
Urban Brush: Intuitive and Controllable Urban Layout Editing 
Xiaochen Zhou∗ Pascal Chang∗ 
Purdue University LIX, Ecole Polytechnique/CNRS, IP Paris 

USA France 
zhou1178@purdue.edu pchang@student.ethz.ch 

Marie-Paule Cani Bedrich Benes 
LIX, Ecole Polytechnique/CNRS, IP Paris Purdue University 

France USA 
marie-paule.cani@polytechnique.edu bbenes@purdue.edu 

(a) (b) (c) 

(d) (e) (f) 

Figure 1: Starting from an initial urban area (a), frst, the user pushes the jobs and population in the red circle area to the white 
area by the repulsor brush (b), and then creates the new land use to build parks marked as red (c). Next, a drag-drop brush is 
used to re-allocate the job, and population, which forms a downtown area (d), and a break brush distributes all properties and 
removes the blocks, parcels, and roads in the target area (e). Finally, the user changes the terrain, and the system automatically 
calls brushes to create the mountain area, park, and coastline with the consistency of the population and jobs (f). 

ABSTRACT 
Efcient urban layout generation is an interesting and important 
problem in many applications dealing with computer graphics and 
entertainment. We introduce a novel framework for intuitive and 
controllable small and large-scale urban layout editing. The key 
inspiration comes from the observation that cities develop in small 
incremental changes e.g., a building is replaced, or a new road is 
created. We introduce a set of atomic operations that consistently 
modify the city. For example, two buildings are merged, a block 
is split in two, etc. Our second inspiration comes from volumetric 

∗Shared frst authors 

This work is licensed under a Creative Commons 
Attribution-NonCommercial-ShareAlike International 4.0 License. 

UIST ’21, October 10–14, 2021, Virtual Event, USA 
© 2021 Copyright held by the owner/author(s). 
ACM ISBN 978-1-4503-8635-7/21/10. 
https://doi.org/10.1145/3472749.3474787 

editings, such as clay manipulation, where the manipulated material 
is preserved. The atomic operations are used in interactive brushes 
that consistently modify the urban layout. The city is populated 
with agents. Like volume transfer, the brushes attract or repulse 
the agents, and blocks can be merged and populated with smaller 
buildings. We also introduce a large-scale brush that repairs a part 
of the city by learning style as distributions of orientations and 
intersections. 

CCS CONCEPTS 
• Computing methodologies → Shape modeling; Interactive 
simulation. 

KEYWORDS 
Urban modeling, procedural models, interactive modeling, geome-
try 

ACM Reference Format: 
Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes. 2021. 
Urban Brush: Intuitive and Controllable Urban Layout Editing. In The 34th 

796

https://orcid.org/0000-0002-5293-2112
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3472749.3474787
mailto:bbenes@purdue.edu
mailto:marie-paule.cani@polytechnique.edu
mailto:pchang@student.ethz.ch
mailto:zhou1178@purdue.edu


UIST ’21, October 10–14, 2021, Virtual Event, USA Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes 

Annual ACM Symposium on User Interface Software and Technology (UIST 
’21), October 10–14, 2021, Virtual Event, USA. ACM, New York, NY, USA, 
19 pages. https://doi.org/10.1145/3472749.3474787 

1 INTRODUCTION 
Large-scale urban layouts on arbitrary terrains are essential in many 
Human-Computer Interaction (HCI) and Computer Graphics (CG) 
applications. However, their generation is not a straightforward 
nor simple task. Urban layouts can be generated by procedural 
modeling (e.g., [29]) that uses rules to describe the generation of 
roads, blocks, parcels, and buildings. Close to procedural generation 
are simulations (e.g., [43]) that use real-world rules and behavior to 
create urban layouts. Reconstruction (e.g., [26]) brings real-world 
assets to the virtual world by converting data from sensors (cameras, 
LiDAR, depth maps) into formats suitable for 3D rendering and 
further processing. Urban layouts can also be generated by using 
interactive modeling (e.g., [6]), that is probably the best way of 
controlling the output and creating models that closely express the 
user intent. 

However, there is a disconnect of the methods for urban layout 
generation. Procedural methods and simulations are notoriously 
difcult to control. Although they can quickly provide visually plau-
sible layouts, they tend to be repetitive and may include errors such 
as missing egress or other architectural problems. Reconstruction 
algorithms are limited to the input and often need additional man-
ual efort to make the CG models usable. Interactive methods are 
often tedious and slow to provide large-scale output, while the user 
receives no help towards consistency and realism. 

One of the critical problems of urban layout design in HCI and 
CG is therefore consistently modifying an existing layout, which 
would enable users in seek of control not to start from scratch. 
Existing approaches either focus on the full design of the entire 
urban layout [43] or allow only global changes [38] by changing 
simulation parameters. Very few works attempt to modify an urban 
layout in a consistent way [19, 32]. 

Our frst inspiration is the observation that cities grow in incre-
ments [4]. It is uncommon that an entire city will be built from 
scratch. Instead, a building is often removed and replaced by a dif-
ferent one, or a small area of a city is remodeled. In all cases, the 
afected area must be carefully integrated into the existing urban 
layout. An important aspect of such localized changes is that they 
need to respect the function of the city. People living in the afected 
area must be relocated, lost jobs should be replaced, etc. Our second 
inspiration comes from interactive design. Users prefer intuitive 
and straightforward operations for content creation and modif-
cation. Several approaches focused on intuitive operations that 
mimic brushes, allowing a wide range of operations that hide the 
underlying algorithms’ parameters. Brush and sculpting metaphor 
have been used in shape modeling [5], constant volume deforma-
tion [9, 41], and landscape modifcations [11], but they have not 
been used for editing of highly structured urban layouts. 

We present a novel approach to interactive modeling of urban 
layouts in which we combine user-controlled editing with local-
ized, context-sensitive changes. We introduce a set of brushes that 
implement localized atomic operations on urban layout. We use 
brushes as the interactive tools since the atomic operations can be 

interactively applied to any urban layout. Each brush is parameter-
ized by its area of infuence and its function. The brushes are also 
context-sensitive, and afected jobs or inhabitants are relocated. In 
this way, each modifcation of the city is consistent and does not 
modify its function. In addition, the changes are localized and fully 
controllable by the user. 

We show our approach on interactive examples and large-scale 
edits of various urban layouts. An example in Figure 1 shows exten-
sive global changes to an urban layout that are consistently handled 
by low-level operations. 

We claim the following contributions. (1) We introduce a set of 
intuitive brushes for urban layout modifcations. (2) We introduce 
a novel space colonization algorithm that allows for the intuitive 
generation of urban layouts with diferent styles. (3) We introduce 
a non-homogeneous brush analogy that considers the urban layout 
to be a material with vessels. (4) We show how the brushes can be 
combined into fully automatic global operations on urban layouts. 

2 RELATED WORK 
This work is related to urban procedural modeling and simulations. 
It is also inspired by interactive editing methods such as virtual 
sculpting. We do not review works on urban reconstruction, re-
ferring readers to [25]. We also do not focus on terrain modeling, 
surveyed in [14], nor cover virtual worlds creation, in general, that 
was reviewed in [35]. 

Procedural methods generate a model from initialization and a 
set of rules. Parish and Müller [29] were the frst to combine various 
procedural methods into a procedural city generation pipeline. They 
use a set of input layers like population, density, or terrain map, and 
they extend L-systems [31] to grow street networks and generate 
buildings at large scales. The purely procedural models for large 
cities were further extended by [21, 22]. Wonka et al. [45] introduced 
instant architecture, i.e., procedural modeling for buildings using 
split grammars. This approach was further expanded by [23] and 
recently by [34] who introduced advanced internal communication 
of procedural modules. On a smaller scale, a large amount of work 
has been dedicated to the automatic generation of façades (e.g., 
[24]). 

Road networks have been generated from a regular grid pat-
tern [15] and pattern-based templates [36]. However, these meth-
ods ignore the behavioral variables like population density on the 
road network’s shape. Vanegas et al. [38] combine behavioral and 
geometrical modeling that adapt to the underlying population, jobs, 
terrain, and local transportation demand. This approach success-
fully captures the road density variations induced by the popula-
tion distribution, but it only ofers limited control over the net-
work’s appearance. Agent simulation was used to generate road 
networks [18], and an example-based method was introduced in [3]. 
Good global controllability of planar urban layouts can be achieved 
by modeling the overall layout in a dual space of tensor felds [6]. 
Road networks defne blocks and parcels that have been generated 
by a subdivision scheme in Vanegas et al. [37]. This approach was 
extended in [40] by using the straight skeleton of a block’s contour. 
Lastly, roads and parcels generation were adapted to rough terrains 
and sparser urbanization [10]. 

797

https://doi.org/10.1145/3472749.3474787


Urban Brush: Intuitive and Controllable Urban Layout Editing UIST ’21, October 10–14, 2021, Virtual Event, USA 

The main problem of procedural models is user control since rule 
parameters only enable indirect tuning, which afects the whole 
result. Moreover, they may also fail to generate valid urban layouts 
since they do not account for the city’s function, namely hosting a 
population and giving them access to jobs. 

