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ABSTRACT12

sami2py is a Python module that runs the SAMI2 (Sami2 is Another Model of the Ionosphere)

ionospheric model, as well as load and archive the results. SAMI2 is a model developed by the

Naval Research Laboratory to simulate the motions of plasma in a two-dimensional ionospheric

environment along a dipole magnetic field. SAMI2 solves for the chemical and dynamical

evolution of seven ion species in this environment (H+, He+, N+, O+, N+
2 , NO+, and O+

2 ). The

Python implementation allows for additional modifications to the empirical models within SAMI2,

including the exospheric temperature in the empirical thermosphere and the input of E×B ion

drifts.

The code is open source and available to the community on GitHub. The work here discusses

the implementation and use of sami2py, including integration with the pysat ecosystem and

the growin python package for ionospheric calculations. As part of the Application Usability

Level (AUL) framework, we will discuss the usability of this code in terms of several ionospheric

applications.

Keywords: Ionosphere; Ionospheric Model; SAMI2 model; Python (programming language);

software; open source software; Plasma Instability

1 INTRODUCTION13

SAMI2 is a model developed at the Naval Research Laboratory to simulate the motions of plasma14

in a 2 dimensional (2D) ionospheric environment along dipole magnetic field lines (Huba et al.,15

2000). The model itself is written in FORTRAN (Backus and Heising, 1964) and distributed16

under an open source license. It has been applied to a variety of low-latitude ionospheric physics17

problems, including longitudinal variation of airglow measurements (England et al., 2008), the18

effect of neutral winds on instability growth rates (Zhan and S. Rodrigues, 2018), and plasma19

bubble refilling rates (Otsuka et al., 2021). Because of the open source nature of the code, other20

variations have been built with additional physics considerations such as photoelectron transport21

(Varney et al., 2012; Krall and Huba, 2019).22

The sami2py software package (Klenzing et al., 2022) is an interface built in Python (Van Rossum23

and Drake, 2009) designed to initiate, modify, and manage runs of the SAMI2 model for iono-24

spheric studies. The original version was written in MatLab (Higham and Higham, 2016) as25

part of a systematic study of solar minimum (Klenzing et al., 2013), but has been rewritten and26

modified to comply with the Heliophysics Python ecosystem (e.g., Burrell et al., 2018; Annex27

et al., 2018). The software has been made open source and available to the community for28

modification to better improve reproducability of ionospheric research (e.g., Gil et al., 2016).29

Section 2 will discuss the implementation of sami2py. Section 3 will discuss a brief overview30

of a standard workflow of the code, including example output and plots. Section 4 will describe31
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several ongoing applications of the sami2py project using the Application Usability Level (AUL)32

Framework (Halford et al., 2019). This framework was recently developed to help track the33

progress of a product and ensure that it will be usable by the intended user community. The34

framework matches the progress to similar frameworks such as the technology readiness levels35

used by the space hardware community and the readiness levels used by the National Oceanic and36

Atmospheric Administration (NOAA).37

2 THE SAMI2PY PROJECT38

The sami2py project will be discussed in terms of the three major components: the core ionospheric39

solver, the component models, and the Python interface.40

2.1 SAMI2 core code41

The core of the code is the FORTRAN ionospheric dynamics engine. At this stage of development,42

this is numerically unchanged from the original release of the SAMI2 model, though the handling43

of some variables has been updated to accommodate compilation using GNU compilers (e.g.,44

gfortran team, 2022). SAMI2 solves for the chemical and dynamical evolution of seven ion45

species in this environment (H+, He+, N+, O+, N+
2 , NO+, and O+

2 ). The temperature equation is46

solved for three ion species (H+, He+ and O+) and for the electrons. Ion inertia is included in the47

ion momentum equation for motion along the geomagnetic field. This is important in modeling48

the topside ionosphere where the plasma transitions from collisional to collisionless. SAMI2 uses49

a nonorthogonal, nonuniform, fixed grid. The grid is designed to optimize the numerical mesh50

so that the spatial resolution decreases with increasing altitude. The plasma is transported along51

the magnetic field using a semi-implicit transport algorithm, and transverse to the geomagnetic52

field using a finite volume method in conjunction with the donor cell method (Huba, 2003). The53

numerical solutions are well documented in Huba et al. (2000). A brief summary follows.54

