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The photovoltaic (PV) industry requires high-quality silica sand to produce metallurgical-grade silicon (MG-Si)
for silicon PV (Si PV). However, high-quality deposits are scarce, and using lower-quality resources may increase
the carbon footprint and cumulative energy demand (CED) of Si PV modules. The environmental impact of
quartz mining and silica sand extraction for PV has not been updated in over 15 years. It’s not representative of
current methods used for low-quality sand and is not country-specific. As a result, PV production’s environmental
impact might be underestimated. We used life-cycle assessment to evaluate the carbon footprint and CED of
quartz mining, silica sand extraction, and MG-Si production for high-quality (> 98% silica), industrial-grade
(95% silica), and low-quality (65% silica) quartz deposits, which are necessary to calculate Si PV’s energy
and carbon payback time. The carbon footprint per metric ton of silica sand extraction increased from 22.7 kg
CO2¢q for high-quality quartz to 47.9 for industrial-grade and 86.7 for low-quality. China currently uses foreign
industrial-grade quartz but plans to use low-quality domestic resources, which could increase the carbon foot-
print of producing one kg MG-Si from 12.1 to 16.5 kg CO2¢q. The CED could increase from 188 to 286 MJ. We
also investigated illegal mining’s environmental impact. The carbon footprint and CED of MG-Si production
decreased by 26 to 60% for illegal mines compared to legal mines. Illegal MG-Si production can be cheaper and
have a lower carbon footprint, and therefore, third-party-supply-chain verifications are essential to ensure that
PV doesn’t contribute to the problem.

1. Introduction demand for MG-Si and, ultimately, the demand for quartz. Evaluating

the potential environmental and social impact of mining quartz for PV is

Photovoltaics (PV) is a promising energy technology to reduce the
carbon footprint of electricity production (Shahsavari and Akbari,
2018). Cumulative PV installations have increased from one GW in 2000
to 480 GW in 2018 and are expected to reach 8519 GW by 2050 (In-
ternational Renewable Energy Agency (IRENA), 2019). Silicon PV (Si
PV) represents 97% of the current PV market and should remain the
dominant technology until 2040, but raw material shortage could
reduce the market share of Si PV (Masson and Kaizuka, 2020). It is
estimated that more than three million metric tons of metallurgical
grade silicon (MG-Si) will be required to meet the demand for Si PV
manufacturing in the next ten years (Heidari and Anctil, 2021). The raw
material for Si PV is quartz which is mined to extract silica sand and
purified to produce MG-Si (R. Frischknecht et al., 2020). Further puri-
fication is necessary to remove impurities such as Fe, Al, B, and P to
produce solar-grade silicon (Ramirez-Marquez et al., 2018) used in
photovoltaic cells. The increase in PV installations will increase the
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necessary to ensure that it remains a sustainable energy source.
Life-cycle assessment (LCA) is widely used to evaluate the carbon
footprint and cumulative energy demand (CED) of Si PV. We reviewed
31 Si PV LCA published in the last 20 years, and the quartz purity was
not considered in any of them (Supplementary Material (SM) Fig. S1-
S4). For all the Si PV LCAs, the same reference process for MG-Si pro-
duction was used, which is based on sand production in Germany (Bach
et al., 1999), which is not a main producer of silica sand used in PV. To
model high-quality silica sand extraction rather than sand production, a
drying step was added to the process. Based on those assumptions, the
carbon footprint is 22.7 kg CO2¢q and CED 339 MJ per metric ton of
silica sand. The drying process is only a valid assumption for quartz
containing more than 98% silica. However, only a few places in the
world have quartz deposits with that purity level. The rest of the
available quartz resources are industrial (95% purity) or low-quality
grade, which need additional steps to remove impurities (Unimin
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Corporation, 2019). We found two studies that evaluated the environ-
mental impact of silica sand production from industrial-grade quartz for
other applications than PV, but none for low-quality quartz mining. The
carbon footprint of extracting industrial-grade quartz for glass in Croatia
was 43 kg COy¢q per metric ton of silica sand (Grbes, 2015), but the CED
was not reported. In the other study, the natural resource consumption,
ecosystem quality, and human health associated with mining
industrial-grade quartz for foundry application in Poland was calculated
but not the carbon footprint and CED (Mitterpach et al., 2015).

To properly evaluate the environmental impact of PV manufacturing,
it is necessary to evaluate the impact of producing quartz for MG-Si in
various locations from various quality. This analysis is timely since
China is the largest MG-Si producer in the world (U.S. Geological Survey
(USGS) Mineral Commodity Summaries, 2020), but does not have
enough domestic high-quality quartz resources (Zhou and Yang, 2018)
and therefore either produce MG-Si from lower-quality resource or
import high-quality sands from other countries.

