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Abstract. This paper continues the study of memory-tight reductions
(Auerbach et al., CRYPTO ’17). These are reductions that only incur
minimal memory costs over those of the original adversary, allowing pre-
cise security statements for memory-bounded adversaries (under appro-
priate assumptions expressed in terms of adversary time and memory
usage). Despite its importance, only a few techniques to achieve memory-
tightness are known and impossibility results in prior works show that
even basic, textbook reductions cannot be made memory-tight.

This paper introduces a new class of memory-tight reductions which
leverage random strings in the interaction with the adversary to hide
state information, thus shifting the memory costs to the adversary.

We exhibit this technique with several examples. We give memory-
tight proofs for digital signatures allowing many forgery attempts when
considering randomized message distributions or probabilistic RSA-
FDH signatures specifically. We prove security of the authenticated
encryption scheme Encrypt-then-PRF with a memory-tight reduction
to the underlying encryption scheme. By considering specific schemes or
restricted definitions we avoid generic impossibility results of Auerbach
et al. (CRYPTO ’17) and Ghoshal et al. (CRYPTO ’20).

As a further case study, we consider the textbook equivalence of CCA-
security for public-key encryption for one or multiple encryption queries.
We show two qualitatively different memory-tight versions of this result,
depending on the considered notion of CCA security.

Keywords: Provable security · Memory-tightness · Time-memory
trade-offs

1 Introduction

The aim of concrete security proofs is to lower bound, as precisely as possible,
the resources needed to break a cryptographic scheme of interest, under some
plausible assumptions. The traditional resource used in provable security is time
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complexity (as well as related metrics, like data complexity). Recent works [1,7,
9–12,15–17,20–22] have focused on additionally taking the memory costs of the
adversary into account. This is important, as the amount of available memory
can seriously impact the feasibility of an attack.

This paper presents new techniques for memory-tight reductions, a notion
introduced by Auerbach et al. [1] to relate the assumed time-memory hardness of
an underlying computational problem to the security of a scheme. More precisely,
the end goal is to prove, via a reduction, that any adversary running in time t and
with s bits of memory can achieve at most advantage ε = ε(t, s) in compromising
a scheme, by assuming that some underlying computational problem can only
be solved with advantage δ = δ(t′, s′) by algorithms running in time t′ and with
memory s′. A memory-tight reduction guarantees that s ≈ s′, and usually, we
want this to be tight also according to other parameters, i.e., t ≈ t′ and ε ≈ δ.

Memory-tight reductions are of value whenever the underlying problem is
(conjectured to) be memory sensitive, i.e., the time needed to solve it grows
as the amount of memory available to the adversary is reduced. Examples of
memory-sensitive problems include classical ones in the public-key setting, such
as breaking RSA and factoring, lattice problems and LPN, solving discrete log-
arithms over finite fields,1 as well as problems in the secret-key setting, such as
finding k-way collisions (for k > 2), finding several collisions at once [11], and
distinguishing random permutations from random functions [12,17,20].

Developing memory-tight reductions is not always easy, and can be (prov-
ably) impossible [1,15,16,22]. This makes it fundamental to develop as many
techniques as possible to obtain such reductions. In this paper, we identify a class
of examples which admit a new kind of memory-tight reductions. Our approach
relies on the availability of random strings exchanged between the adversary and
the security game, and which the reduction can leverage to encode state which
can be recovered from later queries of the adversary, without the need to store
this information locally, and thus saving memory. (In particular, the burden of
keeping this information remains on the adversary, which needs to reproduce
this random string for this state information to be relevant.) We present these
techniques abstractly in the next section, with the help of a motivating example,
and then move on to an overview of our specific results.

1.1 Our Techniques - An Overview

As a motivating example, consider the standard UFCMA security notion for
signatures. It is defined via a game where the attacker, given the verification key
vk, obtains signatures for chosen messages m1,m2, . . ., after which it outputs a
candidate message-signature pair (m∗, σ∗), and wins if m∗ was not signed before,
and σ∗ is valid for m∗. When ignoring memory, this notion is tightly equivalent
to one (which we refer to as mUFCMA) that allows for an arbitrary number

1 However, the discrete logarithm problem in elliptic-curve groups, or any other group
in which the best-known attacks are generic, is not memory sensitive, since optimal
memory-less attacks are known.
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of “forgery attempts” for pairs (m∗, σ∗), and the adversary wins if one of them
succeeds in the above sense. This is convenient: we generally target mUFCMA,
but only need to deal with proving the simpler UFCMA notion.

The classical reduction transforms any mUFCMA adversary into a roughly
equally efficient UFCMA adversary, which wins with the same probability, by (1)
simulating forgery queries using the verification key, and (2) outputting the first
forgery query (m∗, σ∗) which validates and such that m∗ is fresh. This reduction
is however not memory-tight, as we need to ensure the freshness of m∗, which
requires remembering the previously signed messages. ACFK [1] prove that this
is in some sense necessary, by showing that a (restricted) class of reductions
cannot be memory-tight via a reduction to streaming lower bounds.

Our idea: Efficient tagging. To illustrate our new technique, which we refer
to as efficient tagging, imagine now that we only use the signature scheme to sign
random messages m1,m2, . . . , mq ←$ {0, 1}�, and consider a corresponding vari-
ant of mUFCMA security, which we want to reduce to (plain) UFCMA security.
This, intuitively, does not seem to help resolve the above issue, because random
messages are hardest to compress.

However, what is important here is that the reduction is responsible for simu-
lating the random messages, and can simulate them in special ways, and program
them so that they encode state information. For instance, assume that the reduc-
tion has access to an injective random function f : [q] → {0, 1}�, with inverse
f−1, which can be simulated succinctly from a short key as a pseudorandom
object. Then, the reduction to UFCMA can set mi ← f(i) for the i-th query,
and upon simulating a forgery query for (m∗, σ∗), the reduction checks whether
f−1(m∗) ∈ [q] to learn whether m∗ is a fresh signing query or not.

Of course, the simulation is not perfect: The original mi’s are not necessarily
distinct (this can be handled via the classical “switching lemma”). Also, the
reduction could miss a valid forgery if the adversary outputs mi before it is
given to the adversary, but this again only occurs with small probability.

Inefficient tagging and non-time-tight reductions. In the above exam-
ple, we can efficiently check that f−1(m∗) ∈ [q]. However, in some cases we may
not – again, consider an example where the messages to be signed are sampled
as mi ← h(ri), where h is a hard-to-invert function and ri is random. Then, we
could adapt our proof above by setting mi ← h(f(i)), but now, to detect a prior
signing query, we would have to check whether m∗ = h(f(i)) for some i ∈ [q],
and this can only be done in linear time. The resulting UFCMA adversary runs
in time t′ = t+Θ(qF ·q), where t is the running time of the original adversary and
qF is the number of forgery attempts. For example, if q ≈ qF ≈ t, the reduction
is not time tight, and the adversary runs in time t′ = O(t2).

Are non-time-tight reductions useless? It turns out that such non-time-
tight reductions can still be helpful to infer that breaking a scheme requires
memory, although this ultimately depends on the concrete security of the prob-
lem targeted by the reduction. Say, for example, a reduction for a given scheme
transforms a successful adversary running in time t and using memory s into an
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adversary running in time t2 and using memory s breaking discrete logarithms
over Fp, for a 4096-bit prime p. It turns out that if we have fewer than 278

bits of memory, no known discrete logarithm algorithm is better than a generic
one (i.e. runs in time better than 22048), which means that our non-time-tight
reduction is still sufficient to infer security for any s < 278 as long as t < 21024.

Message encoding. At the highest level, what happens is that the reduction is
in control of certain random values which we can exploit to hide state information
which can later be uniquely recovered, since triggering a situation where the
reduction needs to remember requires the adversary to actually give back to
the reduction this value. In the above, this state information is simple, namely
whether the query is old or not. But as we will show below, the paradigm can
be used to store complex information – we refer to this technique as message
encoding, and discuss an example below.

A New Viewpoint: F-oracle adversaries. In our technique described
above we needed access to a large random injection, which we argue can be
simulated pseudorandomly. Prior works have similarly used PRFs to pseudoran-
domly simulate random oracles [1,6] with low memory. The fact that one needs
to decide how to simulate such objects when stating a memory-tight reduction
is rather inconvenient: different instantiations seemingly lead to quantitatively
different reductions, although this fact does not appear to be a reflection of any
particular reality. In this paper, we propose (and advocate for) what we believe to
be the “right” viewpoint: Our reductions are stated in terms of F-oracle adver-
saries where F is a set of functions and such an adversary expects oracle access
to a random f ∈ F . Then, a memory-tightness theorem is obtained in one of two
ways, by either (1) applying a generic lemma stating that f can be instantiated
in low memory using an F-pseudorandom function, or (2) assuming that the use
of f does not functionally increase the success chances of the adversary because
f is independent of the problem instance being solved (this is provably the case
for some information theoretic problems). In particular, (1) is more conservative
than (2), but it is very likely that (2) is also a viable approach which leads to
cleaner result – indeed, we do not expect any of the considered memory-sensitive
problems to become easier given access to an oracle from any natural class F –
e.g., Factoring does not become easier given access to a random injection.

