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Figure 1. Method overview. Starting with a video showing vibration of an object, we extract the motion fields across time and then

decompose this motion into image-space modes. From the image-space modes sampled at visible mesh points, we are able to recover a

voxelized volume of the Young’s modulus and density throughout the interior of the object.

Abstract
An object’s interior material properties, while invisible

to the human eye, determine motion observed on its sur-

face. We propose an approach that estimates heterogeneous

material properties of an object from a monocular video

of its surface vibrations. Specifically, we show how to es-

timate Young’s modulus and density throughout a 3D ob-

ject with known geometry. Knowledge of how these val-

ues change across the object is useful for simulating its

motion and characterizing any defects. Traditional non-

destructive testing approaches, which often require expen-

sive instruments, generally estimate only homogenized ma-

terial properties or simply identify the presence of defects.

In contrast, our approach leverages monocular video to (1)

identify image-space modes from an object’s sub-pixel mo-

tion, and (2) directly infer spatially-varying Young’s modu-

lus and density values from the observed modes. We demon-

strate our approach on both simulated and real videos.

1. Introduction

The subtle motions of objects around us are clues to their

physical properties. Among such properties are stiffness

and density, which dictate how an object will respond to

environmental forces. As humans, we can vaguely charac-

terize how stiff or heavy a material is, such as when we infer

that a rubber basketball will bounce higher than a ceramic

bowling ball by tapping on its surface. Most engineering ap-

plications, however, require a greater level of detail, such as

when an aeronautical engineer must faithfully simulate how

an airplane wing will react to wind turbulence. In computer

vision and graphics, a full characterization of an object’s

material properties allows one to faithfully simulate its be-

havior. These scenarios require non-destructive testing to

obtain physical properties of the object without altering it.

We propose visual vibration tomography, a method to

estimate material properties of an object directly from vi-

bration signals extracted from monocular video. Much of

non-destructive testing (NDT) has focused on measuring vi-

brations to identify the presence of defects in structures with

a known geometry. However, NDT tools are not generally

used to determine the precise spatial distribution of physical

properties in objects with a heterogeneous interior structure.

We show that we can measure vibrations as sub-pixel

motion in 2D video and then use this motion to constrain 3D

material-property estimation. Videos have several advan-

tages over existing NDT techniques: while contact sensors

and laser vibrometers take point measurements, videos offer

16210

2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)

978-1-6654-6946-3/22/$31.00 ©2022 IEEE
DOI 10.1109/CVPR52688.2022.01575

20
22

 IE
EE

/C
VF

 C
on

fe
re

nc
e 

on
 C

om
pu

te
r V

isi
on

 a
nd

 P
at

te
rn

 R
ec

og
ni

tio
n 

(C
VP

R)
 |

 9
78

-1
-6

65
4-

69
46

-3
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

 D
OI

: 1
0.

11
09

/C
VP

R5
26

88
.2

02
2.

01
57

5

Authorized licensed use limited to: Duke University. Downloaded on October 30,2023 at 19:19:46 UTC from IEEE Xplore.  Restrictions apply. 



spatially dense measurements of surface vibrations. While

laser vibrometers are expensive and specialized, cameras

are ubiquitous and general-purpose. While existing image-

based techniques require stereo cameras for 3D motion

tracking, our method shows that in many cases, a monoc-

ular view is all you need.

Our motivating insight is that, under fixed geometry, an

object’s material properties determine its motion. The in-

verse direction is also true: motion determines material

properties up to a scaling factor. If the motion is small,

it can be decomposed into independent modes at natural

frequencies, lending itself to a concise mathematical equa-

tion linking modes and material properties. This link lays

the foundation for our physics-constrained optimization ap-

proach. The key challenge of our task is to deal with incom-

plete and 2D (as opposed to full-field) modes. Despite these

challenges, we show that we can estimate material proper-

ties from image-space motion and recover full-field modes.