In addition to legal mines, illegal sand mining is an increasing
concern globally as quartz is the second most illegally traded product
(The Global Rise of Illegal Sand Mining, 2020). Illegal silica sand mining
is happening in more than 70 countries (Rege and Lavorgna, 2017).
Countries such as China, India, and Singapore with high growth rates
need a large amount of silica sand to expand their high-tech industries
(Ioannidou et al., 2020). This demand has increased silica sand price,
making illegal trades more attractive. For example, the average price of
imported silica sand by Singapore has increased from 3 t0190 $/metric
ton in the last ten years (UNEP, 2013). It is difficult to trace the origin of
the raw material, and some silica sand used for PV might be from illegal
mines. Therefore, current PV LCA assessments are likely under-
estimating the carbon and CED from manufacturing PV modules that
contain MG-Si from China.

The primary purpose of this study was to evaluate the carbon foot-
print and CED of producing MG-Si from various locations and purity to
meet the increasing global demand for Si PV manufacturing. We
compiled the availability and the purity of quartz deposits in the USA
(the leading silica sand producer), China (the primary silica sand con-
sumer), and the rest of the world. The main MG-Si producers in China
and the rest of the world were identified as well. Second, the amount of
silica sand and MG-Si production were compiled for international key
players, including the US, China, Australia, Cambodia, Malaysia, North
Korea, and Pakistan. Third, we modeled quartz mining, silica sand
extraction, and MG-Si production processes for the high-quality (>98%
purity), industrial-grade (95% purity), and low-quality (65% purity)
deposits to quantify the associated carbon footprint and CED. Global
warming potential (GWP) and CED were calculated for various scenarios
to estimate the environmental impacts of silica sand production and MG-
Si production from various domestic and foreign quartz deposits. This
work also identified the location of illegal mines that might be used by
MG-Si producers and quantified the carbon footprint and the CED of
extracting silica sand and producing MG-Si from illegal quartz.

2. Methods

The first step was to collect data on the location of quartz deposits
and purification, the annual silica sand production per country, and the
annual import/export amount of silica sand between leading producers
and primary consumers. In the second part, we used life-cycle assess-
ment to calculate the carbon footprint and CED for quartz mining, silica
sand extraction, and MG-Si production used in Si PV manufacturing.

2.1. Location of legal and illegal mines and MG-Si production

Data about the location, purity, annual production of active legal
mines in the USA, China, and other countries was collected from the
2020 U.S. Geological Survey (USGS) report (USGS Report, 2020), UN
Comtrade, 2020, companies’ annual report (Diatreme, 2019; Unimin
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Corporation, 2019), and literature (Allen and Voiland, 2016; Benson and
Wilson, 2015; Bide et al., 2016; Hackney et al., 2020; Hamidullah et al.,
1996; JIA et al., 2014; Koehnken and Rintoul, 2018; Lai et al., 2014;
Lines et al., 2004; Liu et al., 2019; Lumpur, 2010; U.S. International Trade
Commission, 2018, R. UNEP 2019; Mitchell, 2012; Piman and Shrestha,
2017; dos Santos et al., 2014; van der Meulen et al., 2009; Vatalis et al.,
2015; Zhao et al., 2017; Zhou and Yang, 2018). Data about the location
of illegal mines was obtained from articles published in local and in-
ternational news agencies from 2017 to 2020 (Beiser, 2017, 2015;
Berlinger, 2020; Menon, 2018; Meynen, 2017; Salopek, 2019), NGO
reports (F. Pearce, 2019), and published papers (Bendixen et al., 2019,
2017; loannidou et al., 2020). The annual production and location of
MG-Si producers were compiled from 2020 USGS reports (Schnebele,
2020; USGS, 2020).

2.2. Environmental impact assessments

2.2.1. Life-cycle assessment (LCA)

The objective of the LCA was to evaluate the carbon footprint and
CED of 1 kg of >99% purity MG-Si for Si-PV. The stages within the
system boundaries were quartz mining, silica sand extraction, and MG-Si
production (Fig. 1). The life cycle inventories for this study were taken
from published papers (Table S1), the International Energy Agency
(IEA) PVPS Task 12 (R. Frischknecht et al., 2020), Ecoinvent 3.6 Data-
base (Wernet et al., 2016), and DATASMART LCI (US-EI 2.2)(PRe--
Sustainability, 2019). Life cycle impact assessment was conducted using
SimaPro (PRe’-Sustainability, 2018). ReCipe2016 method was used for
global warming potential (GWP) analysis, and Cumulative Energy De-
mand V1.1 was used for energy assessment. Carbon footprint and CED
are the required impact categories from the International Energy Agency
Photovoltaics Power Systems Programme (IEA-PVPS) methodologies to
conduct LCA of photovoltaics systems (R. Frischknecht et al., 2020). The
CED is required to calculate the energy payback time (EPBT) and energy
return on investment (EROI) (Raugei et al., 2021), which are used to
compare different types of PV modules or other types of energy
technologies.

