
409 discrete exterior calculus. In *ACM SIGGRAPH 2013 courses*, SIGGRAPH '13 (ACM,
410 New York, NY, USA, 2013).


411 [60] Thielicke, W. & Sonntag, R. Particle Image Velocimetry for MATLAB: Accuracy and
412 enhanced algorithms in PIVlab. *Journal of Open Research Software* **9**, 12 (2021).

413 [61] Thielicke, W. & Stamhuis, E. PIVlab – Towards User-friendly, Affordable and Accurate
414 Digital Particle Image Velocimetry in MATLAB. *Journal of Open Research Software* **2**,
415 e30 (2014).


416 [62] Marsden, J. E. & Hughes, T. J. R. *Mathematical Foundations of Elasticity* (Dover Publi-
417 cations, New York, 1994), revised edn.


Figure 1: Deep tissue live imaging reveals bilayer gut morphogenesis. (A-B) Muscle and endoderm layers compose the midgut and interact to generate 3D shape. (C) Genetic patterning of Hox transcription factors that govern midgut morphogenesis appears in the circumferential muscles. (D) Automatic segmentation using morphological snakes level sets enables layer-specific imaging, here shown for muscle (yellow) and endoderm (blue) for a *w, Hand>GAL4; UAS-Hand:GFP; hist:GFP* embryo. Morphogenesis proceeds first with a constriction cleaving the gut into two chambers (stage 15b). Two more constrictions form a total of four chambers (16a) before the gut begins to coil (16b onward). Stages follow [26]. (E) Surface area of the apical surface increases gradually during constrictions, but levels off by stage 16b. The enclosed volume decreases gradually, while the effective length of the organ – computed via the length of a centerline – nearly triples. Solid curves denote mean and shaded bands denote standard deviation ($N = 6$). (F-G) Segmentation of the endoderm layer from MuVi SPIM imaging resolves individual cells, both in the endoderm and muscle layers, shown here at stage 15a.

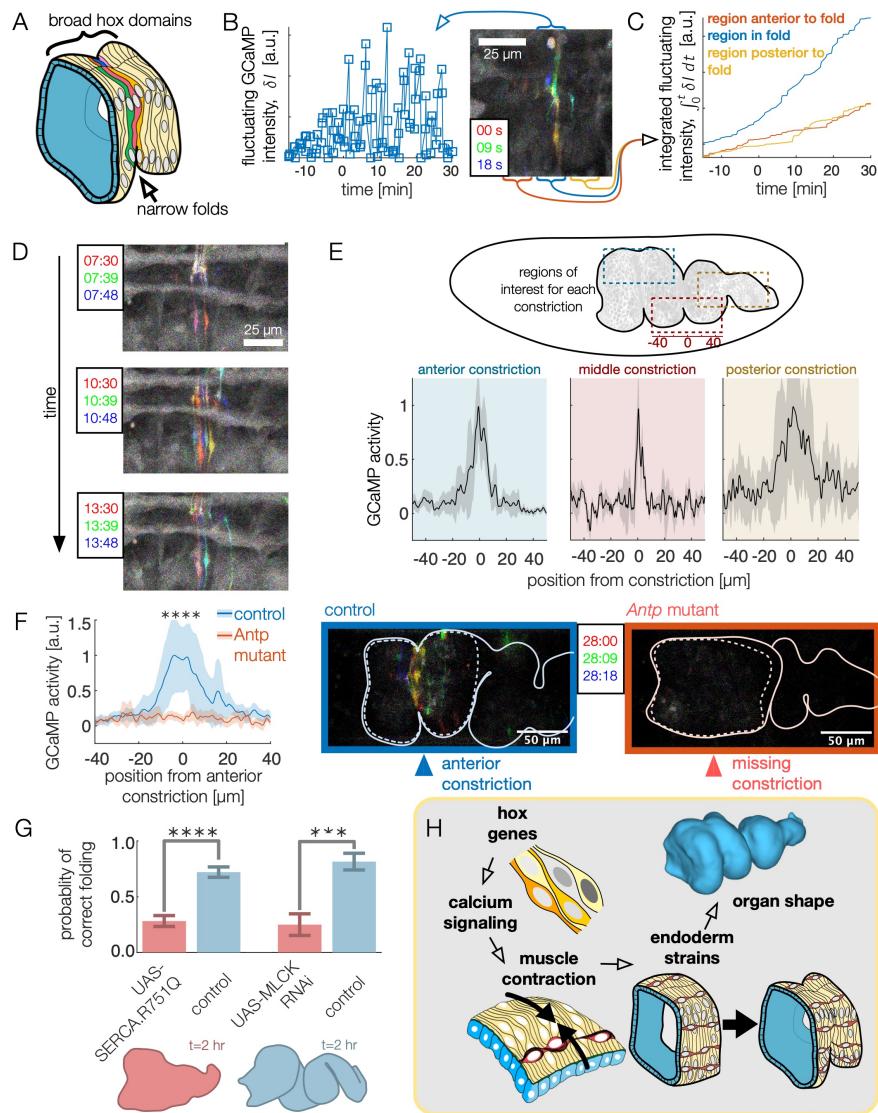

Figure 2: Endodermal cell shape changes underlie organ shape change. (A) Cell segmentation in a computationally flattened coordinate patch shows endodermal cells are initially elongated along the circumferential direction but change their shape during organ folding. (B-C) Cell aspect ratios evolve from $a/b > 2$ to $a/b \approx 1$, shown in 3D for cells near the anterior fold. (C) Colored bands denote area-weighted standard deviations for 600-1300 segmented cells per timepoint, and tick marks denote standard error on the mean. (D) As cells change their aspect ratio, their orientations do not rotate. (E) Single-cell tracking shows gentle increase of cell areas through violent folding events, suggesting that cell area changes do not drive organ shape change. Blue curve and shaded region denote mean and standard deviation, with raw traces in gray.

Figure 3: Incompressible tissue dynamics reveal convergent extension via constrictions. (A) Localized constrictions couple dilatational in-plane velocity patterns to out-of-plane deformation near folds. (B) In-plane divergence and out-of-plane deformation are correlated at the 97% level, signaling nearly incompressible behavior ($N = 3$ embryos, with kinematics sampled in 320 non-overlapping tissue patches per minute for $0 < t < 90$ min). Gray band denotes standard deviation and ticks denote standard error on the mean for each bin. Here, H denotes mean curvature, v_n is the normal (out-of-plane) velocity, and $\nabla \cdot \mathbf{v}_{\parallel}$ is the covariant divergence of the in-plane velocity. (C) The tissue converges along the circumferential direction as cells sink into the constriction (blue) and extends along the bending longitudinal profile (orange) to preserve the area of a tissue patch. (D) In contrast to the curved gut, localized bending of a flat, incompressible sheet requires no cell shape change, and thus no tissue-scale convergent extension. (E) Cell shape deformations converging along the circumferential axis and extending along the the AP axis would generate tissue convergent extension corresponding to uniform constriction of a tube, but no localized constrictions would form. (F) Localized constriction of an incompressible sheet exhibits cell shape change without cell area change in the absence of oriented divisions or oriented cell intercalations. The cell shape extends along the bending longitudinal (AP) axis. (G) Convergent extension via constriction follows as a geometric consequence of localized constrictions of the tubular organ without local area change.

Figure 4: Muscle contractions mechanically couple to the endoderm layer, inducing cell shape change and convergent extension. (A-B) Hox genes *Antp* and *Ubx* are expressed in the circumferential muscle in discrete regions, shown for surfaces extracted from light-sheet imaging. (C-D) Hox genes control organ shape: *Antp* and *Ubx* mutants lack anterior and middle constrictions, respectively. (E) Muscle and endoderm layers move together. By computationally extracting both muscle and endoderm layers in an embryo expressing both fluorescent circumferential muscle and endoderm (*w; Hand>GAL4; UAS-Hand:GFP; hist:GFP*), we track relative motion of initially close muscle-endoderm nuclei pairs. (F) Muscle-endoderm nuclei pairs show modest relative motion compared to the integrated motion of the tissue ($N = 81$ pairs, colored bands denote standard deviations). (G) Optogenetic inhibition of contractility via *CRY2-OCRL*, which dephosphorylates $\text{PI}(4,5)\text{P}_2$ [18], mimics hox mutant behaviors ($N = 11$ each), and stimulation of muscle contraction via recruitment of *CRY2- ρ GEF2* to the plasma membrane [54] drives ectopic folding ($N = 5$ each). (H) Inhibiting muscle contraction via *CRY2-OCRL* prevents endoderm cell shape change, shown for snapshots before and after the anterior constriction would normally form. The black scale bar is $50 \mu\text{m}$, and white scale bar in images of segmented cells is $25 \mu\text{m}$. (I) Measurements of endodermal cell anisotropy over time confirm that mechanical inhibition in the muscle reduces cell shape change in the endoderm (blue, $p = 1 \times 10^{-22}$). *Antp* mutants also exhibit reduced endoderm cell shape change, consistent with *Antp* regulating muscle contraction (yellow, $p = 4 \times 10^{-9}$). Each datapoint is the weighted average of multiple adjacent timepoints from 2-3 embryos with at least 30 cells per timepoint segmented in each embryo. Colored bands denote standard error on the mean.

Figure 5: High frequency calcium pulses mediate muscle contraction, linking hox genes to organ shape through tissue mechanics. (A) Dynamic calcium pulses appear near the anterior fold, localized to a region more narrow than the *Antp* domain. (B) Transient pulses in *GCaMP6s* intensity occur on the timescale of seconds and increase in amplitude when folding begins ($t = 0$). Red, green, and blue channels of images represent maximum intensity projections of confocal stacks separated in time by 9 seconds, here and below. (C) Integrated transient pulses for the embryo in (B) show calcium pulses are localized near the fold: *GCaMP6s* signals 20 μ m in front (red) or behind the fold (yellow) are less intense. (D) Snapshots of *GCaMP6s* fluorescence in muscle cells demonstrate calcium activity near constrictions. Each frame is a composite of three subsequent snapshots in red, green, and blue, so that transient pulses appear as colored signal, while background appears gray. Different muscle cells report calcium activity in adjacent frames. (E) Average fluorescent activity during the first 15 minutes of folding show localized signatures at each constriction, with particularly sharp peaks in the middle and anterior constrictions ($N = 5$, $N = 2$, and $N = 7$ for anterior, middle, and posterior folds, respectively). (F) In *Antp* mutants, *GCaMP6s* fluorescence is significantly reduced ($p = 2 \times 10^{-8}$) and is not localized in space. Snapshots of *GCaMP6s* expression 28 minutes after posterior fold onset (right) show almost no activity in the anterior region compared to the control (left). (G) Disruption of calcium regulation in muscle cells inhibits constrictions. The probability of forming three folds is reduced under heat-shock induced expression of the dominant negative mutant allele *SERCA.R751Q* with a muscle-specific driver *Mef2-GAL4* ($N = 130$, $p = 7 \times 10^{-9}$), and is likewise reduced under RNA interference of MLCK driven by *tub67-GAL4*; *tub16-GAL4* ($N = 37$, $p = 2 \times 10^{-4}$). (H) Altogether, we infer that hox genes are upstream of patterned calcium pulses, which generate muscle contraction that is mechanically coupled to the endoderm, driving tissue strains and ultimately organ shape.

