Urban Brush: Intuitive and Controllable Urban Layout Editing

Xiaochen Zhou"
Purdue University
USA
zhou1178@purdue.edu

Marie-Paule Cani
LIX, Ecole Polytechnique/CNRS, IP Paris
France
marie-paule.cani@polytechnique.edu

()

(@

Pascal Chang"
LIX, Ecole Polytechnique/CNRS, IP Paris
France
pchang@student.ethz.ch

Bedrich Benes
Purdue University
USA
bbenes@purdue.edu

(f)

Figure 1: Starting from an initial urban area (a), first, the user pushes the jobs and population in the red circle area to the white
area by the repulsor brush (b), and then creates the new land use to build parks marked as red (c). Next, a drag-drop brush is
used to re-allocate the job, and population, which forms a downtown area (d), and a break brush distributes all properties and
removes the blocks, parcels, and roads in the target area (e). Finally, the user changes the terrain, and the system automatically
calls brushes to create the mountain area, park, and coastline with the consistency of the population and jobs (f).

ABSTRACT

Efficient urban layout generation is an interesting and important
problem in many applications dealing with computer graphics and
entertainment. We introduce a novel framework for intuitive and
controllable small and large-scale urban layout editing. The key
inspiration comes from the observation that cities develop in small
incremental changes e.g., a building is replaced, or a new road is
created. We introduce a set of atomic operations that consistently
modify the city. For example, two buildings are merged, a block
is split in two, etc. Our second inspiration comes from volumetric

*Shared first authors

This work is licensed under a Creative Commons
Attribution-NonCommercial-ShareAlike International 4.0 License.

UIST °21, October 10-14, 2021, Virtual Event, USA
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8635-7/21/10.
https://doi.org/10.1145/3472749.3474787

796

editings, such as clay manipulation, where the manipulated material
is preserved. The atomic operations are used in interactive brushes
that consistently modify the urban layout. The city is populated
with agents. Like volume transfer, the brushes attract or repulse
the agents, and blocks can be merged and populated with smaller
buildings. We also introduce a large-scale brush that repairs a part
of the city by learning style as distributions of orientations and
intersections.

CCS CONCEPTS

« Computing methodologies — Shape modeling; Interactive
simulation.

KEYWORDS
Urban modeling, procedural models, interactive modeling, geome-
try

ACM Reference Format:
Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes. 2021.
Urban Brush: Intuitive and Controllable Urban Layout Editing. In The 34th

https://orcid.org/0000-0002-5293-2112
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://creativecommons.org/licenses/by-nc-sa/4.0/
https://doi.org/10.1145/3472749.3474787
mailto:bbenes@purdue.edu
mailto:marie-paule.cani@polytechnique.edu
mailto:pchang@student.ethz.ch
mailto:zhou1178@purdue.edu

UIST 21, October 10-14, 2021, Virtual Event, USA

Annual ACM Symposium on User Interface Software and Technology (UIST
’21), October 10-14, 2021, Virtual Event, USA. ACM, New York, NY, USA,
19 pages. https://doi.org/10.1145/3472749.3474787

1 INTRODUCTION

Large-scale urban layouts on arbitrary terrains are essential in many
Human-Computer Interaction (HCI) and Computer Graphics (CG)
applications. However, their generation is not a straightforward
nor simple task. Urban layouts can be generated by procedural
modeling (e.g., [29]) that uses rules to describe the generation of
roads, blocks, parcels, and buildings. Close to procedural generation
are simulations (e.g., [43]) that use real-world rules and behavior to
create urban layouts. Reconstruction (e.g., [26]) brings real-world
assets to the virtual world by converting data from sensors (cameras,
LiDAR, depth maps) into formats suitable for 3D rendering and
further processing. Urban layouts can also be generated by using
interactive modeling (e.g., [6]), that is probably the best way of
controlling the output and creating models that closely express the
user intent.

However, there is a disconnect of the methods for urban layout
generation. Procedural methods and simulations are notoriously
difficult to control. Although they can quickly provide visually plau-
sible layouts, they tend to be repetitive and may include errors such
as missing egress or other architectural problems. Reconstruction
algorithms are limited to the input and often need additional man-
ual effort to make the CG models usable. Interactive methods are
often tedious and slow to provide large-scale output, while the user
receives no help towards consistency and realism.