1.2 Our Results

We now move to an overview of our results (summarized in Fig. 1) which exem-
plify different applications of the tagging and message-encoding techniques.

Multi-challenge Security of Digital Signatures. Our first results
consider the security of digital signatures in the face of multiple forgery
attempts (i.e., challenge queries), generalizing the examples discussed above.
We work with a notion we refer to as UFRMA (unforgeability under random-
ized message attack). This notion is parameterized by a message distribution
D and when the attacker makes a signing query for m it receives a signature
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of m′ = D(m; r) for a random r. If m and r can be extracted from m′, giving
the notion xUFRMA (or mxUFRMA for many forgery attempts), we can gen-
eralize our efficient tagging approach above by having the reduction to UFCMA
choose r = f(m, i) where each f(m, ·) is a random injection. This setting can
capture, e.g., the signatures used in key exchange protocols like TLS 1.3 where
the server signs a transcript which includes a random 256-bit nonce. A version
of our inefficient tagging example works when only m can be extracted from m′

(wUFRMA); we pick r = f(m, i) and in verification of a forgery query perform
the linear time check of whether m∗ = D(m; f(m, i)) for some i ∈ [q]. This
setting captures places where the message to be signed includes a fresh public
key or ciphertext. This includes, for example, the use of signatures for signing
certificates, in some key exchange protocols, and in signcryption.

We further prove mUFCMA security for particular schemes. First, we can
randomize any digital signature scheme DS (obtaining a scheme we call RDS)
by signing m ‖ r for random r chosen by the signing algorithm and including r
as part of the signature. An immediate implication of our mxUFCRA result is
a tight reduction from the mUFCMA security of RDS to the UFCMA security
of the underlying scheme. One particular instantiation of RDS is Probabilistic
Full Domain Hash with RSA (RSA-PFDH) which was introduced by Coron [8] to
provide a variant of Full Domain Hash [4] with an (advantage-) tighter security
proof. Using our efficient tagging technique we obtain a fully tight proof of the
strong mUFCMA security of RSA-PFDH from the RSA assumption.

In independent and concurrent work, Diemert, Gellert, Jager, and Lyu [10]
studied the mUFCMA security of digital signature schemes. They also considered
the RDS construction, proving that if DS can be proven strong UFCMA1 secure2

with a restricted class of “canonical” memory-tight reductions then there is a
memory-tight reduction for the strong mUFCMA security of RDS. This com-
plements our result, showing memory-tight strong mUFCMA security of RDS
based on a restricted class of schemes while our result proves memory-tight plain
mUFCMA security based on any plain UFCMA scheme. They apply their RDS
result to establish tight proofs for the strong mUFCMA security of RSA-PFDH
(matching our direct proof in Theorem 3). as well as schemes based on lossy
identification schemes and pairings.

Authenticated Encryption Security. Ghoshal, Jaeger, and Tessaro [15]
have recently observed that in the context of authenticated encryption (AE), it is
difficult to lift confidentiality of the scheme, in terms of INDR security, to full AE
security, when additionally assuming ciphertext integrity, if we want to do so in a
memory-tight way. This is well motivated, as several works establish tight time-
memory trade-offs for INDR security [9,12,17,20,21], which we would like to lift
to their AE security. The difficulty in the proof is that the INDR reduction must
simulate a decryption oracle which rejects all ciphertexts except those forwarded
from an encryption query. Recognizing these forwarded ciphertexts seems to
require remembering state.

2 The suffix ‘1’ indicates a variant of UFCMA security in which the adversary can
only obtain a single signature per message. The security game always returning the
same signature if the adversary repeats signature queries.
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Fig. 1. Memory-tight reductions we provide. A 1 vs. an m prefix indicates whether one
or many challenge queries are allowed. A ✓ vs. an ✗ indicates whether the reduction
is tight with respect to that complexity metric. Reductions lacking tightness multiply
running time/advantage by O(q) or add O(q) to the memory complexity, where q is the
number of queries. An x vs. a w indicates whether the coins underlying the distribution
of messages can be extracted from the message. RDS is randomization of any digital
signature scheme by padding input messages with randomness. RSA-PFDH is proba-
bilistic full-domain hash with RSA. EtP is the Encrypt-then-PRF AE construction.

Here, we give a different take and show that for specific schemes – in particu-
lar, those obtained by adding integrity via a PRF, following the lines of [3,18,19]
– a memory-tight reduction can be given. Our INDR reduction is applied after
arguing that the PRF looks like a random function f and thus forgeries are
unlikely to occur. It uses f in a version of our efficient tagging technique to
identify whether a ciphertext queried to decryption is fresh.3

Chosen ciphertext security: One to many. A classical textbook result
for public-key encryption shows that CCA-security against a single encryption
query (1CCA) implies security against multiple queries (mCCA), with a quanti-
tative advantage loss accounting to the number of such queries. ACFK [1] claim,
incorrectly, that the associated reduction from 1CCA to mCCA is easy to make
memory-tight, but this appears to be an oversight: No such reduction is known,
and here we use our techniques to recover a memory-tight version of this result.

Let us consider concretely the “left-or-right” formulation of 1CCA/mCCA-
security: The reduction from 1CCA to mCCA, given an adversary A, picks a
random i ←$ [q] (where q is the number of encryption queries) and simulates the
multi-query challenger to A by answering its first i − 1 encryption queries with
an encryption of the left message, whereas the last q − i queries are answered
by encrypting the right message. Only the answer to the i-th query is answered
by the single-query challenger. A problem arises when simulating the decryption
queries: Indeed, we need to guarantee that a decryption query for any of the
challenge ciphertexts c∗

1, . . . , c
∗
q returns an error ⊥, yet this suggests that we

seemingly need to remember the extra challenge ciphertexts c∗
j for j �= i.

3 Ghoshal et al. [15] in fact described three variants of AE with different conven-
tions for how decryption responds to non-fresh queries. By our results, memory-tight
reductions to INDR are possible for two of the three variants.
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We will resolve this in two ways. First, we give a new memory-tight reduction
using the inefficient tagging method, with the same advantage loss as the original
textbook reduction. Our reduction is non-time-tight, so may not be suitable for
all situations. The main idea here is that we use the randomness used to generate
the challenge ciphertext as our tag.

To obtain a reduction which is also tight with respect to time, we resort
to the observation that changing to a stronger (but still commonly achieved)
definition of CCA-security allows for different memory-tight reductions. We give
in particular a memory-tight and time-tight reduction (with the usual factor q
advantage loss) from the notion of 1$CCA-m security to the notion of m$CCA-m
security. These are variants of CCA security where (1) encryption queries are
with respect to a single message, and return either the encryption of the message,
or a random, independent ciphertext, and (2) decryption queries on a challenge
ciphertext c∗

i returns the associated message.
Our reduction uses the full power of our message encoding approach, sim-

ulating random ciphertexts in a careful way which allows for recovering the
associated challenge plaintext.

A few remarks. The above results on CCA security show us that the ability
to give a memory-tight reduction is strongly coupled with definitional choices. In
particular, different equivalent approaches to modeling the decryption oracle in
the memory unbounded regime may not be equivalent in the memory-bounded
setting. This means in particular that we need to exercise more care in choos-
ing the right definition. We believe, for example, that the approach taken in
m$CCA-m security is the more “natural” one (as it does not require artificially
blocking the output of the decryption oracle, by always returning a message),
but there may be contexts where other definitional choices are favored.

Another important lesson learnt from our AE result is that impossibility
results, such as those in [1,15,16,22], do not preclude positive results in form of
memory-tight reductions, either by leveraging the structure of specific schemes,
or by considering restricted security notions.