418 **Materials and Methods**

419 **Stocks and reagents**

420 For this work, we used the following stocks based on Bloomington Drosophila Stock Center
421 stocks: *w*; *48Y-GAL4*; *klar, w*; *UAS-CAAX::mCherry*; +, *w*; *UAS-histone::RFP*, *UAS-MLCK*
422 *RNAi TRiP VALIUM 20*, *y,w,Antp-GAL4*; +; *klar, w*; *sqh GFP*; +. *w[*]*; *I-76-D, Ubx*^{9.22}
423 *e*¹/*TM6B*, *Tb Df(3R)Antp*^{NS+RC3}. Additional stocks used were *w*; +; *Mef2-GAL4* (a gift from
424 Lucy O'Brien), *w[*]*; *UASp-CIBN::pmGFP*; *UASp-mCherry::CRY2-OCRL* (a gift from Ste-
425 fano de Renzis), *w[*]*; *UASp-CIBN::pmGFP*; *UASp-RhoGEF2-CRY2::mCherry* (a gift from
426 Stefano de Renzis), *Hand-GFP*; *4xUAS-Hand*; + (a gift from Zhe Han), *w*; +; *Ubx-GAL4 M1* (a
427 gift from Ellie Heckscher) [43, 55], *w*; +; *Ubx-GAL4 M3* (a gift from Ellie Heckscher) [43, 55],
428 *w*; *tub67-GAL4;tub15-GAL4* (a gift from Eric Wieschaus), and *w*; +; *Gap*⁴³ *mCherry* (a gift
429 from Eric Wieschaus).

430 We used following antibodies for staining: *Ubx FP3.38* (diluted 1:10, Developmental Stud-
431 ies Hybridoma Bank), *Antp 8C11* (diluted 1:25, Developmental Studies Hybridoma Bank),
432 anti-ABDA C11 (dilued 1:50, Santa Cruz Biotechnology).

433 **Microscopy**

434 For light sheet imaging of live and fixed embryos, we used a custom multi-view selective plane
435 illumination microscope drawn schematically in Fig. 1 - supplement 1A. This setup has been
436 previously described in [7].

437 Subsequent registration, deconvolution, and fusion using the methods presented in [56] re-
438 sults in a single, deconvolved data volume per timepoint with isotropic resolution (0.018 μm^3
439 per voxel). For most experiments in this work, we acquire one volume per minute. The optimal
440 number of deconvolution iterations varied between 8 and 20 for different fluorescent reporters.

441 We used 6 or 8 views for most datasets.

442 To peer deep inside the developing embryo, we leverage the UAS-GAL4 system [57] to
443 express fluorescent proteins in gut-specific tissues and use embryos with the *klarsicht* muta-
444 tion [28], which reduces scatter without altering gut morphogenesis. Video 1 shows a maxi-
445 mum intensity projection of the left lateral half data volume for a deconvolved nuclear marker
446 in the midgut as a complement to Figure 1 of the main text. In Video 1, non-midgut tissues
447 expressing *48Y GAL4* are largely masked out using an iLastik training to darken voxels far from
448 the gut, but some cells outside the midgut that express *48Y GAL4* are visible on the dorsal side.

449 We used confocal microscopy (Leica SP8) for more detailed characterization of calcium
450 dynamics, live imaging of *Ubx* and *Antp* mutants, and supplementary optogenetic experiments.

451 **Parameterization of the organ shape**

452 To quantify geometry of organ shape and deformation, we built an analysis package called
453 TubULAR [32]. While details of the publicly-available, open source package are included
454 in [32] and the associated repository (), here we describe our use of the package for the presented
455 results.

456 We begin by using TubULAR’s surface detection methods to extract the organ shape with
457 a morphological snakes level set analysis [30, 31] on the output of an iLastik training [29]
458 against midgut tissue (membrane, nuclei, actin, or myosin). Example results from this segmen-
459 tation performed on a *w;48Y GAL4/UAS-CAAX::mCh* embryo are shown in midsagittal sections
460 in Fig. 1 - supplement 2. We then use TubULAR’s cartographic mapping functions to map the
461 surface to the plane and stabilize noise in the mappings’ dynamics [32]. For visualization, we
462 use a pullback parameterization (s, ϕ) such that the coordinate directions $(\hat{s}, \hat{\phi})$ are determined
463 by the conformal mapping to the plane at the onset of the first constriction ($t = 0$). In this way,
464 ϕ parameterizes the intrinsic circumferential axis and s parameterizes a longitudinal position
465 along the long axis of the organ at $t = 0$. In subsequent timepoints, the difference in param-

466 parameterization coordinates in 3D space are minimized to match the previous timepoint, such that
467 the coordinates follow the shape change of the organ [32]. We find this (s, ϕ, t) parameteriza-
468 tion aids in both visualization and enables more accurate velocimetry measurements than other
469 choices.

470 We define the ‘material frame’ of a given midgut as the tissue configuration at the onset of
471 the middle constriction, which is the first constriction that appears.

472 We compute the centerline using the TubULAR package [32], wherein the organ is divided
473 into circumferential ‘hoops’ based on its planar parameterization (Fig. 1 - supplement 3). Hoops
474 for which $s = \text{constant}$ define an effective circumference for increments along the length of the
475 organ, and the average 3D position of each hoop defines its centerline point. Connecting mean
476 points of adjacent hoops along the length of the organ defines the centerline of the object (brown
477 curve) whose length is reported in the main text Figure 1E.

478 **Endodermal cell segmentation and shape change**

479 Using a single slice of the gut surface projected into stabilized (s, ϕ) pullback coordinates,
480 we segmented 600-1300 cells per timepoint (Fig. 2 - supplement 1) using a semi-automated
481 procedure:

- 482 1. We first perform adaptive histogram equalization over patches of the pullback containing
483 several cells in width.
- 484 2. We then perform two passes of morphological image reconstruction (see MATLAB’s
485 `imreconstruct` function) punctuated by morphological dilation and erosion steps.
- 486 3. The result is binarized and skeletonized via a watershed algorithm.
- 487 4. We overlay this skeleton on the original image to enhance the membrane contrast, con-
488 volve with a narrow Gaussian (with a standard deviation of $\sim 0.2\%$ of organ length), and

489 pass the result through the previous three steps.

490 This gives us an estimate for the image segmentation. We then manually correct any spurious
491 segmentation artifacts in GIMP [58] by overlaying the segmentation with the original pullback
492 images. To resolve some ambiguous cell junctions, we examine not only a single slice of the
493 endodermal cell layer near the apical side (about $2.5\mu\text{m}$ beyond the apical side), but also the
494 maximum intensity projection of several microns along the surface normal direction.

495 We compute cell anisotropy by finding segmented cell shapes in 2D, embedding those poly-
496 gons in 3D, projecting each cell onto a local tangent plane, and measuring the moment of inertia
497 tensor of this polygon in the material coordinate system. This procedure is shown schematically
498 in Fig. 2 - supplement 1. We then embed the Lagrangian coordinate directions $(\hat{s}, \hat{\phi})$ from a con-
499 formal mapping of the whole organ at the onset of the initial (middle) constriction $t = t_0$ onto
500 the cell's centroid in 3D (in the deformed configuration at time $t \neq t_0$). The moment of inertia
501 tensor for the cell polygon is expressed in the local coordinate system from the embedded $(\hat{s}, \hat{\phi})$
502 directions in the local tangent plane of the tissue. The eigenvalues I_1 and I_2 of the moment of
503 inertia tensor and their associated eigenvectors then provide an effective ellipse for the cell with
504 orientation θ with respect to the local \hat{s} direction and an aspect ratio $a/b \equiv \sqrt{I_1/I_2}$. Fig. 2 -
505 supplement 1 shows the raw data of these measurements without computing statistics.

506 We then average the cellular anisotropy over the organ surface to report a mean, standard
507 deviation, and standard error for both the cellular aspect ratio and cell orientation. In this
508 averaging, we weight each cell's contribution to the observable (aspect ratio a/b or orientation
509 θ) by its area, so that all material points on the organ are given equal weight. The results reported
510 in Figure 2C and D in the main text are the weighted mean and weighted standard deviation for

each distribution. The weighted means of the aspect ratio a/b and orientation θ are

$$\langle a/b \rangle = \frac{\sum_{i=1}^N A_i a_i / b_i}{\sum_{i=1}^N A_i} \quad (2)$$

$$\langle \theta \rangle = \tan^{-1} \left[\frac{\sum_{i=1}^N A_i \sin \theta_i}{\sum_{i=1}^N A_i \cos \theta_i} \right], \quad (3)$$

506 where A_i is the area of the i^{th} cell, and N is the total number of cells. We note that we obtain
507 similar results by weighting each cell equally, which would correspond to setting $A_i = 1$ for all
508 i above.

509 We obtain standard errors by bootstrapping. In detail, we subsample our collection of mea-
510 surements, compute the weighted mean for the subsample, and repeat with replacement 1000
511 times. The variance of these 1000 means decreases in proportion to the number of samples n
512 included in our subsampling, so that $\sigma_{\bar{x}}^2(n) = \tilde{\sigma}_{\bar{x}}^2/n + \sigma_0^2$. Fitting for $\sigma_{\bar{x}}^2$ across 50 values of n
513 ($N/4 < n < N$) and evaluating this fit for $n = N$ gives an estimate for the standard error on
514 the mean $\sigma_{\bar{x}} = \sqrt{\sigma_{\bar{x}}^2}$. In practice, the result is nearly identical to measuring the means of many
515 weighted subsamplings of $n = N$ cells with replacement and computing the standard deviation
516 of this collection of means.

517 Single-cell tracking

518 We tracked 175 cells from $-27 \text{ min} < t < 83$ minutes of development relative to the onset of
519 the middle constriction in a $w; 48Y \text{ GAL4}; klar \times w; \text{UAS-CAAX::mCh}$ embryo imaged using
520 confocal MuSPIM. First, we segmented the same 175 cells in the first chamber of the gut every
521 two minutes using the same procedure as in the previous section. We tracked their positions
522 over time using iLastik manual tracking workflow using 2D (s, ϕ) pullback projections. From
523 these segmented polygons, we project back into 3D onto the gut surface and measure the cell
524 areas in a local tangent plane for Figure 2E in the main text.

525 **Topological cell rearrangements in the endoderm**

526 Cell rearrangements are also present in the endodermal tissue, and these ‘T1’ events could also
527 contribute to the large-scale shear [34]. To estimate their contribution, we performed manual
528 tracking of 175 segmented cells in the first chamber and identified T1 transitions from $-27 <$
529 $t < 83$ minutes relative to the onset of the middle constriction. Importantly, the orientation of T1
530 transitions is not significantly aligned with the elongation axis at early times, suggesting that the
531 endoderm is fluidized and that T1s are not a tightly controlled process directing morphogenesis.

532 To identify T1 transitions, we leveraged our single-cell tracking previously used in Fig. 2E
533 – a contiguous region of cells in the anterior chamber of the midgut, extending from the anteri-
534 ormost portion of the midgut up to the anterior fold. We query all cell pairs which share an edge
535 in the endoderm at any time during the morphogenetic process. We then filter out any pairs that
536 remain neighbors for all timepoints, since their shared edges do not participate in topological
537 rearrangements. The remaining pairs reflect a cell-cell interface which either appears or van-
538 ishes during morphogenesis. We perform additionally screening of these candidate events to
539 confirm that the change in cell topological is not an artifact from possible segmentation error
540 by coloring the two cells participating and visually inspecting their motion. Video 5 and Fig. 2
541 – supplement 3 show an example sequence of T1 transitions tracked using this scheme.

