© N o O @ »

21
22
23
24
25
26
27
28
29
30
31

sami2py — overview and applications

Jeff Klenzing!-*, Jonathon M. Smith'>", Alexa J. Halford', J.D. Huba?, and
Angeline G. Burrell*

'ITM Physics Laboratory, NASA Goddard, Greenbelt MD, USA

2Catholic University of America, Washington DC, USA

3Syntek Technologies, Inc, Fairfax, VA, USA

“Space Science Division, Naval Research Laboratory, Washington DC, USA
“These authors contributed equally to this work and share first authorship

Corresponding author:
Jeff Klenzing!

Email address: jeffrey.klenzing@nasa.gov

ABSTRACT

sami2py is a Python module that runs the SAMI2 (Sami2 is Another Model of the lonosphere)
ionospheric model, as well as load and archive the results. SAMI2 is a model developed by the
Naval Research Laboratory to simulate the motions of plasma in a two-dimensional ionospheric
environment along a dipole magnetic field. SAMI2 solves for the chemical and dynamical
evolution of seven ion species in this environment (H™, He™, N*, O*, NJ, NO*, and O5). The
Python implementation allows for additional modifications to the empirical models within SAMI2,
including the exospheric temperature in the empirical thermosphere and the input of ExB ion
drifts.

The code is open source and available to the community on GitHub. The work here discusses
the implementation and use of samiZpy, including integration with the pysat ecosystem and
the growin python package for ionospheric calculations. As part of the Application Usability
Level (AUL) framework, we will discuss the usability of this code in terms of several ionospheric
applications.

Keywords: Ionosphere; Ionospheric Model; SAMI2 model; Python (programming language);
software; open source software; Plasma Instability

1 INTRODUCTION

SAMI2 is a model developed at the Naval Research Laboratory to simulate the motions of plasma
in a 2 dimensional (2D) ionospheric environment along dipole magnetic field lines (Huba et al.,
2000). The model itself is written in FORTRAN (Backus and Heising, 1964) and distributed
under an open source license. It has been applied to a variety of low-latitude ionospheric physics
problems, including longitudinal variation of airglow measurements (England et al., 2008), the
effect of neutral winds on instability growth rates (Zhan and S. Rodrigues, 2018), and plasma
bubble refilling rates (Otsuka et al., 2021). Because of the open source nature of the code, other
variations have been built with additional physics considerations such as photoelectron transport
(Varney et al., 2012; Krall and Huba, 2019).

The sami2py software package (Klenzing et al., 2022) is an interface built in Python (Van Rossum
and Drake, 2009) designed to initiate, modify, and manage runs of the SAMI2 model for iono-
spheric studies. The original version was written in MatLab (Higham and Higham, 2016) as
part of a systematic study of solar minimum (Klenzing et al., 2013), but has been rewritten and
modified to comply with the Heliophysics Python ecosystem (e.g., Burrell et al., 2018; Annex
et al., 2018). The software has been made open source and available to the community for
modification to better improve reproducability of ionospheric research (e.g., Gil et al., 2016).
Section 2 will discuss the implementation of sami2py. Section 3 will discuss a brief overview
of a standard workflow of the code, including example output and plots. Section 4 will describe

32
33
34
35
36

37

38

39

40

41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
!
72
73
74
75
76
77
78
79

80

sami2py Draft submitted to Frontiers

several ongoing applications of the samiZ2py project using the Application Usability Level (AUL)
Framework (Halford et al., 2019). This framework was recently developed to help track the
progress of a product and ensure that it will be usable by the intended user community. The
framework matches the progress to similar frameworks such as the technology readiness levels
used by the space hardware community and the readiness levels used by the National Oceanic and
Atmospheric Administration (NOAA).

2 THE SAMI2PY PROJECT

The sami2py project will be discussed in terms of the three major components: the core ionospheric
solver, the component models, and the Python interface.

2.1 SAMI2 core code

The core of the code is the FORTRAN ionospheric dynamics engine. At this stage of development,
this is numerically unchanged from the original release of the SAMI2 model, though the handling
of some variables has been updated to accommodate compilation using GNU compilers (e.g.,
gfortran team, 2022). SAMI2 solves for the chemical and dynamical evolution of seven ion
species in this environment (H*, He™, N*, O", NJ, NO, and O3). The temperature equation is
solved for three ion species (H*, He™ and O™") and for the electrons. Ion inertia is included in the
ion momentum equation for motion along the geomagnetic field. This is important in modeling
the topside ionosphere where the plasma transitions from collisional to collisionless. SAMI2 uses
a nonorthogonal, nonuniform, fixed grid. The grid is designed to optimize the numerical mesh
so that the spatial resolution decreases with increasing altitude. The plasma is transported along
the magnetic field using a semi-implicit transport algorithm, and transverse to the geomagnetic
field using a finite volume method in conjunction with the donor cell method (Huba, 2003). The
numerical solutions are well documented in Huba et al. (2000). A brief summary follows.

The SAMI2 model simulates the production, motion, and loss of ions along a two-dimensional
slice of Earth’s ionosphere, as shown in Figure 1. This slice is aligned with magnetic field lines as
calculated for an offset tilted dipole field. The continuity, momentum, and temperature equations
for ions and electrons are solved. The model is initialized and driven by empirical models, as
discussed in Section 2.2. A series of scaling factors can be used to alter the magnitude of these
empirical values through the namelist file. In general, the model is run for 24 hours before
modelled values are output to files. This is done to clear transients from the system.