Urban simulation methods, in contrast, focus on the func-
tional modeling of a city. Early work focused on behavioral mod-
eling, using cellular automata [1, 7], agent-based simulation [30], 
or micro-simulation discrete choice models [42] exploiting agents 
that make decisions to locate and move within the generated city, 
including land use, activity, population, and jobs. A recent method 
use GANs to reconstruct a 3D city from a photograph [17]. We 
build on the urban simulation algorithm of Vanegas et. al [38] that 
generates consistent global urban layouts from macro parameters 
such as jobs, land use, and population. However, this approach only 
allows for global modifcations, making it harder for urban editing, 
local control, and user interaction. 

Urban editing has been addressed by Lipp et al. [19] who intro-
duced transformation operators based on graph cuts that, combined 
with a layering system, allow intuitive manipulation of urban lay-
outs like drag and drop, translation, rotation, etc. However, their 
work does not integrate behavioral modeling (i.e., simulation of pop-
ulation, jobs, and their movement), so the edited city’s consistency 
may be lost. Vanegas et al. [39] introduced a high-level control over 
an existing urban model, thanks to an inverse procedural model 
that generates urban layouts fulflling high-level criteria on sun-
light exposure, the ratio of parks, or landmark visibility. Finally, 
deep-learning sketch-based method for urban editing that infers 
user sketches and converts them into a consistent procedural model 
has been introduced in [27]. 

Local control and user interaction require a solid and fexi-
ble system designed for both urban simulation and user-friendly 
editing metaphors. Existing approaches (e.g., SketchUp and Auto-
CAD) use the region selection feature for local control and editing. 
However, this can only select regular shapes (rectangles), which is 
insufcient for fexible urban editing. Our system is inspired by the 
work [44], where multiple layers were used for local feature editing 
and, together with image combination, allow users to precisely edit 
the targeted elements. To design the layers, we also borrow the idea 
of a hierarchy system [46], where a tree structure is used for the 
hierarchy of attributes. It allows the edits on low-level layers to au-
tomatically afect the high-level layers (e.g., edit on road layer will 
afect the building), which keeps the system’s consistency when 
the user edits the lowest layers. 

Sculpting and painting metaphors: Our work borrows from 
the interactive methods enabling consistent, intuitive authoring 
of virtual worlds. While sketching and sculpting techniques were 
introduced for shape modeling Cani et al. [5], where consistency 
was expressed in terms of geometric constraints such as constant 
volume deformation [9, 41], they were extended to virtual worlds 
editing. Emilien et al. [12] presented a framework to populate vir-
tual worlds with distributions of objects (rocks, trees, houses, and 
roads) from user-defned examples, using a painting metaphor. The 
user is provided brushes that store statistical distributions of scene 
elements and their correlation with terrain slope instead of colors. 
They can be used to paint locally consistent distributions of objects. 
Moreover, statistical consistency is maintained when selected parts 

of the layout are moved or deformed over the terrain. This approach 
was extended to dedicated brushes enabling to author consistent 
plant ecosystems over eroding or large-scale terrains [8, 13]. In 
contrast, such methods were never applied to the consistent urban 
layout editing, which we tackle here. 

3 URBAN LAYOUT 
3.1 Input and Structure 
The input to our algorithm is an urban layout that includes jobs 
and population jointly referred to as agents in this work. The urban 
layout U is a set of 2D layers 

L = [h, R, k, p, b, S, P], 

where h denotes the terrain height, R the road network, k blocks, 
p lots (parcels), b buildings, S jobs, and P population (see Table 1). 
Height is stored as a high-resolution image. Jobs, and population 
are input in discrete layers of fxed resolution w × h (100m ×100m 
in our system) and re-calculated per lot as a weighted sum of the 
number of agents in cells that intersect the lot (see Appendix A). 
The roads are stored as a graph. Blocks and lots are polygons, and 
buildings are either 3D meshes or procedural models that generate 
them. 

Table 1: Layers L used in an urban layout U. Jobs and popu-
lation are computed per each lot. 

Layer Symbol Type 

Height feld 
Roads 
Blocks 

h(i, j)
R = [V , E]
k 

Grid 
Graph 
Polygon 

Lots 
Buildings 

p 
b 

Polygon 
3D mesh 

Jobs 
Population 

S(pi )
P(pi ) 

Integer 
Integer 

Roads are represented as an oriented graph R = [V , E] with 
v ∈ V vertices corresponding to intersections, and edges e ∈ E, e = 
vi → vj that correspond to road segments. We follow the road 

hclassifcation from [16] and divide the roads into highways e , 
sarterial roads ea , and streets e . Highways are the highest capacity 

roads that connect cities. Arterial roads are inter-city roads for 
fast and high volume trafc, and streets connect arterial roads and 
other streets with individual lots. Our urban layouts do not include 
highways because they are used for inter-city connections. 

The loops in the road network [vi ,vi+1, . . . ,vi ] may defne 
blocks denoted by k , and each block can be subdivided into lots p. 
Lots may include buildings b, which are represented either as a 
mesh or as a procedural model that generates the said mesh. Empty 
lots are marked as parks. Each road also optionally carries informa-
tion about the trafc fow. 

The urban layout i.e., the distribution of roads and geometry of 
buildings, can be given explicitly. In our framework, we use the 
simulation from [38] to generate it. Similarly, population and jobs, 
detailed next, may either be generated through simulation (e.g., 
[38, 43]) or provided by the user as 2D maps. 

798



UIST ’21, October 10–14, 2021, Virtual Event, USA Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes 

a) b) c) 

d) e) f) 

Figure 2: Input layers of an urban layout: Terrain height (a), roads (b), blocks and lots (c), buildings (d), and optionally popula-
tion (e) and jobs (f). 

3.2 Lot Structure and Validity 
A lot (a parcel) is the smallest unit in our urban model. A lot be-
longs to a unique block and can be characterized by its contour 
geometry and the number of jobs and population (agents) it car-
ries. A lot contains at most one building, whose volume always 
refects the total number of agents of the underlying lot. If the lot 
is empty, there is no building, and the lot is marked as a park. For 
physical plausibility, buildings’ height is not allowed to exceed a 
specifc maximal bound that depends on its base area. This defnes 
a maximal amount of population and jobs M(p) a parcel p can host. 

Each lot also includes two additional non-negative variables, 
population-to-handle ∆P ≥ 0 and jobs-to-handle ∆S ≥ 0, which 
serve as temporary bufers during operations. This allows us to 
write operations on lots systematically: any amount of population 
or jobs that are supposed to leave a given lot is frst put into these 
temporary bufer variables before they can be distributed, relocated 
to, or absorbed by other lots. 

With these considerations, a lot p is said to be valid if 1) the 
capacity of the lot imposed by the maximal height of its building is 
not exceeded (i.e., P(p)+S(p) ≤ M(p)), and 2) the temporary bufers 
are empty (∆P(p) + ∆S(p) = 0). 

3.3 Consistent City Editing 
A functional city model is characterized by a distribution of agents 
that matches the building volume and refects some reasonable 
proportion between population and jobs. A second key feature is 
the consistency of the road network, making each district accessible 
while accounting for the topography of the underlying terrain 
features, including slope and presence of water bodies. Our goal is 
to maintain the input city model functional throughout editing. 

We use the analogy of painting with 2D brushes and sculpting 
clay material, where the constant volume maintains consistency 
throughout changes. We need to design brushes that maintain 
both the population and their jobs to constant amounts. Moreover, 

contrary to clay, a city embeds a consistent inner structure: the 
road network. Thus, deforming it is similar to sculpting complex 
material, such as reinforced concrete, or organic shapes, such as 
leaves that embed a vessel’s network. To our best knowledge, no 
sculpting method has been proposed yet to achieve this. The city is 
located on terrain, and we also need to ensure that the road network 
remains consistent with the slope. Lastly, the urban layout includes 
the city’s division in lots, which, together with the way streets are 
oriented and branch together, gives a unique style to each city. We 
seek to defne editing operations that preserve such style. 

We defne basic atomic operations on buildings, lots, and roads 
that can be combined into a variety of consistent tools, i.e., tools 
that preserve the total amount of population and jobs in the city, 
the validity of all lots, and road network (defned in Section 3.2). 

4 ATOMIC OPERATIONS 
The interactive brushes in Section 5 are designed bottom-up from 
a set of consistent atomic operations which we describe in this sec-
tion. There is a logical succession of these operations given by the 
semantic dependencies of the city layout. For instance, operations 
like merging or splitting blocks afect the impacted blocks and the 
dividing road segment, and all the lots and buildings contained in 
the blocks. 

4.1 Buildings 
Because the height of a building (rounded to a closest integer num-
ber of foors) is defned such that its volume corresponds to the 
actual number of agents in the underlying lot, operations that only 
afect the behavioral attributes of lots (amount of agents) without 
modifying their geometric attributes (contour shape of the lot) can 
be seen as operations on buildings. 

The Transfer operation only afects buildings and has no other 
dependencies. Given two buildings and the amount of population 
and jobs to relocate (Pt , St ), it tries to transfer as much of these 

799



Urban Brush: Intuitive and Controllable Urban Layout Editing UIST ’21, October 10–14, 2021, Virtual Event, USA 

amounts as possible from one building to another, while maintain-
ing the validity of the two underlying lots (see Section 3.2).The 
desired amount to transfer might not be feasible due, for instance, 
to target lot reaching maximum capacity, or source lot not having 
enough agents. 

