Developing Computational Thinking through Project-Based Airplane Design Activities

Dazhi Yang, Ph.D.
Educational Technology Department
Boise State University
Boise, ID USA
dazhiyang@boisestate.edu

Youngkyun Baek, Ph.D.
Educational Technology Department
Boise State University
Boise, ID USA
youngkyunbaek@boisestate.edu

Steve Swanson, Ph.D.
Distinguished Educator in Residence
Boise State University
Boise, ID USA
steveswanson@boisestate.edu

Abstract-This study investigated the outcome of project-based, airplane design activities on promoting computational thinking (Cl) in sixth g1·ade students in the context of anintegrated STEM learning environment. A cuniculum unit of airplane design activities was implemented in a sixth grade classroom over 10 days. The students' CT skills measured by the Bebras Challenges were significantly improved afte1·their completion of the airplane design cmTiculum unit.

Keywords--computatio11al th.i11king, i11tegrated STEM, computi11g education, e11gineering design, project-based learning

I. INIRODUCTION

Computational thinking (CT) is a fundamental skill that involves problem fonnulation, problem-solving and scientific reasoning [1]. The integration of CT in elementaly ClllTiculum has the potential to improve student learning of subject content and problem solving [2]. This study, a sub-study of a large research project, focused on CT in sixth graders within the context of an integrated STEM learning environment. Specifically, this study aimed to investigate the outcome of project-based, aiiplane design activities on sixth graders' CT skills after they hadpaiticipated in a ClllTiculum unit centered on aiiplane design activities. The underlying rationale of this study was consistent with that of the cunent reseai ch on computing education, which is teaching and leaining computing skills such as CT does not necessarily involve computers or coding [3].

II. LITERATURE REVIEW

Integrated STEM was defined as an integration to facilitate students working on complex tasks "that requil e students to use knowledge and skills from multiple disciplines" (4] (NAE & NRC, 2014, p. 52). This approach was intended to teach STEM in a connected manner with real world problem solving. Many studies have repmted proinising benefits of an integrated approach [2] (5]. In US elementaly schools, teachers are responsible for multiple subject ai eas and an integrated ClllTiculum has a practical value to teach and engage students in computing and computational thinking.

Integrated STEM lea1ning hasbeen beneficial not only for computing education but also for engineering design especially for pre-college students [6]. For example, an integrated STEM leaining environment could facilitate in applying engineering design processes with young leai11ers that helped children learn and practice CT skills in [7]. Hynes and colleagues' study also provided an example of what engineering thinking and CT would look like for young students while applying vaiious disciplinary knowledge dming design activities.

Project-based leaining (PBL) engages students in constructing knowledge and learning skills through an extended peliod centered around solving real world problems [8]. In PBL, leaining activities and objectives are driven by an overall guiding question with students showcasing their products often through a final competition. The PBL approach with hands-on activities allows students to investigate relevant problems, which is consistent with best practices (e.g., inquiry-based activities) for STEM lealning [9]. For example, instead of teacher's lecturing about the relationship between music and mathematics, students cail be guided to compose music to discover the connections for themselves. PBL is also one of the most adopted approaches to integrating CT in vaiious content subject ai eas [10].

Yang and colleagues explored the practice of CT with upper level elementary students in a project-based, integrated STEM leaining environment in an afterschool setting and pointed out that the practice of CT bystudents seemed to be closely related to specific leaining tasks [6]. Their study also called for finther investigation of such association. Therefore, this study focused on the investigation of CT in sixth grade students after they had paiticipated in a unit of PBL guided aitplanedesign activities in the context of an integrated STEM leaining environment in a fonnal classroom setting, which required students to apply the subject knowledge of engineering, science, mathematics and technology as well as CT to solve a design challenge. The research question guiding this study was: Could integrated aitplane design activities guided by PBL promote computational thiitking in sixth grade students in a fonnal classroom setting?