The SAMI2 model simulates the production, motion, and loss of ions along a two-dimensional55

slice of Earth’s ionosphere, as shown in Figure 1. This slice is aligned with magnetic field lines as56

calculated for an offset tilted dipole field. The continuity, momentum, and temperature equations57

for ions and electrons are solved. The model is initialized and driven by empirical models, as58

discussed in Section 2.2. A series of scaling factors can be used to alter the magnitude of these59

empirical values through the namelist file. In general, the model is run for 24 hours before60

modelled values are output to files. This is done to clear transients from the system.61

2.2 Component models62

The sami2py software builds on the modular nature of the SAMI2 model. In the original release,63

SAMI2 used four key empirical models to prime the ionospheric solutions: NRLMSISe-0064

(Picone, 2002) to provide the neutral atmosphere, EUVAC (Richards et al., 1994) to provide65

the EUV spectrum, HWM-93 to provide neutral winds (Hedin et al., 1993b,a), and the Fejer-66

Scherliess model of low-latitude E×B drifts (Scherliess and Fejer, 1999). sami2py updates these67

component models, whose acronyms are defined below, to the latest versions and includes the68

older versions as optional inputs. Additionally, the number of scalable parameters has been69

expanded. A full list of the available models and scalable parameters is included in Table 1.70

The Naval Research Laboratory Mass Spectrometer and Incoherent Scatter radar (NRLMSIS)71

model is a semi-empirical model representing multiple decades of neutral atmospheric measure-72

ments, including mass spectrometer, radar, and satellite drag data (Picone, 2002). The version73

implemented in sami2py is a modification of the extended version of the model released in 200074

(NRLMSISe-00). During the solar minimum between cycles 23 and 24, record low densities75

in the thermosphere were observed through satellite drag measurements Emmert et al. (2010)76

and direct measurement of neutral pressure density (Haaser et al., 2010). These measurements77

were outside of the underlying database used to construct the model. Solomon et al. (2010)78

suggested that anomalously low Extreme Ultraviolet (EUV) radiation during this period resulted79

in a much cooler thermosphere than expected from the radio flux proxy for solar activity (F10.7).80
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Since F10.7 rather than EUV is used to drive the thermospheric model, Klenzing et al. (2013)81

implemented a scalar factor for the exospheric temperature in their empirical study of altered82

electrodynamics during extreme solar minima. The SAMI2 model already allows users to scale83

the resultant density profiles independently for each species after NRLMSISe-00 has run. The84

modification implemented here adds the capability to scale the exospheric temperature directly in85

NRLMSISe-00 in addition to constantly scaling each species. An example of of the effect of this86

reduced temperature run is shown in Figure 2.87

The Extreme Ultraviolet for Aeronomic Calculations (EUVAC) model provides a calculation88

of the EUV flux as a function of the solar radio flux proxy F10.7 (Richards et al., 1994). For89

SAMI2, the model is used to calculate the photo-ionization rate of the ionosphere. While the90

implementation is unchanged from the SAMI2 1.00 release, a scalar parameter has been added to91

the code to allow sensitivity studies for directly changing the total photo-ionization rate.92

The Horizontal Wind Model (HWM) provides a statistical view of neutral winds gathered93

from world-wide Fabry-Perot Interferometers, Incoherent Scatter Radars, satellites, and rockets94