4.2 Lots 
We introduce two operations on lots: Merge and Split, which use 
the operations on buildings. Unlike the Transfer operation (Sec-
tion 4.1), Merge and Split are atomic operations, and they modify 
the geometry of the afected lots. 

Merge joints two adjacent lots, destroys their buildings, and 
creates a new and larger building that includes all the agents from 
the input lots. Suppose the newly created building cannot absorb all 
agents from the original buildings due to the maximum capacity of 
the population and jobs in the lots. In that case, the operation fails 
and is canceled to maintain consistency (otherwise, we are either 
invalidating a parcel or violating the constant-agent constraint). 
Merge can be used, for instance, during a Transfer operation, where 
the target building reaches maximal capacity: instead of reducing 
the transferred amount, the target building can merge with its 
neighbor to absorb more. 

The Split operation divides a lot in two. As in [40], we calculate 
the lot’s PCA-aligned bounding box and split it according to its 
larger side. The two new lots are then populated with buildings that 
attempt to absorb the agents from the original lot. Similar to Merge, 
if the split causes an excess of agents, it is not executed because 
the city would become inconsistent. This operation prevents tall 
buildings with large foundations from becoming small buildings 
with large foundations, which is not plausible. The split can be 
controlled indirectly. For example, a lot will split every time the 
included building’s height goes beneath a given threshold. 

4.3 Roads and Blocks 
A block is an agglomeration of lots surrounded by roads. Similar 
to lots, we defne atomic operations Merge Blocks and Split Block. 
However, contrary to lots, blocks and roads are mutually depen-
dent, an operation on two adjacent blocks afects the separating 
road segment between them. Similarly, operations involving road 
segments afect adjacent blocks. 

Operation Merge Blocks afects two adjacent blocks with a road 
segment in the middle. It erases all lots in both blocks and stores 
all agents and jobs in temporary bufers. Then it removes the road 
in the middle and merges the blocks into one. The newly created 
block is subdivided into lots, buildings are created and occupied 
by the agents and jobs. Buildings have diferent sizes because each 
building’s size is proportional to the lot it occupies. 

Similarly, the Split Block operation takes a block, fnds its PCA-
aligned bounding box, and divides the block by inserting a road 
segment. It frst removes all the agents into a temporary bufer and 
deletes all lots and included buildings. It then adds the road and 
creates two smaller blocks. The blocks are then populated by the 
agents and jobs in the same way as the merge operation. 

5 BASIC BRUSHES 
The atomic operations are combined into user-controlled parame-
terized brushes. The brushes modify the city geometry locally, just 
like the sculpting tools induce spatial transformations on localized 
areas of the sculpted material. They can push away, attract, or even 
relocate some of the city’s volume within itself. The brushes can 
be applied to population, jobs, to their sum, or to the total building 
volume. We will describe them on population. 

We introduce three local brushes in our framework: Attractor, 
Repulsor, and Drag & Drop reallocate a certain number of agents 
and manipulate the underlying blocks, lots, and buildings. 

5.1 Brush Parameters 
The brushes have several shared intuitive parameters (see the menu 
from our implementation in Figure 15 and Table 2) that control 
their infuence. 

Table 2: Brush common parameters 

Afects Action 

Impact region concentric circles 
Population adds/removes agents 
Height adds/removes building height 
Amount adds/removes an absolute amount 
Percentage adds/removes a percentage 
Target max saturation value 
Continuous adds/removes continuously or per click 
Jobs/Population/Both what is afected 
Allow Merge allow buildings to merge if needed 
Allow Split allow buildings to split if needed 
Travel time distance reallocate based on road or 

Euclidean distance 

General properties of the brushes include user-specifc options 
regarding the number of agents to be moved (see Repulsor and 
Attractor). Each brush has the infuence region and the impact 
region (Figure 3). The brush (Table 2) is specifed as two concentric 
circles. The inner circle is the impact region, where the immediate 
efect (for example, for removing agents) is applied. The infuence 
region specifed as the outer circle defnes where the brush can make 
the modifcations to compensate for its action to maintain overall 
consistency. For instance, it can be where the afected quantities 
(e.g., agents) are deposited or drawn from, depending on the type 
of the brush. They can be moved either using Euclidean distance 
or traveling time distance along the roads (Figure 3). Note that the 
infuence radius can be infnite, allowing agents to be relocated 
anywhere in the urban layout. 

Changing the Stroke Style afects the distribution weights when 
the brush computes the amount to remove or add. Uniform manip-
ulates the same quantity (absolute amount or percentage) over the 
brush’s inner region. Gaussian specifes a fallof from the center of 
the brush (absolute amount or percentage). The weights follow a 
Gaussian distribution of parameters N(c, rinner /2) where c is the 
brush’s center and rinner the inner radius. In the same way, the 
outer circle can be set to uniform or Gaussian. 

800



UIST ’21, October 10–14, 2021, Virtual Event, USA Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes 

The brush transfer mode can either be discrete, i.e., controlled 
by mouse clicks, or continuous (Figure 3). 

5.2 Repulsor 
The Repulsor brush removes a specifed amount of population from 
the lots in the brush center. It moves it to the infuence area without 
modifying the road and block geometry (Figure 4). This is achieved 
by iteratively transferring agents between pairs of buildings in 
the two regions (sorted by distance to the brush center) using the 
Transfer operation (see Appendix B.1 for details). 

There are two possible extreme cases. On the one hand, the user 
may set the infuence region to zero, and no change will be made to 
the city. On the other hand, if the infuence region’s radius is very 
large or infnite, the excess of agents is distributed to many lots, 
leading to visually imperceptible changes. In both cases, the city’s 
population and jobs are constant through the brush application so 
the city remains consistent. 

Merge and Split: The Repulsor brush can be alternatively used 
with an option allowing for the use of the atomic, merge, and split 
operation (split in the impact region, merge in the infuence region). 
These two regions will then attempt to adapt to the new amounts 
of agents by either splitting their lots or merging neighboring ones, 
thus decreasing or increasing the number of agents that can be 
consistently handled. 

5.3 Attractor 
The Attractor brush acts intuitively as the opposite of Repulsor by 
pulling agents in (Figure 5). Similar to Repulsor, it iterates simulta-
neously over the lots in the impact and the infuence region and 
transfers agents based once again on the Transfer operation (see 
Appendix B.2). Note that the brush may pull fewer agents than 
expected if there were not enough of them in the infuence region. 

Merge and Split: The Attractor brush can be alternatively used 
with the option allowing for the use of the atomic operations Merge 
in the impact region and Split in the infuence region. The impact 
area will attempt to accommodate more agents by merging the 
lots as shown in Figure 6, where small and abundant buildings are 
combined into larger and taller ones. Similarly, the infuence region 
will try to accommodate fewer agents by splitting blocks. 

5.4 Drag & Drop 
This brush allows moving agents from one area of the city to another. 
It does not use two concentric circles. Instead, the user selects a 
region from where agents will be drawn (impact). Then, as the user 
brushes through the infuence region, the agents are added to the 
buildings under the brush as buildings in the frst region get fatten 
out. The algorithm is similar to the Repulsor, except that it computes 
the lots’ distances to the brush center twice (at the frst click and 
then on the second selection). 

Merge and Split can be alternatively used in the infuence and 
impact areas similar to the Repulsor and Attractor. 

5.5 Mask 
The mask brush locks the lots in the impact regions. Locked lots 
will not be afected by the brushes above. Additionally, users can 
choose to lock specifc lot types, such as parks, etc. 

5.6 Road Break and Connect 
Here we defne two simple brushes applied to roads that expand 
the previous brushes. 

The Break brush can be viewed as an extension of the Repulsor 
(Section 5.2) that also deletes roads in empty regions and merges 
the afected blocks. It can either remove vertices or edges of road 
segments, depending on the selected mode. A valid block should 
be sealed by roads and should not obtain any dead-end roads or 
arterials. When using brush removal, some nodes and roads are 
eliminated, making the original closed blocks unsealed, leading to 
invalid blocks. In this case, the blocks are removed as well as all 
lots and buildings in them. The afected buildings’ population is 
moved to the infuence area using the Repulsor brush. An example 
is the top part of Figure 8 shows this brush in action. 

Similarly, the Connect brush is an extension of the Attractor 
(Section 5.3) that attracts agents from the infuence region, but also 
splits blocks, adding roads between them when applied to blocks. 

6 STYLE-PRESERVING BRUSH 
Until now, sculpting a city had strong similarities with clay sculpt-
ing. However, road connectivity makes the layout anisotropic that 
needs to be treated diferently, for example, as a non-homogeneous 
material that includes vessel network, which connectivity needs to 
be maintained. We are not aware of any previous work that solves 
this problem. 

6.1 Concept of City Style 
The road connectivity and geometry are essential for the over-
all look and feel of the urban layout. We want to make sure that 
the brushes do not alter their visual consistency. While the basic 
brushes did not globally afect the road network, style needs to be 
considered for more extensive changes. 

The urban layout appearance is predominantly determined by 
the spatial distribution of intersections that, in efect, determines 
the road layout [2, 38]. Therefore, we capture the urban layout style 
by a careful categorization of the intersections and statistics of the 
intersection types’ distribution and orientation, the junction angles, 
and distances between them. 