2.2 Component models

The sami2py software builds on the modular nature of the SAMI2 model. In the original release,
SAMI2 used four key empirical models to prime the ionospheric solutions: NRLMSISe-00
(Picone, 2002) to provide the neutral atmosphere, EUVAC (Richards et al., 1994) to provide
the EUV spectrum, HWM-93 to provide neutral winds (Hedin et al., 1993b,a), and the Fejer-
Scherliess model of low-latitude E xB drifts (Scherliess and Fejer, 1999). sami2py updates these
component models, whose acronyms are defined below, to the latest versions and includes the
older versions as optional inputs. Additionally, the number of scalable parameters has been
expanded. A full list of the available models and scalable parameters is included in Table 1.

The Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar (NRLMSIS)
model is a semi-empirical model representing multiple decades of neutral atmospheric measure-
ments, including mass spectrometer, radar, and satellite drag data (Picone, 2002). The version
implemented in samiZ2py is a modification of the extended version of the model released in 2000
(NRLMSISe-00). During the solar minimum between cycles 23 and 24, record low densities
in the thermosphere were observed through satellite drag measurements Emmert et al. (2010)
and direct measurement of neutral pressure density (Haaser et al., 2010). These measurements
were outside of the underlying database used to construct the model. Solomon et al. (2010)
suggested that anomalously low Extreme Ultraviolet (EUV) radiation during this period resulted
in a much cooler thermosphere than expected from the radio flux proxy for solar activity (Fy.7).

81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
%
97
98
99

100

101

102

103
104
105
106

107

109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124

125

sami2py Draft submitted to Frontiers

Since Fig7 rather than EUV is used to drive the thermospheric model, Klenzing et al. (2013)
implemented a scalar factor for the exospheric temperature in their empirical study of altered
electrodynamics during extreme solar minima. The SAMI2 model already allows users to scale
the resultant density profiles independently for each species after NRLMSISe-00 has run. The
modification implemented here adds the capability to scale the exospheric temperature directly in
NRLMSISe-00 in addition to constantly scaling each species. An example of of the effect of this
reduced temperature run is shown in Figure 2.

The Extreme Ultraviolet for Aeronomic Calculations (EUVAC) model provides a calculation
of the EUV flux as a function of the solar radio flux proxy Fjo7 (Richards et al., 1994). For
SAMI2, the model is used to calculate the photo-ionization rate of the ionosphere. While the
implementation is unchanged from the SAMI2 1.00 release, a scalar parameter has been added to
the code to allow sensitivity studies for directly changing the total photo-ionization rate.

The Horizontal Wind Model (HWM) provides a statistical view of neutral winds gathered
from world-wide Fabry-Perot Interferometers, Incoherent Scatter Radars, satellites, and rockets
(Drob et al., 2015). The latest version (HWM14) is incorporated as the default, thought users can
run numerical experiments with HWMO7 (Drob et al., 2008) and HWMB93 as options.

The Fejer-Scherliess model of ExB drift climatology (e.g., Scherliess and Fejer, 1999)
provides the two-dimensional drifts perpendicular to the magnetic field lines as a function of local
time, solar activity, day of year, and longitude. This is done through cubic spline fits to data from
the Jicamarca Incoherent Scatter Radar and the Atmospheric Explorer E satellite. The model
is unchanged in the sami2py implementation. As in SAMI2, scalar parameters allow users to
directly change the magnitude and offset of the drifts.

An alternative E xB is provided for users wanting to investigate alternate drift climatologies.
Since the model is constrained to a local series of flow tubes in a single magnetic meridian, the
alternate model is incorporated as a series of Fourier coefficients that are user-specified that
describe a function of Solar Local Time (SLT), as shown in Equation 1.

SLT SLT
E X Byt (SLT) = 212, Cipcos (l > + Cysin <’) (1)

12 12

This allows users with direct measurements to create a localized drift model. Examples of
this type of usage are presented in Klenzing et al. (2013) and Smith and Klenzing (2022). An
additional input file to the FORTRAN code names exb.inp was added so that the localized model
can be changed without recompiling the FORTRAN engine. Note that this creates a function that
averages to zero over all local times, ensuring that there is no net upward or downward drift over
the course of a day.

2.3 Python interface

The samiZ2py Python code wraps the compiled SAMI2 FORTRAN engine (see Fig 3) in a
standardized Python package. It provides an interface for users to directly update the namelist
and E xB input files via keywords, and returns the results in an xarray.Dataset object (Hoyer and
Hamman, 2017).

The core SAMI2 code in sami2py is compatible with FORTRAN 90 and is suitable for
compilation under multiple compilers. The variable parameters, such as geographic location,
solar activity, and season, are input via a namelist file, and the resulting modelled parameters are
sent to binary output files. An additional exb.inp file is included to generate alternate ExB drift
models via a Fourier series over solar local time. The sami2py code provides a user interface to
both the input namelist files (through the sami2py.run_model method) and the output binaries
(through the sami2py.Model class).