One of the critical problems of urban layout design in HCI and
CG is therefore consistently modifying an existing layout, which
would enable users in seek of control not to start from scratch.
Existing approaches either focus on the full design of the entire
urban layout [43] or allow only global changes [38] by changing
simulation parameters. Very few works attempt to modify an urban
layout in a consistent way [19, 32].

Our first inspiration is the observation that cities grow in incre-
ments [4]. It is uncommon that an entire city will be built from
scratch. Instead, a building is often removed and replaced by a dif-
ferent one, or a small area of a city is remodeled. In all cases, the
affected area must be carefully integrated into the existing urban
layout. An important aspect of such localized changes is that they
need to respect the function of the city. People living in the affected
area must be relocated, lost jobs should be replaced, etc. Our second
inspiration comes from interactive design. Users prefer intuitive
and straightforward operations for content creation and modifi-
cation. Several approaches focused on intuitive operations that
mimic brushes, allowing a wide range of operations that hide the
underlying algorithms’ parameters. Brush and sculpting metaphor
have been used in shape modeling [5], constant volume deforma-
tion [9, 41], and landscape modifications [11], but they have not
been used for editing of highly structured urban layouts.

We present a novel approach to interactive modeling of urban
layouts in which we combine user-controlled editing with local-
ized, context-sensitive changes. We introduce a set of brushes that
implement localized atomic operations on urban layout. We use
brushes as the interactive tools since the atomic operations can be

797

Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes

interactively applied to any urban layout. Each brush is parameter-
ized by its area of influence and its function. The brushes are also
context-sensitive, and affected jobs or inhabitants are relocated. In
this way, each modification of the city is consistent and does not
modify its function. In addition, the changes are localized and fully
controllable by the user.

We show our approach on interactive examples and large-scale
edits of various urban layouts. An example in Figure 1 shows exten-
sive global changes to an urban layout that are consistently handled
by low-level operations.

We claim the following contributions. (1) We introduce a set of
intuitive brushes for urban layout modifications. (2) We introduce
a novel space colonization algorithm that allows for the intuitive
generation of urban layouts with different styles. (3) We introduce
a non-homogeneous brush analogy that considers the urban layout
to be a material with vessels. (4) We show how the brushes can be
combined into fully automatic global operations on urban layouts.

2 RELATED WORK

This work is related to urban procedural modeling and simulations.
It is also inspired by interactive editing methods such as virtual
sculpting. We do not review works on urban reconstruction, re-
ferring readers to [25]. We also do not focus on terrain modeling,
surveyed in [14], nor cover virtual worlds creation, in general, that
was reviewed in [35].

Procedural methods generate a model from initialization and a
set of rules. Parish and Miiller [29] were the first to combine various
procedural methods into a procedural city generation pipeline. They
use a set of input layers like population, density, or terrain map, and
they extend L-systems [31] to grow street networks and generate
buildings at large scales. The purely procedural models for large
cities were further extended by [21, 22]. Wonka et al. [45] introduced
instant architecture, i.e., procedural modeling for buildings using
split grammars. This approach was further expanded by [23] and
recently by [34] who introduced advanced internal communication
of procedural modules. On a smaller scale, a large amount of work
has been dedicated to the automatic generation of facades (e.g.,
[24]).

Road networks have been generated from a regular grid pat-
tern [15] and pattern-based templates [36]. However, these meth-
ods ignore the behavioral variables like population density on the
road network’s shape. Vanegas et al. [38] combine behavioral and
geometrical modeling that adapt to the underlying population, jobs,
terrain, and local transportation demand. This approach success-
fully captures the road density variations induced by the popula-
tion distribution, but it only offers limited control over the net-
work’s appearance. Agent simulation was used to generate road
networks [18], and an example-based method was introduced in [3].
Good global controllability of planar urban layouts can be achieved
by modeling the overall layout in a dual space of tensor fields [6].
Road networks define blocks and parcels that have been generated
by a subdivision scheme in Vanegas et al. [37]. This approach was
extended in [40] by using the straight skeleton of a block’s contour.
Lastly, roads and parcels generation were adapted to rough terrains
and sparser urbanization [10].

https://doi.org/10.1145/3472749.3474787

Urban Brush: Intuitive and Controllable Urban Layout Editing

The main problem of procedural models is user control since rule
parameters only enable indirect tuning, which affects the whole
result. Moreover, they may also fail to generate valid urban layouts
since they do not account for the city’s function, namely hosting a
population and giving them access to jobs.