III. THEORETICAL FRAMEWORK

The authors chose eleven CT components as the foundation for this study based on relevant literature (e.g., [11] [12] [13]). The components were: a) CT vocabulary such as variables,

This studywas funded by the National Science Foundation.

modeling, testing and debugging; b) Abstractio as sense making through reducing complexity and generalizing from specific instances; c) Algorithm as applying set of tools or sequence of steps to solve problems; d) Co cahon as desciiptions supp011ed by graphs, visualizat10ns, and computational analysis; e) Conditional logic as using strategies to clarify problems and solutions; f) Data collection as gathe g data to define or solve a problem; g) Data st11.1ctures, analysis and representation as exploring data to find patterns, causes, ti ends, or results tofacilitate problem solving; h) Decomposition as simplifying problems or specifying steps to solve problems; i) Heuristics as applying experience-bas_ strategie.s that facilitates problem solving; j) Pattern recognition as recognizing repeated patterns; k) Simulation and modeling as m pulating data or concepts through conti-olled programs or exercises.

Subsequently, these CT components (see Table 1) were embedded in the airplane design activities by the research team iliat consisted of an interdisciplinaity group of researchers from educational technology, engineering, and mathematics education. The au.plane design activities further were aligned with the cuniculum standards. The aligrunent between the design activities and ilie content standards of science, engineeiing and technology was detennined by ilie teacher teaching the specific grade level.

TABIEI CT EMBEDDED IN THE BRIDGE BUILDING PROJECT

CT Component	Desniption				
CT vocabulary and tenninology	Such as variables, data, modeling, testing and debugging, iterative [11] [13]				
Abstraction	Reducing complexity and generalizing from specific instances to makesense of things. The abstraction process allows building complex designs and large systems [14] [1]				
Algorithm	Applying specific set of tools or sequence of steps (processes) to solve problems [15][16]				
Communication	Written and oraldescriptions supported by graphs, visualizations, and computational analysis [17]				
Conditional logic	Using strategy such as an "if-then-else" construct to clarify problems and solutions [1]				
Data collection	Gathering data to define or solve a problem [18][19]				
Data structures, analysis and representation	Exploring data to find patterns, causes, trends, or results to facilitate the knowledge construction and problem solving [19][18]				
Decomposition	Simplifying problems or specifyingsteps to solve problems [20]				
Heuristics	Applying experience-based strategy that facilitates problem solving, such as "trial and error" [16]				
Pattern recognition	Recognizing repeated patterns such as iteration or recursion [12] [19]				
Simulation and modeling	Manipulating data or concepts through controlled programs or exercises or creating such programs for data manipulations [18]				

IV. METHOD

The study pailicipants consisted of51sixthgraders from_two classes at a suburban elementaly school. The PBL gmded cuniculum unit consisted of eight au plane design lessons for 10 days, geared towards developing CT and problem-solvingskills as well as student leailling about how forces (drag, thrnst, lift and gravity) work on an aitplane. Table II lists the learning objectives in the f01m of guiding questions and specific sn1de t activities regarding the aitplane design. The smdents worked m small groups of four to five smdents, and two teachers le? and facilitated tlleiJ. own class. Both teachers hadbeen tramed m CT and the content of the aitplane design activities, and had facilitated a longer version of the PBL cuniculum unit in an eight-week afterschool program with small groups of 4th to 6th grade students theprevious semester [6].

TABEL II. STIJDENT AIRPLANE DESIGN ACTIVITIES

problems?/What makes a good team? Design Unit Review CT compone Create a hypothesis			
How do teams solve problems?/What makes a good team? Day2 How do teams solve problems?/What makes a good team? Introduce the Aitplar Design Unit Review CT components.			
I The state of the	Introduce theAitplane		
fly? whatmakesanaitpla Creating a paper aitprototype Test prototype Debrief on successe failures	nefly plane		
Day3 I. What are the four forces of flight? 2. How do wings keep an aitplane in the air? Explore Bernoulli's Principle on flight Explore a wing's rol- fli!!ht	ofF1ight avity e in		
Day4 I. What is theBernoulli principle? 2. How does the angleof attack affect lift and drag? I. What is theBernoulli principle? Work Stations (Bern Principle, Center of Gravity, Wmg Cros Section, 4 Forces Reinforcement, and Aimlane Parts)	oulli s-		
Days How doeschanging the angle of attack affect the lift and drag of an aitplane? Build glider/prototyp glider Revise the design/Ch angle of attack	e/Test		
Day6 How canwe make an aitplane stable? Same as above			
Day 7 & How canwe build an aitplane that flies the farthest?			
Day9 Same as above Same as above			
Dayl0 Determine the best aitplane Final contest			

Dming the first session of the PBL miit, the teachers intluduced the leaning objectives, dtiving question and pmpose of the unit. Most itnp011antly, the teachers explained the Problem Solving Process Cha11 (PSC) (see Figme 1) iliat

mapped CT with the problem-solving and engineering design processes and activities [6].