6.1.1 Style extraction from a urban layout. Let us recall that the 
road layout is an oriented graph R = [V , E] with a set of vertices v ∈ 
V that represent the intersections and edges edges e ∈ E, e = vi → 
vj that represent roads. Edges are further classifed into arterials 
a se and streets e . Each intersection vi is classifed according to 
the edges it connects. We will call an edge connecting a vertex its 
connection. 

Each intersection v also has its arity that corresponds to the 
number of connecting edges. We consider intersections of arity 
two, three, four, etc. but we do not consider the intersection of arity 
one (dead-ends). We defne the vertex identifer (vID) as a sequence 
of letters identifying its connectivity in the counter-clockwise order 
starting with the positive direction of the x − axis as indicated by 
the arrow in Figure 9. Moreover, the directions of each connecting 
road is stored as the angle towards the +x axis. The middle example 
in Figure 9 has the frst connection to a street road and the next 
two to arterials. Its arity is three, and the vID is s(15)-a(85)-s(230). 

801



Urban Brush: Intuitive and Controllable Urban Layout Editing UIST ’21, October 10–14, 2021, Virtual Event, USA 

a) b) c) 
Impact region

Influence region

d) 

Figure 3: Brush impact region (red) and infuence region (light green) over the same area using: (a) Euclidean distance (b) 
Travel time distance. (c) In the discrete mode, the afected lots are not stored, and the infuence region of the next step may 
cover the impact region of the previous steps; (d) In the continuous mode, we store the lots in a separate data structure that 
allows next steps not to change agents distribution in the lots that were previously in the impact region. 

Figure 4: Applying the repulsor brush to remove 100% of the agents. 

a) b) c) 

Figure 5: Using the Attractor brush to pull in: (a) population only (blue), (b) jobs only (green), (c) or both. The brush only takes 
agents from the infuence region (white circle). 

The vID histogram is denoted by vIDH , and it stores the fre-
quency of each vID in a given urban layout U or in a selected area. 
An example in Figure 7 show an urban layout and its vID. The 
junction histogram is denoted by JH and it stores the directions 
for each item from the vID histogram. The top graph shows the 
vID, the middle graphs are branching angles, and the bottom graph 
shows the average distance between intersections. The directions 
are quantized 72 bins by binning the angles from 0o to 360o by 5o 

per each vID. Each value is stored as the mean and the standard 
deviation. Last, the intersection distance histogram DH stores per 
each vID the distance to the nearest intersection as the mean and 
the standard deviation. 

The example in Figure 7 shows a pretty regular city layout and an 
organic one. The regular layout has more pronounced bins around 
integer multiples of ×90o than the organic one, as visible in its JH . 

6.2 Re-Build Brush 
The goal is to re-build an empty part of a city or a region destroyed 
by the Break brush. More precisely, the frst input is the usual 
brush parameters, where the impact region of the brush defnes the 
region that should be populated by a new urban layout, and the 
infuence region is the region from which the population and jobs 
to be moved to the newly generated buildings are extracted. 

The second input is the set of histograms vIDH , JH , and DH 
that characterize the desired city style. Note that the style can 

802



UIST ’21, October 10–14, 2021, Virtual Event, USA Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes 

Figure 6: Small buildings merge, for example when the user adds agents. The underlying lots are then merged. 

Figure 7: Urban layout histograms The top graph is the vID frequency, middle graph shows the branching angles, and the 
bottom graph distances between intersections. A regular urban layout (a) has a dominant presence of branching angles that 
are k × 90o (c) and a high number of streets of the same length (d). Organic pattern (e) has more randomized street angles (g) as
well as the distances of intersections (h). The distributions of vIDs (b) and (f) are similar. Note a high number of roads of type 
s-s-s-s.

be captured from an arbitrary city, or district, thus allowing style 
transfer. 

We introduce an algorithm for generating the road pattern using 
space colonization. The roads are generated hierarchically (see 
Figure 10). First, we generate the arterials, then the streets. As 
each road is expanded, it attempts to connect and replicates the 
layout style by sampling the distributions. Each road also generates 
intersections that act as oriented markers that defne not only where,
but also how the roads connect.

6.2.1 Space Colonization of Urban Layouts. We extend the space 
colonization algorithm for tree growth [28, 33] and interactive 
tree modeling [20] to allow for the generation of urban layouts. 
Space colonization populates some volume with markers that act as 
attractors. The tree develops by extending branches that compete 
for the markers by growing towards them and consuming them. 
The resulting emergent phenomenon is the shape of the tree. 

We include three important modifcations to this algorithm. First, 
we consider the orientation and the type of each marker represented
as vID. The markers are the intersections, and the roads attempt to 
connect them. Second, instead of flling the area with the markers 
before the simulation, the markers are generated by the expanded 

roads during the simulation. In other words, each road generates 
new markers. This allows for the generation of closed graphs as 
opposed to only trees. Third, we generate the layout hierarchically. 
Arterial roads frst cover the area while generating markers for 
streets that are connected in the second pass (see Appendix C). 

7 LARGE-SCALE MODIFICATION 
The atomic operations and brushes can be applied interactively 
as shown in Section 5, 6 and through the examples in Section 9. 
However, because each operation is consistent, it can also be used 
in an automatic mode to modify the urban layout. This approach’s
key idea is to identify the problematic part that needs attention 
after a large-scale operation. We demonstrate this approach on 
three examples: city expansion, shrink, and changing relief. 

7.1 Geometric Inconsistencies 
Inconsistencies are localized and small parts of the city where the 
consistency has been violated. We have already defned consistency 
from the viewpoint of agents and jobs in Section 4, and through 
the notion of style in Section 6. Here we expand this defnition 
by adding geometric terms. Following the hierarchical subdivision 

803



Urban Brush: Intuitive and Controllable Urban Layout Editing UIST ’21, October 10–14, 2021, Virtual Event, USA 

Figure 8: Sequence of brush Breaking roads (top). The population is relocated to the neighborhood by using Repulsor brush. 
Similarly, the Connect brush (bottom) splits blocks and lots into two by adding road segments, and occupies them by using 
the Attractor brush. 

Figure 9: Vertex ID identifes each intersection. Counting from the positive direction of the +x axis counter-clockwise, we 
store the types of connecting roads and their angle. The left example starts with an arterial, the next intersection is a street, 
and it ends with another arterial resulting in vID a(0)-s(92)-a(170). 

of the city from Section 3, we defne an inconsistent building, lot, 
block, and road segment. 

An inconsistent building is either taller than its maximum
height or smaller than the minimum height. It is handled implicitly 
by the atomic operations from Section 4. 

An inconsistent lot is either too small or large or has a high
aspect ratio. A small lot will be merged with its neighbors, and a 
large lot will be split by using atomic operations. A lot that has 
its aspect ratio large (we use 1.7× in our implementation) is also 
marked as inconsistent. Such a highly asymmetrical lot will be 

merged with the neighboring lot on its large side. If there is no lot, 
it is removed, and the agents from its building are transferred. 

Similarly, an inconsistent block has either a too small or too
large area and will be merged with its neighbor or split in two. A 
high-aspect-ratio block is merged with a block on its larger side, 
but only if it is not adjacent to an arterial road. The block merge 
operation (Section 4.3) removes the road segment between the 
two blocks. We do not want to afect arterial roads because they 
are essential for the overall city connectivity and appearance. The 
extreme lot and block sizes parameter can be extracted from the 
city style since the size of blocks is related to the length of the street 

804



UIST ’21, October 10–14, 2021, Virtual Event, USA Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes 

a) b) c) d) 

e) f) g) h) 

Figure 10: Urban layout generation An urban layout with a missing part (a) is completed with arterial roads (b-d). Once the 
arterial roads have been generated the streets are generated (e-g). Then the lots are occupied and people relocated leading to 
a complete layout (h). 

segments that surround them. The geometric inconsistencies can 
be learned from style, except for road slope, which is a physical 
constraint. 

Finally, a road segment is inconsistent if it is located in a water
body (e.g., a lake), or its slope is greater than a maximum allowed
value, indicating that the road is too steep. Such a road segment is 
removed, and the adjacent blocks are deleted while removing their 
lots, buildings and relocating their population. Note that we do not 
defne operations for merging and splitting road segments because 
they are handled implicitly by merging and splitting the blocks. 

7.2 Handling Inconsistencies 
When a large change is applied to a city, such as uniformly scaling 
the entire urban layout or editing the terrain to add a mountain or 
a lake, the current framework will apply the operation directly to 
the urban layout, leading to local geometric inconsistencies. 

The lists of inconsistencies are then created, one for road seg-
ments, blocks, lots, and buildings. Each list is ordered by the amount 
by which it violates the layout. For example, a lot inside a lake has 
+∞, a lot with high aspect ratio stores the value of the aspect ratio, 
roads are sorted by their slope, etc. 

We then process the lists in their hierarchical order. First, we 
eliminate all roads with a high slope, which also causes the blocks 
and the associated lots and buildings to disappear. This is performed 
by automatically calling the Repulsor brush, with block split en-
abled. Then the list of inconsistent blocks is processed, starting 
with the highest value of inconsistency. Next, we use the block 
merge operation to fx the blocks. Eventually, all inconsistent lots 
are corrected, starting with the highest value of inconsistency. 