542 For each junction lost or gained, we measure the axis of the associated T1 transition by
543 computing the centroid of each cell in the pair that is gaining or losing a junction. Fig. 2 -
544 supplement 3B shows a histogram of these axes’ angles with respect to the anterior-posterior
545 axis of the organ defined in a locally conformal coordinate patch, with the AP axis orientation
546 inferred from the material (Lagrangian) frame. We find that T1 transitions oriented along the
547 AP axis (converging along DV) occur about as frequently as T1 transitions oriented along the
548 DV axis (converging along AP) for our collection of tracked cells in the first lobe, suggesting
549 that topological cell rearrangements are not a principal driver of convergent extension in the

550 tissue. These rearrangements are therefore unlikely to drive shape change, as predicted by the
551 quantitative similarity between tissue shear and cell shape change (Fig. 3 - supplement 5).

552 Quantification of tissue deformation

553 To compute a coarse-grained tissue velocity over the gut surface, we again used the TubU-
554 LAR package [32]. This resource enables velocimetry and discrete exterior calculus measure-
555 ments [59] on the evolving surface. The result is a fully covariant measurement of the com-
556 pressibility and shear of the tissue spanning the whole organ.

557 Briefly, given our (s, ϕ, t) coordinate system defined in the TubULAR pipeline, we then run
558 particle image velocimetry (PIV) using PIVLab [60, 61] and map tissue velocities in the domain
559 of parameterization to the embedding space. Geometrically, displacement vectors \mathbf{v} extend from
560 one $\mathbf{x}(s_0, \phi_0, t_0)$ coordinate in 3D on the surface at time t_0 to a different $\mathbf{x}(s_1, \phi_1, t_1)$ coordinate
561 on the deformed surface at time t_1 . When t_0 and t_1 are adjacent timepoints, this defines the 3D
562 tissue velocity at $\mathbf{x}(s_0, \phi_0, t_0)$ as $\mathbf{v}(s_0, \phi_0, t_0) = (\mathbf{x}(s_1, \phi_1, t_1) - \mathbf{x}(s_0, \phi_0, t_0))/(t_1 - t_0)$. We
563 decompose the velocity into a component tangential to the surface \mathbf{v}_{\parallel} and a normal component
564 $\mathbf{v}_n = v_n \hat{\mathbf{n}}$ for measuring divergence via discrete exterior calculus [32] and for measuring out-of-
565 plane deformation $2Hv_n$, where H is the mean curvature obtained via computing the Laplacian
566 of the mesh vertices in (embedding) space: $\Delta \mathbf{X} = 2H \hat{\mathbf{n}}$ (see [59]).

As shown in Fig. 3 - supplement 1, the in-plane dilatational flow almost perfectly matches the out-of-plane deformation during the morphogenetic process. We make sense of dilatational flow and out-of-plane deformation and interpret their difference as the local area growth rate by the following argument. The surface changes according to its tissue velocity, which has tangential and normal components $\mathbf{v} = \partial_t \mathbf{X} = v^i \mathbf{e}_i + v_n \hat{\mathbf{n}}$. The shape of the surface is encoded by the metric $g_{ij} = \partial_i \mathbf{X} \cdot \partial_j \mathbf{X}$, which describes lengths and angles measured in the tissue, and by the second fundamental form $b_{ij} = \partial_i \partial_j \mathbf{X} \cdot \hat{\mathbf{n}} = -\partial_i \mathbf{X} \cdot \partial_j \hat{\mathbf{n}}$, which contains information relating

to both intrinsic and extrinsic measures of surface curvature [59]. The time rate of change of the metric is determined by the superposition of velocity gradients and normal motion where the surface is curved [35, 62]:

$$\partial_t g_{ij} = \nabla_i v_j + \nabla_j v_i - 2v_n b_{ij}. \quad (4)$$

Here, ∇ denotes the covariant derivative operator defined with respect to the embedding metric \mathbf{g} . The covariant mass continuity equation gives [35]

$$0 = \frac{D\rho}{Dt} + \frac{\rho}{2} \text{Tr}[\mathbf{g}^{-1} \dot{\mathbf{g}}] \quad (5)$$

$$= \frac{D\rho}{Dt} + \rho \nabla \cdot \mathbf{v}_{\parallel} - \rho 2v_n H, \quad (6)$$

where ρ is the mass density in the physical embedding, and the material derivative is $D\rho/Dt = \partial_t \rho + \rho(\nabla \cdot \mathbf{v}_{\parallel}) + \mathbf{v} \cdot \nabla \rho$. Incompressibility ($D\rho/Dt = 0$) then implies

$$2Hv_n = \nabla \cdot \mathbf{v}_{\parallel}. \quad (7)$$

**567 Minimal ingredients demonstrate geometric interplay between compress-
568 ibility and shear**

569 A flat, nearly incompressible sheet demonstrates a kinematic coupling between dilatational in-
570 plane flow ($\nabla \cdot \mathbf{v}_{\parallel}$) and out-of-plane deformation ($2Hv_n$). Contracting such a sheet as in Fig. 3 -
571 supplement 3A leads to out-of-plane bending to preserve surface area of the sheet. This out-of-
572 plane motion leaves cells unchanged in their aspect ratio: no in-plane deformation is necessary.

573 If the sheet is curved into a tube (so that mean curvature is nonzero, $|H| > 0$), then con-
574 stricting an sheet (with inward velocity $v_n > 0$) can generate deformation in the local tangent
575 plane of the sheet. Such incompressibility couples to initial curvature to generate shear defor-
576 mation. For example, an incompressible sheet of paper glued into a cylinder along one of its
577 edges cannot be pinched in this fashion without crumpling, folding, or tearing. An elastic sheet,

578 however, can be deformed in this manner even if local areas of material patches are required not
579 to change. In particular, the sheet may stretch along the long axis while constricted circumfer-
580 entially, such that a circular material patch is transformed into an elliptical patch with the same
581 area, as in Fig. 3 - supplement 3B.

582 Finally, these two effects are coupled in the case of the pinched cylinder. In a given snapshot
583 with an existing localized constriction, we can schematically understand the three ingredients
584 by considering the pinched cylinder with a step-wise indentation shown in Fig. 3 - supplement
585 3C. First, active stresses constrict the neck, decreasing the surface area of the neck (blue) and
586 dilating the interior faces (red). In order to restore the surface area of the cells in the neck, its
587 length may increase, resulting in extension along the long axis of the tube. In tandem, to combat
588 the dilation in the interior faces, cells flow into the constriction from the chambers. Note that
589 if all three steps are instantaneously coupled, the order of events is immaterial to the outcome:
590 contractile surface flows could increase the density of cells in the interior faces, which leads to
591 neck constriction to restore cell density in the faces and results in convergent extension of the
592 neck.

593 We note also that when the constriction is broad along the longitude or when the indentation
594 is shallow, the mean curvature will be positive everywhere (cylinder-like, $H > 0$). In this case,
595 inward motion of the incompressible tube causes an extensile surface flow ($\nabla \cdot \mathbf{v}_{\parallel} > 0$), rather
596 than a contractile one. This is a qualitative difference between broad or uniform constrictions
597 of a tube and localized constrictions such as those seen in the midgut. In principle, we predict
598 a crossover between the two modes of behavior during the very onset of constriction in our
599 system – from positive to negative divergence as the curvature changes sign. This is a subtle
600 and transient feature, given the large radius of the midgut compared to the small axial length of
601 the constrictions and the non-uniform initial curvature of the midgut before constrictions begin.

602 **Quantification of tissue shear**

603 We employ a geometric method of tissue-scale shear quantification that accounts for both the
604 shear due to the changing shape of the gut and the shear due to the material flow of cells along
605 the dynamic surface. The first step is to establish consistent material coordinates for all times,
606 i.e. labels for parcels of tissue that follow those parcels as they move and deform. We prescribe
607 these labels at the onset of midgut constrictions by endowing a cylindrical ‘cut mesh’ of the or-
608 gan’s surface at the that time with a planar parameterization. The cut mesh is first conformally
609 mapped into a planar annular domain, $\{||\mathbf{x}|| : r \leq ||\mathbf{x}|| \leq 1\}$, using a custom Ricci flow code
610 included in our TubULAR package [32]. Fixing the outer radius of the annulus to 1, the inner
611 radius r is a conformal invariant that is automatically determined from the geometry of the or-
612 gan. Taking the logarithm of these intermediate coordinates then defines a rectangular domain,
613 with a branch cut identifying the top and bottom horizontal edges of the domain in such a way
614 the the cylindrical topology of the cut mesh in 3D is fully respected. The coordinates in this
615 domain are taken to be the material (‘Lagrangian’) coordinate system, $(\tilde{\zeta}, \tilde{\phi})$. This conformal
616 parameterization is, by construction, isotropic; the metric tensor is diagonal. This parameter-
617 ization is therefore a suitable reference against which to measure all subsequent accumulation
618 of anisotropy in the tissue. We note that at the reference time t_0 (at the onset of the first con-
619 striction), the material coordinates are similar to the (s, ϕ, t_0) coordinate system defined before,
620 except that the coordinate s measures a proper length on the surface along curves of constant ϕ ,
621 while $\tilde{\zeta}$ is a coordinate of the conformally mapped planar domain. We chose to use s instead of
622 $\tilde{\zeta}$ for visualizations simply because deep constrictions exhibit extreme dilation in a conformal
623 $(\tilde{\zeta}, \tilde{\phi})$ pullback plane, but these are attenuated in an (s, ϕ) pullback plane (see [32]). We stress
624 that all measurements account for the physical embedding of the surface: the coordinate system
625 parameterizing the surface is a tool to define circumferential and longitudinal directions based
626 on the organ’s intrinsic geometry, and the choice of parameterization does not influence the

627 magnitude of tissue deformation.

In order to recapitulate the material flow of the tissue, these coordinates are advected in the plane along the flow fields extracted using PIV [61, 60] and then mapped into 3D at each time point. This mapping defines a deformed mesh whose induced metric tensor, $\mathbf{g}' \equiv \mathbf{g}(t)$, can be computed relative to the material coordinates. All anisotropy in the mapping is encoded by the complex Beltrami coefficient, $\mu(t)$, defined in terms of the components of the time-dependent metric tensor

$$\mu(t) = \frac{g'_{11} - g'_{22} + 2i g'_{12}}{g'_{11} + g'_{22} + 2\sqrt{g'_{11} g'_{22} - g'_{12}^2}}. \quad (8)$$

As illustrated in Fig. 3 - supplement 4B, μ describes how an initially circular infinitesimal patch of tissue is deformed into an elliptical patch under the action of the material mapping. The argument of μ describes the orientation of this ellipse. The magnitude $|\mu|$ is related to the ratio, K of the lengths of the major axis of this ellipse to its minor axis by

$$K = \frac{1 + |\mu|}{1 - |\mu|}. \quad (9)$$

628 When $|\mu| = 0$, the material mapping is isotropic, i.e. a circular patch of tissue remains circular
629 under the mapping. Note that $|\mu| < 1$ and therefore provides a bounded description of both the
630 magnitude and orientation of material anisotropy in the deforming surface.

631 The results of this measurement are shown as a kymograph in Fig. 3 - supplement 4 for
632 a representative dataset. Constrictions begin to appear at times and locations marked by red
633 arrows and continue to deepen. The Beltrami coefficient is averaged along the circumferen-
634 tial direction and plotted at the anterior-posterior position in tissue coordinates at the onset of
635 the middle constriction (the first constriction to appear), so that the deformation of advected
636 tissue patches are compared to their original shape. A single color dominates the kymograph,
637 indicating that the deformation is globally aligned to extend along the local longitudinal axis
638 (and contract along the material frame's circumferential axis), despite the contorting and com-

plex shape. This is consistent with circumferential muscle orientations defining the axes for convergent extension in the midgut.