The method sami2py.run_model allows the user to directly run the compiled FORTRAN
executable. The namelist that specifies the parameters of the model run can be adjusted via
keyword arguments, which are fully documented in the code docstrings and in the detailed
documentation that is available in the GitHub repository and online at readthedocs. This includes
a user-specified “tag” to quickly describe the run for archival purposes (e.g., “solarmin’). The

126
127
128
129
130
131

132

134
135
136
137
138
139
140
141

142
143
144
145
146
147
148
149
150
151

152

153

154

155

156
157
158
159
160

161

162
163

164

166
167

168
169
170
171
172
173
174

sami2py Draft submitted to Frontiers

FORTRAN executable saves each variable as a separate file. By default, this method will move
all of the output files, as well as the input namelist and exb.inp files, to an archival directory. All
files are grouped under subdirectories by the tag name, longitude, and date in case a user runs
multiple dates or locations for the same input conditions.

The sami2py.Model class loads the raw output of the model run. It loads each individual
file and reshapes them into a single xarray.Dataset object for convenience of use. This class
will also load the namelist info as metadata to allow inspection of input parameters, as well as
any custom E xB input that was used. When working within samiZ2py, this information is stored
in the model.MetaData object as a dictionary. The parameters are reshaped as 4D arrays with
appropriate coordinates. Examples are shown in the sample code in Section 3.

For portability and reproducability, both data and metadata can be exported to a netCDF4 file
(Whitaker et al., 2020) using the to_netcdf method on the model. The metadata will be included
as top-level attributes in the output file, documenting how the run was initialized and including
both the sami2py version number and commit hash (in case a custom branch based on an official
version was created). The netCDF4 versions of the file are constructed to be compatible with

pysat.

2.4 Integration into the pysat ecosystem
The pysat ecosystem (Stoneback et al., 2018) has evolved to support management and analysis
of a number of data sets throughout the space science community. The core pysat engine
provides a framework to manage data sets, including acquisition, archival, and management. As a
management tool, it has been used operationally in missions and analysis projects, including the
ICON and COSMIC2 missions. A series of libraries has been written to translate between the
core pysat commands and individual data sets. This standardization allows pysat to manage the
metadata as well.

These files can be integrated into the pysat ecosystem by using the custom sami2py instrument
module at pysatModels (Burrell et al., 2022). This package includes a number of other tools to
compare observational data with models.

3 SAMPLE WORKFLOW

This section demonstrates how sami2py can be used in a research workflow to run and analyze
the SAMI2 model and output.

3.1 Environment and Compilation

The code here has been tested in linux, Mac, and Windows environments through Github Actions.
Each environment is tested through a unit test suite with 97.6% code coverage as of version
0.3.0. The unit tests are configured to use the latest python packages under python 3.9 and 3.10
environments, as well as a version limited to numpy 1.20 under python 3.8. The specific versions
used for the core requirements as of the publication of this paper are listed in Table 2.

3.2 Preparing to Run the Model

The sami2py.run_model method and sami2py.Model class provide the core functionality of
samiZ2py. The following code snippet prepares the archive directory, and specifies the time
and location for the run as well as declaring custom E xB input.

import datetime as dt
import os

import samiZpy
Check for archive directory and set 1if necessary

if not samiZpy.archive_dir:
home_dir = os.path.expanduser ("™ ")

175
176
177
178
179
180
181
182
183
184

186
187
188
189

191
192
193
194

197
198

199
200
201
202

203

204
205

206
207
208
209
210
211

213

214
215
216
217
218
219

220

221
222

223
224
225
226
227
228
229
230

sami2py Draft submitted to Frontiers

path = os.path.join([home_dir, "data", "samil2py"])
sami2py.utils.set_archive_dir (os)

Set date to winter solstice
date = dt.datetime (2009, o6, 4)
doy = date.timetuple () .tm_yday

Set the longitude
lon = 22

Set the fourier coefficients obtained from observations
exb_drifts = [[-1.27399486e+01, 4.84811390e+00],
.75459367e+00, -1.39196171e+01],
.16307457e+01, -1.78058791e+00],
.09914415e+00, —-3.28817843e+00],
.09464044e-02, 1.90632011e+007,
.40307626e-01, -4.54870858e-01],
.62144077e-01, -3.54108276e+00],
.30221902e+00, 1.05182704e-017,
.97016102e-03, 2.47216869e+007],
.40601689e+00, 0.00000000e+001]]

|
T N N e R ¢

Note that setting the user archive directory only needs to be run when the package is first
installed.

3.3 Running the Model

Now that the custom input has been declared and the environment is prepared for archival,
the model can now be executed. The time, location, F10.7 and ExB are provided to the
sami2py.run_model method. Upon completion the model output is loaded as a sami2py.Model
object and archived as a netCDF file.