2.2.2. Quartz mining, silica sand extraction, and MG-Si production

The process for silica sand extraction from high-quality (>98%),
industrial-grade (95%), and low-quality (65%) quartz deposits was
based on existing industrial processes. The Unimin Co process was
selected to model the silica sand extraction process since they are the
leading global silica sand producer and transform quartz of various
purity. We divided the silica sand production into two main steps (Fig. 1)
(Unimin Corporation, 2019). The first step (quartz mining) begins with
removing the topsoil with loaders and bulldozers, excavation with ex-
cavators, transportation with lorry and conveyor belts, sieving, washing,
and dewatering. This step is similar for high-quality, industrial-grade,
and low-quality deposits. The second step (silica sand extraction) de-
pends on quartz purity and includes beneficiation processes such as
magnetic separation, flotation, and gravity separation to remove im-
purities physically or chemically. There is no need to use the benefici-
ation process for mines with the highest purity except for drying silica
sand before transportation to MG-Si facilities. In contrast, in mines with
industrial-grade and lower quality, beneficiation processes are required
to remove impurities.

Refining is required to increase the purity of silica sand to produce
MG-Si with more than 99% purity. At this stage, purified silica sand is
called MG-Si. Further purification is necessary to provide solar grade
silicon with 99.99999% purity that can be used for Si PV module
manufacturing. We modeled only MG-Si production for this study since
the silica sand quality does not affect the rest of the manufacturing
processes if the produced MG-Si reaches more than 99% purity. The MG-
Si production process was modeled based on IEA PVPS Task 12 and
Ecoinvent (Table S1 and Fig. S11).

Input data for the LCA, including required electricity and fuel at each
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Fig. 1. Study scope including silica sand and MG-Si production for manufacturing Si PV modules. Silica sand production entails two stages. The 1st step (quartz
mining) is similar for all types of quartz, and the 2nd step (silica sand extraction) depends on quartz purity. *Silica sand purity depends on initial quartz quality,

mining process, and extraction chosen.

stage, were estimated based on existing similar processes in literature
(Fig S5-S11 and Table S1). For the USA, we used the national average
electricity mix because quartz deposits are distributed all around the
country. The regional electricity was selected for China since potential
quartz deposits are distributed in some regions, primarily east and
southeast. A significant regional difference was reported for electricity
in China (Shen et al., 2019). China’s electricity was divided into six
regions (Northwest, North, Northeast, East, South, and Center) based on
energy resources for electricity in earlier research (Fig. S13) (Shen et al.,
2019). We selected a representative province for each region based on
the highest demand for silica sand. For example, Xinjiang had the
highest demand for silica sand and was chosen as a Northwest region
representative. Beijing, Liaoning, Fujian, Yunnan, and Sichuan were
selected for North, Northeast, East, South, and Center, respectively. The
carbon footprint and the CED of silica sand production and MG-Si pro-
duction in China were calculated based on Eq. (1) and Eq. (2).

. M
GWP, =" (EF,- x m) b}

0 M,
CED, = Zizl (ED,- x 72?:1%) )

Where t represents the type of product (e.g., silica sand or MG-Si), EF
represents the emission factor (kg CO2eq), ED represents the energy
demand factor (MJ), IM represents the amount of imported product, i
represents the countries, and n represents the number of countries.
Emission and energy demand factors were quantified based on the

impact category analysis of the target product in SimaPro software.
3. Results and discussion
3.1. Location of legal and illegal quartz mines and MG-Si production

3.1.1. Legal mines

The annual production of industrial-grade silica sand was compiled
from 1994 to 2019 (Fig. 2A and S14). The global production in 2019 was
329 million metric tons, with 35% of the production in North America,
46% in Europe, and 12% in the Asia-Pacific region (APAC). The USA was
the main industrial-grade silica sand producer, and 73% of its annual
production was used for hydraulic fracturing (USGS, 2020). The
Netherlands produced 37% and Spain 24% of the European production.
India (30%) and Malaysia (25%) were the leading producers in APAC.

Fig. 2B shows the mine locations of the top ten high-quality and
industrial-grade silica sand producers in the USA. Most of the US quartz
mines are located in Illinois, Ohio, Michigan, Texas, and North Carolina.
Unimin Corporation is the largest producer with an annual capacity
production of more than 41 million metric tons and 21 active quartz
deposits in the USA (Dolley, 2004; Unimin Corporation, 2019; Vatalis
et al., 2015). US Silica Inc. is the second-largest silica sand producer in
the USA with an annual production of 19 million metric tons and 15
mines (Silica Holdings, 2020; USGS, 2020). A small portion of
industrial-grade silica sand production in the US is currently used for
MG-Si production, and the majority is used for fracking in natural gas
and oil wells. However, due to the expected transition from fossil fuels to
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Fig. 2. (A) Annual industrial-grade silica sand production in the world from 1994 to 2019 and (B) The mines distribution of 10 major high-quality and industrial-
grade silica sand producers in the USA. Data was compiled from USGS annual reports (U.S. Geological Survey (USGS) Mineral Commodity Summaries 2019, 2020).

renewables in the next couple of years and the expected increasing de-
mand for high-quality sand, the production could shift to MG-Si
production.