1.3 Paper Outline

Section 2 introduces notation, our computational model, and basic cryptographic
background. Section 3 discusses our convention of using F-oracle adversaries.
Section 4 gives our memory-tight reduction for digital signature schemes when
many forgery attempts are allowed. In particular, the generic results are in
Sect. 4.2, while the result specific to RSA-PFDH is in Sect. 4.5. Section 5 proves
the security of Encrypt-then-PRF with a memory-tight reduction to the INDR
security of the encryption scheme. Section 6 gives our results relating the one- and
many-challenge query variants of CCA security. In particular, Sect. 6.1 gives our
result for the traditional “left-vs.-right” notion and Sect. 6.2 gives our result for
the “indistinguishable from random” variant. The full version of this paper [14]
contains omitted proofs.
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2 Preliminaries

Let N = {0, 1, . . . } and [n] = {1, . . . , n} for n ∈ N. If x ∈ {0, 1}∗ is a string,
then |x| denotes its length in bits. If S is a set, then |S| denotes its size. We let
x ‖ y ‖ . . . denote an encoding of the strings x, y, . . . from which the constituent
strings can be unambiguously recovered. We identify bitstrings with integers in
the standard way.

Functions. Let T be a set (called the tweak set) and for each t ∈ T let Dt and
Rt be sets. Then Fcs(T,D,R) denotes the set of all f such that for each t ∈ T ,
f(t, ·) is a function from Dt to Rt. Similarly, Inj(T,D,R) denotes the set of all
f such that for each t ∈ T , f(t, ·) is an injection from Dt to Rt. When Dt or Rt

are independent of the choice of t we may omit the subscript.
If f ∈ Inj(T,D,R), then its inverse f−1 is defined by f−1(t, f(t, x)) = x for all

(t, x) and f−1(t, y) = ⊥ for y �∈ f(t,Dt). For such f we let f± denote the function
defined by f±(+, x) = f(x) and f±(−, x) = f−1(x). We let Inj±(T,D,R) =
{f± : f ∈ Inj(T,D,R)}.

2.1 Computational Model

Pseudocode. We regularly use pseudocode inspired by the code-based frame-
work of [5]. We think of algorithms as randomized RAMs when not specified
otherwise. If A is an algorithm, then y ← AO1,...(x1, . . . ; r) denotes running A
on inputs x1, . . . with coins r and access to the oracles O1, . . . to produce output
y. When the coins are implicit we write ←$ in place of ← and omit r.

We let x ←$ D denote sampling x according to the distribution D. If D is a
set, we overload notation and let D also denote the uniform distribution over
elements of D. The domain of D is denoted by [D].

Security notions are defined via games; for an example see Fig. 2. The prob-
ability that G outputs true is denoted Pr[G]. In proofs we sometimes define a
sequence of “hybrid” games in one figure, using comments of the form “//H[i,j).”
A line of code commented thusly is only included in the hybrids Hk for i ≤ k < j.
(We are of course referring only to values of k ∈ N.) By this convention to iden-
tify the differences between Hk−1 and Hk one looks for comments H[i,k) (code no
longer included in the k-th hybrid) and H[k,j) (code new to the k-th hybrid).

We let ⊥ be a special symbol used to indicate rejection. If we do not explicitly
include ⊥ in a set, then ⊥ is not contained in that set. If ⊥ is an input to a
function or algorithm, then we assume its output is ⊥. We do not distinguish
between ⊥ and tuples (⊥, . . . ,⊥). Algorithms cannot query ⊥ to their oracles.

Complexity measures. To measure the complexity of algorithms we follow
the conventions of measuring their local complexity, not including the complex-
ity of whatever oracles they interact with. Local complexity was preferred by
Auerbach et al. [1] for analyzing memory-limited adversaries so that analysis
can be agnostic to minor details of security definitions’ implementations. We
focus on worst-case runtime Time(A) and memory complexity Mem(A) (i.e.
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how many bits of state it stores for local computation). These exclude the inter-
nal complexity of oracles queried by A, but include the time and memory used
to write the query and receive the response. If A expects access to n oracles then
we let Query(A) = (q1, . . . , qn) where qi is an upper bound on the number of
queries to its i-th oracle. (Here we index from left to right, so for AO1,...,On the
i-th oracle is Oi.) If S is a scheme, then Time(S) and Mem(S) are the sums
of the corresponding complexities over all of its algorithms. If G is a game, then
we define Time(G) and Mem(G) to exclude the complexity of any adversaries
embedded in the game.

2.2 Cryptographic Background

Ideal models. Some schemes we look at may be proven secure in ideal models
(e.g. the random oracle or ideal cipher models). To capture this we can think of a
scheme S as specifying a set of functions S.I. At the beginning of a security game
a function h will be sampled from this set. The adversary and all algorithms of
S are given oracle access to h.

Fig. 2. Security game capturing the pseu-
dorandomness of function family F.

Function families. A family of func-
tions F specifies, for each K ∈ F.K, an
efficiently computable function FK ∈
F.F. We refer to F.F as the function
space of F. Pseudorandom (PR) secu-
rity of F is captured by the game
defined in Fig. 2. It measures how F
with a random key can be distinguished
from a random function in F.F via
oracle access. We define AdvprF (A) =
Pr[Gpr

F,1(A)] − Pr[Gpr
F,0(A)]. The standard notions of (tweakable) pseudorandom

functions/injections/permutations or strong injections/permutations are cap-
tured by appropriate choices of F.F.

Switching lemma. We make use of the following standard result which bounds
how well a random function and a random injection can be distinguished.

Lemma 1 (Switching Lemma). Fix T , D, and R. Let N = mint∈T |Rt|.
Then for any adversary A with q = Query(A) we have that

|Pr[Af ⇒ 1] − Pr[Ag ⇒ 1]| ≤ 0 · q2/N.

The probabilities are measured over the coins of A, the uniform choice of f from
Fcs(T,D,R), and the uniform choice of g from Inj(T,D,R).

Recent papers [11,17,20] have given improved versions of the switching lemma
for adversaries with bounded memory complexity, as long as it does not repeat
oracle queries. In our application of the switching lemma the adversary’s memory
complexity is too large for these bounds to provide any improvement.
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Other primitives. We recall relevant syntax and security definitions for digital
signatures, nonce-based encryption, and public key encryption schemes in the
sections where we consider them (Sects. 4, 5, and 6 respectively).

3 Adversaries with Access to Random Functions

This paper proposes and adopts what we consider to be a better formalism to
deal with memory-tight reductions. Namely, all of our reductions will require
access to some variety of large random functions which it will query on a small
number of inputs (specifically uniformly random functions and invertible random
injections). That is, our reduction adversaries can be written in the form shown
of the left below, for some set of functions F and algorithm A2. (On the right is
a pseudorandom version of A which we will discuss momentarily.)

Adversary AO(in)
f ←$ F
out ←$ AO,f

2 (in)
Return out

Adversary AO

F (in)
K ←$ F.K

out ←$ AO,FK

2 (in)
Return out

We refer to such an A as an F-oracle adversary. In this section we will generally
discuss such adversaries, rather than separately providing the discussion for such
adversaries each time we apply them.

The time and memory complexity of any F-oracle adversary must include
the complexity of sampling, storing, and evaluating f . This will be significant if
F is large. However, as we will argue, this additional state and time should be
assumed to not significantly increase the advantage of A. As such, we will define
the reduced complexity of A by

Time∗(A) = Time(A2) and Mem∗(A) = Mem(A2).

Later we state theorems in terms of reduced complexity.

Pseudorandom replacement. The most conservative justification of F-oracle
adversaries is to bound how much the oracle can help by replacing it with a pseu-
dorandom version. This was the approach taken by Auerbach et al. [1] when they
used pseudorandom functions for purposes such as emulating random oracles
and storing the coins required by an adversary with low memory, and has been
adopted by follow-up work [7,10,22]. If F is a function family with F.F = F , then
the adversary AF we gave above does exactly this. It replaces A2’s oracle access
to f with access to FK for a random K. The following lemma is straightforward.

Lemma 2. Let A be an F-oracle adversary for a game G. Then for any function
family F with F.F = F we can define a pseudorandomness adversary Ai such that

Pr[G(A)] ≤ Pr[G(AF)] + AdvprF (Ai),
Query(Ai) = q, and

Time(Ai) = Time∗(A) + Time(G(A)),
Mem(Ai) = Mem∗(A) + Mem(G(A)).

Here q is an upper bound on the number of queries A2 makes to its second oracle.
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Note that the complexity of AF is given by Time(AF) = Time∗(A) + q ·
Time(F) and Mem(AF) = Mem∗(A) + Mem(F). Thus the existence of an
appropriate pseudorandom F ensures that the memory and time complexity
excluded by Time∗ and Mem∗ cannot significantly aid an adversary. In the use
of this technique by Auerbach et al. [1] the reduction Ai was memory-tight. Note
this is not strictly necessary as long as we are willing to assume the existence of
F with sufficient security as a function of attackers’ time and query complexities
without regard to memory complexity.

We could have combined Lemma 2 with any of our coming theorems to obtain
bounds in terms of Time and Mem, rather than their reduced version. However
we find the use of reduced complexity cleaner as it simplifies our theorems,
allowing us to focus on the conceptual core of the proofs without having to
repeat the rote step of replacing random objects with pseudorandom ones.