Run basic model
samiZ2py.run_model (tag="fass_solarmin"”, lon=lon, year=date.year,
day=doy, £107=70, £107a=70, fejer=False, exb_drifts=exb_drifts)

Load and archive models

solarmin = sami2py.Model (tag="fass_solarmin", lon=lon,
year=date.year, day=doy)

solarmin.to_netcdf ("fass_solarmin.nc")

3.4 Plotting the Model Output

The following code snippet loads the archived model run, adds a new variable to the data set
which consists of the total plasma density, and then plots the total plasma density as a function of
local time and altitude with the ExB drift superimposed over the density. Note that by default, the
ion density variable (deni) is a four-dimensional object, with one of the dimensions (retrievable as
ion) specifies the individual ion species. A summation over this third axis is needed to extract
total ion density.

import matplotlib.pyplot as plt
import xarray as xr

Load archived model using xarray
model = xr.load_dataset ("fass_solarmin.nc")

Sum over all ions for total ion density
model ["Ni"] = model["deni"].sum(dim="ion")

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263

268

266

267

268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283

284

286

sami2py Draft submitted to Frontiers

Set time step and density range

step = 30
denmin = model["Ni"][:, :, step].min().values
denmax = model ["Ni"][:, :, step].max().values

Shift model data so that the lowest time value is at the Oth
position
model = model.roll (ut=1, roll_coords=True)

Create figure
fig = plt.gcf ()

Plot the plasma density
plt.contourf (model["ut"], model["zalt"].interp(z=51),
model ["Ni"].interp (z=51),
cmap="magma", vmin=denmin, vmax=denmax)
cbar = plt.colorbar (pad=.15)
cbar.formatter.set_powerlimits ((0, 0))
cbar.formatter.set_useMathText (True)
cbar.set_label ("total plasma density $cm”{-3}$")
plt.ylabel ("Altitude (km)")
plt.xlabel ("slt (hours)")

Plot the model drift on top of the density

host = plt.gca()

new = host.twinx()

new.set_ylabel (r"Meridional ES$S\times$B Drifts (m sS$"{-1}$)")
new.plot (model["ut"], model["exb"], color="w")
new.set_ylim(-140, 75)

title = " ".join("FS$S_{10.7}S$", "-", str(model.F10_7), "sfu"l)
plt.title(title)

plt.tight_layout ()

plt.show ()

The resulting figure is shown in Figure 4.

4 APPLICATION OVERVIEW

The AUL framework is divided into three phases with three levels each as shown in Table 3
Halford et al. (2019). Examples of use are in the paper and a full example of the AUL framework
applied to the development of a project can be found in Cid et al. (2020). The first phase focuses
on basic research, the identification of the user, and agreement between the researcher and users
of the intended application and requirements. The second phase develops and tests the application
in a similar environment to where it will be operational. In the case of a software development
such as sami2py this may include common operating systems and Python installations. The third
phase includes the delivery of the application into the operational environment for routine use.
The definitions of these AUL parameters are defined in the context of sami2py in Table 4.

At this phase in project development, we have identified three core use cases of the software:
The use of early-phase research projects to perform key sensitivity studies, as a key dependency
in the growin software package (Smith and Klenzing, 2020), and as an educational tool for
classes to teach ionospheric electrodynamics. We will discuss each of these individually through
the framework of the AUL framework summarized in Table 3 as each as different users and
requirements. The AUL framework provides a standardized scale for software and other projects
on a scale of 1 to 9, analogous to the Technology Readiness Levels often used for flight hardware
projects. The first two applications have been identified as having completed validation (AUL 6),
whereas the third application (use as an educational tool) is still at an AUL 1. This section will
document the steps we have taken to reach these AUL levels.

287

288
289
290

291

292
293
294
295
296
297
298
299
300

301
302
303
304
305
306

307
308
309
310
311
312
313
314
315

316
317
318
319
320
321
322
323
324
325
326
327
328

329
330
331
332

333

334
335
336
337

sami2py Draft submitted to Frontiers

4.1 Application: Early phase research test projects — AUL 7

One of the applications of sami2py is for early-phase research projects. The user is the broader
ionospheric research community who are communicated with on a direct basis with the develop-
ment team and at conferences such as CEDAR. The operational environment is then considered
to be an individual’s work computer.

An example of the early-phase research projects is running sensitivity studies on proposed
physical forcing mechanisms. For this paper, an example of an identified user for this application
is Klenzing et al. (2013) where the early phase research includes a series of sensitivity studies
for proposed modifications to ionospheric drivers under extremely low levels of solar activity.
This study was originally conducted using a prototype of the sami2py model written in MatLab,
but the functionality applies to the Python version as well. Each empirical model that drives the
SAMI2 ion dynamics engine can be modified to reflect proposed changes to the forcing of the
ionosphere, including reductions in exospheric temperature for the MSIS model and the direct
input of user-specified ExB drift profiles as a function of local time.

Examples of how the ionospheric density changes by altering the ExB drift assumptions
are shown in Figures 4 and 5. Each plot shows the evolution of the vertical ionospheric density
profile over time. The white line plotted above the ionospheric density represents the driving ExB
timeseries used in sami2py, with Figure 4 driven by the Fejer-Scherliess model (Scherliess and
Fejer, 1999) and Figure 5 driven by climatology measured by the Coupled Ion-Neutral Dynamics
Investigation (CINDI) mission of opportunity (Smith and Klenzing, 2022)

The work discussed above has shown how a Python version of SAMI2 will provide a path
beyond the current state of the art capabilities for individual research projects. The Python
interface for the SAMI2 model also provides a new capability making it easier for more researchers
to access and use this model, as well as document results. Moving from a MatLab interface to
an open source language improves the accessibility of the work. Incorporation of the resulting
modeled data into an xarray.Dataset object improves the usability of the output. The primary
requirement for this application at this phase is to ensure that this Python package is open access
and works across computer operating systems. We have satisfied the milestones for AUL 3 with
the release of sami2py version 0.2.0 in December 2019 (Klenzing et al., 2019).