(Drob et al., 2015). The latest version (HWM14) is incorporated as the default, thought users can95

run numerical experiments with HWM07 (Drob et al., 2008) and HWM93 as options.96

The Fejer-Scherliess model of E×B drift climatology (e.g., Scherliess and Fejer, 1999)97

provides the two-dimensional drifts perpendicular to the magnetic field lines as a function of local98

time, solar activity, day of year, and longitude. This is done through cubic spline fits to data from99

the Jicamarca Incoherent Scatter Radar and the Atmospheric Explorer E satellite. The model100

is unchanged in the sami2py implementation. As in SAMI2, scalar parameters allow users to101

directly change the magnitude and offset of the drifts.102

An alternative E×B is provided for users wanting to investigate alternate drift climatologies.

Since the model is constrained to a local series of flow tubes in a single magnetic meridian, the

alternate model is incorporated as a series of Fourier coefficients that are user-specified that

describe a function of Solar Local Time (SLT), as shown in Equation 1.

E ×Btotal(SLT ) = Σ
10
i=1Ci0cos

(

iπSLT

12

)

+Ci1sin

(

iπSLT

12

)

(1)

This allows users with direct measurements to create a localized drift model. Examples of103

this type of usage are presented in Klenzing et al. (2013) and Smith and Klenzing (2022). An104

additional input file to the FORTRAN code names exb.inp was added so that the localized model105

can be changed without recompiling the FORTRAN engine. Note that this creates a function that106

averages to zero over all local times, ensuring that there is no net upward or downward drift over107

the course of a day.108

2.3 Python interface109

The sami2py Python code wraps the compiled SAMI2 FORTRAN engine (see Fig 3) in a110

standardized Python package. It provides an interface for users to directly update the namelist111

and E×B input files via keywords, and returns the results in an xarray.Dataset object (Hoyer and112

Hamman, 2017).113

The core SAMI2 code in sami2py is compatible with FORTRAN 90 and is suitable for114

compilation under multiple compilers. The variable parameters, such as geographic location,115

solar activity, and season, are input via a namelist file, and the resulting modelled parameters are116

sent to binary output files. An additional exb.inp file is included to generate alternate E×B drift117

models via a Fourier series over solar local time. The sami2py code provides a user interface to118

both the input namelist files (through the sami2py.run model method) and the output binaries119

(through the sami2py.Model class).120

The method sami2py.run model allows the user to directly run the compiled FORTRAN121

executable. The namelist that specifies the parameters of the model run can be adjusted via122

keyword arguments, which are fully documented in the code docstrings and in the detailed123

documentation that is available in the GitHub repository and online at readthedocs. This includes124

a user-specified “tag” to quickly describe the run for archival purposes (e.g., “solarmin”). The125
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FORTRAN executable saves each variable as a separate file. By default, this method will move126

all of the output files, as well as the input namelist and exb.inp files, to an archival directory. All127

files are grouped under subdirectories by the tag name, longitude, and date in case a user runs128

multiple dates or locations for the same input conditions.129

The sami2py.Model class loads the raw output of the model run. It loads each individual130

file and reshapes them into a single xarray.Dataset object for convenience of use. This class131

will also load the namelist info as metadata to allow inspection of input parameters, as well as132

any custom E×B input that was used. When working within sami2py, this information is stored133

in the model.MetaData object as a dictionary. The parameters are reshaped as 4D arrays with134

appropriate coordinates. Examples are shown in the sample code in Section 3.135

For portability and reproducability, both data and metadata can be exported to a netCDF4 file136

(Whitaker et al., 2020) using the to netcdf method on the model. The metadata will be included137

as top-level attributes in the output file, documenting how the run was initialized and including138

both the sami2py version number and commit hash (in case a custom branch based on an official139

version was created). The netCDF4 versions of the file are constructed to be compatible with140

pysat.141

2.4 Integration into the pysat ecosystem142

The pysat ecosystem (Stoneback et al., 2018) has evolved to support management and analysis143

of a number of data sets throughout the space science community. The core pysat engine144

provides a framework to manage data sets, including acquisition, archival, and management. As a145

management tool, it has been used operationally in missions and analysis projects, including the146