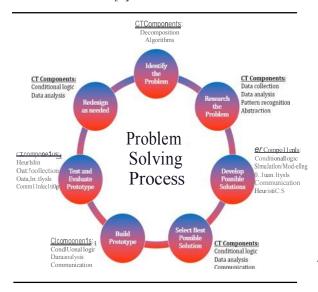


Fig. 1. Problemsolving chart.

Various CT components (Table 1) were covered and practiced dwing various design and inquity activities in the lessons. For example, abstraction was practiced when students needed to apply the the01ies of forces dw-ing the design of an airplane and its wings. Communication and data analysis were practiced when students needed to test and revise their airplanes.

A Bebras Challenges test consisting of 10 problems with different tasks [21] was administered to all students before and after the cuniculum unit. The Bebra.s Challenges examined students' logic and CT skills through different types of problems with three levels of difficulty which was frequently adapted by researchers to measure elementaly students' CT [22]. The examined logic and CT skills in the test were closely related to what the airplane design unit/cuniculum focused on. The challenges took about 35 minutes to finish. 39 sn1dents completed both tests.

V. RESULT ANDIMPLICATION

Data analysis showed that the student CT skills were significantly improved (p=.04) after completing the anplane design unit activities. Table III summarizes the students' CT as measured by the pre- and post-challenge test. The results demonstrated that for those paiticipants the PBL and integrated ailplane design activities helped not only teaching the subject content knowledge but also provided an opportwrity to learn and practice CT. The anplane design activities integrated with CT seemed to help students better solve the design challenges as students practiced vai-ious CT components dming decomposition of the problems and finding solutions.

It is interesting to note that although the anplane design activities guidedby the PBL approach were not focused on logic and algorithms like coding or programming activities, such design activities do help snldents learn CT components like conditional logic as tested by the Bebras Challenges. This

finding would help reseai-chers expaild CT integration beyond the usual coding and programming to a non-coding and programming approach.

TABLE III. PARTICIPANTS' PRE-AND POST-CHAILENGE PERFORMANCE

Pre-Challe.nge			Post-Challenge				
Min	Max	M	SD	Min	Max	M	SD
	7	4.28	1.67		9	4.75	1.99

The study has limitations. First, the Bebras Challenges test focuses on logic and pattern recognition and is not fully representative of all the CT components embedded (see Table 1) in the cm1iculum unit. Second, most smdents had not been trained in completing questions like the Bebras Challenges, which Inight also help explain the low means for both the preaild post-challenge perfonnance. Students' wifamiliaiity with the type of challenge questions Inight have particulai-ly affected students' perfonnance on the pre-challenge test (their first time encountering such questions).

Given the increasing popularity of integrating CT in elementary cw1iculwn, this study has impol1ant implications for integrating CT in K-12 education, especially for computing education and engnleeling education. The study shows that it could be feasible to achieve a complex learning goal of computing education and engineering education via project-based leaillll1g forelementary students. The study fills a research gap of using PBL guided engineering design activities to develop CT in sn1dents.

ACKNOWLEDGMENT

We wish to thank the National Science Foundation for supporting this study.