In this paper, we first review related work and the the-

oretical relationship between modes and material proper-

ties. We then show how to extract image-space modes

from video and recover material properties (Fig. 1 shows an

overview of the method). We demonstrate our approach on

simulated data of 3D geometries and discuss the effects of

damping and model mismatch. Finally, we present proof-

of-concept experiments on real data, showing that we are

able to image the shape of unseen material inhomogeneities

on drum heads and the presence of a defect in a real 3D

Jello cube. These experiments demonstrate promise for the

future of the approach in more challenging environments. 1

2. Related Work

2.1. Material Analysis from Images and Video

In computer vision, scene understanding is an impor-

tant goal that includes, among many tasks, characteriza-

tion of materials. Previous work has estimated material

categories [3, 27, 37] and surface properties [22, 38] from

images. In contrast to static images, videos have been

used to estimate material properties, although these are

often restricted to specific object categories, such as fab-

rics [4–6,31,50] and trees [49]. Other work has inferred ma-

terial properties from 3D point clouds [25, 48] and known

external forces [52], but such measurements are harder to

obtain than a 2D video. “Visual vibrometry” [10,11] uses a

video’s motion spectrum to estimate stiffness and damping

of fabrics and rods. This is a promising step towards a gen-

eral approach for estimating material properties, but it is re-

stricted to homogenized properties. In a similar vein, others

have used video data to identify structural modes [8,20,53].

Davis et al. demonstrated how to visualize image-space

modes and use them for plausible simulation [12, 13].

1Project website: http://imaging.cms.caltech.edu/vvt

2.2. Traditional NDT

Non-destructive testing (NDT) is an umbrella term for

any technique that collects data of a material or structure

without damaging it. Usually, the goal is to identify defects

or material inconsistencies that would change the expected

behavior of the object. Laser vibrometry [14] and digital

image correlation (DIC) [9] are popular tools for measur-

ing surface displacements. Laser vibrometry has been used

to examine the integrity of building structures [32, 35] and

materials [7, 15]. DIC also has been used to identify de-

fects in 2D structures [16, 21, 41, 43, 51]. Both laser vi-

brometry [28, 29] and DIC [19, 42] can be used for modal

analysis, which involves identifying modal frequencies and

shapes of a structure. While usually regarded as a verifi-

cation tool rather than a means to directly infer material

properties, recovered modal information has been used to

solve for homogenized material properties [11, 18]. How-

ever, to our knowledge, modal analysis has not been used to

solve the more challenging inverse problem of quantifying

the heterogeneous properties addressed in this paper.

3. Background

3.1. Modal Analysis
Every object has resonant, or natural, frequencies. At

each resonant frequency, the object vibrates periodically in

a particular shape, called a mode. The vibration of a linear

elastic object can be decomposed into independent modes.

In the finite element method (FEM), we model an object

as a mesh, composed of elements that each take on material-

property values. The mechanical properties that determine

an object’s vibration are Young’s modulus (E), Poisson’s

ratio (ν), and density (ρ). E and ν define the stiffness of

connections between vertices, while ρ defines the mass dis-

tribution. In this discretized model, the n× n stiffness ma-

trix K describes the stiffness between each pair of n total

DOFs, and the n × n mass matrix M describes the mass

concentrated between each pair of DOFs. A mode u and

frequency ω are an eigenvector-eigenvalue solution of the

generalized eigenvalue problem:

Ku = ω2Mu. (1)

As Fig. 2 illustrates, a small change in material proper-

ties (within a fixed geometry) results in a small change in

modal motion. As most solid materials have Poisson’s ra-

tio ≈ 0.3 [33], the principal properties affecting motion are

Young’s modulus, which determines K, and density, which

determines M . Our method is based on the insight that

mode shapes on the surface of an object may reveal inter-

nal spatial inhomogeneities in these properties.

3.2. Challenge of Monocular Material Estimation

We begin by setting up a simplified version of the in-

verse problem. Assuming we perfectly measure all modes

u and frequencies ω, then by Eq. 1, we have the following
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Figure 2. Small changes in material properties affect motion. Here

a small region of a circular membrane becomes stiffer from “Origi-

nal” to “Original + Defect.” This change appears as a slight change

in the mode shown. We propose using small changes in observed

modal motion to recover the locations and shapes of defects.

minimization problem:

K∗,M∗ = arg min
K,M

‖KU −MUΛ‖
2

2
, (2)

where U is the matrix whose columns are modes u, and

Λ is the diagonal matrix containing eigenvalues ω2. For a

known geometry, this is a convex problem with respect to K
and M . However, Eq. 2 requires that we have access to all

3D modes and frequencies. In contrast, we will be working

with experimentally-observed, image-space modes, incur-

ring the following challenges:

1. Unseen degrees of freedom (DOFs). We typically only

observe a fraction of an object. For example, when ob-

serving a 3D cube with a monocular camera, one can

see at most three of its sides, projected onto two direc-

tions of motion. Consider an 8x8x8 cubic mesh, which

has (8 + 1)3 = 729 vertices. With three directions of

motion, it has 3 × 729 = 2187 total DOFs. But a sin-

gle monocular view of three sides of the cube can only

observe 217 vertices, moving in two directions of mo-

tion, amounting to 2× 217 = 434 image-space DOFs.

This alone limits us to observing fewer than 20% of

the full-field DOFs for an 8x8x8 cube.

2. Unseen modes. Theoretically, for discrete meshes,

there are as many modes as there are DOFs. However,

we can only capture modes at frequencies below the

Nyquist sampling rate of the camera, which is FPS/2.

3. Noise. Aside from camera noise, there is noise from

motion extraction, particularly in non-textured regions.

Due to limited data, the problem of solving for K and M
(Eq. 2) is ill-posed.2 As Fig. 3 shows, observed data typi-

cally accounts for a tiny fraction of the matrices involved.

4. Approach

Our aim is to use motion features from a video to esti-

mate material properties. This involves two stages: (1) mo-

2For a known geometry and complete mode and eigenvalue informa-

tion, K and M are fully determined up to a scaling factor.

=K

U
unseen 
modes

unseen 
degrees of 
freedom

U
unseen 
modes

unseen 
degrees of 
freedom

diag(

(ω
2

unseen
resonant frequencies

M

Figure 3. The generalized eigenvalue equation (Eq. 1) defines the

relationship between K, M and U , ω2. The matrix U has columns

corresponding to modes and rows corresponding to DOFs. The

vector ω2 contains associated eigenvalues. We would like to solve

for K and M given partial information about U and ω2.

tion extraction and image-space mode identification, and (2)

solving for material properties that best match the observed

image-space modes. The input is a video of an object, of

which a mesh is known, and we assume that it is vibrat-

ing under linear elasticity (i.e., small motion). The output

is two 3D images showing voxelized Young’s modulus and

density values throughout the object.

4.1. Extracting Image-Space Modes from Video

Motion extraction: Since our approach relies on small,

often imperceptible, motions, we need a way to extract sub-

pixel motions from video. To quantify the displacements,

we use the phase-based approach of Wadwha et al. [47],

which computes local phase shifts in a complex steerable

pyramid [34, 39, 40]. This method has the advantage over

other tracking methods (e.g., optical flow) of being robust

to tiny motion, down to 0.001 pixel [11]. The phase shifts

are converted to pixel displacements using the approach

proposed by Fleet and Jepson [17, 46]. To increase the

signal-to-noise ratio, we filter out outlier pixels (i.e., top 1%

of displacement magnitudes) and then apply an amplitude-

weighted Gaussian blur. The result of this step is a motion

field for each frame, which quantifies the horizontal and ver-

tical displacement at each pixel relative to the first frame.

Identifying image-space modes: Modes are simply pe-

riodic motions occurring at particular frequencies, so we

would expect them to appear as peaks in the power spectrum

of motion amplitude. As is done in previous work that ex-

tracts image-space modes [10,12,13], we perform a discrete

Fourier transform on the motion fields to analyze them in

frequency space. To make this more concrete, let ∆xt(x, y)
and ∆yt(x, y) be the horizontal and vertical displacements,

respectively, at each pixel (x, y) at frame t. The 1D FFT

across time of these displacement fields results in complex-

valued ∆̂x�(x, y) and ∆̂y�(x, y), corresponding to frequen-

cies f� = (FPS · ℓ/T ) Hz for ℓ ∈ [1, T ]. The motion power

at frequency f� is then defined as

∥∥∥
[
∆̂x�, ∆̂y�

]∥∥∥
2

2

(drop-

ping (x, y) notation for clarity). A peak ℓ∗ in the power

spectrum ideally corresponds to a natural frequency f�∗ and

image-space mode given by
[
Re

(
∆̂x�∗

)
,Re

(
∆̂y�∗

)]
.