Relative motion between layers

To characterize relative motion between layers, we tracked 375 endodermal and 81 muscle nuclei in the same *w;Hand>GAL4;UAS-Hand:GFP;hist:GFP* embryo. Fig. 4 - supplement 1 shows measurements of relative displacement of initially-close nuclei pairs (< 5 μ m apart at the onset of the first constriction). Two example tracks are highlighted in yellow and green. Fig. 4 - supplement 2 shows additional statistics of the relative motion over time.

Optogenetic experiments

The *UAS-CRY2-OCRL* and *UAS- ρ GEF2* constructs have been previously characterized [18, 54]. For optogenetic confocal microscopy experiments, we activated the optogenetic construct with continuous oblique illumination of a 470 nm LED at 6.2 ± 0.1 mW/cm² power, in addition to periodic illumination with the 488 nm laser used to image the sample. Wild-type embryos developed normally under this illumination ($N = 18/19$). Variations by a factor of two in either the LED power or in the 488 nm laser power used to image the *GFP* channel did not result in differences in phenotype. For light sheet imaging, we illuminated with a 488 nm laser line at 1 mW for 30 seconds once per minute.

We quantified the endoderm cell shapes using a similar procedure as before. After deconvolution (Huygens Essential software), we perform 3D segmentation via a morphological snakes level set method on an iLastik pixel classification to carve out an approximate midsurface of the endoderm. We measured the endoderm shape dynamics for two-color *y,w;Antp-GAL4;Gap⁴³ mCherry × w;UAS-CIBN::GFP;UAS-CRY2-OCRL* embryos held under continuous optogenetic activation from oblique illumination of a 470 nm LED at 6.2 ± 0.1 mW/cm² power as before. For

662 comparison, we additionally measured endoderm shapes in *Antp* mutant embryos with a mem-
663 brane marker driven in the midgut endoderm (*w;48Y GAL4/UAS-CAAX::mCh;Antp^{NS+RC3}*).

664 Fig. 4 - supplement 3A shows representative snapshots of this segmentation procedure for a
665 two-color *y,w,Antp-GAL4;;Gap⁴³ mCherry × w;UAS-CIBN::GFP;UAS-CRY2-OCRL* embryo
666 at the onset of the first constriction and 40 minutes after the middle constriction began. Cir-
667 cumferential muscle localized near the anterior constriction expresses the optogenetic construct
668 (cyan band), while the endoderm is imaged using a ubiquitous membrane marker (grayscale).
669 Image regions masked in semi-transparent gray are the deepest confocal plane acquired, while
670 the rest of the image is a lateral view of the projected data on the segmented organ surface.
671 Segmented endodermal cell polygons are colored by their aspect ratios. Cells are segmented
672 in 2D and then projected into 3D for measurement of their aspect ratios. As shown in Fig. 4 -
673 supplement 3C, there is no significant difference between cell orientations in wild-type (blue),
674 optogenetic mutants (red), and *Antp* mutants (yellow).

675 Wild-type calcium dynamics

676 We quantified calcium dynamics using the confocal microscopy (Leica SP8) of the live reporter
677 *UAS GCaMP6s* driven by either the driver *Mef2-GAL4*, which is expressed across all muscles
678 in the embryo, or *48Y GAL4*, which is expressed in the embryonic midgut both in endoderm and
679 visceral muscles. Here, we used *Mef2-GAL4* as a driver for characterizing anterior and middle
680 constrictions. We used *48Y GAL4* for the posterior constriction since many fluorescent somatic
681 muscles occlude the line of sight for the posterior constriction under *Mef2-GAL4*. We found
682 that the two drivers yielded similar quantitative results for the anterior constriction.

To measure transient calcium activity without bias from variations in ambient fluorescent intensity due to spatially-dependent scattering, we imaged three confocal stacks with 2.5-3 μm step size in rapid succession (9 or 10 seconds apart) and subtracted subsequent image stacks

from each other according to

$$\delta I \equiv |I_1 - I_2| + |I_2 - I_3| + |I_1 - I_3|, \quad (10)$$

683 where $I_i = I_i(x, y)$ is the maximum intensity projection (projected across $dz \approx 30\mu\text{m}$) of the
684 i^{th} stack. Over such short timescales, motion of the midgut is small, but transient flashes of
685 *GCaMP6s* are unlikely to span more than one acquisition. We then extract coherent features
686 from δI using a Gaussian blur followed by a tophat filter, and sum the resulting signal along the
687 circumferential direction.

688 While we interrogated *GCaMP6s* activity using many views of the gut, the quantification
689 used three standardized views. For the anterior constriction, we used a dorsal view, since out-
690 of-plane effects are smallest on the dorsal side and since the midgut is nearest to the surface
691 on the dorsal side. For the middle constriction, we used ventrolateral views since there is a
692 line of sight with fewer other muscles driven by *Mef2-GAL4* from this view. For the posterior
693 constriction, we used a left lateral view for quantification.

694 To time-align the *GCaMP6s* experiments of the anterior and middle constrictions, we de-
695 fined $t = 0$ as the first timestamp in which the constriction under observation showed localized
696 bending along the longitudinal (AP) axis. For characterization of calcium dynamics at the pos-
697 terior constriction, we defined the onset of constriction by the ventral side of the gut visceral
698 muscle having moved dorsally by $\sim 10\mu\text{m}$.

699 Fig. 5 - supplement 1 shows kymographs of *GCaMP6s* dynamics averaged across biolog-
700 ical repeats. In these kymographs, activity begins near the time when constrictions begin. In
701 contrast, Fig. 5 - supplement 3 shows delayed and suppressed *GCaMP6s* activity in *Antp* mu-
702 tants compared to the wild-type behavior of sibling embryos that are not homozygous mutants
703 for *Antp*.

704 **Calcium activity in *Antp* mutants**

To compare calcium activity in *Antp* mutants against wild-type dynamics, we computed p values using a z -score measuring the difference between *Antp* heterozygotes (controls) and *Antp* homozygotes (mutants) as

$$Z = \frac{\overline{\delta I}_{\text{mutant}} - \overline{\delta I}_{\text{control}}}{\sqrt{s_{\text{control}}^2/n_{\text{control}} + s_{\text{mutant}}^2/n_{\text{mutant}}}}, \quad (11)$$

where $\overline{\delta I}$ is the sample mean, s_{control} and s_{mutant} are the sample standard deviations, and n_{control} and n_{mutant} are the sample sizes. This score gives a single-sided p value via

$$p = \frac{1}{2} \text{erfc} \left(-Z/\sqrt{2} \right), \quad (12)$$

705 where erfc is the complementary error function.

To quantify the difference in overall activity between mutants and heterozygotes, we first estimate the expected fluorescent intensity for a given embryo under the null hypothesis that all embryos, whether mutant or not, will have similar *GCaMP6s* activity. Since embryos vary in opacity, we normalized each heterozygous embryo according to a value dependent on its background fluorescent intensity measured in regions within the embryo but far (45-50 μm) from the site of the putative constriction. The observed maximum fluorescent activity δI correlated with this background signal with a correlation coefficient of 78% and a mean signal-to-background ratio of 5.1 ± 0.5 . We then normalized each embryo's time-averaged $\delta I = \delta I(x)$ as

$$\delta I \rightarrow \frac{\delta I - \delta I_{\text{bg}}}{\delta I_{\text{max}} - \delta I_{\text{bg}}}. \quad (13)$$

706 This enabled us to reduce the confounding influence of variation in optical density between
707 embryos in the mutant analysis and compare absolute curves δI rather than only their variation
708 along the anterior-posterior axis.

709 **MLCK RNAi and SERCA mutant analysis**

To drive expression of MLCK RNAi or a dominant negative allele of *SERCA*, we administered heat shock by abruptly raising the temperature to 37°C using a stage-top incubator (Okolab) and observing embryos staged such that they had not yet completed gut closure. The standard errors in the probabilities of successful constrictions are given by

$$SE = \sqrt{\frac{\hat{p}(1-\hat{p})}{N}}, \quad (14)$$

710 where \hat{p} is the observed frequency of forming all three constrictions and N is the number of
711 samples of a given genotype (for ex, *Mef2-GAL4* × *UAS-SERCA.R751Q::mtomato*) measured in
712 the experimental heat shock conditions. We note that the result is not sensitive to the choice
713 of analysis. For example, we also computed the mean number of folds formed – that is, the
714 number of deep constrictions – for each condition and compare the two distributions, as shown
715 in Fig. 5 - supplement 2A and B. The mean number of folds formed was reduced in both
716 *Mef2-GAL4* × *UAS-SERCA.R751Q* embryos and *tub67-GAL4; tub16-GAL4* × *UAS-MLCK RNAi*
717 embryos ($p = 3 \times 10^{-8}$ and $p = 0.002$, respectively).

718 **Captions for supplementary videos**

719 **Video 1**

720 Live imaging using confocal MuSPIM shows the shape change of the midgut as it folds into
721 a coil of compartments. Here, we display panoramic views of fluorescently-labeled nuclei
722 in both endoderm and muscle tissue layers of the midgut in a *w;48Y GAL4; klar* × *w;UAS-*
723 *histone::RFP* embryo. Maximum intensity projections of half-volumes from left lateral (upper
724 left), right lateral (lower left), dorsal (upper right), and ventral views (lower right) exhibit the
725 nearly isotropic resolution of our imaging setup.

726 **Video 2**

727 Segmentation using computer vision techniques enables layer-specific imaging of midgut mor-
728 phogenesis, highlighted here for a $w;48Y GAL4;klar \times w;UAS-CAAX::mCh$ embryo. First, a
729 morphological snakes level set identifies the apical (inner) boundary of the midgut endoderm
730 at a timepoint before the onset of constrictions. This surface follows the evolving shape of the
731 organ during the subsequent dynamics. Rendering the data that intersects this dynamic surface
732 allows us to visualize cells.

733 **Video 3**

734 An example tissue patch shows that tissue rearrangements in the endodermal cell layer (i.e. ‘T1
735 transitions’ or ‘intercalation events’) occur during gut morphogenesis. Here, the blue and green
736 cells are not initially neighbors, but rearrange to separate the red and pink cells. Subsequently,
737 the blue and pink cells lose their connection as well, as do the green and pink cells. Each tissue
738 patch is generated by a rigid flattening of the surface to the plane in a manner that the map is
739 nearly conformal near the center of the image, with metric components $g_{11} \approx g_{22} \approx 1$. T1
740 transitions are not biased in their orientation until late stages of morphogenesis, consistent with
741 cell shape change being the dominant contributor to tissue shear.

742 **Video 4**

743 Extracted in-plane and out-of-plane tissue velocities show signatures associated with stages of
744 shape change. The tangential (in-plane) component of the velocity ($\mathbf{v}_{||}$, top panel) is colored
745 by its orientation in the (s, ϕ) pullback plane described in the Materials and Methods. In this
746 ‘unwrapped’ pullback plane, ventral tissue occupies the center of the image, anterior is left, and
747 posterior is right. For example, purple regions flow towards the midgut’s posterior and orange
748 regions flow towards the anterior. Opacity of the colored signal is proportional to the magnitude
749 of the tissue velocity. The normal (out-of-plane) component of the velocity (v_n , bottom panel)
750 is red for motion in the endoderm’s apical direction (toward the inside of the gut) and blue for
751 motion in the basal (outer) direction. The corresponding midgut surface is shown on the left for

752 all timepoints.