Urban simulation methods, in contrast, focus on the func-
tional modeling of a city. Early work focused on behavioral mod-
eling, using cellular automata [1, 7], agent-based simulation [30],
or micro-simulation discrete choice models [42] exploiting agents
that make decisions to locate and move within the generated city,
including land use, activity, population, and jobs. A recent method
use GANSs to reconstruct a 3D city from a photograph [17]. We
build on the urban simulation algorithm of Vanegas et. al [38] that
generates consistent global urban layouts from macro parameters
such as jobs, land use, and population. However, this approach only
allows for global modifications, making it harder for urban editing,
local control, and user interaction.

Urban editing has been addressed by Lipp et al. [19] who intro-
duced transformation operators based on graph cuts that, combined
with a layering system, allow intuitive manipulation of urban lay-
outs like drag and drop, translation, rotation, etc. However, their
work does not integrate behavioral modeling (i.e., simulation of pop-
ulation, jobs, and their movement), so the edited city’s consistency
may be lost. Vanegas et al. [39] introduced a high-level control over
an existing urban model, thanks to an inverse procedural model
that generates urban layouts fulfilling high-level criteria on sun-
light exposure, the ratio of parks, or landmark visibility. Finally,
deep-learning sketch-based method for urban editing that infers
user sketches and converts them into a consistent procedural model
has been introduced in [27].

Local control and user interaction require a solid and flexi-
ble system designed for both urban simulation and user-friendly
editing metaphors. Existing approaches (e.g., SketchUp and Auto-
CAD) use the region selection feature for local control and editing.
However, this can only select regular shapes (rectangles), which is
insufficient for flexible urban editing. Our system is inspired by the
work [44], where multiple layers were used for local feature editing
and, together with image combination, allow users to precisely edit
the targeted elements. To design the layers, we also borrow the idea
of a hierarchy system [46], where a tree structure is used for the
hierarchy of attributes. It allows the edits on low-level layers to au-
tomatically affect the high-level layers (e.g., edit on road layer will
affect the building), which keeps the system’s consistency when
the user edits the lowest layers.

Sculpting and painting metaphors: Our work borrows from
the interactive methods enabling consistent, intuitive authoring
of virtual worlds. While sketching and sculpting techniques were
introduced for shape modeling Cani et al. [5], where consistency
was expressed in terms of geometric constraints such as constant
volume deformation [9, 41], they were extended to virtual worlds
editing. Emilien et al. [12] presented a framework to populate vir-
tual worlds with distributions of objects (rocks, trees, houses, and
roads) from user-defined examples, using a painting metaphor. The
user is provided brushes that store statistical distributions of scene
elements and their correlation with terrain slope instead of colors.
They can be used to paint locally consistent distributions of objects.
Moreover, statistical consistency is maintained when selected parts

798

UIST ’21, October 10-14, 2021, Virtual Event, USA

of the layout are moved or deformed over the terrain. This approach
was extended to dedicated brushes enabling to author consistent
plant ecosystems over eroding or large-scale terrains [8, 13]. In
contrast, such methods were never applied to the consistent urban
layout editing, which we tackle here.

3 URBAN LAYOUT
3.1 Input and Structure

The input to our algorithm is an urban layout that includes jobs
and population jointly referred to as agents in this work. The urban
layout U is a set of 2D layers

L = [h,R, k,P, b, S, P]!

where h denotes the terrain height, R the road network, k blocks,
p lots (parcels), b buildings, S jobs, and P population (see Table 1).
Height is stored as a high-resolution image. Jobs, and population
are input in discrete layers of fixed resolution w X h (100m X100m
in our system) and re-calculated per lot as a weighted sum of the
number of agents in cells that intersect the lot (see Appendix A).
The roads are stored as a graph. Blocks and lots are polygons, and
buildings are either 3D meshes or procedural models that generate
them.

Table 1: Layers L used in an urban layout 2. Jobs and popu-
lation are computed per each lot.