High-quality silica sand is scarce, and only a few high-quality de-
posits, such as the Spruce Pine in North Carolina, USA, exist in the world
(Miiller et al., 2007; Vatalis et al., 2015). The location and amount of
global industrial-grade quartz deposits in 2019 were compiled (Fig. 3A).
Although typical sand is found everywhere, high-quality and
industrial-grade silica sand resources are not equally distributed, and
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some countries suffer from a high-quality deposits’ shortage. China has
no domestic high-quality and industrial-grade deposits and is highly
dependent on silica sand imports (Zhou and Yang, 2018). The main
silica sand suppliers for China MG-Si production were the USA and
Vietnam until 2012 and are now Cambodia, Australia, Malaysia, and
Pakistan (Fig. 3B). Other countries like India and the United Arab
Emirates also do not have enough high-quality resources to meet their
growing demand. A portion of this global demand was supplied via
documented international trades between producers and consumers, as
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Fig. 3. (A) Country-specific silica sand production from active industrial-grade quartz (95% SiO») mines in 2019. (B) Annual industrial-grade silica sand export to
China. Data was compiled from the annual UN Comtrade reports (United Nations Comtrade annual reports; International Trade Statistics Database). (C) Country-specific
MG-Si production in 2019. (D) annual MG-Si production from 2005 to 2019. Data was collected from USGS annual reports for A, C, & D (USGS 2020).
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reported by the UN. The lack of high purity quartz resources may lead to
the use of quartz resources with a lower purity which can consequently
increase MG-SI production’s carbon footprint.

3.1.2. Illegal mines

A review of news articles and NGO’s reports was conducted to
identify illegal quartz mines that might be used in the PV industry
(Table 1). We found that illegal quartz has been used in various in-
dustries, such as construction, glass, and PV. The compiled data shows
that illegal quartz might have been mined from illegal mines in
Cambodia and North Korea for the PV industry.

Many illegal mining activities were reported in countries close to
China. China itself does not have domestic high-quality quartz deposits,
and illegal domestic mines are mainly used in the construction industry.
To produce one kg of MG-Si (>99% purity), 2.7 kg of industrial-grade
quartz (95% purity) is required (R. Frischknecht et al., 2020). In 2019,
China needed to import 12.15 million metric tons of industrial-grade
silica sand from foreign resources for MG-Si production. However,
only 14% of this amount can be accounted through documented trades.
Meanwhile, multiple reports from NGOs and news agencies have iden-
tified illegal mining in Cambodia and North Korea that supplies silica
sand to China. Table 1 and Fig. S16 show the location of illegal mining in
North Korea, Cambodia, and the rest of the world (Berlinger, 2020;
Hackney et al., 2020; F. Pearce, 2019). Since there is no supply chain
tracing for silica, without knowing it, some Chinese MG-Si producers
might have used silica from those illegal mines.

3.1.3. MG-Si producers

The location of MG-Si producers (Fig. 3C) and the amount of annual
MG-Si production (Fig 3D and S17) were compiled. Since 2005, the
global MG-Si production has increased by about 60% and in 2019,
China, Russia, Norway, and the USA were the main producers. China
produced 64% of the global MG-Si production in 2019, and 85% of it
was produced in the Yunnan, Xinjiang, Sichuan, Guizhou, Hunan, and
Fujian provinces (Fig 4). Since 2012, China production has increased by
almost 500% and is expected to continue to grow to meet their demand
for PV cells and module production (International Energy Agency IEA,
2013; Masson and Kaizuka, 2020); however, this can change in the near
future due to policy favoring local manufacturing. The USA, the
third-largest PV market after China and Europe, implemented re-
strictions on Si PV modules imports from other countries, which can
affect the upstream process (e.g., MG-Si production) of Si PV module
manufacturing. For example, under the Section 201 of the US Trade Act
of 1974 in 2018, the USA has implemented a safeguard tariff (up to 30%)
on Si PV modules made by countries, such as China and Korea, that
contribute more than 3% of total PV imports to the USA (Pickerel, 2018;
Shum, 2018). The section 201 encourages some Chinese and Korean PV
manufacturers to move the manufacturing operation to the USA to avoid
the tariff. The other example is the US sanction against China under the
section 301 of the US Trade Act of 1974, where a 25% tariff was imposed
on Chinese PV modules in 2019. This pushed Chinese PV manufacturers
to shift their manufacturing bases to other countries like Malaysia and
Thailand (See-Yan, 2019; Masson and Kaizuka, 2020). The US sanction
against Chinese materials has encouraged REC Silicon, a major silicon
producer, to use investments to restart its US silicon production at
Moose Lake in Washington to fortify its position in the US PV market and
be considered under the Solar Energy Manufacturing for America
(SEMA) Act, a source of support US policymakers consider (Rai-Roche,
2021; Stoker, 2021). On the other hand, China has imposed various
tariffs, such as antidumping duties and countervailing duties on im-
ported PV modules from the USA, Korea, and Europe since 2014. Eu-
ropean countries were exempt after 2018, which for example,
encouraged the European companies, REC Silicon, to establish a joint
company with Chinese PV manufacturers in China. The current policies
in China, a major Si PV manufacturer, and in the USA, a major con-
sumer, can lead to setting up new PV manufacturing bases in other