When combining the lemma with a theorem, game G would correspond to the
security game played by the reduction adversary. For our theorems, that game
will have low time and memory overhead over that of A, so the application of
the lemma would be time- and memory-tight. That said, the tightness of this
is less important than the tightness of the other components of the theorem we
would apply it to. Note that the definition of Ai is independent of the choice of
F. Consequently, we can always choose F with a very high security threshold to
counteract any looseness in the lemma. In the full version [14], we summarize the
F used in our theorems and how they could be pseudorandomly instantiated.

Assumed independence. As a second observation why the storage of f may
not help A, note that f is completely “independent” of the problem A is try-
ing to solve (as specified by in and the behavior of O). In various settings it
seems likely that such independent state does not help. For example, it would
be very surprising (or even a breakthrough) to show a better factoring or lattice
algorithm given access to a random function f from a natural set. Indeed, crypt-
analytic work often makes use of random oracles without significant comment
(from which other types of random functions can be constructed).

Information theoretic settings. In some information theoretic settings, the
“independence” of f from the problem can be made rigorous. Information theo-
retic results are typically depending only on the query complexity of the attacker
or its memory usage, ignoring code size. In such settings, we expect bounds of
the form Adv(A) ≤ ε(Mem(A),Query(A)) for some function ε. Because this
bound does not depend on the code size of A, if A is an F-oracle adversary
we should be able to prove Adv(A) ≤ ε(Mem∗(A),Query(A)) by a coin-fixing
argument in which we fix the random choice of function ahead of time and
embed it in the description of the adversary. This is, for example, the case for
the recent time-memory tradeoffs shown for distinguishing between a random
function and a random injection without repeating queries [11,17,20]. A coin-
fixing readily shows that these tradeoffs hold when using Mem∗(A) in place of
Mem(A),Query(A).
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4 Multi-challenge Security of Digital Signature Schemes

In the context of memory-tightness, the security of digital signature schemes has
been considered in several works [1,10,22]. The standard security notion for sig-
natures asks the attacker, given examples, to come up with a forged signature on
a fresh message. A straightforward proof shows (in the standard setting where
memory efficiency is not a concern) that the security notion is equivalent whether
the attacker is allowed one or many forgery attempts. However, Auerbach
et al. [1] proved an impossibility result showing that a (certain form of black-box)
reduction cannot be time, memory, and advantage tight. The difficulty faced by
the reduction is in distinguishing between when the adversary has produced a
novel forgery and when it is simply repeating a signature that it was given.

In this section we show a few ways that security against many forgery
attempts (i.e., multiple challenges) can be proven to follow from security
against a single forgery (i.e., a single challenge) in a memory-tight man-
ner. Our first results consider a variant definition of digital signature secu-
rity we introduce (called UFRMA) in which the adversary has only par-
tial control over the messages being signed. Using our new techniques, we
show that single challenge UFCMA security implies multi-challenge UFRMA
security in a memory-tight manner (for some practically relevant distribu-
tions over messages). We also consider the security of the RSA full domain
hash digital signature scheme. Auerbach et al. [1] gave a memory-, but not
advantage-tight proof of the security of the standard version of this scheme
in the single challenge setting. By considering a probabilistic variant of the
scheme introduced by Coron [8] we are able to provide a memory-, time-, and
advantage-tight proof of the many-forgery SUFCMA security of the variant.

Fig. 3. Syntax of digital signature scheme.

4.1 Syntax and Security

Digital signature syntax. A dig-
ital signature scheme DS specifies a
key generation algorithm DS.K, a sign-
ing algorithm DS.Sign, and a verifica-
tion algorithm DS.Ver. The syntaxes of
these algorithms are shown in Fig. 3.
We capture ideals models by providing
DS.Sign and DS.Ver with oracle access
to a function h drawn at random from
the set DS.I. When relevant we let DS.M denote the set of messages it accepts.
The verification and signing keys are respectively denoted by vk and sk. The
message to be signed is m, the signature produced is σ, and the decision is
d ∈ {true, false}. Correctness requires DS.Verh(vk,m, σ) = true for all h ∈ DS.I,
all (vk, sk) ∈ [DS.K], all m ∈ DS.M, and all σ ∈ [DS.Signh(sk,m)].
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Fig. 4. Security games capturing the unforgeability of a digital signature scheme.

Message distribution syntax. One of the security notions we consider for
digital signature schemes will be parameterized by a message distribution via
which the adversary is given incomplete control over the messages which are
signed. A message distribution D specifies sampling algorithm D.S which sam-
ples an output message m′ based on parameters m given as input (written
m′ ←$ D.S(m)). The parameters m must be drawn from a set D.M, which we
typically leave implicit. When making the randomness of the sampling algo-
rithm explicit we let D.R be the set from which its randomness is drawn
and write m′ ← D.S(m; r). If there exists an extraction algorithm D.X such
that D.X(D.S(m; r)) = (m, r) for all m, r then we say D is extractable. If
D.X(D.S(m; r)) = m for all m, r then we say D is weakly extractable. We assume
that D.X(m′) = ⊥ if m′ �= D.S(m; r) for all m, r. We define the min-entropy of
D as

D.H∞ = − lg max
m

Pr[r ←$ D.R : D.S(m; r) = m′] .

Unforgeability security. The unforgeability security notions we consider
are defined in Fig. 4. The standard notion of UFCMA (unforgeability under
chosen message attack) security is captured by Gufcma which includes the boxed
but not the highlighted code, giving the adversary access to a regular signing
oracle Sign. The goal of the adversary is to query Forge with a valid signature
σ∗ of a message m∗ which was not previously included in a signing query (as
stored by the set S). We define Advufcma

DS (A) = Pr[Gufcma
DS (A)].

Our new security notion UFRMA (unforgeability under randomized message
attack) is captured by the game Gufrma which is parameterized by a message
distribution D. In this game the adversary is instead given access to the ran-
domized signing oracle RSign where the message to be signed is chosen by D.
Note that the coins used by D are returned to the adversary along with the
signature. Otherwise this game matches that of UFCMA security. We define
Advufrma

DS,D (A) = Pr[Gufrma
DS,D (A)].

We will relate the advantage of attacks making only a single forgery attempt
and those making many such attempts. When wanting to make the distinc-
tion explicit we prefix the abbreviation of a security notion with an ‘m’ or ‘1’.
Strong UFCMA security, denoted SUFCMA, is captured by modifying Gufcma to
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store the tuple (σ,m) in S in Sign and checking (m∗, σ∗) �∈ S in Forge. We
denote this by Gsufcma and the corresponding advantage by Advsufcma. We define
SUFRMA, Gsufrma, and Advsufrma analogously. We write xUFRMA when assum-
ing that D is extractable and wUFRMA when assuming it is weakly extractable.

4.2 Multi-challenge Security for Extractable Message Distributions

The first applications we show for our techniques are generic methods of tightly
implying security of a digital signature scheme against multiple forgery attempts
(i.e., multi-challenge security). Recall that Auerbach et al. [1] gave a lower bound
showing that a black-box reduction proving that single UFCMA security implies
many UFCMA cannot be made memory-tight and time-tight. We avoid this in
two ways; first by considering mUFRMA, rather than mUFCMA, security and
then by considering a particular choice of digital signature scheme.

High-level idea. The primary difficulty of a tight proof that 1UFCMA security
implies mUFCMA security is that a successful mUFCMA attacker may have
made many Forge queries which verify correctly, one of which is a valid forgery
and the rest of which were just forwarded from its Sign oracle. A 1UFCMA
reduction must then somehow be able to identify which of the queries is the true
forgery so it can forward this to its own Forge oracle.

The technical core of the coming proof for mUFRMA is that our reduction
adversary will use the random coins of the message distribution D to signal things
to its future self. In particular, when Ar makes a query RSign(m), the reduction
will choose coins for D.S via r ← f(m, i) where i is a counter which is incremented
with each query and f is a random tweakable function/injection. The coins then
act as a sort of authentication tag for m. On a later Forge(m∗, σ∗) query, if
m∗ = D.S(m; r) where r = f(m, i) for some i ∈ [qSign] the reduction can safely
assume this message was signed by an earlier RSign query.

When D is fully extractable, we can perform the requisite check for Forge

by having f be an injection. We extract m and r from m∗ and then compute
i ← f−1(m, r). This is the strategy used in Theorem 1. If we assume only that D
is weakly extractable, we can extract m if D has a sufficient amount of entropy,
and then individually check if D.S(m; f(m, i)) holds for each choice of i. This
reduction strategyobtains the same advantage at the cost of an extra runtime
being needed to iterate over the possible choices of i in Forge.