ICON and COSMIC2 missions. A series of libraries has been written to translate between the147

core pysat commands and individual data sets. This standardization allows pysat to manage the148

metadata as well.149

These files can be integrated into the pysat ecosystem by using the custom sami2py instrument150

module at pysatModels (Burrell et al., 2022). This package includes a number of other tools to151

compare observational data with models.152

3 SAMPLE WORKFLOW153

This section demonstrates how sami2py can be used in a research workflow to run and analyze154

the SAMI2 model and output.155

3.1 Environment and Compilation156

The code here has been tested in linux, Mac, and Windows environments through Github Actions.157

Each environment is tested through a unit test suite with 97.6% code coverage as of version158

0.3.0. The unit tests are configured to use the latest python packages under python 3.9 and 3.10159

environments, as well as a version limited to numpy 1.20 under python 3.8. The specific versions160

used for the core requirements as of the publication of this paper are listed in Table 2.161

3.2 Preparing to Run the Model162

The sami2py.run model method and sami2py.Model class provide the core functionality of163

sami2py. The following code snippet prepares the archive directory, and specifies the time164

and location for the run as well as declaring custom E×B input.165

166

import datetime as dt167

import os168

169

import sami2py170

171

# Check for archive directory and set if necessary172

if not sami2py.archive_dir:173

home_dir = os.path.expanduser("˜")174
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path = os.path.join([home_dir, "data", "sami2py"])175

sami2py.utils.set_archive_dir(os)176

177

# Set date to winter solstice178

date = dt.datetime(2009, 6, 4)179

doy = date.timetuple().tm_yday180

181

# Set the longitude182

lon = 22183

184

# Set the fourier coefficients obtained from observations185

exb_drifts = [[-1.27399486e+01, 4.84811390e+00],186

[ 5.75459367e+00, -1.39196171e+01],187

[ 1.16307457e+01, -1.78058791e+00],188

[ 7.09914415e+00, -3.28817843e+00],189

[-1.09464044e-02, 1.90632011e+00],190

[-9.40307626e-01, -4.54870858e-01],191

[ 1.62144077e-01, -3.54108276e+00],192

[ 2.30221902e+00, 1.05182704e-01],193

[ 4.97016102e-03, 2.47216869e+00],194

[-1.40601689e+00, 0.00000000e+00]]195
196

Note that setting the user archive directory only needs to be run when the package is first197

installed.198

3.3 Running the Model199

Now that the custom input has been declared and the environment is prepared for archival,200

the model can now be executed. The time, location, F10.7 and E×B are provided to the201

sami2py.run model method. Upon completion the model output is loaded as a sami2py.Model202

object and archived as a netCDF file.203

204

# Run basic model205

sami2py.run_model(tag="fass_solarmin", lon=lon, year=date.year,206

day=doy, f107=70, f107a=70, fejer=False, exb_drifts=exb_drifts)207

208

# Load and archive models209

solarmin = sami2py.Model(tag="fass_solarmin", lon=lon,210

year=date.year, day=doy)211

solarmin.to_netcdf("fass_solarmin.nc")212
213

3.4 Plotting the Model Output214

The following code snippet loads the archived model run, adds a new variable to the data set215

which consists of the total plasma density, and then plots the total plasma density as a function of216

local time and altitude with the E×B drift superimposed over the density. Note that by default, the217

ion density variable (deni) is a four-dimensional object, with one of the dimensions (retrievable as218

ion) specifies the individual ion species. A summation over this third axis is needed to extract219

total ion density.220

221

import matplotlib.pyplot as plt222

import xarray as xr223

224

# Load archived model using xarray225

model = xr.load_dataset("fass_solarmin.nc")226

227

# Sum over all ions for total ion density228

model["Ni"] = model["deni"].sum(dim="ion")229

230
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# Set time step and density range231