Table 1
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Summary of illegal silica sand mines and potential usages.

Location of
illegal mines

Purity

Location of
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Applications
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Bangladesh
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China
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NA*
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NA

NA

NA
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grade

NA

NA
NA
NA

NA
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Industrial
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NA
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Industrial
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NA Construction

PV and
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China,
Malaysia,
and
Singapore

China Glass and
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NA Mining for
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China, Hong Construction

Kong,
Singapore,
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Iran
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NA NA
NA Construction

Singapore

Morocco

NA

NA

China PV and

construction
Russia NA
NA Construction

South Africa

NA

(Anthony et al.,
2015); (
Koehnken and
Rintoul, 2018)
(Mother Nature
Cambodia Inc,
2021); (
Anthony et al.,
2015); (
Koehnken and
Rintoul, 2018);
(F. Pearce,
2019)

(Allen and
Voiland, 2016);
(Koehnken and
Rintoul, 2018);
(Sharma and
Scarr, 2021)
(Tobella, 2015)

(Koehnken and
Rintoul, 2018)
(Anthony et al.,
2015); (IFEX,
2017); (Rege
and Lavorgna,
2017); (
Koehnken and
Rintoul, 2018);
(The Times of
India, 2019); (
F. Pearce, 2019)
(The New York
Times, 2010); (
Anthony et al.,
2015); (Beiser,
2015); (
Koehnken and
Rintoul, 2018);
(F. Pearce,
2019)
(Farahani and
Bayazidi, 2018)
(Beiser, 2015)
(Rege and
Lavorgna,
2017)

(Beiser, 2015)
(Ekin, 2017); (
Koehnken and
Rintoul, 2018)
(Anthony et al.,
2015); (Beiser,
2015); (
Koehnken and
Rintoul, 2018)
(Beiser, 2015); (
Quérouil and de
Viguerie, 2015)
(Koehnken and
Rintoul, 2018)
(Beiser, 2015)
(Berlinger,
2020)
(Koehnken and
Rintoul, 2018)
(Koehnken and
Rintoul, 2018)
(Koehnken and
Rintoul, 2018)

(continued on next page)
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Table 1 (continued)

Location of Purity Location of Applications Ref
illegal mines consumers
(Koehnken and
Rintoul, 2018)
Thailand NA Foreign (Rege and
countries Lavorgna,
2017)
Ukraine Industrial NA NA (Koehnken and
grade Rintoul, 2018)
Vietnam NA Singapore Construction (The New York

Times, 2010); (
Beiser, 2015); (
Koehnken and
Rintoul, 2018)

*NA: Not Available.

regions like Europe.

3.2. Environmental impact assessments

3.2.1. Modeling silica sand extraction

When silica sand is produced from low-quality quartz, extra benefi-
ciation steps are required to remove impurities. The beneficiation pro-
cesses were selected based on the types and locations of mines. For
mines with access to natural water resources like rivers, the gravity
method, which requires a large amount of water, is possible, but residual
sediments might affect the downstream river ecosystem (Grbes, 2015).
The high purity quartz resources in China are shown in Fig. 4A. They are
mostly located in the east, south, and center of China and have an
average purity of 65% (JIA et al., 2014; Zhou and Yang, 2018). Fig. 4B
shows available foreign silica sand resources for China. We modeled
quartz mining and silica sand extraction process for various scenarios to
evaluate the carbon footprint of supplying silica sand needed for MG-Si
production in China now and in the future. Fig. 4B describes the sce-
narios considered. The assumptions and modeling inputs for quartz
mining and silica sand extraction (e.g., transportation distances, energy
types, energy resources in various regions, required energy and mate-
rials for equipment used in each step of mining and extraction, etc.) are
summarized in Table S1 and Fig. S5-S10.