Sampling image-space modes at mesh vertices: To ap-
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proximate the 3D-to-2D projection matrix, a user manually

identifies the pixel locations of several “reference” mesh

vertices, and P is the projection matrix that best maps the

corresponding mesh coordinates to the image. Using P , we

map all of the mesh vertices from their 3D coordinates to

2D image coordinates. We then sample each image-space

mode at the pixel locations of visible mesh vertices. For

mode j, we construct a vector γj that contains the horizon-

tal and vertical displacements of each mesh vertex at the

corresponding natural frequency. Supposing we observe q′

out of q mesh vertices, the vector γj has the form

γj = [∆x1,∆y1, . . . ,∆xq′ ,∆yq′ , 0, . . . , 0]
⊺
∈ R

2q, (3)

where ∆xi is the horizontal (pixel) displacement and ∆yi
the vertical (pixel) displacement of vertex i. Unseen ver-

tices are assigned displacements of 0, and for notational

clarity, we position them at the end of the vector.

4.2. Estimating Material Properties

The matrices K and M are functions of Young’s mod-

ulus and density. While typically expressed as global ma-

trices, they can be decomposed into local matrices, which

scale linearly with local material properties. As a result, K
and M can each be written as a weighted sum of “unit” lo-

cal matrices. Specifically, we voxelize the volume contain-

ing the mesh so that each voxel contains a sub-collection of

mesh elements. Given Young’s modulus we and density ve
for each voxel, we express the global matrices as

K =

m∑

e=1

weKe and M =
m∑

e=1

veMe, (4)

where Ke and Me are “unit” local stiffness and mass ma-

trices, which we assemble using FEniCS [2], and m is the

number of voxels. This allows us to represent K and M as

functions of vectors w, v ∈ R
m.

4.2.1 Optimization Formulation

Data-matching objective: Suppose we have k modal ob-

servations, where γ̂i and ω̂i are the i-th observed image-

space mode and natural frequency, respectively. We would

like to determine the voxel-wise Young’s modulus values w
and density values v that, when assembled into global stiff-

ness and mass matrices, result in 3D modes u1, . . . , uk that

agree with γ̂1, . . . , γ̂k when projected onto image-space.

Since we do not know the full-field 3D modes, we need

to include them as decision variables. Intuitively, the data-

matching objective is to minimize ‖Pui − γ̂i‖ for each i.
Regularization: To make the solution well-defined, we

choose to minimize total squared variation (TSV) of w and

v, which encourages spatial smoothness. Moreover, since

we are estimating both stiffness and mass, the objective

function can become arbitrarily low if we do not constrain

the range of material-property values; this is because scal-

ing K and M by a factor of s still satisfies the generalized

eigenvalue equation: (sK)u = ω2(sM)u. To resolve this

ambiguity, we choose to minimize the deviation of w from

a mean value w̄. Regardless of w̄, the relative differences in

w∗, v∗ will not change, and for defect characterization, we

generally only care about relative changes.

The resulting optimization problem is written as

w∗, v∗ = argmin
w,v∈R

m

K,M∈R
n×n

ui∈R
n,i=1,...,k

{
αu

2k

k∑

i=1

‖Pui − γ̂i‖
2

2
(5)

+
αw

2m

∥∥∇2w
∥∥2

2
+

αv

2m

∥∥∇2v
∥∥2

2
+

(
m∑

e=1

we/m− w̄

)2 }

s.t. K =

m∑

e=1

weKe, M =

m∑

e=1

veMe,

Kui = ω̂2
iMui, i = 1, . . . , k,

where αu, αw, and αv are hyperparameters that balance the

objective terms. The effects of the regularization weights

(αw and αv) are discussed in the supplementary material.