step = 30232

denmin = model["Ni"][:, :, step].min().values233

denmax = model["Ni"][:, :, step].max().values234

235

# Shift model data so that the lowest time value is at the 0th236

position237

model = model.roll(ut=1, roll_coords=True)238

239

# Create figure240

fig = plt.gcf()241

242

# Plot the plasma density243

plt.contourf(model["ut"], model["zalt"].interp(z=51),244

model["Ni"].interp(z=51),245

cmap="magma", vmin=denmin, vmax=denmax)246

cbar = plt.colorbar(pad=.15)247

cbar.formatter.set_powerlimits((0, 0))248

cbar.formatter.set_useMathText(True)249

cbar.set_label("total plasma density $cmˆ{-3}$")250

plt.ylabel("Altitude (km)")251

plt.xlabel("slt (hours)")252

253

# Plot the model drift on top of the density254

host = plt.gca()255

new = host.twinx()256

new.set_ylabel(r"Meridional E$\times$B Drifts (m s$ˆ{-1}$)")257

new.plot(model["ut"], model["exb"], color="w")258

new.set_ylim(-140, 75)259

title = " ".join("F$_{10.7}$", "-", str(model.F10_7), "sfu"])260

plt.title(title)261

plt.tight_layout()262

263

plt.show()264
265

The resulting figure is shown in Figure 4.266

4 APPLICATION OVERVIEW267

The AUL framework is divided into three phases with three levels each as shown in Table 3268

Halford et al. (2019). Examples of use are in the paper and a full example of the AUL framework269

applied to the development of a project can be found in Cid et al. (2020). The first phase focuses270

on basic research, the identification of the user, and agreement between the researcher and users271

of the intended application and requirements. The second phase develops and tests the application272

in a similar environment to where it will be operational. In the case of a software development273

such as sami2py this may include common operating systems and Python installations. The third274

phase includes the delivery of the application into the operational environment for routine use.275

The definitions of these AUL parameters are defined in the context of sami2py in Table 4.276

At this phase in project development, we have identified three core use cases of the software:277

The use of early-phase research projects to perform key sensitivity studies, as a key dependency278

in the growin software package (Smith and Klenzing, 2020), and as an educational tool for279

classes to teach ionospheric electrodynamics. We will discuss each of these individually through280

the framework of the AUL framework summarized in Table 3 as each as different users and281

requirements. The AUL framework provides a standardized scale for software and other projects282

on a scale of 1 to 9, analogous to the Technology Readiness Levels often used for flight hardware283

projects. The first two applications have been identified as having completed validation (AUL 6),284

whereas the third application (use as an educational tool) is still at an AUL 1. This section will285

document the steps we have taken to reach these AUL levels.286

6
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4.1 Application: Early phase research test projects – AUL 7287

One of the applications of sami2py is for early-phase research projects. The user is the broader288

ionospheric research community who are communicated with on a direct basis with the develop-289

ment team and at conferences such as CEDAR. The operational environment is then considered290

to be an individual’s work computer.291

An example of the early-phase research projects is running sensitivity studies on proposed292

physical forcing mechanisms. For this paper, an example of an identified user for this application293

is Klenzing et al. (2013) where the early phase research includes a series of sensitivity studies294

for proposed modifications to ionospheric drivers under extremely low levels of solar activity.295

This study was originally conducted using a prototype of the sami2py model written in MatLab,296

but the functionality applies to the Python version as well. Each empirical model that drives the297

SAMI2 ion dynamics engine can be modified to reflect proposed changes to the forcing of the298

ionosphere, including reductions in exospheric temperature for the MSIS model and the direct299

input of user-specified E×B drift profiles as a function of local time.300

Examples of how the ionospheric density changes by altering the E×B drift assumptions301

are shown in Figures 4 and 5. Each plot shows the evolution of the vertical ionospheric density302

profile over time. The white line plotted above the ionospheric density represents the driving E×B303

timeseries used in sami2py, with Figure 4 driven by the Fejer-Scherliess model (Scherliess and304