753 **Video 5**

754 In-plane tissue velocities are tightly linked to out-of-plane motion, indicating nearly incom-
755 pressible behavior of the composite midgut tissue. For a representative embryo, we plot the
756 out-of-plane deformation $2Hv_n$ on the left, both as a left lateral view in 3D and in the (s, ϕ)
757 pullback plane. Here, v_n is the normal velocity and H is the mean curvature, which is positive
758 for a cylinder but negative for sharp folds whose outer radius of curvature is smaller than their
759 inner circumference. In the middle column, we plot the dilatational flow for this embryo, de-
760 fined as the covariant divergence of the in-plane velocity, $\nabla \cdot \mathbf{v}_{\parallel}$. In the right column, we plot
761 the difference between these two quantities, which measures the rate of isotropic expansion or
762 contraction of the tissue.

763 **Video 6**

764 Hox gene expression in the muscle layer regulates constrictions. Here, cell membrane in the
765 Antennapedia (*Antp*) domain are fluorescently labeled (yellow), and all nuclei are fluorescently
766 labeled in a separate channel (blue) using a $w;Antp-GAL4;klar \times w;UAS-CAAX::mCh;UAS-$
767 *Histone:GFP* embryo. The anterior constriction forms in the center of the *Antp* domain. Some
768 tissues outside the midgut that express plasma membrane fluorescence are spuriously projected
769 into the selected layer surface.

770 **Video 7**

771 Muscle nuclei (yellow) and endoderm nuclei (blue) move together during constrictions, re-
772 flecting a tight coupling between tissue layers. Here, we false color two selected layers of a
773 $w;Hand>GAL4;UAS-Hand:GFP;hist:GFP$ embryo in yellow (muscle layer) and blue (endo-
774 derm).

775 **Video 8**

776 Calcium pulses appear at the location of each constriction, shown here for a *Mef2-GAL4>UAS*

777 *GCaMP6s* embryo. We visualize the dynamics of calcium pulses by overlaying three snapshots
778 captured nine seconds apart as red, green, and blue images for each frame. Thus, colored
779 pixels represent transient activity reported by *GCaMP6s*. A composite frame is imaged every
780 90 seconds, and the timestamp is shown relative to the onset of the constriction, as monitored
781 in a separate bright-field channel (not shown).

782 **Video 9**

783 In *Antp* mutants, calcium pulses are strongly reduced in intensity in the vicinity of the missing
784 anterior constriction location. In WT embryos (top panel), calcium pulses appear at the onset
785 of constrictions near the anterior constriction and appear in an increasingly spatially extended
786 region as development progresses. In contrast, for *Antp* mutant embryos, calcium activity is
787 reduced and does not exhibit an initially localized pattern (bottom panel).

788 **Video 10**

789 Disrupting calcium signaling in the muscle layer inhibits constrictions, shown here for an em-
790 bryo expressing a dominant negative allele of SERCA (red) with a control embryo under the
791 same conditions for reference (blue).

792 **Data Availability Statement**

793 We have uploaded processed data for experiments spanning all figures to FigShare, avail-
794 able at https://figshare.com/authors/Noah_Mitchell/12456507 in project
795 #137793: 'Visceral organ morphogenesis via calcium-patterned constrictions'. The original
796 volumetric data from living imaging are each up to a terabyte in size. We therefore posted
797 processed data on FigShare, including 2D pullback image sequences of the dynamic 3D tis-
798 sue surfaces, volumetric data for small datasets, and processed tables. An interested researcher
799 would be able to access the original data on our lab server. They would need to contact Se-
800 bastian Streichan (streicha@ucsb.edu) to be added to the server's list of users and could then

801 download the original data directly.

802 In addition to the TubULAR package detailed in reference 32, further software and scripts

803 used to analyze the data is available at: <https://github.com/npmitchell/VisceralOrganMorpho>

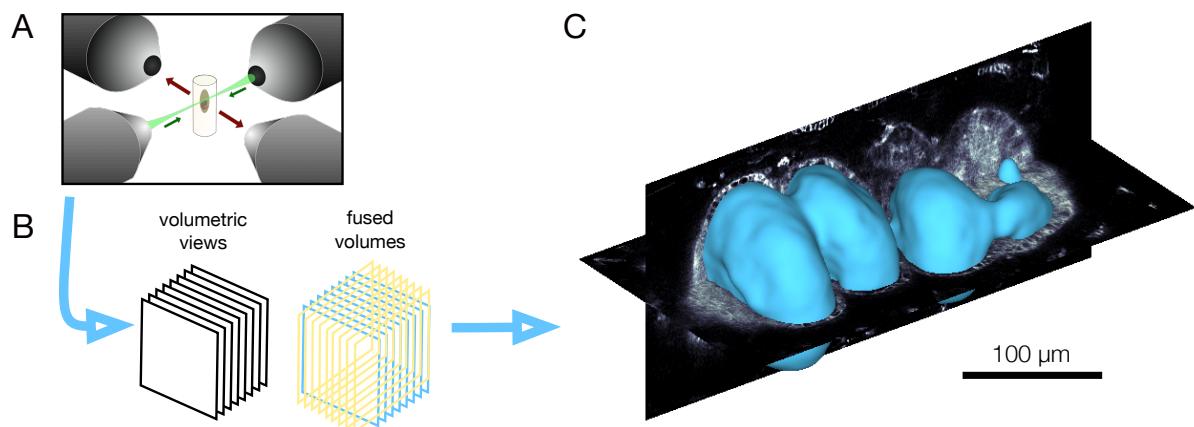


Figure 1 - supplement 1: **Multi-view light sheet microscopy enables volumetric imaging.** (A) We illuminate embryos embedded in an agarose column via a laser beam emerging from two illumination objectives (green). The laser sweeps along the long axis of the column to raster a sheet of light. Two detection objectives capture fluorescence in the orthogonal axis (red arrows). (B) By translating, rotating, and repeating, we build volumetric views from a series of angles. (C) Through fusion and deconvolution, multiple volumetric views build data volumes with nearly isotropic resolution for analysis.

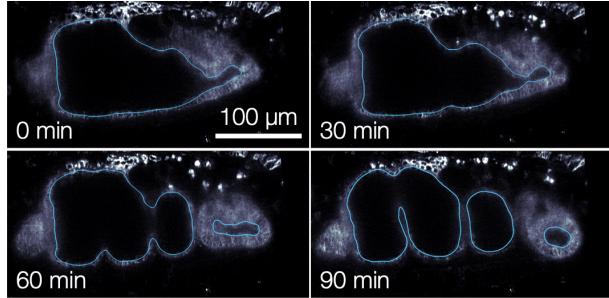
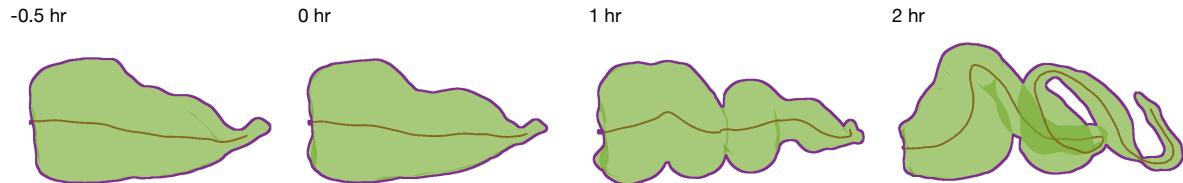
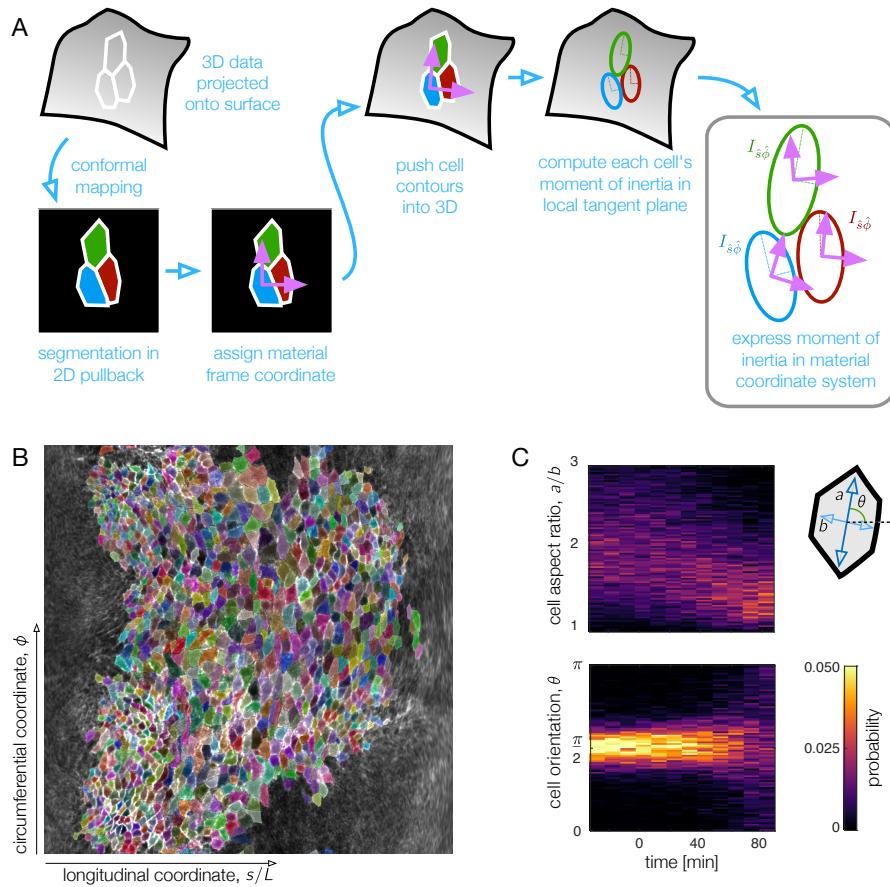
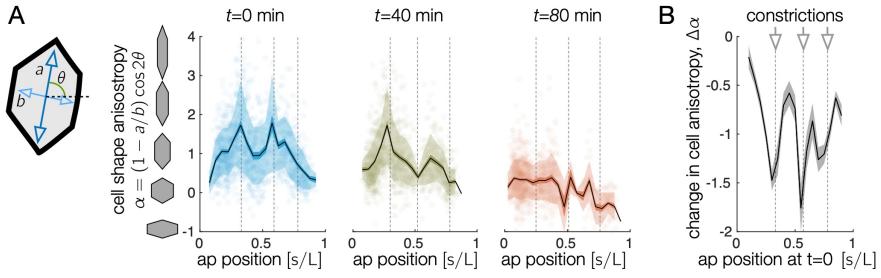
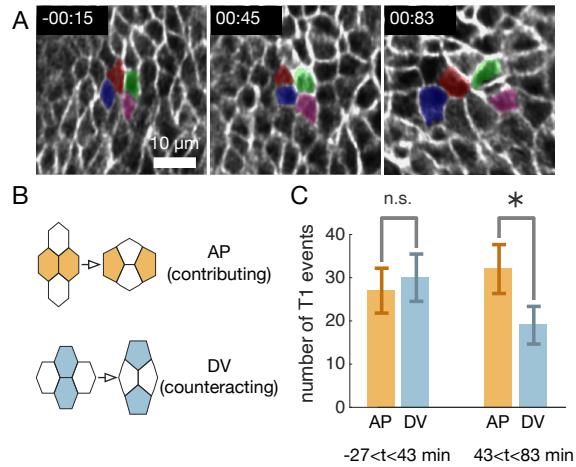


Figure 1 - supplement 2: **Organ segmentation via morphological snakes level sets.** Automatic segmentation of the apical (inner) surface of the endoderm minimizes a non-local Chan-Vese energy functional [31, 30] to encapsulate yolk without enclosing midgut tissue, shown for four snapshots of mid-sagittal sections using TubULAR [32]. Blue contours mark the surface intersection with the mid-sagittal plane.