After all the inconsistencies have been fxed, we get a consistent 
urban layout. However, some parts may have become empty (e.g.,
is an existing lake was moved elsewhere) or have disconnected, 
(e.g., if we grow a uniform table mountain in the city, the upper
part may end-up disconnected from the down position). The newly 
emptied areas are checked, and the Re-Build brush is automatically 
called to fll them, using a city style learned from the surroundings. 

The connectivity is then verifed, and the smallest disconnected 
components are removed, and the agents and jobs they hosted are 
relocated. 

Several parameters are left under the user’s control during global 
operations: Each brush has its infuence area. For example, when we 
add a hill in the city and some blocks become invalid, it is unclear 
how far the agents should be relocated. The user can control this 
by setting a global parameter for the entire city or by providing a 
map of varying parameter values. 

8 USER STUDY 
We have performed a detailed user study to validate the usability 
of our approach. 

8.1 Population 
The study was performed by 12 participants, aged from 20 to 50, 
seven male and, fve female. Four participants are graduate students 
majoring in computer graphics, six of them are graduate students 
with no or little experience of graphics where one of them is an 
expert in urban planning. One undergraduate student in computer 
science and one college staf. They self-identifed their 3D modeling 
skills as novices (2 participants), familiar with 3D modeling (4), 
and experienced with 3D modeling, previously working on Unity 
Engine and SketchUp (4). When we asked about their experience 
in computer graphics, they reported: no computer graphics experi-
ence (3 participants), little experience (1), familiar with computer 
graphics (5), and an expert (1). 

8.2 Study Protocol 
The user study lasted about one hour, and it was divided into three 
parts. 1) We introduced our system to each participant, described 
each brush’s functions, and showed them some generated results 
using our system. 2) We assigned each participant two tasks. a) For 
the frst one, we showed them an urban layout and urban model 
of San Francisco from Google map and Google earth (shown in 
Figure 11). We asked the user to compare the initial urban model 

805



Urban Brush: Intuitive and Controllable Urban Layout Editing UIST ’21, October 10–14, 2021, Virtual Event, USA 

Table 3: User study responses and time on tasks. Q1: "I could easily achieve the task", Q2: "The tool is intuitive for city mod-
ifcation", Q3: "The model is intuitive for creating urban models". Scale: 0 strongly disagree, 1 disagree, 2 neutral, 3 agree, 4 
strongly agree. 

User 
ID 

Modeling 
Exp. 

CG 
Exp. Age 

Time [min] 
on Task1 

Time [min] 
on Task2 Q1 Q2 Q3 

#1 0 0 23 28 32 2 3 3 
#2 0 0 22 22 28 4 4 3 
#3 0 0 24 30 35 4 3 4 
#4 0 1 25 29 42 3 4 4 
#5 1 0 25 19 42 3 2 4 
#6 1 1 48 28 33 4 3 4 
#7 1 2 24 12 20 3 4 2 
#8 1 2 26 16 22 3 4 4 
#9 2 2 26 24 50 3 4 4 
#10 2 2 25 15 44 3 4 4 
#11 2 2 26 19 47 3 2 3 
#12 2 3 24 25 33 3 2 4 
avg. 1.00 1.25 26.50 22.75 35.67 3.17 3.25 3.58 
stdev. 0.85 1.06 6.88 6.75 9.54 0.58 0.87 0.67 

with references and modify the urban city to resemble the reference. 
b) For the second task, we gave the user a template of a city and
asked them to create their own. They were asked to modify the
geometry of the provided template terrain and make at least one
large-scale change, such as adding a river, creating a mountain,
etc. 3) Eventually, we asked the participants to complete a survey
querying their experience with the system.

8.3 Results and Observations 
The main diferences between the provided starting model and 
the target model are land use and job and population distribution. 
Therefore, to create the target layout, the participants needed to 
modify the land use and distribute the jobs and populations to 
achieve visual similarity. Our system is an urban editing tool that 
maintains the city’s consistency when atomic brushes are used. Our 
goal was to evaluate user’s experience, which we did by evaluating: 
(1) The user’s ability to successfully edit the urban layout towards
the specifed target; (2) User’s satisfaction about their city editing
experience with our system. (3) User’s satisfaction with the city
layouts they have built.

All participants successfully modifed the San Francisco urban 
layout and created a downtown model (shown in Figure 12). The 
participants changed the land use (adding a park, beach, etc.) and 
built a downtown via distributing the jobs and population to the 
target area by re-allocating the job and population distribution with 
given brushes. 

In the second task, all participants created their city by using 
our system. Although creating a new urban city with new terrain 
requires the users to be more familiar with all the brushes, par-
ticipants could easily carve the new landscape, built a new road 
network, and re-allocate the job and population after the basic 
training. Figure 13 shows the initial template urban given to the 
participants and the cities created by the participants. 

Figure 14 presents the frequency and timing of usage of each 
brush by each user for the frst task. The Repulsor brush was used
most frequently since creating parks and jobs, and population re-
allocation can be done by Repulsors with diferent attributes quickly.
The second frequently used operation was Drag and Drop. An inter-
esting point through the statistics is that the user #5 used drag and 
drop brush much more than Repulsor while other users use Repul-
sor most. The usage of the brushes from participants varies, which
shows that there is no universal solution that fts all participants 
to complete their task. The feedback from the user study does not 
indicate a preference for specifc brushes. Users can choose to edit 
the city layout or the distribution of the population and jobs at their 
own will. Our system will allow the users with diferent strategies 
to use our system easily with no restriction and encourage users 
to edit the city with their creativity. All participants fnished the 
frst task in under 30 minutes (20.8 in average, between 12 and 28 
minutes). The amount of time for the second task varied, while all 
the participants completed the second task in under one hour the 
minimum time on task was 20 and the maximum 50 minutes with 
the average time 35.1 minutes. Table 3 shows each participant’s 
information and the time used on each task. 

To ensure low latency and real-time operation, we have dedicated 
a signifcant amount of work to optimize our system for speed. 
It uses GPU computations, and it is also optimized in C++ with 
OpenMP to use all CPU cores. The users did not mention any latency 
when using the brushes, even when the infuence area was infnite. 
Achieving interactive feedback required some restrictions on brush 
operations, e.g., we do not allow users to use brush removal in
continuous mode. 

The qualitative questions show that the participants thought 
our system is useful for urban planning and urban modeling. Also, 
they mentioned that the system is user-friendly. To be specifc, 
we asked three questions Q1: "I could easily achieve the task" 
(responses 2,3,3,3,3,3,3,3,3,4,4,4 µ = 3.17, σ = 0.58), "The tool 

806



UIST ’21, October 10–14, 2021, Virtual Event, USA Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes 

a) b) 

c) d) 

Figure 11: a) Reference San Francisco image from Google maps, b) initial urban model, c) urban distribution from Google earth, 
and d) initial urban distribution. The green color of the building represents jobs, and blue represents the population. The red 
color represents a saturated building. 

is intuitive for city modifcation" (responses 2,2,2,3,3,3,4,4,4,4,4,4 
µ = 3.25, σ = 0.87) and "The model is intuitive for creating urban 
models" (responses 2,3,3,3,4,4,4,4,4,4,4,4, µ = 3.58, σ = 0.67), where 
we use the scale is: 0 strongly disagree, 1 disagree, 2 neutral, 3 agree, 
4 strongly agree. We did not encounter failure cases during the user 
study, and no obvious and unacceptable artifacts occurred. The 
users can correct the artifacts created by mistakes through brushes 
and edit the city’s local detail by zooming in/out the terrain. All 
users were pleased when they successfully built their urban cities 
and enjoyed the experience of using our system. One of the par-
ticipants, a graduate student majoring in urban planning, showed 
great interest in the urban modeling performance and visualiza-
tion of the urban city. A young professional 3D artist who tested 
the system stated that "it feels like a Substance Painter for cities." 
Besides, one of the main goals of our tool is to encourage creativ-
ity. In our user study, participants with diferent skill levels could 
build their own city: the capital of Congo (#User 2) was created 

by an urban planning expert, Venice (#User 10) was recreated by a 
computer graphics expert, and Taichi (#User 9) was designed by a 
non-experienced user. 

The participants also shared some other suggestions. Although 
the urban planning expert said that our system outperformed the 
system she was using in the lab in efciency and visualization, she 
suggested that more features could be added as further work. In 
particular, we could add bridges that would connect isolated ter-
rains and highlight the layout of the group of the same land-use 
area. Also, some participants would like to see brushes that can 
switch the terrain, population, and jobs between two regions. One 
participant wanted to have more refned and more direct control 
over the city layout. They also gave us some suggestions on improv-
ing the brush’s performance, which can sharply increase the user 
experience when using the system. We will optimize the brushes 
and add more features in our further work. 

807



Urban Brush: Intuitive and Controllable Urban Layout Editing UIST ’21, October 10–14, 2021, Virtual Event, USA 

User #3, little modeling experience, 19 mins User #1, no modeling experience, 28 mins 

User #7, familiar with modeling, 24 mins 
User #9, familiar with modeling, 19 mins 

Figure 12: The urban models generated by participants for the frst task. 