4.2.2 Optimization Strategy

As defined in Eq. 6, we approximately solve Eq. 5 via a dual
formulation of the problem. The eigen-constraints in Eq. 5
are too strict to enforce directly, so we incorporate them as
quadratic penalties in the dual problem. The weight of each
penalty term is a dual variable, yi, and we apply dual ascent
to gradually increase these penalty weights.

w∗, v∗ = argmin
w,v∈R

m

K,M∈R
n×n

ui∈R
n,i=1,...,k

{
1

2k

k∑

i=1

yi
∥∥Kui − ω̂2

iMui

∥∥2

2
(6)

+
αu

2k

k∑

i=1

‖Pui − γ̂i‖
2

2

+
αw

2m

∥∥∇2w
∥∥2

2
+

αv

2m

∥∥∇2v
∥∥2

2
+

(
m∑

e=1

we/m− w̄

)2 }

s.t. K =

m∑

e=1

weKe, M =

m∑

e=1

veMe.

Eq. 6 is a non-convex problem, but it is quadratic with
respect to w, v for fixed ui, and it is quadratic with respect
to ui for fixed w, v. Our procedure is to iteratively compute
the closed-form solution for U = [u1 . . . uk] and then z =
[w⊺, v⊺]⊺, thereby minimizing the objective function at each
step. We update the dual variables according to

yt+1

i = yt
i + η

∥∥Kt+1ut+1

i − ω̂2
iM

t+1ut+1

i

∥∥
2
, (7)

where η > 0 is the dual-variable update rate. Once the de-

cision variables have converged, we output the minimizing

solution z∗ = [w∗⊺, v∗⊺]⊺. w∗ and v∗ are the voxel-wise

estimated Young’s modulus and density values.
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5. Simulated Experiments

We test our approach on the simulated vibration of 3D

cubes with “defects,” and we discuss the practical concerns

of complex geometries, model mismatch, and damping.

5.1. Creating Synthetic Data

Cube model: We model a cube as a 10x10x10 hexahe-

dral mesh, similar to a voxel grid. Each of the 1000 vox-

els is assigned a Young’s modulus and density that corre-

spond to either the primary material or a defect material.

The material properties are chosen to resemble Jello and

clay, respectively (Ejello = 9000 Pa, ρjello = 1270 kg/m3,

Eclay = 5 × 106 Pa, ρclay = 7620 kg/m3). We set a homo-

geneous Poisson’s ratio of ν = 0.3 [33].

Vibration animation: Once the cube’s mesh and mate-

rial properties have been defined, we run a transient analysis

in COMSOL [1], a commercial FEM software. The analy-

sis calculates the cube’s deformation over time given an ini-

tial condition. We choose an initial condition that mimics

“plucking” a corner of the cube (e.g., an initial displace-

ment vector of (0.5, 0.5, 0.5) cm of the top-front corner)

and keep the bottom surface fixed. The resulting simulation

represents free vibration with a Dirichlet boundary condi-

tion. The simulation is 6 seconds long at 2000 FPS. From

the calculated displacements, we create an animation of the

cube deforming over time by plotting the motion of random

points on the surface of the cube with matplotlib [24].

5.2. Implementation and Evaluation Details

Mode selection: We use scipy’s [45] peak-finder to

automatically identify peaks in the log-power spectrum of

motion amplitude, as described in Sec. 4.1. For a given

simulation, this leads to around 20–30 selected peaks. Most

peaks correspond to either a true mode or a linear combina-

tion of true modes whose frequencies fall in the same FFT

frequency bin. However, a few peaks do not correspond to

a true mode; we include these false modes in the synthetic

results to best mimic analysis of real videos.

Inference cube mesh: We infer on an 8x8x8 hexahe-

dral mesh. Since the simulations are done with a 10x10x10

mesh, our results indicate robustness to a slight mesh mis-

match. In the results presented, the simulation model and

inference model use linear elements.

Hyperparameters: For every presented result from sim-

ulated data, αw = 10−10, αv = 10−7, and w̄ = 9000.