The AUL 4-6 milestones require improved documentation and testing of the beta prototype of
the model. Changes incorporated since version 0.2.0 include docstrings for all functions, improved
Continuous Integration (CI) testing, and improved compatibility with external Python packages,
including numpy, xarray, and pysat. The model undergoes continuous integration tests in the
GitHub Actions environment with > 97% coverage, fulfilling simulation in an operational environ-
ment. The CI tests are run for Linux, mac, and windows systems to satisfy AUL 5 (demonstration
in a relevant context). Additionally, tests for older versions of numpy are included to maintain
compliance with NEP029 (Caswell et al., 2019). Since samiZpy is being developed on GitHub,
it is easily transferred from the development environment to the operational environment (end
user’s workstation) across the community. Regular updates are given at community workshops.
With the documentation of the code, including the online documentation at readthedocs and the
examples within this paper, and the release of version 0.2.5 (Klenzing et al., 2021) all milestones
through AUL 6 have been completed.

AUL level 7 is the Application Prototype of the project. This requires demonstration of the
prototype and dissemination of results. Both of these goals are achieved with the release of
version 0.3.0 (Klenzing et al., 2022) and the publication of this paper. Improvements to the user
interface and code style have been implemented in version 0.3.0 to maintain PyHC standards and
improve code maintainability.

For AUL 8 and 9, a finalized project for on-demand usage needs to be released. In the context
of this application for sami2py, a series of updates focusing on an improved workflow and code
maintainability have been identified. These are demarcated as a future 0.4.0 release. Input from
the community will be evaluated alongside these updates as the user base grows.

338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360

361
362
363
364
365
366
367

368

369

370
371
372
373

374

375

376

377

378

379
380
381
382

383

sami2py Draft submitted to Frontiers

4.2 As a core dependency of the growin software tools — AUL 7

As an additional demonstration of the prototype, the sami2py module is a central dependency
for the growin python module which was written to compute the Rayleigh-Taylor instability
(RTT) growth rate. The calculation of the RTI growth rate is central to the development and
growth of plumes of depleted plasma, or plasma bubbles, in the bottomside of the equatorial
ionosphere. The growin module uses the sami2py module to run the SAMI2 model, archive the
output, and load the output into Python data structures (Klenzing et al., 2022). Similar to the
example code above, drift measurements are used to create a climatological drift profile from
in-situ measurements. These drifts are then passed to sami2py and an ionosphere is simulated
with the typical ionospheric indices for the corresponding time period. Subsequently the produced
ionospheric plasma densities, drifts, and winds are used to compute flux-tube integrated quantities
necessary to compute the RTI growth rate. These growth rates have been previously used to
discuss bubble occurrence frequencies obtained from the CINDI (Smith and Klenzing, 2022) and
Global Observations of the Limb and Disk (GOLD) (Martinis et al., 2020) missions.

Similar to the previous application, the broader ionospheric research community is the user and
will benefit from a Python version of growin and the inclusion of sami2py within it. The feasibility,
viability, and expected improvements can all be found within Smith and Klenzing (2022). Thus
many of the milestones have been completed for this application through the previously discussed
application in Section 4.1. As shown in Table 5, the key additional requirement here is the output
of neutral atmospheric data, which is required to perform the RTT calculations. This has been
added to sami2Zpy as an optional output. As the other components growin were already within the
operational/end user environment, the final AUL is now dependent on the progress of samiZ2py.
Similar to the previous application, the usage of samiZpy in the growin package is at an AUL of 7.

4.3 Application: educational tool — AUL 1

Beyond the research community, another user community has been identified but not yet contacted.
The code here can also be used as an educational tool as part of a Space Weather of lonospheric
Electrodynamics curriculum. The straightforward and modular nature of the code makes it
practical to incorporate into homework or class projects as needed. As this application has been
identified, but specific requirements have not been defined and incorporated into the code, this is
defined as an AUL 1 project. Work is ongoing, and interested parties should contact the authors
to help better refine this project and requirements for these purposes.

5 SUMMARY AND FURTHER WORK

This work documents an overview of the sami2py code and several potential applications. The
proposed applications are documented here and their progress towards on-demand use using the
Application Usability Level framework. Ongoing assessment and progress of these AULs will be
updated online at the projects page of the GitHub repository.

Full documentation of the code including examples is available at https://sami2py.readthedocs.io.

CONFLICT OF INTEREST STATEMENT

The authors declare that the research was conducted in the absence of any commercial or financial
relationships that could be construed as a potential conflict of interest.

AUTHOR CONTRIBUTIONS

JK and JMS wrote the Python interface to SAMI2, as well as modified the FORTRAN code. JDH
is the original author (with Dr. Glenn Joyce) of the FORTRAN SAMI2 code. AGB contributed
to overall design and interface of the code, as well as the integration into the pysat ecosystem.
JK wrote the first draft of the manuscript. JMS and AJH wrote sections of the manuscript. All
authors contributed to manuscript revision, read, and approved the submitted version.

385
386
387

388

389

390

391

392

393
394

395

396

397
398
399
400

401

402

403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

430

sami2py Draft submitted to Frontiers

FUNDING

JK and AJH are supported by the Space Precipitation Impacts project at Goddard Space Flight
Center through the Heliophysics Internal Science Funding Model. JMS is supported by LWS
NNH20ZDAOO1N-LWS. The research of JDH was supported by NSF (AGS-1931415). AGB is
supported by the Office of Naval Research.