9 IMPLEMENTATION AND RESULTS 
Our system was implemented in C++ with Qt to defne the user 
interface (see Figure 15 for the parameters of the brushes from 
Table 2). Our tests were performed on a desktop computer equipped 
with Intel i9-9900k at 4.2 GHZ and Nvidia RTX 2080 GPU. 

9.1 Results 
In addition to the results generated by user study participants, in 
this section we will show more results for specifc functions that 
will be useful for urban modeling. 

Style Transfer is simple with the style-preserving brush from
Section 6. An example in Figure 16 shows a regular urban layout 
that has been cleared by several continuous moves of the block 
Break brush (visible in Figure 16 b)). The style-preserving brush
then takes parameters from an irregular city and, with a single click, 
connects all afected intersections from Section 6 c) leading to a 
new layout. This operation takes a few seconds. 

Sculpting: An example in Figure 17 shows how using the Re-
pulsor and Attractor can be used to manipulate the overall height
of buildings. A letter "A" has been embossed into the buildings by 
adding agents to certain buildings. 

Shrink and Expand: We applied multiple global shrinking and
expansion of an urban layout to show the consistency of the global 

operations. An input layout is shrunk globally by 1/3 in the x 
direction, causing some blocks to be invalid because of their size 
or aspect ratio (marked in red). The invalid blocks are locally and 
consistently fxed, resulting in a new layout. The layout is then 
shrunk in the y direction resulting in a new layout in Figure 18. 
The new layout has much higher buildings, but their overall height 
is relatively uniform, which was also the case for the input. We 
then expand the city in the x and y directions resulting in a new 
city similar to the input Figure 18 g). This example shows that we 
achieve reversible deformations in terms of the global aspect of an 
entire city. 

Sea level rise: an example in Figure 19 shows an urban lay-
out divided in two by an ocean. The fooded area is automatically 
cleared by the system using the Repulsor and break brush, excess of
the population and jobs are relocated nearby, causing the buildings 
to grow. 

10 LIMITATIONS AND FUTURE WORK 
While all participants enjoyed their experience with the system, 
some pointed out aspects to be improved. In particular, users lacked 
an undo function when some unexpected results occurred due 
to their selection of the wrong brush or mistakes in the setting 
of attributes, such as buildings growing too tall or too short or 

808



UIST ’21, October 10–14, 2021, Virtual Event, USA Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes 

Initial urban template User #2, 28 mins User #5, 20 mins 

User #7, 50 mins User #9, 47 mins User #10, 33 mins 

Figure 13: Urban models created by participants for the second task. The frst fgure shows the initial urban template, and the 
others are the users’ cities. 

Figure 14: User Study Statistics: Frequency and usage of individual brushes in the user studies. 

downtown areas growing larger than expected. Indeed, fxing these 
with a series of brush operations takes more time and efort than 
using undo/redo, which would be an easy addition to our system. To 
allow precise tuning, ofering a detailed visualization of the object’s 
attributes in the tools’ infuence area, e.g., height of buildings,
area of blocks, the number of population and jobs, would also be a 
valuable improvement. 

In the future, the current algorithm should be extended towards 
more accurate city design. To achieve this, we could specify local 

land-use, e.g., use for school, industry, etc. The associated attributes
and relationships with the local layout could also be explored. For 
instance, the acceptable ratio of jobs vs. population and their max 
values could vary according to land use. Moreover, connectivity 
rules and restrictions between areas of diferent uses are the next 
interesting topic that could be explored in future work. For instance, 
school and residency should not be close to heavily polluted in-
dustrial areas. More brushes can be designed for such land-use 
partition, together with user-editable attributes. In addition, more 

809



Urban Brush: Intuitive and Controllable Urban Layout Editing UIST ’21, October 10–14, 2021, Virtual Event, USA 

Figure 15: Brush parameters: (a) General Properties (b) Inner/Outer Circle Properties 

a) b) c) d) 

Figure 16: Style transfer example starts with a regular city (a) where the central part is deleted (b). Then the rebuild brush is 
used with irregular histograms from another city (c) to reconnect the layout (d). 

diverse urban structures could be implemented, such as brushes 
for terrain changes, bridges, and highways. Other features such 
as building rendering and climate simulation could be added to 
improve completeness. Lastly, we could investigate the consistency 
between the attributes in the system (road size and type, building 
size, etc.), which can be learned from examples to improve the 
plausibility of the resulting city. 

11 CONCLUSIONS 
We presented the frst expressive design method for urban layouts. 
Inspired by an analogy with clay sculpting, it provides the user with 
various editing brushes that allow maintaining the city function-
ality and visual style. Moreover, the brushes can be automatically 
triggered by larger-scale user interaction (from shrinking or ex-
panding the city to moving a lake or sculpting the terrain), enabling 
seamless application of any kind of global change. Finally, thanks 
to its ability to keep the city consistent and functional, our method 

could be an excellent complement to current city reconstruction 
and generation techniques, which results are difcult to edit. 

Among our contributions, the notion of city style, introduced 
in this paper, brings a wide range of applications: It could be used 
to analyze and cluster existing cities, for instance, for adapting the 
style of buildings to one of the layouts, or to build new cities which 
layout interpolates between predefned styles (e.g., using optimal
mass transport for histogram interpolation as in [11]). 

Our work aims at mid-level operations, and its limitations stem 
from this objective. As observed in the user study, very low-level 
control over individual roads and buildings is provided. Also, more 
global edits, such as in [19] is not possible because we do not allow 
operations on large road segments. As future work, it would be 
interesting to combine such low-level and large-scale operations 
with our brushes and see how they perform in authoring large-
and small-scale cities. Also, extra brushes could be introduced to 
address style editing while minimizing the current layout changes. 

810



UIST ’21, October 10–14, 2021, Virtual Event, USA Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes 

Figure 17: The Repulsor and Atractor brushes allow for intuitive changes of building height. A letter "A" was embossed in the 
building heights in this way. 

(a) (b) (c) (d) 

(e) (f) (g) (h) 

Figure 18: Starting from an initial urban area (a), the user shrinks the city globally by 1/3 in x direction. All intersections are 
moved by the corresponding distance that makes some of the roads, blocks, and lots inconsistent. All invalid blocks (marked 
in red) are then merged (b), resulting in a new, more elevated layout (c). The same process is then repeated in the y direction 
(d-e). We then expand the city back by 1/3 in the y direction (e) and the x direction (f), resulting in a city similar to the input 
(g). Note that the city is diferent, yet the layout is similar. 

811



Urban Brush: Intuitive and Controllable Urban Layout Editing UIST ’21, October 10–14, 2021, Virtual Event, USA 

Figure 19: An urban layout is divided in two by a mass of water, causing the building close to the coast to grow. 

ACKNOWLEDGMENTS 
We would like to thank the reviewers for their valuable and con-
structive comments, and to Romain Pascual for his help with an 
early version of the system. This research was funded in part by 
National Science Foundation grant #10001387, Functional Procedu-
ralization of 3D Geometric Models.

REFERENCES 
[1] Sharaf Al-kheder, Jun Wang, and Jie Shan. 2008. Fuzzy inference guided cellular 

automata urban-growth modelling using multi-temporal satellite images. Inter-
national Journal of Geographical Information Science 22, 11-12 (2008), 1271–1293.

[2] Sawsan AlHalawani, Yong-Liang Yang, Peter Wonka, and Niloy J Mitra. 2014.
What makes London work like London?. In Comp. Graph. Forum, Vol. 33. Wiley
Online Library, 157–165.

[3] Daniel G Aliaga, Carlos A Vanegas, and Bedrich Benes. 2008. Interactive example-
based urban layout synthesis. ACM Trans. on Grap. 27, 5 (2008), 1–10.

[4] Michael Batty. 2007. Cities and complexity: understanding cities with cellular 
automata, agent-based models, and fractals. The MIT press.

[5] Marie-Paule Cani, Takeo Igarashi, and Geof Wyvill. 2008. Interactive Shape Design. 
Morgan & Claypool Publishers, ISSN:1933-8996. 78 pages. https://hal.archives-
ouvertes.fr/hal-00336304

[6] Guoning Chen, Gregory Esch, Peter Wonka, Pascal, Müller, and Eugene Zhang. 
2007. Interactive procedural street modeling. ACM Trans. on Grap. 27, 3 (2007),
35. https://doi.org/10.1145/1278780.1278822

[7] Keith C Clarke and Leonard J Gaydos. 1998. Loose-coupling a cellular automa-
ton model and GIS: long-term urban growth prediction for San Francisco and
Washington/Baltimore. International journal of geographical information science 
12, 7 (1998), 699–714.

[8] Guillaume Cordonnier, Eric Galin, James Gain, Bedrich Benes, Eric Guérin, Adrien
Peytavie, and Marie-Paule Cani. 2017. Authoring Landscapes by Combining
Ecosystem and Terrain Erosion Simulation. ACM Transactions on Graphics -
Siggraph 2017 36, 4 (2017).

[9] Guillaume Dewaele and Marie-Paule Cani. 2004. Interactive global and Local
Deformations for Virtual Clay. Graphical Models 66, 6 (2004), 352–369.