Keeping these hyperparameters fixed, we ran a hyperparam-

eter search on a dataset of 12 cubes with various defects

to identify good values for αu (Eq. 6) and η (Eq. 7). Af-

ter testing all combinations of αu ∈ {1, 10, 100, 1000} and

η ∈ {0.1, 0.5, 1, 2, 5, 10}, we determined to set αu = 10 if

the number of input modes is ≥ 10; otherwise, αu = 1. The

dual variables y are always initialized to 1, with η = 1. The

(a)

8 modes 10 modes 15 modes 20 modes True

corr = 0.44 0.49 0.67 0.73 0.72 0.74 0.68 0.70

(b)

0.28 0.32 0.43 0.42 0.46 0.45 0.51 0.51

Figure 4. Reconstruction on two synthetic cubes with different de-

fects. The given motion-extracted image-space modes range from

the 8–20 lowest extracted modes. Normalized correlation gener-

ally increases as the number of modes increases. (b) is more chal-

lenging because the defect is smaller and closer to the bottom of

the cube, where there is no motion.

decision variables w and v are initialized to homogeneous

values of 9000 [Pa] and 1270 [kg/m3], respectively (the true

values of the primary material).

Evaluation: Our method recovers relative changes in

material properties (see Sec. 4.2.1). As such, the normal-

ized 3D images of estimated Young’s modulus and den-

sity should match the true normalized properties. We use

normalized correlation between the estimated image and

ground-truth image as the reconstruction score. Another

way to assess estimated properties is to verify that they pro-

duce the same image-space modes and natural frequencies

as the true properties (see supplementary material).

5.3. Results

Fig. 4 shows results for two different cubes with defects

appearing at different locations. These results are obtained

from noisy, motion-extracted image-space modes. As more

modes are observed, the inverse problem becomes better

constrained, sharpening the image of the interior defect.

Also note that a defect near the top of the cube is easier to

identify than one near the bottom. This is because the base

of the cube is fixed and thus provides less motion signal.

Complex geometry: To demonstrate the approach on a

more complex geometry, Fig. 5 shows a volumetric recon-

struction of material properties for the Stanford Bunny [44].

We voxelize the volume containing the tetrahedral mesh3

of the bunny into an 8x8x8 grid and match each mesh ele-

ment to the nearest voxel, resulting in about 21 elements per

3The bunny surface mesh is from https://www.thingiverse.com/

thing:151081, and tetrahedralization is done with TetWild [23].
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Figure 5. Reconstruction for the Stanford Bunny from (true)

image-space modes. Slices along the y-axis are shown.

voxel. 20 true image-space modes of the monocular view of

the bunny shown are used for this reconstruction.

We next consider some challenges that may arise with

real-world data: geometric mismatch and damping. More

investigations into model mismatch are provided in the sup-

plementary material.

5.3.1 Geometric Mismatch

Fig. 6 shows what happens when the dimensions of the in-

ference mesh do not match the cube’s true dimensions. We

gradually increase the length of the inferred cube geometry

in the x-direction from 1 to 1.4 times the true length. Scal-

ing the length in one direction results in a gradually degrad-

ing estimate of the defect size. However, even with 30%

geometric error, we are still able to distinguish that there is

a defect located in the central region of the cube.

True 1.1x 1.4x1x

x

y
z

x

y
z

1.2x 1.3x

Figure 6. Geometric model mismatch. From 10 motion-extracted

image-space modes, we infer on a mesh of various incorrect ge-

ometries, extending the inferred geometry width by a multiple of

the true width. Results on Young’s modulus show that some geo-

metric mismatch can be accommodated.

5.3.2 Damping

Real-world objects exhibit various types of damping, which

can affect both the frequencies and relative phases of its

modes. To simulate damping, we incorporate Rayleigh

damping into our synthetic cubes. Our damping parameters

were estimated following the procedure outlined by Davis

and Bouman et al. [11], who fit a Lorentzian curve to a peak

in the motion power spectrum to estimate the damping ratio.

correlation = 0.26 0.44

Recon.True Damped Log-Power Spectrum

(a)

(b)

correlation = 0.27 0.31

7 distinct modes

12 distinct modes

Figure 7. Reconstructions from two simulated damped cubes. An-

imations (3 seconds at 2000 FPS) of two different forcings are

done: (1) a small initial displacement of the cube’s top-front corner

(“Top-Front Pluck”) and (2) a small initial displacement of its top-

back corner (“Top-Back Pluck”). Modes (marked as dots on the

line plot) are selected based on the log-power spectrum of motion

amplitude. Asymmetry plays a role in determining how many dis-

tinct modes are observable. As a cube becomes more asymmetric

in its material-property distribution, its repeated eigenfrequencies

become more separated. Since the defect in (b) is more off-center

than the defect in (a), more distinct modes are identifiable in those

simulations. In (a), with only 7 observed image-space modes, the

reconstruction quality is consistent with Fig. 4, which shows only

a coarse defect reconstruction when given 8 modes. (Note: in (b),

although the number of observed modes is > 10, we show the re-

construction for αu = 1 instead of 10.)