The GWP and CED of extracting silica sand from high-quality (>98%
silica) and industrial-grade quartz (95% silica) were calculated for the
USA (Fig. 5A and D). The average GWP of extracting one metric ton of
silica sand from high-quality deposits in the USA was 22.7 kg of COaz¢q,
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while it was more than double (47.9 kg of COa2¢q) for industrial-grade
deposits due to the beneficiation processes needed to remove impu-
rities from industrial-grade quartz. In the only paper we found on
industrial-grade silica sand production, which was modeled for glass
production in Croatia, the GWP was 43 kg COx¢q for the required silica
sand needed for glass production in Croatia (Grbes, 2015). The differ-
ence is due to calculating the carbon footprint based on various silica
sand production procedures and the source of electricity used in Croatia
and the US. We modeled the separation stages, such as magnetic and
flotation, which are necessary to remove impurities from
industrial-grade quartz. In our study, the required energy for extracting
silica sand from high-quality deposits was 339 MJ/metric ton of silica
sand and increased to 1010 MJ for industrial-grade quartz. Compared to
the current process commonly used in PV LCA, this number is almost
three times higher than high-quality quartz. We also analyzed the car-
bon footprint of silica sand extraction in leading silica sand producers in
Europe (Fig. S18). The highest carbon footprint was for producing one
metric ton of silica sand in the Netherlands (44.8 kg of CO2¢q), and the
lowest carbon footprint was for France (41.8 kg of COg¢q).

Fig. 5B and C show the GWP of silica sand for MG-Si production in
China. The baseline scenario for China was based on high-quality quartz.
The GWP of imported industrial-grade silica sand from legal mines was
117 kg COyeq for Australia, 78.3 kg COaeq for Pakistan, 69.3 kg COz¢q for
Malaysia, and 58.3 kg CO2¢q for Cambodia Fig. 5B). For illegal mines in
North Korea, the GWP was 46.8 kg COa¢q. The difference by country is
due to differences in electricity mix and fuel types necessary for mining
operations and distance to China. When considering silica sand imports
reported by the UN (51% Australia, 45%, Cambodia, 1% Malaysia, and
3% Pakistan), the GWP was 88.9 kg COz¢q (Eq. (1) & (2). For domestic
low-quality quartz, the GWP depends on the type of beneficiation pro-
cess (Fig. 5C) and was 74.6 kg CO2¢q for the magnetic separation, 75.1 kg
COx¢q for the gravity separation, and 86.7 kg COazeq for the flotation per
metric ton of silica sand, The flotation technique had a higher GWP due
to higher fuel requirements. For foreign sand supply, the important
parameter that affects the final product’s carbon footprint is quartz
purity, which is decreasing over time (Calvo et al., 2016) and could
increase the carbon footprints of future Si PV products. The associated
carbon footprint of low-quality silica sand can increase up to three times
(Fig. 5B and 5C).

The lowest CED was for importing industrial silica sand from illegal
mines in North Korea, which was 875 MJ per metric ton of industrial
silica sand (Fig. 5E). The highest CED was 1890 MJ for Australia. The
CED of domestic low-quality quartz was 1120 to 1580 MJ (Fig. 5F). This

(B)

LCA Scenario Description
» Extracting siljca sand High-qgality deposits (.>98% SiOz)
> from domestic quartz Industrial-grade deposits (95% SiO,)
Baseline Extracting silica sand from high-quality
deposits
Imported Legal Australia (AU)
industrial-grade mines Cambodia (KH)
@ Silicasand Malaysia (MY)
c Pakistan (PK)
g 51% AU, 45% KH, 15 MY, and 3%PK

llegal  Cambodia (KH)
mines  North Korea (NK)

Extracting silica Low-quality quartz (65% SiO,) using

sand from domestic gravity separation technique

quartz Low-quality quartz using flotation
technique
Low-quality quartz using magnetic
separation technique

Fig. 4. (A) The regional production of MG-Si (colored provinces) (adopted from (Liu, 2015; U.S. Geological Survey (USGS) Mineral Commodity Summaries 2019,
2020)) and potential domestic quartz deposits (orange dots) for China. (B) LCA scenarios for quantifying the carbon footprint and the CED of supplying silica sand for
the US and China (The purity of deposits is >98% for high quality, 95% for industrial-grade, and 65% for low quality).
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Fig. 5. The GWP (A, B, C) and CED (D, E, F) of silica sand production for MG-Si production in the US and China for the scenarios mentioned in Fig. 4B.

value was 16-40% lower than importing industrial silica sand from
Australia but 28-81% higher than importing silica sand from North
Korea and 8-52% from Cambodia. The CED increased for extracting
silica sand from quartz with low purity, which needs to be considered for
calculating the EPBT and EROI of Si PV. CED is also an indicator of the
product cost (Anctil et al., 2011). Therefore, importing industrial-grade
silica sand from Cambodia and North Korea would be cheaper than
using domestic low-quality resources or importing from Australia,
Pakistan, and Malaysia.