Extractable Message Distribution. If the message distribution D is
extractable, the following theorem captures that 1UFCMA security tightly
implies mUFRMA security. The proof makes use of our efficient tagging
technique.

Theorem 1 (1UFCMA ⇒ mxUFRMA). Let DS be a digital signature
scheme and D be an extractable message distribution. Let Ar be an adversary
with (qSign, qForge, qh) = Query(Ar) and assume qSign ≤ 0.5|D.R|. Let Au be the
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Fig. 5. Adversary Au used in proof of Theorem 1.

Inj±(DS.M, [qSign],D.R)-oracle adversary shown in Fig. 5. Then,

Advufrma
DS,D (Ar) ≤ Advufcma

DS (Au) + (0.5 · q2
Sign

+ 2 · qSign · qForge)/|D.R|
Query(Au) = (qSign, 1, qh + qForge · Query(DS))
Time∗(Au) = Time(Ar) + qSign · Time(D) + qForge(Time(D) + Time(DS))
Mem∗(Au) = Mem(Ar) + Mem(D) + Mem(DS) + lg(qSign).

This is time-tight because Time(Ar) ∈ Ω(qSign + qForge) must hold and
Time(D) and Time(DS) will be small. This is memory-tight because Mem(D),
Mem(DS), and lg(qSign) will be small.

The main idea of Au is using the output of an invertible random injection
f on the message and a counter as coins instead of sampling them uniformly
at random when answering RSign queries. Since D is fully extractable, during
a Forge query on m∗, we can extract (m, r) ← D.X(m∗) and use the fact
that f is invertible to compute f−1(m, r) and check if the index is in [qSign].
This is used to avoid remembering S. If m∗ ∈ S, and (m, r) ← D.X(m∗), then
there exists j ∈ [qSign] such that r = f(m, j) – so the check passes. We can
argue that if m∗ �∈ S, our check is unlikely to pass. We give the formal proof of
this theorem in Sect. 4.3. It applies the switching lemma to argue the use of f
cannot be distinguished from honestly sampling r with advantage better than
0.5 · q2

Sign
/|D.R| and shows that the probability of falsely making the check pass

is bounded by 2qSignqForge/|D.R|.
We would not be able to use the technique in this proof to prove mxSUFRMA

from 1SUFCMA in a memory-tight way. In particular, since the coins r of the
message distribution are chosen before σ is known, our trick of using r to signal
freshness of a forgery query does not work for a message-signature pair.

4.3 Proof of Theorem 1 (1UFCMA⇒mUFRMA)

Proof. We consider a sequence of hybrids H0 through H4 defined in Fig. 6. When
examining these hybrids recall our conventions regarding “//H[i,j)” comments
described in Sect. 2.1. Of these hybrids we will make the following claims, which
establish the upper bound on the advantage of Ar claimed in the proof.
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Fig. 6. Hybrid games used in proof of Theorem 1.

1. Pr[Gufrma
DS,D (Ar)] = Pr[H0] = Pr[H1]

2. Pr[H1] ≤ Pr[H2] + 0.5 · q2
Sign

/|D.R|
3. Pr[H2] = Pr[H3]

4. Pr[H3] ≤ Pr[H4] + 2qSignqForge/|D.R|
5. Pr[H4] = Advufcma

DS (Au)

Transition H0 to H1. The hybrid H0 is simply a copy of the game Gufrma.
(We also added code to initialize variables i and I[·] that will be used in later
hybrids.) Hence Pr[Gufrma(Ar)] = Pr[H0]. In hybrid H1, we replace the random
sampling of r for D in RSign with the output of a random function f applied
to m, using a counter i to provide domain separation between different queries.
This method of choosing r is equivalent, so Pr[H0] = Pr[H1].

Transition H1 to H2. In hybrid H2 we replace the random function with a
random injection. This modifies the behavior of the game only in that values
of r are guaranteed not to repeat across different signing queries that used the
same message. There are at most qSign invocations of f , so the switching lemma
(Lemma 1) tells us that Pr[H1] ≤ Pr[H2] + 0.5 · q2

Sign
/|D.R|.

Transition H2 to H3. In hybrid H3, we replace the check whether m∗ �∈ S in
oracle Forge with a check if f−1(m, r) �∈ I[m] where (m, r) = D.X(m∗). Here
I[·] is a new table introduced into the game. In RSign, code was added which
uses I[m] to store each of the counter values for which Ar made a signing query
for m. Hence f−1(m, r) will be in I[m] iff m∗ is in S and so Pr[H2] = Pr[H3].

Transition H3 to H4. In the final transition to hybrid H4 we replace the Forge
check f−1(m, r) �∈ I[m] with f−1(m, r) �∈ [qSign]. This does change behavior if Ar

ever makes a successful forgery query for m∗ = D.S(m; f(m, i)) without its i-th
signing query having used the message m. This would require guessing f(m, i) for
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some i ∈ [qSign] \ I[m]. We can bound the probability of this ever occurring by a
union bound over the Forge queries made by Ar. Consider the set f(m, [qSign]\
I[m]) = {f(m, i) : i ∈ [qSign] \ I[m]}. It has size at most qSign. Because f is a
random injection it is uniform subset of the set D.R \ f(m, I[m]) (which has size
at least |D.R| − qSign). Hence the probability of any particular query triggering
this different behavior is at most qSign/(|D.R| − qSign) ≤ 2qSign/|D.R|. Applying
the union bound gives us Pr[H3] ≤ Pr[H4] + 2qSign · qForge/|D.R|.
Reduction to UFCMA. We complete the proof using adversary Au from Fig. 5
which simulates hybrid H4 and succeeds whenever Ar would. The adversary
Au samples f at random from Inj(DS.M, [qSign],D.R). When run on input vk,
it runs Ar on the same input. It gives Ar direct access to h. To simulate a
query RSign(m), it computes m′ ← D.S(m; f(m, i)), increments i, and queries
Sign(m′), returning the result to Ar. On a query Forge(m∗, σ∗), it computes
(m, r) ← D.X(m∗). If f−1(r) �∈ [qSign] and DS.Ver(vk,m∗, σ∗) = true then it
queries its own oracle with (m∗, σ∗) and halts. Otherwise it ignores the query.

If adversary Au ever makes a Forge query, it will succeed. It ensured that
(m∗, σ∗) is verified correctly and f−1(r) �∈ [qSign] ensures that it is has not
previously made a Sign query for m∗. If Ar would have succeeded in hybrid
H4, its winning query will cause Au to make a Forge query. Hence, we have
Pr[H4] = Advufcma

DS (Au).

4.4 Applications and Weakly Extractable Variant

We discuss some applications of Theorem 1. This includes scenarios where
extractable message distributions are used and proving security of digital signa-
ture schemes when their messages are padded with randomness. Additionally,
we give a variant of the theorem when the underlying message distribution is
only weakly extractable. The resulting reduction is memory- but not time-tight.

Example extractable distributions. The simplest extractable distribution
does not accept parameters as input and simply outputs its randomness as the
message. Security with respect to this is the standard notion of security against
random message attacks which was originally introduced by Even, Goldreich,
and Micali [13].

Extractable distributions arise naturally when the messages being signed
include random values. For example, protocols often include random nonces in
messages that are signed. In TLS 1.3, for example, when the server is responding
to the Client Hello Message it signs a transcript of the conversation up until that
point which includes a 256-bit nonce just chosen by the server. We could think
of the security for this setting being captured by an extractable distribution Dtls

that takes as input message parameter m that specifies all of the transcript other
than the nonce and sets the nonce to its randomness r ∈ {0, 1}256.
Padding schemes with randomness. Using Theorem 1, we can see that aug-
menting any digital signature scheme by appending auxiliary randomness will
give us a memory-tight reduction from the mUFCMA security of the augmented
scheme to the 1UFCMA security of the original scheme.
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Let DS be a digital signature scheme and R be a set. We define RDS[DS,R]
by having RDS[DS,R].Sign(sk,m) do “r ←$ R; Return DS.Sign(sk,m ‖ r) ‖ r” and
having RDS[DS,R].Ver(vk,m, σ′) do “σ ‖ r ← σ′; Return DS.Ver(vk,m ‖ r, σ).”
We also define a related message distribution RD[R] by RD[R].R = R and
RD[R].S(m; r) = m ‖ r. Clearly it is extractable.

The following reduces the mUFCMA security of RDS to the mUFRMA secu-
rity of DS. Theorem 1 can in turn be used to reduce this to the 1UFCMA security
of DS. It also relates the mSUFCMA security of RDS to the mSUFRMA security
of DS. We note this because if DS has unique signatures, then its mSUFRMA
and mUFRMA security are identical and hence UFCMA security of DS implies
mSUFCMA security of RDS in a memory-tight way.