Figure 1 - supplement 3: **A centerline measures an effective length of the organ.** We compute the centerline (brown curve) using the TubULAR package for extracted shapes (green with purple boundary for clarity). The cumulative length of these curves defines the effective length of the organ reported in Fig. 1.

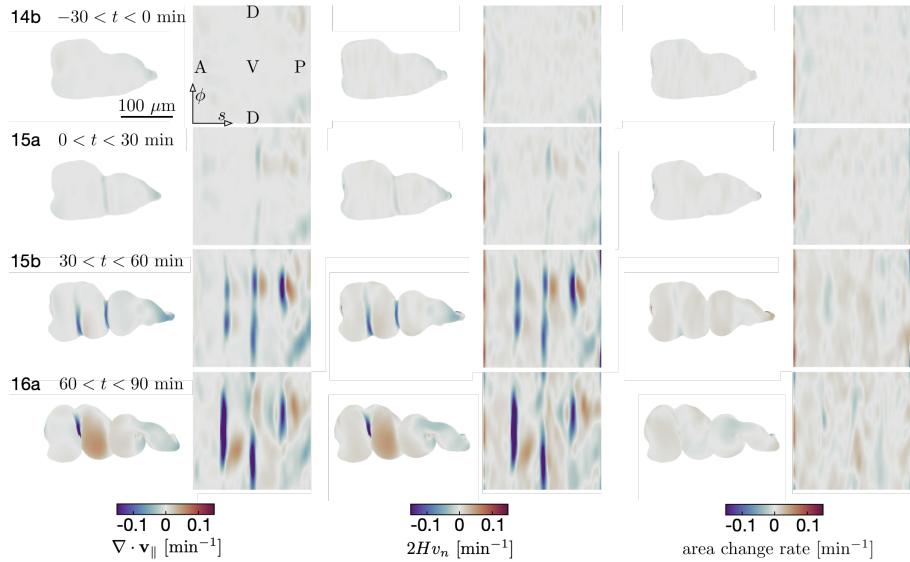
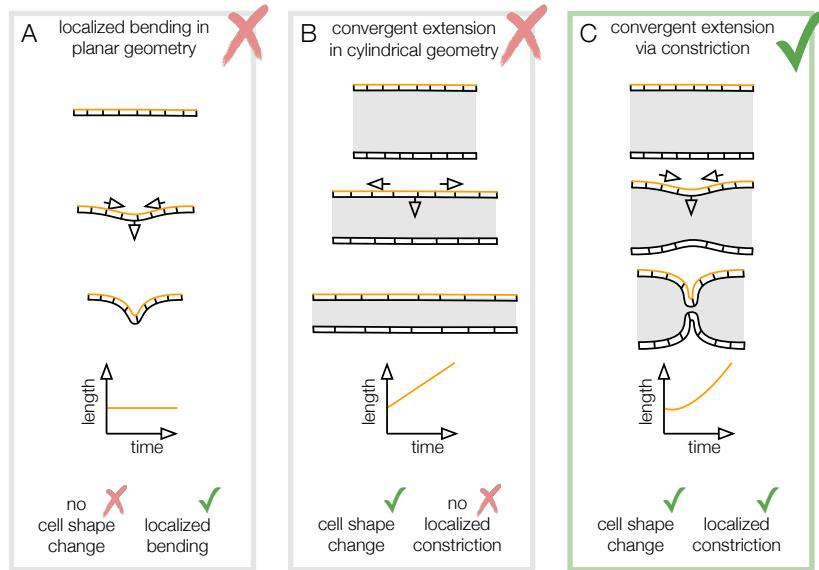
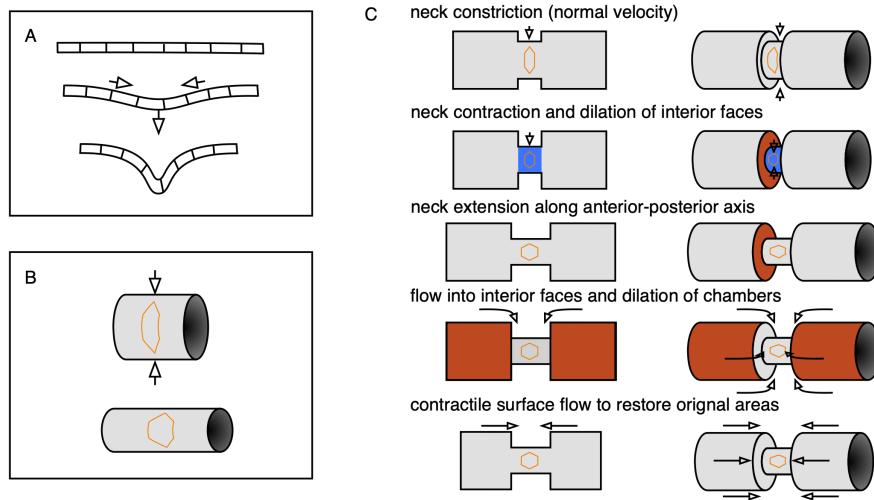
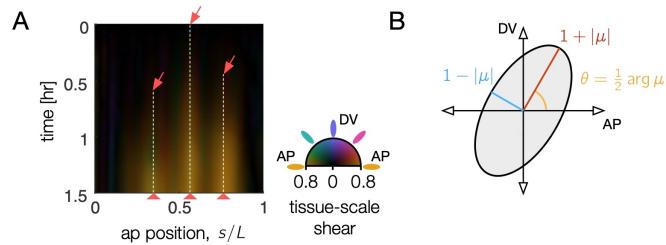
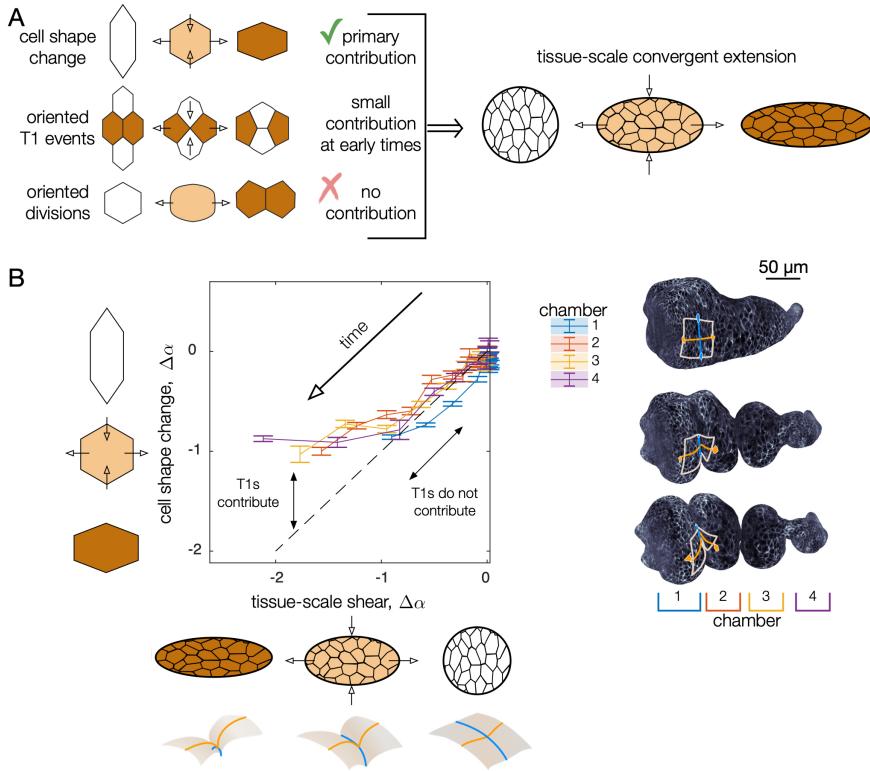

Figure 2 - supplement 1: Surface projection aids in quantifying cell shape change in the 3D tissue surface. (A) To measure cell shapes, we trace cell membrane contours in a conformal mapping to a 2D pullback plane and re-embed cells into local tangent planes in 3D for shape quantification. After surface extraction, we project the data on a midgut surface $\sim 2.5 \mu\text{m}$ beyond the apical side of the endoderm to the plane for segmentation. The pullback plane also defines material coordinate directions in which we can measure orientation of cells, θ . By projecting cell contours back into 3D, we compute moment of inertia tensors for each cell in a local tangent plane. The eigenvalues and eigenvectors of the moment of inertia tensors define the cell anisotropy a/b and the orientation of their long axis, θ , with respect to material coordinate directions \hat{s} and $\hat{\phi}$. (B) Example segmentation in the pullback plane at a time near the onset of the first constriction. Each cell polygon is given a random, distinguishable color to demonstrate the segmentation quality. (C) Here shown in raw histograms, cell aspect ratios decrease and condense close to 1 (isotropic shapes) by ~ 80 minutes after the onset of the first (middle) constriction. During this time, the cells do not rotate, as evidenced by the sustained peak in cell orientation near zero. At late times, when the cells are nearly isotropic, the orientation becomes less clearly defined and the distribution broadens.

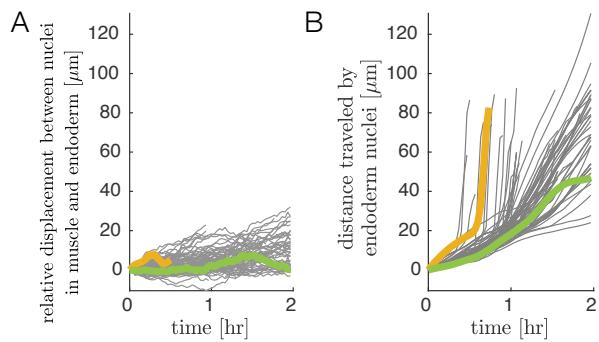
Figure 2 - supplement 2: Endodermal cells are initially most elongated near anterior and middle constrictions, and cell shape change is greatest near constrictions. (A) The oriented cell anisotropy varies along the anterior-posterior axis. We define the cell shape anisotropy to be a signed quantity varying from positive for cells elongated along the circumferential axis and negative for cells elongated along the longitudinal axis. This signed measure of oriented anisotropy shows that some cells become elongated along the longitudinal (AP) axis, particularly near the posterior end of the midgut by $t = 80$ min. In particular, the signed shape anisotropy of a cell is $\alpha \equiv (1 - a/b) \cos 2\theta$, where a and b are the semimajor and semiminor axes of the ellipse capturing each cell's moment of inertia tensor and θ is the cell's angle with respect to the material frame's longitudinal axis. Locations of the constrictions or constriction precursors are marked in dashed gray vertical lines. Cells near the anterior and middle constrictions are initially elongated along the circumferential axis more than cells in the interstitial regions. Cell anisotropy changes dramatically first at the middle constriction, then at the anterior and posterior constrictions. Shaded error bars denote standard deviations (semi-transparent bands) and standard error on the mean (opaque colored bands), while black curves denote the mean. (B) The total change in signed cell shape anisotropy over the 80 minute timecourse shows strong, negative values near each constriction. We here parameterize cells' anterior-posterior positions at $t = 80$ by mapping to their locations at $t = 0$ in order to compare measurements made in the same tissue patches.