ACKNOWLEDGMENTS

This work uses the SAMI2 ionosphere model written and developed at the Naval Research Labora-

tory. The sami2py Python model is freely available to the community at www. github.com/sami2py/sami2py.

SUPPLEMENTAL DATA

Supplementary Material should be uploaded separately on submission, if there are Supplementary
Figures, please include the caption in the same file as the figure. LaTeX Supplementary Material
templates can be found in the Frontiers LaTeX folder.

DATA AVAILABILITY STATEMENT

The data sets generated for the figures in this study can be found at zenodo: https://doi.org/10.5281/zenodo.71827¢

The sami2py model can be installed from github at https.//github.com/sami2py/sami2py.

For the reviewers: The sami2py 0.3.0 release candidate is available at
https://github.com/sami2py/sami2py/pull/170 for review purposes. The final version will be
released alongside this paper.

REFERENCES

Annex, A., Alterman, B. L., Azari, A., Barnes, W., Bobra, M., Cecconi, B., Christe, S., Coxon,
J., DeWolfe, A., Halford, A., Harter, B., Ireland, J., Jahn, J., Klenzing, J., Liu, M., Mason, J.,
McGranaghan, R., Murphy, N., Murray, S., Niehof, J., Nguyen, M. D., Panneton, R., Pembroke,
A., Pérez-Suérez, D., Piker, C., Roberts, A., Ryan, D., Savage, S., Smith, J., Stansby, D.,
Vandegriff, J., and Weigel, R. S. (2018). Python in heliophysics community (pyhc) standards.

Backus, J. W. and Heising, W. P. (1964). Fortran. IEEE Transactions on Electronic Computers,
EC-13(4):382-385.

Burrell, A. G., Halford, A., Klenzing, J., Stoneback, R. A., Morley, S. K., Annex, A. M., Laundal,
K. M., Kellerman, A. C., Stansby, D., and Ma, J. (2018). Snakes on a spaceship—an overview
of python in heliophysics. Journal of Geophysical Research: Space Physics, 123(12):10,384—
10,402.

Burrell, A. G., Klenzing, J., and Stoneback, R. (2022). pysat/pysatmodels: v0.1.0 release.

Caswell, T. A., Mueller, A., Granger, B., Munk, M., Gommers, R., Haberland, M., Bussonnier,
M., and van der Walt, S. (2019). Nep 29 — recommend python and numpy version support as a
community policy standard.

Cid, C., Guerrero, A., Saiz, E., Halford, A. J., and Kellerman, A. C. (2020). Developing the 1di
and Ici geomagnetic indices , an example of application of the auls framework. Space Weather,
18:e2019SW002171.

Drob, D., Emmert, J., Meriwether, J., Makela, J., Doornbos, E., Conde, M., Hernandez, G., Noto,
J., Zawdie, K., McDonald, S., Huba, J., and Klenzing, J. (2015). An update to the horizontal
wind model (hwm): The quiet time thermosphere. Earth and Space Science, 2(7).

Drob, D. P,, Emmert, J. T., Crowley, G., Picone, J. M., Shepherd, G. G., Skinner, W., Hays, P.,
Niciejewski, R. J., Larsen, M., She, C. Y., Meriwether, J. W., Meriwether, J. W., Hernandez, G.,
Jarvis, M. J., Sipler, D. P., Tepley, C. A., O’Brien, M. S., Bowman, J. R., Wu, Q., Murayama,
Y., Kawamura, S., Reid, I. M., and Vincent, R. A. (2008). An empirical model of the earth’s
horizontal wind fields: HwmO7. Journal of Geophysical Research, 113(A12):A12304.

Emmert, J. T., Lean, J., and Picone, J. M. (2010). Record-low thermospheric density during the
2008 solar minimum. Geophysical Research Letters.

431
432
433
434

435

437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456

457

459
460
461
462
463
464
465
466
467

468

470
471
472
473
474
475
476
477
478

479

481

482

sami2py Draft submitted to Frontiers

England, S. L., Immel, T. J., and Huba, J. D. (2008). Modeling the longitudinal variation in the
post-sunset far-ultraviolet oi airglow using the sami2 model. Journal of Geophysical Research:
Space Physics, 113(A1).

gfortran team, T. (2022). The gnu fortran compiler.

Gil, Y., David, C. H., Demir, L., Essawy, B. T., Fulweiler, R. W., Goodall, J. L., Karlstrom, L., Lee,
H., Mills, H. J., Oh, J.-H., Pierce, S. A., Pope, A., Tzeng, M. W,, Villamizar, S. R., and Yu, X.
(2016). Toward the geoscience paper of the future: Best practices for documenting and sharing
research from data to software to provenance. Earth and Space Science, 3(10):388—415.

Haaser, R. A., Earle, G. D., Heelis, R. A., Coley, W. R., and Klenzing, J. H. (2010). Low-latitude
measurements of neutral thermospheric helium dominance near 400 km during extreme solar
minimum. Journal of Geophysical Research: Space Physics, 115(11):1-5.