Theorem 2. Let DS be a digital signature scheme and R be a set. Then for
any Au we can construct Ar such that Advufcma

RDS[DS,R](Au) = Advufrma
DS,RD[R](Ar). It

additionally holds that Advsufcma
RDS[DS,R](Au) = Advsufrma

DS,RD[R](Ar). Adversary Ar has
essentially the same complexity as Au.

Proof (Sketch). The proof of this is straightforward. If Au queries Sign(m),
then Ar queries Sign(m) and receives (σ, r) and returns σ ‖ r to Au. If Au

queries Forge(m∗, σ∗ ‖ r∗), then Ar queries Forge(m∗ ‖ r∗, σ∗). Note that Ar

wins whenever Au would. ��
In independent and concurrent work, Diemert, Gellert, Jager, and Lyu [10] also
considered RDS, proving that if DS can be proven SUFCMA1 secure (in this
notion the game records its responses to signature queries and repeats them if
the adversary repeats a query) with a restricted class of “canonical” memory-
tight reductions, then there is a memory-tight reduction for the mSUFCMA
security of RDS. This complements our results as they use a more restrictive
assumption to prove mSUFCMA while we use a generic assumption to prove
mUFCMA.

In the full version [14], we further show that if D is only weakly extractable
(but still has high entropy), then we can prove a variant of Theorem 1 with
a less efficient reduction. In particular, the running time of the reduction has
an additional term of qForge · qSign · Time(D.S). This difference arises because
rather than extracting r and computing j ← f−1(m, r) in Forge we instead
need to iterate over the possible values of f(m, j) to check for consistency. Thus
the proof for this is an instance of our inefficient tagging technique.

4.5 mSUFCMA Security of RSA-PFDH

The RSA-based Probabilistic Full-Domain Hash (RSA-PFDH) scheme, origi-
nally introduced by Coron [8], can be viewed as the result of applying the RDS[·]
transform to RSA-based Full-Domain Hash [4] (RSA-FDH). Auerbach et al. [1]
gave a memory-, but not time-tight reduction from the 1UFCMA security of
RSA-FDH to the one-wayness of RSA. Applying Theorems 1 and 2 would give
a memory-, but not time-tight reduction for the security of RSA-PFDH.
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By a careful combination of our tagging technique with the proof ideas of
Coron and of Auerbach et al. we can analyze RSA-PFDH directly. We prove
the following result – a time, memory, and advantage tight reduction for the
security of RSA-PFDH. The theorem is properly formalized and proven in the
full version [14].

Theorem 3 (Informal, mSUFCMA security of RSA-PFDH).
Define RSA := RDS[RSA-FDH, {0, 1}rl]. Let Am be an adversary with
(qSign, qForge, qh) = Query(Am). Then we can construct an adversary ARSA

against one-wayness of rl-bit RSA such that

Advsufcma
RSA (Am) ≤ Advow-rsa(ARSA) + (0.5 · q2

Sign
+ 2 · qSign · qForge)/2rl

The running time and memory of ARSA is roughly the same as Am.

In concurrent work, Diemert, Gellert, Jager, and Lyu [10] also give a time, mem-
ory, and advantage tight reduction for RSA-PFDH via a different proof.

5 AE Security of Encrypt-then-PRF

For nonce-based secret-key encryption schemes, we often want Authenticated
Encryption (AE) security which simultaneously asks for confidentiality and
ciphertext integrity. The common approach to prove AE security of a nonce-
based encryption scheme is to give separate reductions to the indistinguishabil-
ity of its ciphertexts from truly random ones (INDR security) and its ciphertext
integrity. Ghoshal et al. [15] proved an impossibility result showing that a (cer-
tain form of black-box) reduction from AE security to INDR security and cipher-
text integrity cannot be memory-tight. Making the INDR part memory-tight is
of particular interest because of results which establish tight time-memory trade-
offs for INDR security [9,12,17,20,21].

In this section we look at a particular scheme which we refer to as Encrypt-
then-PRF. Given a nonce-based encryption scheme NE that only has INDR
security, one generic way to construct a new encryption scheme NE′ which also
achieves ciphertext integrity is to use a PRF and let the ciphertext of NE′ be
the concatenation of the ciphertext of NE and a tag which is the evaluation of
the PRF on the ciphertext and the nonce.

We show that in the context of Encrypt-then-PRF, for two of the notions
of AE security introduced in [15], we can give a memory-tight reduction to the
INDR security of the underlying encryption scheme and a non-memory-tight
reduction to the security of the PRF. This shows that we can bypass the generic
impossibility result of [15] if we consider specific constructions of nonce-based
authenticated encryption schemes. In more detail, the impossibility result of [15]
rules out lifting the INDR security of a scheme to full AE security in a memory
tight way, when additionally assuming ciphertext integrity for a generic scheme.
Here, we show that for the specific case of Encrypt-then-PRF schemes, lifting the
INDR security of the encryption scheme to full AE security of Encrypt-then-PRF
is possible in a memory-tight way, assuming security of the PRF.
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Fig. 7. Games defining INDR and AE-w security of NE for w ∈ {m, �,⊥}.

5.1 Syntax and Security Definitions

Nonce-Based Encryption. A nonce-based (secret-key) encryption scheme NE
specifies algorithms NE.K, NE.E, and NE.D. It specifies message space NE.M and
nonce space NE.N. The syntax of the algorithms is shown in Fig. 8. The secret
key is denoted by K, the message is m, the nonce is n, and the ciphertext is
c. The decryption algorithm may return m = ⊥ to indicate rejection of the
ciphertext. Correctness requires for all K ∈ [NE.K], n ∈ NE.N, and m ∈ NE.M
that NE.D(K,n,NE.E(K,n,m)) = m. We assume there is a ciphertext-length
function NE.cl : N → N such that for all K ∈ [NE.K], n ∈ NE.N, and m ∈
NE.M we have |c| = NE.cl(|m|) where c ← NE.E(K,n,m). We define NE.C =⋃

m∈NE.M{0, 1}NE.cl(|m|). Typically, a nonce-based encryption scheme also takes
associated data as input which is authenticated during encryption. This does
not meaningfully affect our proof, so we omit it for simplicity.

Fig. 8. Syntax of (nonce-based) secret-key
encryption scheme.

Encrypt-then-PRF. In this section
we consider the Encrypt-then-PRF
construction of a nonce-based encryp-
tion scheme, due to Rogaway [19].
Namprempre et al. [18] gave a more
extensive exploration of the many ways
to construct an AEAD encryption
scheme via generic composition. Given
nonce-based encryption scheme NE and
function family F, we define EtP[NE,F]
by the following algorithms. We refer to the t component of the ciphertext
returned by EtP[NE,F].E as the “tag” below. When including associated data, it
would be input to F.
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EtP[NE,F].K
K ←$ NE.K
K ′ ←$ F.K
Return (K,K ′)

EtP[NE,F].E(K,n,m)
(K,K ′) ← K
c′ ← NE.E(K,n,m)
t ← FK′(n, c′)
Return (c′, t)

EtP[NE,F].D(K,n, c)
(K,K ′) ← K; (c′, t) ← c
If t = FK′(n, c′):

Return NE.D(K,n,m)
Return ⊥

Our security result will analyze the authenticated security of EtP assuming NE
has ciphertexts indistinguishable from random ciphertexts and F is pseudoran-
dom. Let us recall these security notions.

Indistinguishability From Random (INDR) Security. This security
notion requires that ciphertexts output by the encryption scheme cannot be
distinguished from random strings. Consider the game Gindr

NE,b defined in Fig. 7.
Here an adversary A is given access to an encryption oracle Encb to which it can
query a pair (n,m) and receive an honest encryption of message m with nonce
n if b = 1 or a random string of the appropriate length if b = 0. We restrict
attention to “valid” adversaries that never repeat the nonce n across different
encryption queries. We define AdvindrNE (A) = Pr[Gindr

NE,1(A)] − Pr[Gindr
NE,0(A)].

Authenticated Encryption (AE) security. AE security simultaneously
asks for integrity and confidentiality. Consider the games Gae-w

NE,b which defines
three variants of authenticated encryption security parameterized by w ∈
{m, 
,⊥} shown in Fig. 7. In this game, the adversary is given access to an encryp-
tion oracle and a decryption oracle. Its goal is to distinguish between a “real” and
“ideal” world. In the real world (b = 1) the oracles use NE to encrypt messages
and decrypt ciphertexts. In the ideal world (b = 0) encryption returns random
messages of the appropriate length and decryption returns ⊥. For simplicity, we
will again restrict attention nonce-respecting adversaries which do not repeat
nonces across encryption queries. (Note that there is no restriction placed on
nonces used for decryption queries.)