One way of reducing the use of illegal quartz for Si manufacturing
would be through PV supply chain tracking and third-party certification.
One existing effort to improve supply chain transparency and PV sus-
tainability is the Electronic Product Environmental Assessment Tool
(EPEAT) ecolabel from the Green Electronics Council for Photovoltaic
Modules and Inverters (EPEAT Program, GEC, PVMI-2021). The product
criteria used the NSF International standard #457: Sustainability
Leadership for Photovoltaic Modules and Photovoltaic Inverters
(NSF/ANSI 457, 2019), which include disclosure and social criteria for
suppliers. There is an increasing concern about the use of forced labor in
the PV supply chain. In February 2021, the Solar Energy Industries As-
sociation (SEIA) and about 175 solar companies signed an agreement
opposing the use of forced workers in PV supply chains (Wagman,
2021). In June 2021, the US banned the import of Chinese polysilicon
from Xinjiang due to concerns of forced labor (The White House, 2021).
Overall, the PV industry supply chain is facing increasing scrutiny, but
most of the actions so far have been limited to forced labor, while there
are other potential concerns with illegal mining. Quartz mining is
becoming a global socio-environmental challenge. The mining industry
may positively impact local communities’ developments by creating
direct and indirect jobs. However, the possibility of excessive excavation

in illegal mining may have adverse effects in the long term, even though
there might be short-term financial benefits for local communities.
Mining silica sand from oceans and riverbeds is more interesting since
they are naturally crushed and ready to use. Riverbank sand is cheaper
since removing the salt is unnecessary (R. UNEP, 2019). But illegal and
excessive mining in rivers and oceans could create severe social and
environmental problems.

In Indonesia, 24 small islands and their ecosystems disappeared
between 2005 and 2010 due to excessive quartz mining and silica sand
extraction to export to Singapore (The New York Times, 2010). The
Mekong River is another example that silica sand mining threatens the
ecosystem. The Mekong River is the 10th longest river globally and
starts from China and passes through Laos, Thailand, Vietnam, and
Cambodia. The largest extractors are located in Cambodia, where they
extract 33 million metric tons of silica sand per year (Hackney et al.,
2020). Excessive silica sand mining may change the river morphology
and erosion pattern, affecting fisheries and, consequently, threatening
the main food source of 60 million people living in that region, as is
stated in the literature (Koehnken and Rintoul, 2018; Piman and
Shrestha, 2017). Farmers’ incomes can also be affected due to excessive
mining activities. A 20% reduction in Cambodia was reported due to a
lack of agricultural lands (DHI, 2015).

Quartz mining may also affect communities’ livelihood. In a survey
study in a village in Tangail District in Bangladesh, the local community
was concerned about potential disasters and the black market due to
quartz mining activities near their livelihoods (Khan and Sugie, 2015).
Depletion of groundwater, reduction of soil ability to provide nutrients,
increase the pH water and turbidity of the river, destruction of in-
frastructures, riverbank collapse, and social collapse are only some ex-
amples of mining silica sand in rivers that are also reported in the
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literature for mining activities (Koehnken and Rintoul, 2018; Lumpur,
2010; M. Naveen Saviour, 2012; Musah, 2009; Qin et al., 2020; R. UNEP
2019). Those socio-environmental impacts can be more severe for illegal
mines due to a lack of legislation and public awareness.

Recent changes in legislation in Cambodia have limited silica sand
extraction in the Mekong River and may affect export to China, which
could affect Si PV manufacturing. However, it is reported that China has
already started developing new low-cost purification methods (JIA
et al., 2014; Wanfang Data, 2021; Zhou and Yang, 2018) and will likely
start using domestic low-quality quartz resources.

3.2.2. Producing MG-Si from silica sand in the USA and China

The quartz purity affects the carbon footprint and CED of producing
MG-Si. Fig. 6A shows the LCA scenarios considered for MG-Si production
in the US and China. Table S1 and Fig. S11 provide additional details of
the MG-Si production model. The GWP to produce one kg of MG-Si from
imported industrial-grade silica sand was 12.1 kg COgeq (Fig. 6B). In
comparison, using domestic low-quality quartz produced 16.5 kg CO2¢q,
which is a 36% increase compared to imported industrial-grade silica
sand. The GWP of producing one kg of MG-Si in the USA was 12.0 kg
CO2¢q. The CED of producing one kg of MG-Si from current resources
(imported industrial-grade silica sand from 51% AU, 45% KH, 1% MY,
and 3% PK, (UN Comtrade)) was 188 MJ and increased by 53% (286 MJ)
if domestic low-quality quartz resources were used instead (Fig. 6C).
Silica sand purification requires a large amount of energy due to the
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required high temperature (about 1800 °C) to remove impurities from
silica sand. Low-quality quartz contains more impurities and conse-
quently requires more energy. The CED was 186 MJ for producing one
kg of MG-Si in the USA.