Fejer, 1999) and Figure 5 driven by climatology measured by the Coupled Ion-Neutral Dynamics305

Investigation (CINDI) mission of opportunity (Smith and Klenzing, 2022)306

The work discussed above has shown how a Python version of SAMI2 will provide a path307

beyond the current state of the art capabilities for individual research projects. The Python308

interface for the SAMI2 model also provides a new capability making it easier for more researchers309

to access and use this model, as well as document results. Moving from a MatLab interface to310

an open source language improves the accessibility of the work. Incorporation of the resulting311

modeled data into an xarray.Dataset object improves the usability of the output. The primary312

requirement for this application at this phase is to ensure that this Python package is open access313

and works across computer operating systems. We have satisfied the milestones for AUL 3 with314

the release of sami2py version 0.2.0 in December 2019 (Klenzing et al., 2019).315

The AUL 4-6 milestones require improved documentation and testing of the beta prototype of316

the model. Changes incorporated since version 0.2.0 include docstrings for all functions, improved317

Continuous Integration (CI) testing, and improved compatibility with external Python packages,318

including numpy, xarray, and pysat. The model undergoes continuous integration tests in the319

GitHub Actions environment with > 97% coverage, fulfilling simulation in an operational environ-320

ment. The CI tests are run for Linux, mac, and windows systems to satisfy AUL 5 (demonstration321

in a relevant context). Additionally, tests for older versions of numpy are included to maintain322

compliance with NEP029 (Caswell et al., 2019). Since sami2py is being developed on GitHub,323

it is easily transferred from the development environment to the operational environment (end324

user’s workstation) across the community. Regular updates are given at community workshops.325

With the documentation of the code, including the online documentation at readthedocs and the326

examples within this paper, and the release of version 0.2.5 (Klenzing et al., 2021) all milestones327

through AUL 6 have been completed.328

AUL level 7 is the Application Prototype of the project. This requires demonstration of the329

prototype and dissemination of results. Both of these goals are achieved with the release of330

version 0.3.0 (Klenzing et al., 2022) and the publication of this paper. Improvements to the user331

interface and code style have been implemented in version 0.3.0 to maintain PyHC standards and332

improve code maintainability.333

For AUL 8 and 9, a finalized project for on-demand usage needs to be released. In the context334

of this application for sami2py, a series of updates focusing on an improved workflow and code335

maintainability have been identified. These are demarcated as a future 0.4.0 release. Input from336

the community will be evaluated alongside these updates as the user base grows.337
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4.2 As a core dependency of the growin software tools – AUL 7338

As an additional demonstration of the prototype, the sami2py module is a central dependency339

for the growin python module which was written to compute the Rayleigh-Taylor instability340

(RTI) growth rate. The calculation of the RTI growth rate is central to the development and341

growth of plumes of depleted plasma, or plasma bubbles, in the bottomside of the equatorial342

ionosphere. The growin module uses the sami2py module to run the SAMI2 model, archive the343

output, and load the output into Python data structures (Klenzing et al., 2022). Similar to the344

example code above, drift measurements are used to create a climatological drift profile from345

in-situ measurements. These drifts are then passed to sami2py and an ionosphere is simulated346

with the typical ionospheric indices for the corresponding time period. Subsequently the produced347

ionospheric plasma densities, drifts, and winds are used to compute flux-tube integrated quantities348

necessary to compute the RTI growth rate. These growth rates have been previously used to349

discuss bubble occurrence frequencies obtained from the CINDI (Smith and Klenzing, 2022) and350

Global Observations of the Limb and Disk (GOLD) (Martinis et al., 2020) missions.351