The decryption oracle is parameterized by the value w ∈ {m, 
,⊥} corre-
sponding to three different security notions. In all three, we use a table M [·, ·] to
detect when the adversary forwards encryption queries on to its decryption ora-
cle. When w = m, the decryption oracle returns M [n, c]. When w = 
, it returns
a special symbol 
. When w = ⊥, it returns the symbol ⊥ which is also used
by the encryption scheme to represent rejection. For w ∈ {m, 
,⊥} we define the
advantage of an adversary A by Advae-wNE (A) = Pr[Gae-w

NE,1(A)] − Pr[Gae-w
NE,0(A)].

Discussion of variants. This choice of considering three variants of the defi-
nition follows the same choice made by Ghoshal et al. [15]. First off, we note that
if there are no restrictions on the memory of the adversary, all the three defini-
tions are tightly equivalent. An adversary can simply remember its past encryp-
tion queries and answers, and without loss of generality never make a decryption
query on the answer of an encryption query. In the memory restricted setting
these definitions no longer appear to be equivalent. The only known implication
is that w = 
 security tightly implies w = ⊥ security. Other implications seem
to require remembering all encryption queries to properly simulate the decryp-
tion oracle. In Sect. 6 we parameterize public-key encryption CCA definitions
similarly. This discussion applies to those definitions as well.
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Ghoshal et al. argued that w = m is the “correct” definition. They argue
that chosen ciphertext security is intended to capture the power of an adversary
that can observe the behavior of a decrypting party. Both the w = ⊥ and
w = 
 definitions restrict what the adversary learns about this behavior when
honestly generated ciphertexts are forwarded, which does not seem to model
anything about real use of encryption. The w = m definition avoids this unnatural
restriction.

We provide some technical context for this philosophical argument. In the full
version [14] we give memory-tight proofs for the security of encryption schemes
constructed with the KEM/DEM paradigm with w = m and noting this does
not seem possible for the other choices of w. In this section and Sect. 6 we prove
the AE/CCA-w security of encryption schemes for differing choices of w. We
view this as a general exploration of what results are possible with memory-
tight proofs. A proof which works for some w, but not others helps build some
understanding of how these notions related.

5.2 Security Result

Now we give a proof of the AE-
 security of EtP[NE,F]. In particular we provide
a memory-tight reduction to the INDR security of NE and a non-memory-tight
reduction to the security of F. Such a result is useful if a time-memory tradeoff
is known for NE and F is sufficiently secure even against high-memory attackers.

Theorem 4 (Security of EtP). Let NE be a nonce-based encryption scheme
and F be a family of function with F.F = Fcs(NE.N,NE.C, {0, 1}τ ) for τ ∈ N. Let
Aa be an AE-
 adversary with (qEnc, qDec) = Query(Aa). Define adversaries
Ap and Ar as shown in Fig. 9. Then,

Advae-�EtP[NE,F](Aa) ≤ AdvprF (Ap) + AdvindrNE (Ar) + 2qDec/2τ

Query(Ap) = qEnc + qDec

Time(Ap) = Time(Gae-�
EtP[NE,F](Aa))

Mem(Ap) = Mem(Gae-�
EtP[NE,F](Aa))

Query(Ar) = qEnc

Time∗(Ar) = Time(Aa)
Mem∗(Ar) = Mem(Aa).

Adversary Ar is an F.F-oracle adversary.

The standard (not memory-tight) proof of the security of EtP begins iden-
tically to our proof; we start in Gae-�

EtP[NE,F],1 replace the use of F with a truly
random function (using Ap) and then information theoretically argue that the
attacker shall be incapable of creating any forgeries. In the standard proof we
would transition to a game where the decryption oracle is exactly that of Dec

�
0,

i.e. it always returns ⊥ when M [n, c] = ⊥. Then we reduce to the security of NE
to replace the generated ciphertexts with random. However this standard reduc-
tion will not be memory-tight because the attacker must store the table M [·, ·]
to know whether it should return 
 or ⊥ when simulating decryption queries.4

4 Note this would be memory-tight for AE-⊥ security.
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Fig. 9. Adversaries used for proof of Theorem 4.

Instead we first transition to a world where F has been replaced by the random
function f and Dec always returns 
 when given a ciphertext with a correct
tag. (Which we can do because either M [n, c] �= ⊥ held or the attacker managed
to guess a random tag, which is unlikely.) Now we can make our INDR reduc-
tion memory-tight. It forwards encryption queries to its encryption oracle and
then uses its own function f to create the tag. For decryption queries it checks
f(n, c′) = t, returning 
 if so and ⊥ otherwise. Then we can finally conclude by
switching to the decryption oracle Dec

�
0 by arguing that noticing this change

requires guessing a random tag.
The full proof is given in the full version [14].
It does not seem possible to extend this proof technique to AE-m security

because the tag would be too short to embed values of m we need to remember.

6 Chosen Ciphertext Security of Public Key Encryption

Now we apply our techniques to give memory-tight reductions between single-
and multi-challenge notions of chosen-ciphertext security. The standard reduc-
tion bounds the advantage of an adversary making qEnc encryption queries by
qEnc times the advantage of an adversary making 1 query. The reduction requires
memory linear in qEnc and so is not memory-tight.5 In Sect. 6.1, we consider the
most common “left-or-right” definition of CCA security and introduce three dif-
ferent variants (mirroring the three notions for AE security in Sect. 5). We give a
memory-tight reduction between single- and multi-challenge security for two of
5 Auerbach et al. [1] stated that this reduction is memory-tight for both CPA and

CCA security. While the former is correct, the latter depends on the definition of
CCA. In personally communication with Auerbach et al. [2], they concurred that
their claim was incorrect for their intended definition of CCA security (w = �) but
pointed out that it does work for an “exclusion” variant, w = E, which we discuss
in the full version [14].
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Fig. 11. Game defining CCA-w security of PKE for w ∈ {m, �,⊥}.

the three variants (
 and ⊥), but the reduction is not time-tight. In Sect. 6.2, we
look at the CCA security variant that requires ciphertexts be indistinguishable
from random. We give a memory-tight and time-tight reduction between single-
and multi-challenge security for all three variants of this notion.

Fig. 10. Syntax of a public key
encryption scheme PKE.

Public key encryption. A public key
encryption scheme PKE specifies algorithms
PKE.K, PKE.E, and PKE.D. The syntax of
these algorithms is shown in Fig. 10. The key
generation algorithm PKE.K returns encryp-
tion key ek and decryption key dk. The
encryption algorithm PKE.E encrypts message
m with ek to produce a ciphertext c. We write
PKE.E(ek,m; r) when making random coins
r ∈ PKE.R explicit. The decryption algorithm decrypts c with dk to produce
m. The decryption algorithm may output m = ⊥ to indicate rejection.

Correctness requires that PKE.D(dk, c) = m for all (ek, dk) ∈ [PKE.K], all m,
and all c ∈ [PKE.E(ek,m)]. We define the min-entropy of PKE as

PKE.H∞ = − lg max
m,ek,c

Pr[r ←$ PKE.R : PKE.E(ek,m; r) = c] .

6.1 Left-or-Right CCA Security of PKE

Left-or-right CCA security. In this section, we consider the left-or-
right definition of CCA-security most commonly used in the literature. For
w ∈ {m, 
,⊥} we denote this as CCA-w6 and the corresponding security game
Gcca-w
PKE,b is defined in Fig. 11. The adversary gets the encryption key ek and

has access to an encryption and a decryption oracle. The encryption oracle
takes in messages m0 and m1 and encrypts mb where b is the secret bit. The
decryption oracle returns the decryption of a ciphertext, unless the ciphertext
was previously returned by an encryption query. This is tracked by table M .

6 The discussion in Sect. 5 about the choice to have three variants of the definitions is
applicable here as well.



730 A. Ghoshal et al.

Fig. 12. Adversary A1 for Theorem 5.

When w = m, the decryption oracle returns M [c] which is m1 from the ear-
lier encryption query. When w = 
, it returns 
. When w = ⊥, it returns
⊥ which is also used by the encryption scheme to represent rejection. The
advantage of an adversary A against the CCA-w security of PKE is defined
as Advcca-wPKE (A) = Pr[Gcca-w

PKE,1(A)] − Pr[Gcca-w
PKE,0(A)].

The goal of this section is to relate the advantage of attacks making only a
single encryption query and those making many such queries. When wanting to
make the distinction explicit we may use the adjectives “many” and “single” or
prefix the abbreviation of a security notion with an ‘m’ or ‘1’.