Halford, A. J., Kellerman, A. C., Garcia-Sage, K., Klenzing, J., Carter, B. A., McGranaghan,
R. M., Guild, T., Cid, C., Henney, C. J., Ganushkina, N. Y., Burrell, A. G., Terkildsen, M.,
Welling, D. T., Murray, S. A., Leka, K. D., McCollough, J. P., Thompson, B. J., Pulkkinen, A.,
Fung, S. F,, Bingham, S., Bisi, M. M., Liemohn, M. W., Walsh, B. M., and Morley, S. K. (2019).
Application usability levels: a framework for tracking project product progress. Journal of
Space Weather and Space Climate, 9:A34.

Hedin, A. E., Fleming, E. L., Manson, A. H., Schmidlin, F. J., Avery, S. K., Clark, R. R., Franke,
S.J., Fraser, G. J., Tsuda, T., Vial, F., and Vincent, R. A. (1993a). Empirical wind model for the
middle and lower atmosphere — part 2: Local time variations. NASA Technical Memorandum
104592, NASA.

Hedin, A. E., Schmidlin, F. J., Fleming, E. L., Avery, S. K., Manson, A. H., and Franke, S. J.
(1993b). Empirical wind model for the middle and lower atmosphere — part 1: Local time
average. NASA Technical Memorandum 104581, NASA.

Higham, D. J. and Higham, N. J. (2016). MATLAB guide, volume 150. Siam.

Hoyer, S. and Hamman, J. (2017). xarray: N-d labeled arrays and datasets in python. Journal of
Open Research Software, 5:10.

Huba, J. (2003). A tutorial on hall magnetohydrodynamics. Space Plasma Simulation, page 170.

Huba, J. D., Joyce, G., and Fedder, J. A. (2000). Sami?2 is another model of the ionosphere
(sami2): A new low-latitude ionosphere model. Journal of Geophysical Research: Space
Physics, 105(A10):23035-23053.

Klenzing, J., Burrell, A. G., Heelis, R. A., Huba, J. D., Pfaff, R. F., and Simdes, F. (2013).
Exploring the role of ionospheric drivers during the extreme solar minimum of 2008. Annales
Geophysicae, 31(12):2147-2156.

Klenzing, J., Smith, J., and Hirsch, M. (2019). sami2py/sami2py: Version 0.2.0 — support for
xarray.

Klenzing, J., Smith, J. M., Kitano, R., Hirsch, M., Burrell, A. G., and zzyztyy (2021).
sami2py/sami2py: Version 0.2.5.

Klenzing, J., Smith, J. M., Kitano, R., Hirsch, M., Burrell, A. G., and zzyztyy (2022).
sami2py/sami2py: Version 0.3.0.

Krall, J. and Huba, J. D. (2019). Simulation of counterstreaming h+ outflows during plasmasphere
refilling. Geophysical Research Letters, 46(6):3052-3060.

Martinis, C., Daniell, R., Eastes, R., Norrell, J., Smith, J., Klenzing, J., Solomon, S., and Burns,
A. (2020). Longitudinal variation of post-sunset plasma depletions from the global-scale
observations of the limb and disk (gold) mission. Journal of Geophysical Research: Space
Physics, 6(2):1-10.

Otsuka, Y., Shinbori, A., Sori, T., Tsugawa, T., Nishioka, M., and Huba, J. D. (2021). Plasma
depletions lasting into daytime during the recovery phase of a geomagnetic storm in may
2017: Analysis and simulation of gps total electron content observations. Earth and Planetary
Physics, 5(5):eepp2021046.

Picone, J. M. (2002). NRLMSISE-00 empirical model of the atmosphere: Statistical comparisons
and scientific issues. Journal of Geophysical Research, 107(A12):1468-SIA 15-16.

10

483
484
485
486

487

489
490
491
492
493
494
495
496
497

498

500
501
502
503
504
505
506

507

sami2py Draft submitted to Frontiers

Richards, P, Fennelly, J. A., and Torr, D. G. (1994). Euvac - a solar euv flux model for aeronomic
calculations. Journal of Geophysical Research, 99(AS5):8981-8992.

Scherliess, L. and Fejer, B. G. (1999). Radar and satellite global equatorial f region vertical drift
model. Journal of Geophysical Research: Space Physics, 104(A4):6829-6842.

Smith, J. and Klenzing, J. (2020). Jonathonmsmith/growin: Beta.

Smith, J. M. and Klenzing, J. (2022). Growin: Modeling ionospheric instability growth rates. J.
Space Weather Space Clim., 12:26.

Solomon, S. C., Woods, T. N., Didkovsky, L. V., Emmert, J. T., and Qian, L. (2010). Anomalously
low solar extreme-ultraviolet irradiance and thermospheric density during solar minimum.
Geophysical Research Letters, 37(16):1-5.

Stoneback, R. A., Burrell, A. G., Klenzing, J., and Depew, M. D. (2018). Pysat: Python satellite
data analysis toolkit. Journal of Geophysical Research: Space Physics, 123(6):5271-5283.
Van Rossum, G. and Drake, F. L. (2009). Python 3 Reference Manual. CreateSpace, Scotts Valley,

CA.

Varney, R. H., Swartz, W. E., Hysell, D. L., and Huba, J. D. (2012). Sami2-pe: A model of
the ionosphere including multistream interhemispheric photoelectron transport. Journal of
Geophysical Research: Space Physics, 117(A6).