We find that Jello cubes exhibit significant damping: from

a real video of one, we estimated critical damping ratios of

0.01749 at 12.5 Hz and 0.01999 at 15.5 Hz.

Through realistic simulations in COMSOL, we find that

damping poses the additional challenge of fewer observable

modes. We can increase the number of observed modes by

extracting modes from multiple simulations with different

initial conditions. For example, “plucking” the top-back

corner of a cube will cause slightly different modal expres-

sion than “plucking” its top-front corner. Fig. 7 shows re-

construction for damped cubes. From two different pluck-

ing conditions, we are able to extract between 7–15 modes

and use these modes to coarsely reconstruct the defect.

6. Real-World Experiments

To demonstrate the potential of our approach in the real

world, we applied it to real videos of drum heads and Jello

cubes. With drum heads, we achieve reconstructions that al-

low one to discern distinct defect shapes, providing a proof-

of-concept for defect discovery and characterization using
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Figure 8. Reconstruction from real videos of drums. The defects shown are a gel bar, gel circle, acrylic circle, and two acrylic circles,

applied to the underside of the drum head. For each defect, we recorded a video of the drum pre- and post-defect. One cannot see the

defect in a video frame, but after applying our method, we were able to image the defects as changes in stiffness and density. For each type

of defect, the “Before” and “After” material properties are plotted with the same normalized colormap.
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Figure 9. Extracted image-space modes from real videos of a

drum, before and after a defect was introduced. The defect shown

here is a gel rectangle, which was painted on the bottom of the

drum head. Only vertical motion is shown.

our approach. The damping of 3D Jello cubes poses a chal-

lenge for extracting enough image-space modes for high-

fidelity defect reconstruction; nonetheless, we are able to

identify heterogeneity in the cube. Please refer to the sup-

plementary material for details about the experiment setups,

inference models, and hyperparameters.

6.1. Real Drums

We tested our method on a dataset of real drum heads,

each altered with a defect beneath the surface. The de-

fects were created from two materials: nail hardening gel

(painted beneath the surface) or acrylic plastic circles (glued

onto the bottom of the surface). Although all DOFs of the

2D membrane are visible in the video, solving for mate-

rial properties is still ill-posed because we observe a limited

number of projected modes (see Fig. 9).

Results: Fig. 8 shows estimated Young’s moduli and

densities for various drum heads, before and after defects

were included. For both materials, the defect appears as a

bright region in stiffness. Interestingly, gel and acrylic ap-

pear differently in their density estimations. For gel defects,

there is a bright, filled region in the density map that corre-

sponds to a higher mass from the defect. For acrylic defects,

this change only appears on the edges of the defect. This is

possibly because the acrylic circles are much stiffer than

gel, which bends along with the rubber membrane. These

results indicate that our proposed approach could be used to

identify not just the presence of a defect, but also its shape.

6.2. Real Cubes

To gain further insight into practical challenges, we con-

ducted an experiment on a real Jello cube with an interior

clay defect. This object is more challenging than the drum

membrane in two respects: (1) the high damping of Jello,

perhaps due to its water content, and (2) the large proportion

of unseen DOFs in the cube geometry. The cube had dimen-

sions 4.9 x 4.7 x 4.5 cm, while the rectangular clay defect

was of size 2.2 x 2.9 x 1.4 cm. We recorded three videos

of the cube under different initial deformation conditions

(e.g., in one video, we lifted and then quickly released the

top-front corner of the cube). Multiple videos allowed us to

identify more unique modes and average duplicate ones.