The increase in Si PV installations will increase the demand for MG-
Si production and likely increase the use of lower quality quartz due to
the limited availability of high-quality resources globally. Unless sig-
nificant progress is made in the process or either reducing the electricity
intensity, MG-Si production carbon footprint and CED could increase
over time and increase the carbon footprint and CED of Si PV products.
For silica sand production, the CED and carbon footprint are influenced
mainly by the transportation distance and the purity of quartz deposits.
For MG-Si production, the required electricity to remove impurities from
low-quality quartz plays a more significant role in increasing carbon
footprint and CED compared to the transportation distance, showing a
need to improve the MG-Si production technique before using low-
quality quartz deposits.

4. Conclusion

Manufacturing Si PV requires a large amount of quartz. Quartz purity
affects the carbon footprint and CED of producing MG-Si used in Si PV.
Previous studies focused only on scarce material and ignored quartz,
probably since quartz deposits are perceived as abundant and available
everywhere. Some countries, such as China, the global leading Si PV
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Fig. 6. (A) The LCA scenarios of producing one kg MG-Si from high- and low-quality silica sand and associated carbon footprint (B) and CED (C).
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producer, do not have high-quality (>98% purity) and industrial-grade
(95% purity) quartz deposits and are highly dependent on foreign re-
sources. Regulations restricting silica sand export to China may force
Chinese MG-Si producers to use domestic low-quality (65% purity)
quartz. China produced about 4.5 million metric tons MG-Si (64% of
global production) in 2019 (Fig. 3D). The transition from importing
high-quality or industrial-grade silica sand to mining low-quality do-
mestic quartz can increase MG-Si production’s annual carbon footprint
by at least 23% (Fig. 6B). This corresponds to the annual greenhouse gas
emissions from about nine million passenger cars. Currently, most MG-Si
is produced in China, but the USA production might increase since the
Biden administration plans to ensure the future is “Made in All of
America,” which would also have environmental benefits since China
does not have high-quality quartz.

Si PV companies should improve the efficiency of existing MG-Si
production before using low-quality quartz resources and increasing
the carbon footprint of PV. Upgraded MG-Si is a new technology that can
be a replacement for existing MG-Si production processes in terms of
cost and carbon footprint (Méndez et al., 2021). Other sources of silica
should be considered for MG-Si production, including secondary re-
sources such as rice husk ash (Azet et al., 2019; Joglekar et al., 2019) and
gold mining tails to reduce the pressure on natural resources (Okereafor
et al., 2020). We analyzed domestic scenarios based on today’s tech-
nology, which was assumed to be used in the future. It is recommended
to investigate the future mining technology in more detail and explore
how the technology changes can affect the silica sand production from
low-quality quartz. The evaluation of CED of quartz mining, silica sand
extraction, and MG-Si production can be used for calculating the energy
return on investment (EROI) and the energy payback time (EPBT) of
silicon-based photovoltaics.

In addition to the environmental impact of MG-Si production, the
social impacts associated with quartz mining are not often discussed in
the literature. Global silica sand production has tripled in the last
decade. Even though the implication of quartz mining projects can have
short positive effects such as creating temporary jobs for locals, it may
have severe long impacts on local livelihood, particularly in regions with
limited regulations. The New York Times has recently reported that
some countries have regulations that may let MG-Si producers hire
forced workers from ethnic minorities in an unacceptable condition
(Swanson and Buckley, 2021). As previously discussed, there are efforts
to the recent ban on importing silicon from some producers based on
forced workers, which hire forced workers, is a proper effort from the US
government, but it should not be limited to forced labor. Apart from
inefficient rules for quartz mining, illegal mines can have more severe
impacts on the environment and local communities, which are ignored
in the literature. The PV installation is increasing and can result in a
more serious silica sand shortage. This would create more space for
“Sand Mafias” to fill the gap between market demand and supply as it
has been happening for providing the required silica sand for con-
struction in more than 70 countries (Rege and Lavorgna, 2017). So, it is
essential to pay attention to potential environmental and social issues of
illegal mining as well. Recent efforts such as EPEAT ecolabel, as formerly
mentioned, are helpful to increase the transparency of the PV supply
chain, which needs to be expanded to reduce the risk of using illegal raw
materials for PV. Solar PV is a greener alternative to current electricity
production, but its image could be tarnished by an increasing
manufacturing carbon footprint, or even worst, using quartz from illegal
mines and forced labor. To ensure PV remains a sustainable energy
option, we must ensure that PV supply chains are free from unethical
activities such as using illegal mining and forced labor.
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