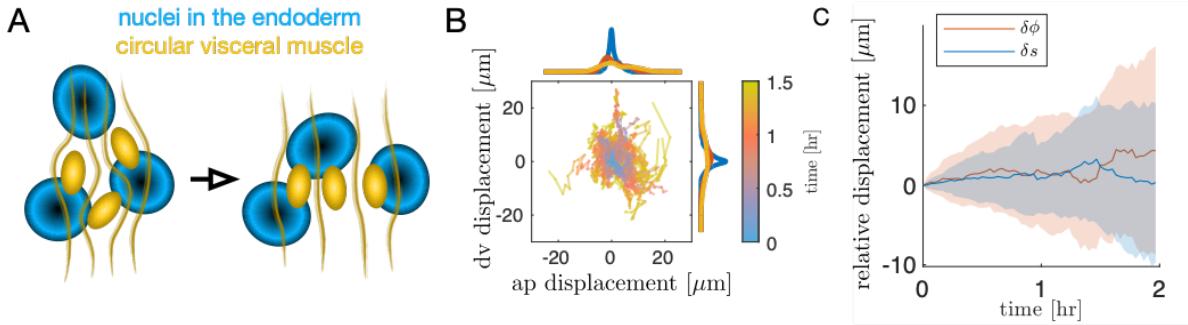
Figure 2 - supplement 3: Topological rearrangements occur in the endoderm but are not aligned during the earliest stages of gut constrictions, consistent with cell shape change being the dominant contributor to tissue deformation at the onset of constrictions. (A) An example rosette of four tracked cells. The tissue patch is flattened to a plane such that the longitudinal and circumferential axes of the organ in the material frame aligns with the horizontal and vertical axis, respectively. The mapping to the plane is an as-rigid-as-possible map constrained so that the ratio of lengths in the longitudinal and circumferential directions is preserved near the center of the image (so the diagonal metric tensor components are equal $g_{11} \approx g_{22}$). (B) Here we define T1 events to be AP oriented if the cells that lose contact are within 45° of the longitudinal axis of the organ in the material frame. Conversely, in DV oriented T1 events, the cells that lose contact are within 45° of the circumferential axis of the organ in the material frame. (C) In a collection of 175 tracked cells in the anterior midgut, we find no significant difference between the rate of cell intercalations oriented along the longitudinal direction versus the circumferential direction during stages 15-16a of constrictions ($-27 < t < 43$ min), while we find a bias in T1 orientations during later stages of 16a and 16b ($43 < t < 83$ minutes) among the tracked cells. Uncertainties are taken as the square root of the count, and $* = p < 0.05$

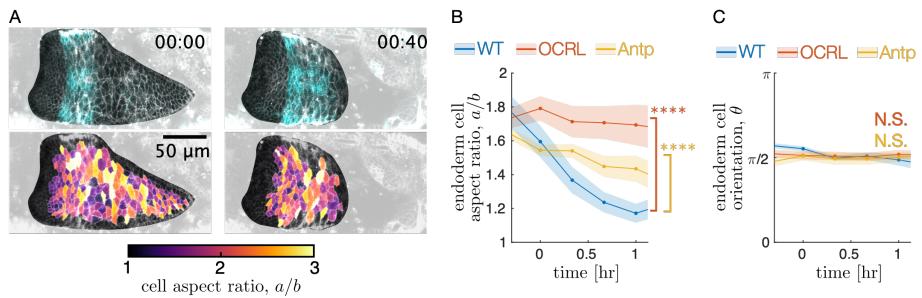
Figure 3 - supplement 1: Dilatational flow patterns are tightly coupled to bending throughout midgut constrictions, indicating a nearly incompressible tissue behavior. Resulting divergence of in-plane tissue motion ($\nabla \cdot \mathbf{v}_{\parallel}$) and out-of-plane deformation measurements ($2Hv_n$) on an representative embryo, plotted both on the midgut surface in 3D and in pullback coordinates, show strong correlation. The difference of the two patterns gives the local area change (right columns). Each image is the average of patterns over a 30 minute timespan, while Video 5 shows the instantaneous measurements. The pullback representation uses the surface Lagrangian parameterization (s, ϕ), such that the ventral tissue is in the midline of the image, anterior is to the left, posterior is to the right, and deformation of the organ shape in 3D is subtracted out from the pullback coordinates of subsequent timepoints [32]. The s position in the pullback representation is proportional to the proper distance along the organ's longitudinal axis.

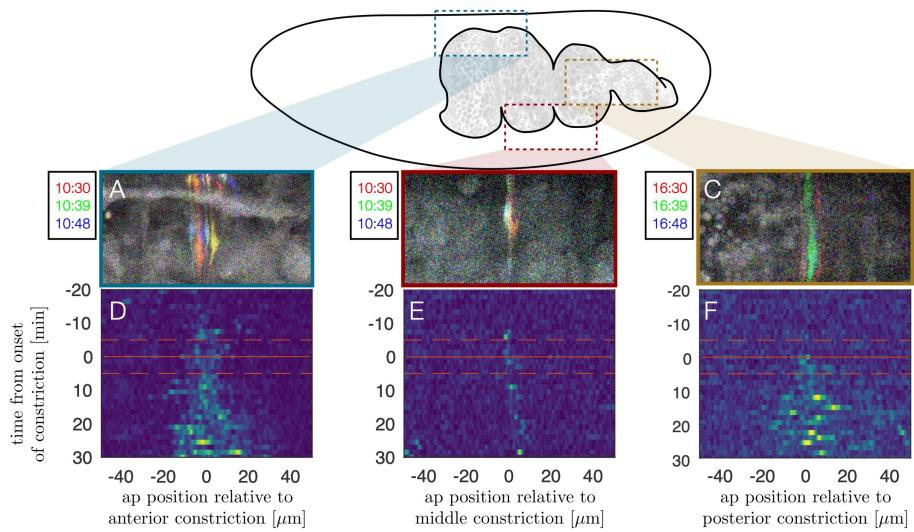




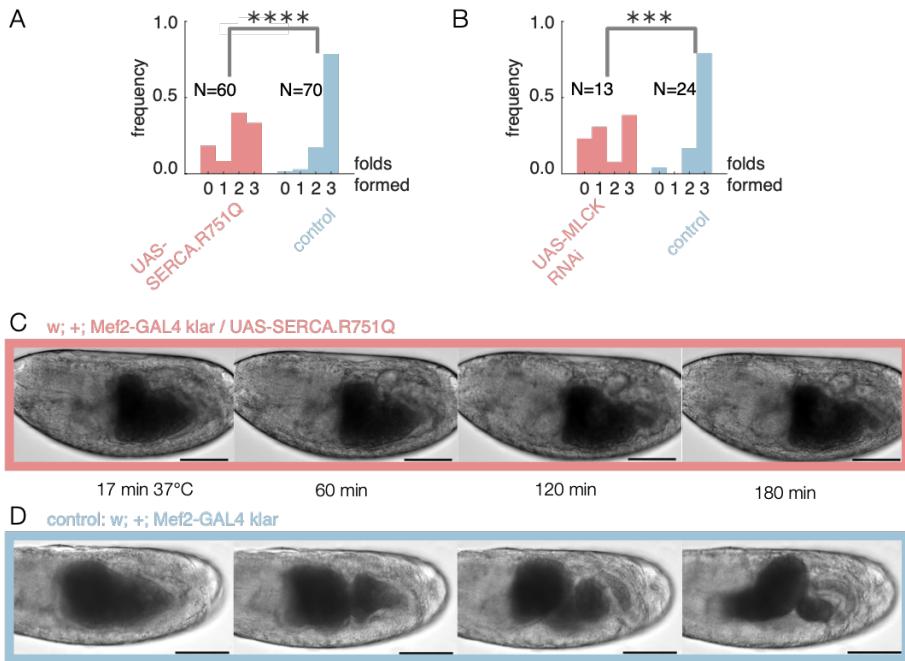

Figure 3 - supplement 2: **Convergent extension via constriction links in-plane tissue shape change with out-of-plane deformation.** (A) An initially flat, incompressible sheet may bend in a localized region without deforming the tissue in-plane. Distances between cells in plane are preserved, illustrated by the constant length between the ends of the sheet along the orange geodesic. (B) A uniformly constricting, incompressible tube exhibits convergent extension but has no localized folds. In the absence of cell intercalations, cells converge along the circumferential direction and elongate along the longitudinal direction, so an orange curve spanning several cells along the longitudinal axis lengthens over time. (C) In convergent extension via constriction, localized normal motion of the tube couples to in-plane tissue shape change. In a constricting, incompressible tube, the tissue converges along the circumference and extends along the bending longitudinal profile.

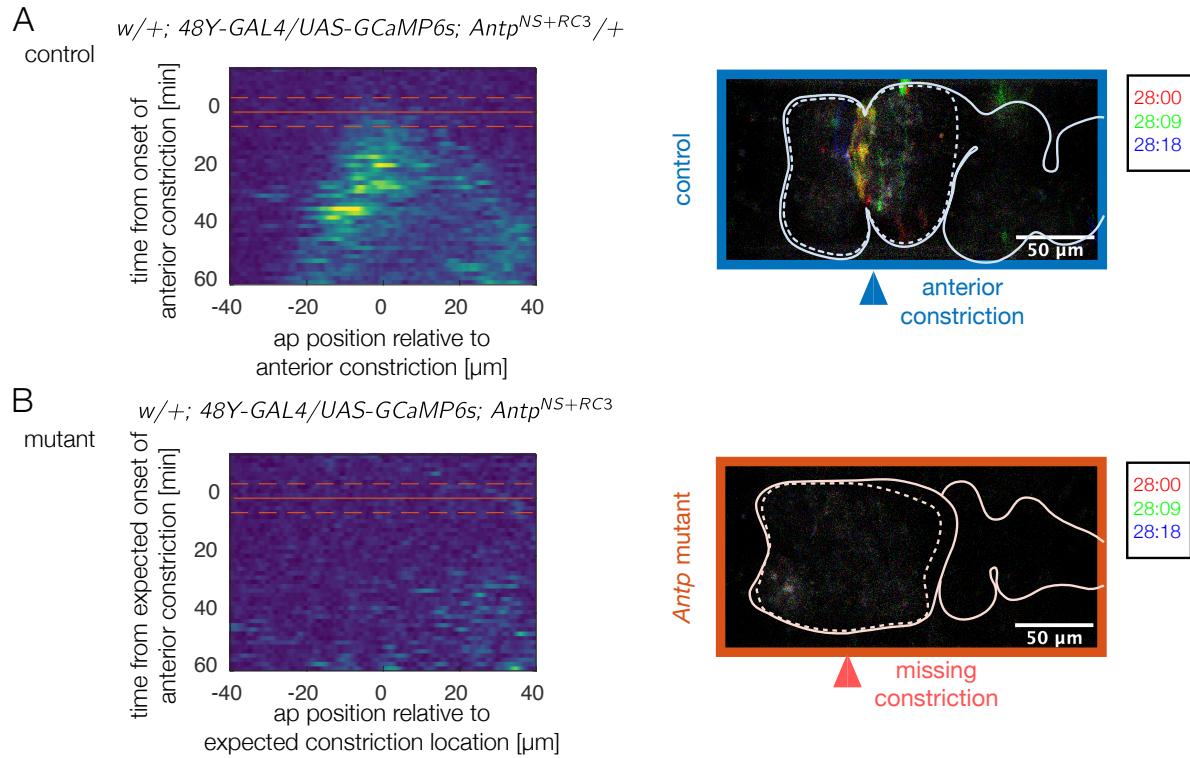

Figure 3 - supplement 3: Three-component decomposition of kinematics elucidates coupling between compressibility and convergent extension. (A) An initially flat incompressible sheet demonstrates kinematic coupling between in-plane dilatational flow and out-of-plane bending to preserve cells' 2D areas. (B) Constriction couples to convergent extension via curvature of the surface. As a tube constricts, the tube elongates in order to preserve surface area. Correspondingly, cells change their aspect ratio and undergo convergent extension. (C) The two effects shown in (A) and (B) couple in a pinching tube with a localized constriction. A tube with a step-like constriction is composed of deformable cells whose areas shall not change. Constriction of the narrow tube via inward normal velocities would decrease the neck area (blue), so the neck extends to keep its area fixed. This is convergent extension. The faces are now dilated, triggering flow into the interior faces to correct for the change in tissue density. In this way, convergent extension is linked to incompressibility, which couples in-plane dilatational flow to out-of-plane deformation.