We created two COMSOL models that would be compa-

rable to the real Jello cube: one simulated cube had a clay

defect and the other did not. The Young’s modulus values

of the Jello and clay were set so that the natural frequen-

cies would agree with those observed. The Rayleigh damp-

ing parameters were estimated following the method men-

tioned in Sec. 5.3.2. As illustrated in Fig. 10, the COMSOL

image-space modes of the simulated cube with a defect ap-

pear similar to those captured from the real Jello cube.

Results: Fig. 11 shows the result of our approach ap-

plied to real video data of the Jello cube. The reconstruction

is obtained using six unique, motion-extracted image-space

modes. As expected based on our findings in Figs. 4 and 7,

we are able to recover only a large-scale estimation of mate-

rial properties with six constraining modes. Still, it is very

promising to have identified inhomogeneities in a real 3D
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Figure 10. Extracted image-space modes from real videos of a Jello cube with an interior clay defect (“Real”). The true image-space modes

identified from a COMSOL simulation of a cube with a defect are shown for comparison (“Simulated”). Each observed image-space mode

has a corresponding simulated mode that appears similar in both image-space and eigenfrequency.
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Figure 11. Reconstruction from real data vs. reconstructions from

simulated data of the defect cube and a homogeneous cube. All

reconstructions use 6 image-space modes and the same hyperpa-

rameters and are plotted with the same colormaps. As Fig. 10

shows, there is a one-to-one correspondence between the modes

given for (a) and the modes given for (b). (a) is more similar to

(b) than to (c), indicating that with 6 modes, we can differentiate

between a cube with a defect and a homogeneous one.

object with our method. We further compare this real-data

reconstruction to reconstructions obtained from simulated

data of a homogeneous cube and one with a defect, show-

ing that we achieve a solution that resembles the solution

for the simulated defect cube more than it resembles the so-

lution for the simulated homogeneous cube (Fig. 11).

We have shown one example of attaining simulation

quality on a real cube. Further work needs to be done to

achieve consistent results across a variety of objects. Addi-

tional camera views are one plausible, simple solution.

7. Limitations

Our method assumes that materials are isotropic and lin-

ear elastic. Linear elasticity is only satisfied if the object’s

motion is small. Further, we assume that the geometry is, at

least roughly, known ahead of time (see Fig. 6).

For now, we have validated our method with a high-

speed camera. We have not yet demonstrated the approach

with consumer-grade cameras that bring additional chal-

lenges such as image compression and noise. Generally,

the hardware required depends on the amplitude and fre-

quencies of the modes. For large structures that vibrate be-

low 100 Hz [26, 30, 36], a smartphone camera theoretically

provides enough temporal frequency. Objects that vibrate

more quickly require high-speed cameras. Tricks such as

temporal aliasing via a strobe may expand the capabilities

of a camera.

The primary challenge with applying this technique to

real-world objects is capturing enough image-space modes

to recover interior defects with high fidelity. Damping

causes a reduction in the number of modes that can be ex-

tracted. We demonstrated that for damped Jello cubes, we

could still recover some information from only six image-

space modes (Sec 6.2). Even so, in many objects, damping

will pose a more significant challenge. In the future, acquir-

ing more modal observations could be solved by exciting

modes through mechanical vibration tables.

8. Conclusion

We have shown that it is possible to recover spatially-

varying material properties of 3D objects from monocular

video, even in regions unseen in the image. This can be

done by decomposing 2D surface motion into image-space

modes, and then solving for the Young’s modulus and den-

sity values that agree with the observed modes. We demon-

strated our method on synthetic and real-world data of ob-

jects ranging from 2D drum heads to a 3D bunny.

Our results highlight that monocular videos are a simple,

yet powerful, source of data for understanding the physical

properties of objects around us. We believe that videos are a

promising domain for further research into non-destructive

testing, turning everyday visual sensors into tools for mate-

rial characterization.
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Mascareñas. Blind, simultaneous identification of full-field

vibration modes and large rigid-body motion of output-only

structures from digital video measurements. Engineering

Structures, 207:110183, 2020. 2

16219

Authorized licensed use limited to: Duke University. Downloaded on October 30,2023 at 19:19:46 UTC from IEEE Xplore.  Restrictions apply. 