[10] Arnaud Emilien, Adrien Bernhardt, Adrien Peytavie, Marie-Paule Cani, and Eric
Galin. 2012. Procedural Generation of Villages on Arbitrary Terrains. The Visual
Computer 28, 6-8 (June 2012).

[11] Arnaud Emilien, Ulysse Vimont, Marie-Paule Cani, Pierre Poulin, and Bedrich
Benes. 2015. WorldBrush: Interactive Example-based Synthesis of Procedural
Virtual Worlds. ACM Trans. on Grap. 34, 4, Article 106 (July 2015), 11 pages. 

https://doi.org/10.1145/2766975 
[12] Arnaud Emilien, Ulysse Vimont, Marie-Paule Cani, Pierre Poulin, and Bedrich

Benes. 2015. Worldbrush: Interactive example-based synthesis of procedural
virtual worlds. ACM Trans. on Grap. 34, 4 (2015), 1–11.

[13] James Gain, Harry Long, Guillaume Cordonnier, and Marie-Paule Cani. 2017.
EcoBrush: Interactive Control of Visually Consistent Large-Scale Ecosystems.
Computer Graphics Forum, Eurographics 2017 36, 2 (2017).

[14] Eric Galin, Eric Guérin, Adrien Peytavie, Guillaume Cordonnier, Marie-Paule
Cani, Bedrich Benes, and James Gain. 2019. A review of digital terrain modeling. 
In Comp. Graph. Forum, Vol. 38. Wiley Online Library, 553–577.

[15] Stefan Greuter, Jeremy Parker, Nigel Stewart, and Geof Leach. 2003. Real-time 
procedural generation of pseudo infnite cities. In Proceedings of the 1st interna-
tional conference on Computer graphics and interactive techniques in Australasia
and South East Asia. 87–f.

[16] Michael W Hancock and Bud Wright. 2013. A policy on geometric design of 
highways and streets. American Association of State Highway and Transportation 
Ofcials: Washington, DC, USA (2013).

[17] Suzi Kim, Dodam Kim, and Sunghee Choi. 2020. CityCraft: 3D virtual city creation
from a single image. The Visual Computer 36, 5 (2020), 911–924.

[18] Thomas Lechner, Pin Ren, Ben Watson, Craig Brozefski, and Uri Wilenski. 2006.
Procedural modeling of urban land use. In ACM SIGGRAPH 2006 Research posters.
135–es.

[19] Markus Lipp, Daniel Scherzer, Peter Wonka, and Michael Wimmer. 2011. Interac-
tive modeling of city layouts using layers of procedural content. In Comp. Graph.
Forum, Vol. 30. Wiley Online Library, 345–354.

[20] Stephen Longay, Adam Runions, Francois Boudon, and Przemyslaw
Prusinkiewicz. 2012. TreeSketch: interactive procedural modeling of
trees on a tablet. In Proc. of the Intl. Symp. on SBIM. 107–120.

[21] Paul Merrell and Dinesh Manocha. 2008. Continuous model synthesis. (2008),
1–7. https://doi.org/10.1145/1457515.1409111

[22] Paul Merrell, Eric Schkufza, and Vladlen Koltun. 2010. Computer-generated
residential building layouts. In ACM SIGGRAPH Asia 2010 papers (Seoul, South
Korea) (SIGGRAPH ASIA ’10). ACM, New York, NY, USA, Article 181, 12 pages.
https://doi.org/10.1145/1866158.1866203

[23] Pascal Müller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool.
2006. Procedural modeling of buildings. ACM Trans. on Grap. 25, 3 (July 2006),
614–623. https://doi.org/10.1145/1141911.1141931

[24] Pascal Müller, Gang Zeng, Peter Wonka, and Luc Van Gool. 2007. Image-based
Procedural Modeling of Facades. ACM Trans. on Grap. 26, 3, Article 85 (July 2007).
https://doi.org/10.1145/1276377.1276484

[25] Przemyslaw Musialski, Michael Wimmer, and Peter Wonka. 2012. Interactive
Coherence-Based Facade Modeling. Comp. Graph. Forum 31, 2pt3 (May 2012),
661–670. https://doi.org/10.1111/j.1467-8659.2012.03045.x

812

https://hal.archives-ouvertes.fr/hal-00336304
https://hal.archives-ouvertes.fr/hal-00336304
https://doi.org/10.1145/1278780.1278822
https://doi.org/10.1145/2766975
https://doi.org/10.1145/1457515.1409111
https://doi.org/10.1145/1866158.1866203
https://doi.org/10.1145/1141911.1141931
https://doi.org/10.1145/1276377.1276484
https://doi.org/10.1111/j.1467-8659.2012.03045.x


UIST ’21, October 10–14, 2021, Virtual Event, USA Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes 

[26] Przemyslaw Musialski, Peter Wonka, Daniel G Aliaga, Michael Wimmer, Luc
Van Gool, and Werner Purgathofer. 2013. A survey of urban reconstruction. In
Comp. Graph. Forum, Vol. 32. Wiley Online Library, 146–177.

[27] Gen Nishida, Ignacio Garcia-Dorado, Daniel G Aliaga, Bedrich Benes, and Adrien 
Bousseau. 2016. Interactive sketching of urban procedural models. ACM Trans.
on Grap. 35, 4 (2016), 1–11.

[28] Wociech Palubicki, Karl Horel, Stephen Longay, Adam Runions, Brendt. Lane, 
Radomír Měch, and Prezemyslaw Prusinkiewicz. 2009. Self-organizing Tree
Models for Image Synthesis. ACM Trans. on Grap. 28, 3, Article 58 (2009), 10 pages.

[29] Yoav I. H. Parish and Pascal Müller. 2001. Procedural modeling of cities. In 
SIGGRAPH ’01: Proceedings of the 28th annual conference on Computer graphics
and interactive techniques. ACM Press, 301–308. https://doi.org/10.1145/383259.
383292

[30] Juval Portugali. 2009. Self-Organization and the City. Springer New York, New 
York, NY, 7953–7991. https://doi.org/10.1007/978-0-387-30440-3_471

[31] Przemyslaw Prusinkiewicz, Mark Hammel, Jim Hanan, and Radomir Mech. 1996.
L-systems: from the theory to visual models of plants. In Proceedings of the CSIRO,
Vol. 3. Citeseer, 1–32.

[32] Oriol Pueyo, Albert Sabrià, Xavier Pueyo, Gustavo Patow, and Michael Wimmer.
2020. Shrinking city layouts. Computers & Graphics 86 (2020), 15–26.

[33] Adam Runions, Brendan Lane, and Przemyslaw Prusinkiewicz. 2007. Modeling 
Trees with a Space Colonization Algorithm. EG Nat. Phenom. (2007), 63–70.

[34] Michael Schwarz and Pascal Müller. 2015. Advanced Procedural Modeling of
Architecture. ACM Trans. on Grap. 34, 4 (2015), 107:1–107:12.

[35] Ruben M Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. 2014. A survey
on procedural modelling for virtual worlds. In Comp. Graph. Forum, Vol. 33. Wiley
Online Library, 31–50.

[36] Jing Sun, Xiaobo Yu, George Baciu, and Mark Green. 2002. Template-based 
generation of road networks for virtual city modeling. In Proceedings of VRST.
33–40.

[37] Carlos A Vanegas, Daniel G Aliaga, Bedrich Benes, and Paul Waddell. 2009.
Visualization of simulated urban spaces: Inferring parameterized generation of
streets, parcels, and aerial imagery. IEEE Trans. on Vis. and Comp. Graphics 15, 3
(2009), 424–435.

[38] Carlos A. Vanegas, Daniel G. Aliaga, Bedřich Beneš, and Paul A. Waddell. 2009.
Interactive design of urban spaces using geometrical and behavioral modeling. 
(2009), 1–10. https://doi.org/10.1145/1661412.1618457

[39] Carlos A Vanegas, Ignacio Garcia-Dorado, Daniel G Aliaga, Bedrich Benes, and 
Paul Waddell. 2012. Inverse design of urban procedural models. ACM Trans. on 
Grap. 31, 6 (2012), 1–11.

[40] Carlos A Vanegas, Tom Kelly, Basil Weber, Jan Halatsch, Daniel G Aliaga, and 
Pascal Müller. 2012. Procedural generation of parcels in urban modeling. In Comp.
Graph. Forum, Vol. 31. Wiley Online Library, 681–690.

[41] Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. 2006. Vector Field
Based Shape Deformations. ACM Transactions on Graphics - SIGGRAPH 2006 25,
3 (2006).

[42] Paul Waddell. 2002. UrbanSim: Modeling urban development for land use, trans-
portation, and environmental planning. Journal of the American planning associ-
ation 68, 3 (2002), 297–314.

[43] Basil Weber, Pascal Mueller, Peter Wonka, and Markus Gross. 2009. In-
teractive Geometric Simulation of 4D Cities. Comp. Graph. Forum (April
2009). http://www.procedural.com/publications/2008_EG_Urban_Simulation/
2008.EG.Weber.UrbanSimulation.Paper.pdf

[44] Nora S Willett, Rubaiat Habib Kazi, Michael Chen, George Fitzmaurice, Adam
Finkelstein, and Tovi Grossman. 2018. A mixed-initiative interface for animating
static pictures. In Proceedings of the 31st Annual ACM Symposium on User Interface Figure 20: For a given grid cell (dotted lines), the total habit-

able area is the total area covered by lots that are not parks 
(shaded area) (a). We represent a building’s four variables: 
population (solid blue), jobs (solid green), population to han-
dle (shaded blue), jobs to handle (shaded green) (b). 