Figure 3 - supplement 4: Tissue shear generates 3D convergent extension during constrictions, as captured in the Beltrami coefficient – a local measure of anisotropic, area-preserving deformation. (A) Tissue-scale shear accumulates near each constriction, shown as a kymograph in the material coordinate frame averaged along the circumferential axis. As time increases (downward), orange streaks reflect area-preserving convergence of tissue patches along the organ circumference and extension along the folding AP axis near constrictions (red arrows). Here, the organ is parameterized by the position, s , at the onset of constriction ($t = 0$), measured in proper length along the surface, and deformation is averaged along the circumferential position in the kymograph. Color denotes the orientation of the anisotropic shear deformation in this material frame, such that shear which converges along the circumferential axis and extends along the AP axis is denoted by orange color (colorwheel). Larger magnitudes of tissue shear are brighter, reflecting the Beltrami coefficient averaged over the circumferential axis. (B) The Beltrami coefficient μ is defined as the amount of area-preserving shear transforming a circle into an ellipse with aspect ratio $1 + |\mu| / (1 - |\mu|)$ at an angle $\arg \mu / 2$.


Figure 3 - supplement 5: Cell shape change quantitatively accounts for tissue-scale convergent extension during early stages of midgut constrictions. (A) As constrictions form, cells change shape from elongated circumferentially to elongated along the longitudinal axis of the organ. At the same time, the tissue deformation mirrors the cell shape change, converging along the circumference and elongating along the longitudinal axis of the organ. Cell intercalations (T1 events) could also contribute to convergent extension if oriented. We find these make a small contribution at early stages of constriction and a large contribution at later stages. No signs of divisions are present, so we rule out oriented cell divisions as contributors to convergent extension. (B) Tissue-scale deformation quantitatively tracks cell shape change at early times, while intercalations contribute to convergent extension at later stages. Change in cell shape anisotropy (assessed over all cells in each chamber) is plotted against the magnitude of tissue convergent extension (averaged over the same tissue positions in each chamber). On the vertical axis, we report cell shape change as the average cell shape anisotropy for all segmented cells in each chamber $\langle \alpha(t) \rangle$, minus the mean value for each chamber at the onset of the middle constriction $\langle \alpha(t = 0) \rangle$, such that $\Delta\alpha(t) \equiv \alpha(t) - \langle \alpha(t = 0) \rangle$. Given that cells' orientations are steady during constrictions, we use a scalar measure of oriented cell shape anisotropy, $\alpha = (1 - a/b) \cos 2\theta$, where a and b are the semimajor and semiminor axes of the ellipse capturing each cell's in-plane moment of inertia tensor and θ is the cell's angle with respect to the material frame's longitudinal axis. To compute a tissue-scale shape change for comparison, we advect the cell contours of the initial segmentation along the meso-scale tissue flow and compute the cell shape anisotropy of the advected segmentation [32]. Chambers are numbered from anterior (1) to posterior (4), separated by constriction locations. Tick marks denote standard errors on the mean for cell anisotropies within each chamber.


Figure 4 - supplement 1: Relative motion of endodermal and mesodermal nuclei is small compared to motion of the tissue. (A) Tracking muscle nuclei and counterpart nuclei in the endoderm reveals only a gradual increase in geodesic distance (distance along the gut surface) between initially close nuclei pairs over time. The mean displacement grows by $\sim 5 \mu\text{m}$ per hour during folding on average, regardless of whether nuclei are located in deep folds (as in the example pair marked by a yellow curve) or on the surface of the gut chambers (green curve). (B) In contrast, the tissue deformation leads to large displacements of cells. We measure distances in embedding space along pathline trajectories suitably smoothed to remove contributions from noise and transient motions. Distance traveled for example tracks invaginating into deep folds (yellow curve) or translating on gut chambers (green curve) are highlighted to match panel (A).


Figure 4 - supplement 2: Motion of the muscle nuclei with respect to the endoderm is not coherent. (A) Schematic of muscle nuclei configuration at early and late times. Muscle cells are positioned in bands along the AP axis and are initially clustered, such that each band is several cells wide along the circumferential axis. As constrictions form, circumferential muscle nuclei arrange in a nearly single-file configuration. (B) Motion of nuclei cells relative to the endodermal layer does not show strongly coherent (directional) motion, as demonstrated by individual tracks of relative displacement colored by timestamp. As before, the positions of 81 nuclei cells are measured relative to the center of mass of the endodermal nucleus that was nearest at the onset of constrictions. Distances are measured as geodesic lengths along the surface. Distances along the normal direction (through the thickness of the tissue) are ignored. That is, nuclear positions are projected along the thickness of the tissue onto the surface in which the endodermal nuclei reside. Histograms of accumulated displacements in either direction show the average over the first 30 minutes (blue), 30-60 minutes (red), and 60-90 minutes (yellow). (C) The same data shown in (B) is plotted as a distribution, with each component separated. The standard deviation of displacement coordinates (colored bands), either in the \hat{s} direction (along the folding longitudinal axis in the material frame, blue) or the $\hat{\phi}$ direction (along the circumferential axis in the material frame, orange) show an increase of $\sim 5 \mu\text{m}$ per hour, with nearly zero mean displacement in either axis.


Figure 4 - supplement 3: Optogenetic knockdown of muscle contractility inhibits endodermal shape changes, mimicking mutant behavior. (A) Snapshots of single-cell shape measurements of embryos under optogenetic perturbations demonstrate that muscle contraction induces endoderm cell shape change. During optogenetic inhibition of muscle contractility in the *Antp* domain using *w;Antp-GAL4* × *w; UAS-CIBN::pmGFP;UAS-CRY2-OCRL*, cell shapes in the interior two chambers (which remain as a single chamber in the optogenetic mutant) remain steady. (B) Endodermal cells undergo less shape change in both *CRY2-OCRL* and *Antp* mutants, as reported in the main text. As before, **** denotes $p < 0.0001$, and N.S. denotes $p > 0.05$. (C) The endodermal cell orientation does not change significantly between conditions.

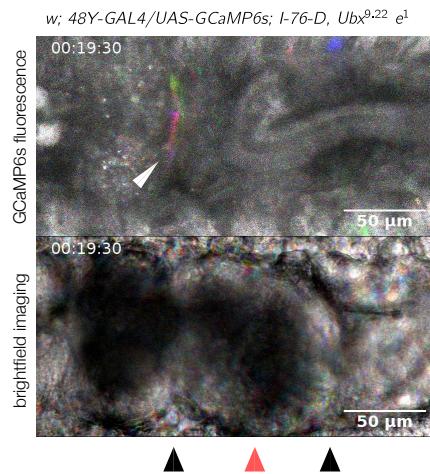

Figure 5 - supplement 1: Kymographs of *GCaMP6s* dynamics show that calcium activity is initially localized in space to constrictions and begins near the time at which constrictions begin. For each constriction, the transient signal is computed (colored signals in snapshots A-C) and averaged across the DV direction (in the lab frame) into a space-time heatmap (D-F). A time of $t = 0$ min for each panel corresponds to the time when localized constriction is visible in the bright-field channel at that constriction location and carries an uncertainty of ± 5 minutes (dashed orange lines). The middle constriction (the sharpest fold, B and E) has the sharpest activity profile, and the posterior constriction (the widest fold, C and F) has the broadest activity profile.

Figure 5 - supplement 2: Disrupting calcium activity hinders constrictions. (A) Embryos expressing a dominant negative form of SERCA have fewer successful constrictions on average (single tailed Z-test, $N = 130$, $p = 3 \times 10^{-8}$) using a muscle-specific driver, *Mef2-GAL4*, at elevated temperatures (continuous heatshock at 37°C). In adult flies, this dominant negative SERCA was previously shown to exhibit temperature-sensitive expression and inhibits muscle contractions at 37°C [46]. (B) Embryos expressing RNAi against MLCK have fewer successful folds on average (single tailed Z-test, $N = 37$, $p = 0.002$). Here we use a ubiquitous driver, *tub15-GAL4; tub67-GAL4* under continuous heatshock starting during or just after midgut closure, before constrictions appear. (C) Brightfield imaging of embryos expressing a mutant form of SERCA in muscles show reduced folding activity. Here, driving a mutant SERCA expression via heatshock starting at stage 15a shows no folds. (D) Control embryos without the mutant form of SERCA, in contrast, typically form three folds. Timestamps denote minutes since the onset of heatshock and scalebar is 100 μ m.

Figure 5 - supplement 3: *Antp* mutants show reduced calcium activity in the anterior two chambers for over an hour. (A) Kymographs of wild-type calcium dynamics near the anterior fold for $N = 13$ control embryos show fluctuating calcium activity beginning at the onset of folding at the site of the fold. The domain of calcium activity broadens anteriorly and posteriorly in time. A red solid line marks the onset of the anterior constriction, and dashed lines denote the precision with which this time is known. (B) In mutants, almost no calcium pulses are observed during the same timespan. A kymograph of average fluctuating *GCaMP6s* intensity for $N = 5$ *Antp* mutants remains quiescent (dark blue). Given that the anterior fold does not form, $t = 0$ was prescribed based on the depth of the posterior fold. The expected position of the anterior fold (which defines the horizontal axis of the kymograph) is inferred from the position of the anterior fold relative to the anterior face of the midgut in control embryos.

Figure 5 - supplement 4: Calcium pulses appear at the unaffected anterior constriction in *Ubx* mutants. A dorsal view snapshot of pulsing calcium activity (top panel) and the associated brightfield image (bottom panel) of a *Ubx* mutant shows calcium pulses in the anterior constriction (white arrowhead). Each image is an overlay of maximum intensity projections for three shallow confocal stacks taken 10 seconds apart and false-colored red, green, and blue for each respective stack. The colorful streak near the anterior constriction reflects the transient pulses at that location. As in Fig. 5F and Fig. 5 - supplement 3, the posterior constriction lies outside the confocal stack and is therefore not visible in the *GCaMP6s* channel. This data suggest the calcium dynamics at each constriction are regulated locally along the length of the midgut ($N = 5$).