Whitaker, J., Khrulev, C., Huard, D., Paulik, C., Hoyer, S., Filipe, Pastewka, L., Mohr, A.,
Marquardt, C., Couwenberg, B., Taves, M., Cuntz, M., Roet, S., Whitaker, J., Brett, M., Bohnet,
M., Korenciak, M., Hetland, R., Barna, A., Hamman, J., Helmus, J. J., Onu, K., barronh,
Barker, C., Cederstrand, E., Smrekar, J., Hiebert, J., May, R., Kluyver, T., and bekozi (2020).
Unidata/netcdf4-python: version 1.5.5 release.

Zhan, W. and S. Rodrigues, F. (2018). June solstice equatorial spread f in the american sector:
A numerical assessment of linear stability aided by incoherent scatter radar measurements.
Journal of Geophysical Research: Space Physics, 123(1):755-767.

11

sami2py Draft submitted to Frontiers

s FIGURE CAPTIONS

%103
— 3.2
700
L 2.8
600 - o4
T
£
2.0 ;,
— 500 - .
€ G
= S
2 16 ©
2 400 A e
S o
N 12 &
300 2
08
200 4
0.4
100 0.0
-20 -10 0 10 20 30
Geo Lat (deg)
Figure 1. Example output of the SAMI2 model
ut = 0.0008333 [hrs]
1000
—H
900 (0]
—— He
800 —_ N
700
E 600
o —— standard run
o "
g 500 reduced temperature run
<
400
300
200
100
10° 10" 10° 10° 10" 10" 10"

neutral densitv IN/ccl

Figure 2. Modification of the NRLMSISe exospheric temperature

12

sami2py Draft submitted to Frontiers

rsalmizpy.run_modeh sami2py.Model
»| MetaData
kwargs —> External Analysis
. N > data
namelist
\ 4
SAMI2 y
engine Legend
Model.to_netcdf
\ 4
Archivable
\ ‘ format file
Figure 3. Block diagram of the sami2py workflow
lonosphere driven by F-S drift model
Longitude = 122 deg E
2000 IS
700000
50
1750
600000
25
1500 ™
0 500000 §
£ 1250 " ‘E
> 25 £ 4 g
§ !5 00000]
[
£ 1000 s 3 -
< 300000 ®
[= 8
750 =
-75 2
200000 +
500 ~100
S —
250 -125
0 5 10 15 20
slt hours

Figure 4. Example output ionosphere driven by custom drifts from the Fejer-Scherliess model

13

sami2py Draft submitted to Frontiers

lonosphere driven by C/NOFS drifts
Longitude = 122 deg E

2000 L
800000
50
1750
700000
25
1500 m
600000 é
0 S
frd
1250 £
E 2 500000 @
O =25 C [
=} [m] =]
2 1000 Q 400000 £
= —50 W 0
< °©
750 300000 —
-75 5
200000
500 —100
250 -125
5 10 15 20
slt hours

Figure 5. Example output ionosphere driven by custom drift climatology fit to C/NOFS data

14

sami2py Draft submitted to Frontiers

so TABLES
Table 1. Component Models in sami2py 0.3.0

Physical Mechanism Model Name Scalable Parameters
Neutral Atmosphere = NRLMSISe-00 Neutral Species, Exospheric Temperature
Photoionization Rate EUVAC Total Ionization
Neutral Winds HWM-14 (default) Wind Magnitude

HWM-07

HWM-93
ExB drifts Fejer-Scherliess (default) Drift magnitude, offset from zero

Fourier coefficients F(SLT)

Table 2. Environments currently tested for sami2py 0.3.0

Requirement Versions tested NEPO029 tests
Operating System Ubuntu 20.04.5 Ubuntu 20.04.5
Mac OS 12.6
Windows Server 2022
Python 3.9,3.10 3.8
netCDF4 1.6.1 1.6.1
numpy 1.234 1.20.0
pandas 1.5.1 1.4.4
scipy 1.9.3 1.9.3

xarray 2022.10.0 2022.10.0

Table 3. A brief description of the AUL phases and levels as outlined in Halford et al. (2019)

Phase Phase definition AUL Level description
1 Basic research
Phase 1 Discovery and Viability 2 Establishment of users and requirements
3 Assess viability and current state of the art
4 Initial integration and verification
Phase 2 Development, Testing, 5 Demonstration in the relevant context
and Validation 6 Completed validation
7 Application prototype
Phase 3 Implementation and Integration 8 Validation in relevant context
into Operation 9 Approved for on-demand use

Table 4. AUL definitions for sami2py

AUL parameter Definition for sami2py
End User Scientific researcher or Course Instructor
Operational Environment End User’s computer workstation (unix / mac / windows)

Simulated Operational Environment GitHub Actions Continuous Integration environment

15

sami2py

Requirements

Draft submitted to Frontiers

Table 5. Requirements and Metrics for the sami2py project

Application 1

Generate a 2-D ionospheric slice in the geomagnetic plane.

Modify and switch between available empirical models via Python keywords.
Archive model runs for a user to access later, including code commit hash.
Load and return the resultant modeled ionosphere via an xarray object.

Do so consistently under a variety of possible computer configurations.

Application 2 All of the above
The code should output neutral density background in addition to the ions.
Metrics Unit tests capturing above requirements.

Continuous integration support under Linux and windows configurations.
Continuous integration testing compatible with NEP 029 (Caswell et al., 2019).
Unit test coverage > 95%.

Documentation consistent with PyHC Standards (Annex et al., 2018).

16