REFERENCES

- J. Wing, "Computational thinking and thinking about computing," Philosophical Transactions. Series A, Mathematical, Physical, and Engineering Sciences, vol. 366, 2008, pp. 3717-3725.
- [2] National Research Collllcil. "Committee for the Worlcshops on Computational Thinking: Report of a worlcshop of pedagogical aspects of computational thinking.," Washington, D.C., 2011.
- [3] C. Harris, "Computational Thinking Unplugged: Comparing the Impact on Confidence and Competence from Analog and Digital Resources in Computer Science Professional Development for Elementary Teachers," A Education doctoral Dissertation in Executive Leadership, 2018.
- [4] National Academy of Engineering and National Research Council, "STEM Integration in K-12 Education: Status, Prospects, and an Agenda for Research," Washington, DC: The National Academies Press, 2014.
- [5] D. Yang, ands.J. Baldwin, "Usingtechnologytosupportstudentleaming in an integrated S1EM learning environment," in International Journal of Technology in Education and Science, vol 4, 2020, pp. 1-11.
- [6] D. Yang, S. Swanson, B. Chittoori, and Y. Baek, "Work-in-Progress: Integrating computational thinking in S1EMeducation through a project-based learning approach," Proceedings of the American Society for Engineering Education (ASEE) Annual Conference and Exposition, Salt Lake City, UR, 2018.
- [7] M. M. Hynes, T. J. Moore, M. E. Cardella, K. M. Tank, S. Purzer, M. Menekse, and S. P. Brophy, "Inspiring computational thinking in yollllg children's engineering design activities," In Proceedings of the American

- Society for Engineering Education (ASEE) Conference & Exposition, New Orleans, Louisiana, 2016.
- [8] Buck Institute of Education (BIE), "Why project based learning?" 2017.
- [9] D. A Kolb, "Experiential learning: Experience as the source oflearning and development (2nd ed.)," Upper Saddle River, New Jersey: Pearson Education, Inc., 2014.
- [10] T. C. Hsu, S. C. Chang, and Y. T. Hung, (2018). "How to learn andhow to teach computational thinking: Suggestions based on a review of the literature," Computers & Education, vol 126, 2018, pp. 296-310.
- [11] K. Brennan, and M. Resnick, "New frameworles for studying and assessing the development of computational thinking," In American Educational Research Association meeting. Vancouver, BC, Canada, 2012
- [12] S. Grover, and R. Pea, "Computational thinking: A competency whose time has come," In S. Sentance, E. Barendsen, & C. Schulte (Eds.), Computer science education: Perspectives on teaching and learning, New York, NY: Bloomsbury Academic, 2018, pp. 19-38.
- [13] S. Y. Lye, and J. H. L. Koh, "Review on teaching and learning of computational thinking through programming: What is next for K-12?" Computers in Human Behavior, vol 41, 2014, pp. 51-61.
- [14] 1 Lee, F. Martin, J. Denner, B. Coulter, W. Allan, J. Erickson, ... and L. Werner, "Computational thinking for youth in practice," Acm Inroads, vol 2, 2011, pp. 32-37.
- [15] D. Barr, J. Harrison, and L. Conery, "Computational thinking: A digital age skill for everyone," Learning & Leading with Technology, vol 38, 2011, pp. 20-23.

- [16] A Yadav, N. Zhou, C. Mayfield, S. Hambrusch, and J. T. Kotb, "Introducing computational thinking in education courses," SIGCSE'11 - Proc.42nd ACM Tech.Symp. Comput. Sci. Educ., no. 1, pp. 465-470, 2011.
- [17] 0. Astrachan, and A. Briggs, "The CS principles project," ACM Inroads, vol 3, 2012, pp. 38-42.
- [18] Computer Science Teacher Association (CSTA), & International Societyfor Technology in Education (ISTE), "Computational Thinking Teacher Resources (Second ed.)," 2011.
- [19] S. Grover, and R. Pea, "Computational thinking in K-12: A review of the state of thefield," Educational Researcher, vol 42, 2013, pp. 38-43.
- [20] D. Catlin, and J. Woollard, "Educational robots and computational thinking," In Proceedings of 4th International Workshop Teaching Robotics, Teaching with Robotics & 5th International Conference Robotics in Education, Padova, Italy, 2014, pp. 144-151.
- [21] V. Dagiene, "Information technology contests introduction to computer science in an attractive way," Informatics in Education, vol 5, 2006, pp. 37-46.
- [22] Y. Baek, S. Wang, D. Yang, Y-H. Ching, S. Swanson, and B. Chittoori, "Revisiting second graders' robotics with an Understand/Use-Modify-Create (U2 MC) strategy," European Journal of STEM Education, vol 4, 2019: 07.