Software and Technology. 649–661.
[45] Peter Wonka, Michael Wimmer, François Sillion, and William Ribarsky. 2003.

Instant architecture. ACM Trans. on Grap. 22, 3 (2003), 669–677. https://doi.org/
10.1145/882262.882324

[46] Haijun Xia, Bruno Araujo, Tovi Grossman, and Daniel Wigdor. 2016. Object-
oriented drawing. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems. 4610–4621.

APPENDICES 
A JOBS AND POPULATION PER LOT 
Population and jobs are initially represented as distributions of 
discrete values on a fxed resolution grid (see Figure 2 (e-f)). How-
ever, to interact with them locally, it is necessary to convert them 
to a distribution over the city lots. We use the same algorithm 
described below for population to calculate the exact amounts of 
population P(pi ) and jobs S(pi ) in each lot pi .

Let Nc and Np be respectively the total number of grid cells
and lots. Let the cells be denoted by ci , 1 ≤ i ≤ Nc and the lots
by pi , 1 ≤ i ≤ Np . We use C(x) to refer to the contour polygon of
x , P(x) for the amount of population in x and A(C) to refer to the 
area within a closed contour C (see Figure 20). 

A lot is habitable if it is not a park (i.e., it includes a building).
The total habitable area (THA) of each grid cell (Figure 20) is:Õ 

∀i ∈ [1, Nc ], THA(ci ) = A(C(pj ) ∩ C(ci )). 
pj |pj ,park

Under the hypothesis of locally uniform distribution, the population 
P(pi ) of a lot pi is then:Õ A(C(pi ) ∩ C(c j ))

P(pi ) = P(c j ) . 
THA(c j )c j 

If a grid cell has a positive population but has no habitable lot 
inside or intersecting its contour, the transfer is impossible, and we 
discard it. By treating the distribution of the jobs in the same way, 
we obtain an urban layout where the amount of people and jobs in 
each building (or a lot) is known. 

B BRUSH ALGORITHMS 
B.1 Repulsor
The Repulsor brush removes a specifed amount of population from
the lots in the brush center and moves it to the infuence area 
without modifying the road and block geometry. The algorithm is 
as follows. 

First, the brush sorts all afected lots by distance to the brush 
center (using Euclidian or traveling-time distance). Then, the total 
number of agents to relocate is computed, as well as the amount 
each lot in the infuence region should receive to preserve the total 

813

https://doi.org/10.1145/383259.383292
https://doi.org/10.1145/383259.383292
https://doi.org/10.1007/978-0-387-30440-3_471
https://doi.org/10.1145/1661412.1618457
http://www.procedural.com/publications/2008_EG_Urban_Simulation/2008.EG.Weber.UrbanSimulation.Paper.pdf
http://www.procedural.com/publications/2008_EG_Urban_Simulation/2008.EG.Weber.UrbanSimulation.Paper.pdf
https://doi.org/10.1145/882262.882324
https://doi.org/10.1145/882262.882324


−

−

Urban Brush: Intuitive and Controllable Urban Layout Editing 

agent-volume (determined based on user-defned weighting scheme 
uniform or gaussian). Naturally, at this stage, if a lot in the infuence
region has already reached its maximal capacity or is locked (using 
the Mask brush), no amount will be assigned to it.

We start the transferring by pairing the frst sorted impact lot 
and the frst infuence lot. If the infuence lot absorbs all population 
from the impact lot, we pair the current infuence lot with the 
next impacted lot. Otherwise, if the building in the infuence lot 
achieves its max height or absorbs the max amount of population, 
the infuence lot will be iterated to the next in the sorted queue. 

While the city is consistent after the brush has visited all lots in 
both regions, we cannot guarantee that every lot in the infuence 
region absorbed its part of the impact region’s population excess. 
Indeed, a lot could have been assigned more agents to receive than 
it can, so there might be more population remaining in the impact 
region than desired after the process (since by construction of 
the Transfer operation, any not handled agent is returned into its
original lot). As a solution, we reiterate the whole process until no 
signifcant mobility between both regions is observed. 

B.2 Attractor
The Attractor brush acts intuitively as the opposite of Repulsor by
pulling agents in. The Attractor frst sorts the lots by distance from
the brush center (Euclidean or traveling-time). It computes the total 
number of agents to be added to the buildings in the impact region 
from a user-specifed value. Then it calculates the number of agents 
that each lot in the infuence region has to provide based on the 
previous total amount. It iterates simultaneously over the lots in 
the impact and the infuence region and transfers agents based on 
the Transfer operation in a way similar to the Repulsor. Also similar
to the Repulsor, the process is iterated if necessary.

C HIERARCHICAL ROAD GENERATION 

ො𝑣𝑎
𝑒𝑥𝑝

𝑑

𝐷𝐻 a

b

c
Possible expansion

Expansion

Expanded vertex
Expanding direction Candidate area

open vertex
closed vertex

aFigure 21: Single arterial node expansion: Starting from v̂ ,
a possible expansion is determined by choosing as a new 
connection, among compatible nodes (a, b, c) which are open 
(a, c), the most aligned one (c). 

The road generation is hierarchical. We frst expand the arterial 
roads and then the streets. All vertices from the impact area of the 
brush are marked as open (denoted by the red circles in Figure 21).
Vertex that cannot be further expanded is denoted as closed (a
black dot in Figure 21). A vertex is closed when it is already fully 
connected by four roads, or it has an invalid geometry attribute 
that makes it unable to be connected, like a vertex on the river. 

We keep two lists of open vertices. A vertex that includes vertices 
with an open connection of type ea is stored in a list for open arterial 
roads V̂ a . An open vertex that includes only open connections to

sstreets e is stored in open streets V̂ s . Note that V̂ a may include

UIST ’21, October 10–14, 2021, Virtual Event, USA 

open nodes also for streets. They will be relocated to V̂ s once the
arterial connections have been made. 

If a road segment has been previously disconnected from a vertex, 
we keep the original direction, because it may be used for a future 
re-connection as shown in Figure 22. 

Figure 22: Each intersection stores the direction of the con-
necting roads. If the area and the roads are removed, the di-
rections are kept for potential reconnect to keep the layout 
consistent. 

aArterial roads generation: We randomly chose one vertex v̂ 
from V̂ a and pick one of its open connections êa . First we determine

→the direction of the expansion − exp (see Figure 21). If the connection
comes with the direction information, i.e., it has been disconnected
before, and the direction is stored as shown in Figure 22, we use it. 
If the direction is unknown, we sample the direction histogram JH
for the compatible type. We then sample the distance histogram DH
to determine the distance of the expansion d . The new possible 

a a −→expansion is then located at v̂ = v̂ + d exp.new 
aBefore expanding the road to v̂ , we check if there are othernew 

compatible intersections in the vicinity. The candidate area is a disk 
aat v̂ with radius DH . The radius is calculated as the averagenew 

of all distances between intersections of the same type (a-a in this 
case). If compatible nodes are present (a and c in Figure 21, because 
node b is closed), we do not generate a new one, but instead, we 
connect to an existing one. Any node inside the disk is suitable, 
but we chose the node with the most aligned direction (node c 
in Figure 21) to preserve style. If no compatible node is present, 

awe generate a new open node at v̂new . Its type is determined by
randomly sampling vIDH .

If the expanding segment intersects with another road, it is re-
moved, and the node expansion is terminated. If the expanded node 

adoes not have any open connections e , but it has open connec-
tions es , it is moved from V̂ a to V̂ s . All closed nodes are removed
from V̂ a . The expansion of arterial nodes ends when V̂ a is empty.
If dead-ends are present, they are removed. 

Streets generation: At the end of the arterial expansion, V̂ s
still includes nodes to be expanded. They are processed as street 
nodes by using the same algorithm as for arterial expansion. 

However, we do not leave any open node during this pass because 
there is no sub-category, the streets being the lowest roads in the 
hierarchy. 

814


	Abstract
	1 Introduction
	2 Related Work
	3 Urban Layout
	3.1 Input and Structure
	3.2 Lot Structure and Validity
	3.3 Consistent City Editing

	4 Atomic Operations
	4.1 Buildings
	4.2 Lots
	4.3 Roads and Blocks

	5 Basic Brushes
	5.1 Brush Parameters
	5.2 Repulsor
	5.3 Attractor
	5.4 Drag & Drop
	5.5 Mask
	5.6 Road Break and Connect

	6 Style-Preserving Brush
	6.1 Concept of City Style
	6.2 Re-Build Brush

	7 Large-scale Modification
	7.1 Geometric Inconsistencies
	7.2 Handling Inconsistencies

	8 User Study
	8.1 Population
	8.2 Study Protocol
	8.3 Results and Observations

	9 Implementation and Results
	9.1 Results

	10 Limitations and Future Work
	11 Conclusions
	Acknowledgments
	References
	A Jobs and Population per Lot
	B Brush algorithms
	B.1 Repulsor
	B.2 Attractor

	C Hierarchical road generation