1CCA-
 implies mCCA-
. The following theorem gives a memory-tight reduc-
tion establishing that CCA-
 security against adversaries making one encryption
query implies security for an arbitrary number of queries. The proof makes use
of our inefficient tagging technique. The reduction performs a hybrid over the
encryption queries of the original adversary and is thus not advantage-tight.

Theorem 5. (1CCA-
 ⇒ mCCA-
). Let PKE be a public key encryption
scheme. Let Am be an adversary with (qEnc, qDec) = Query(Am). Define D(·) by
Dn = {0, 1}n × [qEnc]. Let A1 be the Fcs(N,D,PKE.R)-oracle adversary shown
in Fig. 12. Then,

Advcca-�PKE (Am) ≤ qEnc · Advcca-�PKE (A1) + 4 · qEnc · qDec/2PKE.H∞

Query(A1) = (1, qDec)
Time∗(A1) = O(Time(Am)) + qEnc(qDec + 1)Time(PKE)
Mem∗(A1) = O(Mem(Am)) + Mem(PKE) + lg qEnc.

The standard (non-memory-tight) reduction against 1CCA security picks an
index k ∈ [qEnc] where qEnc is the number of encryption queries made by Am. It
runs Am, simulating encryption queries as follows. For the first k − 1 encryption
queries, it answers with an encryption of m1, for the k-th encryption query it
forwards the query to its own encryption oracle, and the rest of the queries it
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Fig. 13. Game defining $CCA-w security of PKE for w ∈ {m, �,⊥}.

answers with an encryption of m0. To answer the decryption queries, the reduc-
tion returns 
 if it was ever queried the ciphertext for a previous encryption query.
Otherwise, it forwards the query to its own decryption oracle. Finally, the reduc-
tion adversary outputs whatever Am outputs. Standard hybrid analysis shows
that if the advantage of Am is ε, then the advantage of the reduction adversary is
ε/qEnc. Simulating decryption queries required remembering all prior encryption
queries and hence the reduction is not memory-tight.

We give an adversary A1 in Fig. 12 that is very similar to the reduction just
described, but avoids remembering prior encryption queries. The main idea is
that it picks the coins when encrypting m0 or m1 locally as the output of a
random function f applied to the message and a counter. This allows A1 to
detect whether a ciphertext c queried to the decryption oracle is one it answered
to an earlier encryption query as follows: it first asks for the decryption of c
from its own decryption oracle and receives m. Then it iterates over all counter
values for which encryption queries have been made so far and checks if c was the
encryption of m using the output of f on m and the counter as coins. If any of
these checks succeed it returns 
, otherwise it returns m. If c was the answer of
an encryption query A1 detects it successfully. The probability that A1 returns

 for a decryption query when it should not is small. We give the formal proof
of Theorem 5 in the full version [14] where we use a sequence of hybrid games
to transition from Gcca-�

PKE,b to a hybrid game that is simulated by A1.
Notice that the additional memory overhead for A1 is just that required to

store a counter, run PKE.E, and store (c∗,m∗
0,m

∗
1). However, there is an increase

in runtime by qEnc · qDec ·Time(PKE) because of the iteration over the counters
to answer decryption queries. As discussed in the introduction, such reductions
may be useful when the best attack for the underlying problem with low memory
requires significantly more running time than the best attack with high memory.

The same proof strategy would work essentially unchanged for CCA-⊥. For
CCA-m, the strategy does not suffice. If the adversary queries the decryption
oracle on a ciphertext c which was an answer to a previous query for (m0,m1)
the oracle needs to return m1 even if c is an encryption of m0.
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6.2 Indistinguishable from Random CCA Security of PKE

We saw in the previous section that we could have a memory-tight reduction
from mCCA-
 to 1CCA-
; however, the reduction is not tight with respect to
running time. In this section, we show that for a different formalization of CCA
security, we can indeed have a memory-tight and time-tight reduction between
many- and single-challenge variants.

Ciphertext and encryption key space. Before describing the indistinguish-
able from random formalization of CCA security, we need to make some assump-
tions on PKE. We define the encryption keyspace by PKE.Ek = {ek : (ek, dk) ∈
PKE.K}. We assume for each ek ∈ PKE.Ek and allowed message length n ∈ N

there is a set PKE.C(ek, n) such that PKE.E(ek,m; r) ∈ PKE.C(ek, |m|) always
holds. Let PKE.C−1(ek, c) returns n such that c ∈ PKE.C(ek, n). Correctness
implies that PKE.C(ek, n) and PKE.C(ek, n′) are disjoint for n �= n′.

Indistinguishable from random ciphertext CCA security. The security
notion we will consider in this section is captured by the game G$cca-w shown
in Fig. 13. It requires that ciphertexts output by the encryption scheme can-
not be distinguished from ciphertexts chosen at random even given access to a
decryption oracle. The adversary gets the encryption key ek and has access to
an encryption oracle Enc and a decryption oracle Dec. The adversary needs
to distinguish the following real and ideal worlds: in the real world, a query to
Enc with a message m returns an encryption of m under ek, while in the ideal
world, the same query returns a uniformly random element of PKE.C(ek, |m|).
The decryption oracle Dec

w acts exactly as the corresponding oracle in Gcca-w.7

The advantage of an adversary A against the $CCA-w security of PKE is defined
as Adv$cca-wPKE (A) = Pr[G$cca-w

PKE,1 (A)] − Pr[G$cca-w
PKE,0 (A)].

1$CCA-m implies m$CCA-m. The following theorem captures a memory-
tight reduction establishing that 1$CCA-m security implies m$CCA-m security.
The proof makes use of our message encoding technique.

Theorem 6 (1$CCA-m ⇒ m$CCA-m). Let PKE be a public key encryption
scheme. Let τ satisfy |PKE.C(ek, n)| ≥ 2n · 2τ for all n, ek. Let Am be an adver-
sary with (qEnc, qDec, qh) = Query(Am) and assume qEnc + qDec ≤ 0.5 · 2τ .
Let F = Inj±(T,D,R) where T , D, and R are defined by T = N × PKE.Ek,
Dn,ek = {0, 1}n × [qEnc] and Rn,ek = PKE.C(ek, n). Let A1 be the F-oracle
adversary defined in Fig. 14. Then,

Adv$cca-mPKE (Am) ≤ qEnc · Adv$cca-mPKE (A1) + 8qEncqDec/2τ + 5q2
Enc

/2τ

Query(A1) = (1, qDec, qh)
Time∗(A1) = O(Time(Am)) + qEncTime(PKE)
Mem∗(A1) = O(Mem(Am)) + Mem(PKE) lg qEnc.

7 As mentioned, the discussion in Sect. 5 about the three variants definitions is appli-
cable here as well. In the full version [14] we give an example where we can prove
CCA security of a KEM/DEM scheme in the memory restricted setting, but only if
we use the w = m definition.
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Fig. 14. Adversary A1 for Theorem 6.

The standard (non-memory-tight) reduction against 1$CCA security that runs
an m$CCA adversary Am works in a similar manner as the standard reduction
from an 1CCA adversary and an mCCA adversary that we described in Sect. 6.1.
Again here, simulating decryption queries requires remembering all the answers
of the encryption queries, and hence the reduction is not memory-tight.

We give an adversary A1 in Fig. 14 that is very similar to the standard
reduction, but avoids remembering all the answers of the encryption queries.
The main idea here is picking the ciphertext c0 as the output of a random
injective function f evaluated on the message and a counter, instead of sampling
it uniformly at random. This way of picking the c0 allows A1 detect whether
a ciphertext c queried to the decryption oracle was the answer to an earlier
encryption query as follows: it first checks if the inverse of f on the ciphertext is
defined (i.e., not ⊥), it returns the message part of the inverse. Otherwise it asks
for the decryption of the ciphertext to its own decryption oracle and returns the
answer. Using our assumption on the size of PKE.C(ek, n), we can argue that
except with small probability, A1 simulates the decryption oracle correctly. We
give the formal proof in the full version [14] where we use a sequence of hybrid
games to transition from G$cca-m

PKE,b to a game that is perfectly simulated by A1.
The additional memory overhead for A1 is only a counter. Moreover, there

is no increase in the running time of A1 unlike the adversary in Theorem 5.

Extension to $CCA-
, $CCA-⊥. We can prove the same result for $CCA-
,
$CCA-⊥ but the adversary would not be tight with respect to running time. The
adversary in these cases would pick the coins for encrypting m (to compute c1)
like the adversary in Theorem 5. This would require iterating over counters to
answer decryption queries and hence lead to looseness with respect to running
time. We omit the theorems for these notions because they would not involve
any new ideas beyond those presented in Theorems 5 and 6.
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