Similar to the previous application, the broader ionospheric research community is the user and352

will benefit from a Python version of growin and the inclusion of sami2py within it. The feasibility,353

viability, and expected improvements can all be found within Smith and Klenzing (2022). Thus354

many of the milestones have been completed for this application through the previously discussed355

application in Section 4.1. As shown in Table 5, the key additional requirement here is the output356

of neutral atmospheric data, which is required to perform the RTI calculations. This has been357

added to sami2py as an optional output. As the other components growin were already within the358

operational/end user environment, the final AUL is now dependent on the progress of sami2py.359

Similar to the previous application, the usage of sami2py in the growin package is at an AUL of 7.360

4.3 Application: educational tool – AUL 1361

Beyond the research community, another user community has been identified but not yet contacted.362

The code here can also be used as an educational tool as part of a Space Weather of Ionospheric363

Electrodynamics curriculum. The straightforward and modular nature of the code makes it364

practical to incorporate into homework or class projects as needed. As this application has been365

identified, but specific requirements have not been defined and incorporated into the code, this is366

defined as an AUL 1 project. Work is ongoing, and interested parties should contact the authors367

to help better refine this project and requirements for these purposes.368

5 SUMMARY AND FURTHER WORK369

This work documents an overview of the sami2py code and several potential applications. The370

proposed applications are documented here and their progress towards on-demand use using the371

Application Usability Level framework. Ongoing assessment and progress of these AULs will be372

updated online at the projects page of the GitHub repository.373

Full documentation of the code including examples is available at https://sami2py.readthedocs.io.374
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TABLES509

Table 1. Component Models in sami2py 0.3.0

Physical Mechanism Model Name Scalable Parameters

Neutral Atmosphere NRLMSISe-00 Neutral Species, Exospheric Temperature

Photoionization Rate EUVAC Total Ionization

Neutral Winds HWM-14 (default) Wind Magnitude

HWM-07

HWM-93

ExB drifts Fejer-Scherliess (default) Drift magnitude, offset from zero

Fourier coefficients F(SLT)

Table 2. Environments currently tested for sami2py 0.3.0

Requirement Versions tested NEP029 tests

Operating System Ubuntu 20.04.5 Ubuntu 20.04.5

Mac OS 12.6

Windows Server 2022

Python 3.9, 3.10 3.8

netCDF4 1.6.1 1.6.1

numpy 1.23.4 1.20.0

pandas 1.5.1 1.4.4

scipy 1.9.3 1.9.3

xarray 2022.10.0 2022.10.0

Table 3. A brief description of the AUL phases and levels as outlined in Halford et al. (2019)

Phase Phase definition AUL Level description

1 Basic research

Phase 1 Discovery and Viability 2 Establishment of users and requirements

3 Assess viability and current state of the art

4 Initial integration and verification

Phase 2 Development, Testing, 5 Demonstration in the relevant context

and Validation 6 Completed validation

7 Application prototype

Phase 3 Implementation and Integration 8 Validation in relevant context

into Operation 9 Approved for on-demand use

Table 4. AUL definitions for sami2py

AUL parameter Definition for sami2py

End User Scientific researcher or Course Instructor

Operational Environment End User’s computer workstation (unix / mac / windows)

Simulated Operational Environment GitHub Actions Continuous Integration environment
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Table 5. Requirements and Metrics for the sami2py project

Requirements

Application 1 Generate a 2-D ionospheric slice in the geomagnetic plane.

Modify and switch between available empirical models via Python keywords.

Archive model runs for a user to access later, including code commit hash.

Load and return the resultant modeled ionosphere via an xarray object.

Do so consistently under a variety of possible computer configurations.

Application 2 All of the above

The code should output neutral density background in addition to the ions.

Metrics Unit tests capturing above requirements.

Continuous integration support under Linux and windows configurations.

Continuous integration testing compatible with NEP 029 (Caswell et al., 2019).

Unit test coverage > 95%.

Documentation consistent with PyHC Standards (Annex et al., 2018).
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