Layer Symbol Type
Height field h(i, j) Grid
Roads R=[V,E] Graph
Blocks k Polygon
Lots p Polygon
Buildings b 3D mesh
Jobs S(pi) Integer
Population P(p;) Integer

Roads are represented as an oriented graph R = [V, E] with
v € V vertices corresponding to intersections, and edges e € E, e =
v; — vj that correspond to road segments. We follow the road
classification from [16] and divide the roads into highways eh,
arterial roads e?, and streets e°. Highways are the highest capacity
roads that connect cities. Arterial roads are inter-city roads for
fast and high volume traffic, and streets connect arterial roads and
other streets with individual lots. Our urban layouts do not include
highways because they are used for inter-city connections.

The loops in the road network [v;,vjt1,...,v;] may define
blocks denoted by k, and each block can be subdivided into lots p.
Lots may include buildings b, which are represented either as a
mesh or as a procedural model that generates the said mesh. Empty
lots are marked as parks. Each road also optionally carries informa-
tion about the traffic flow.

The urban layout i.e., the distribution of roads and geometry of
buildings, can be given explicitly. In our framework, we use the
simulation from [38] to generate it. Similarly, population and jobs,
detailed next, may either be generated through simulation (e.g.,
[38, 43]) or provided by the user as 2D maps.

UIST 21, October 10-14, 2021, Virtual Event, USA

Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes

a)- b)- c)-
d)- C)- f)-

Figure 2: Input layers of an urban layout: Terrain height (a), roads (b), blocks and lots (c), buildings (d), and optionally popula-

tion (e) and jobs (f).

3.2 Lot Structure and Validity

A lot (a parcel) is the smallest unit in our urban model. A lot be-
longs to a unique block and can be characterized by its contour
geometry and the number of jobs and population (agents) it car-
ries. A lot contains at most one building, whose volume always
reflects the total number of agents of the underlying lot. If the lot
is empty, there is no building, and the lot is marked as a park. For
physical plausibility, buildings’ height is not allowed to exceed a
specific maximal bound that depends on its base area. This defines
a maximal amount of population and jobs M(p) a parcel p can host.

Each lot also includes two additional non-negative variables,
population-to-handle AP > 0 and jobs-to-handle AS > 0, which
serve as temporary buffers during operations. This allows us to
write operations on lots systematically: any amount of population
or jobs that are supposed to leave a given lot is first put into these
temporary buffer variables before they can be distributed, relocated
to, or absorbed by other lots.

With these considerations, a lot p is said to be valid if 1) the
capacity of the lot imposed by the maximal height of its building is
not exceeded (i.e., P(p) + S(p) < M(p)), and 2) the temporary buffers
are empty (AP(p) + AS(p) = 0).

3.3 Consistent City Editing

A functional city model is characterized by a distribution of agents
that matches the building volume and reflects some reasonable
proportion between population and jobs. A second key feature is
the consistency of the road network, making each district accessible
while accounting for the topography of the underlying terrain
features, including slope and presence of water bodies. Our goal is
to maintain the input city model functional throughout editing.
We use the analogy of painting with 2D brushes and sculpting
clay material, where the constant volume maintains consistency
throughout changes. We need to design brushes that maintain
both the population and their jobs to constant amounts. Moreover,

799

contrary to clay, a city embeds a consistent inner structure: the
road network. Thus, deforming it is similar to sculpting complex
material, such as reinforced concrete, or organic shapes, such as
leaves that embed a vessel’s network. To our best knowledge, no
sculpting method has been proposed yet to achieve this. The city is
located on terrain, and we also need to ensure that the road network
remains consistent with the slope. Lastly, the urban layout includes
the city’s division in lots, which, together with the way streets are
oriented and branch together, gives a unique style to each city. We
seek to define editing operations that preserve such style.

We define basic atomic operations on buildings, lots, and roads
that can be combined into a variety of consistent tools, i.e., tools
that preserve the total amount of population and jobs in the city,
the validity of all lots, and road network (defined in Section 3.2).

4 ATOMIC OPERATIONS

The interactive brushes in Section 5 are designed bottom-up from
a set of consistent atomic operations which we describe in this sec-
tion. There is a logical succession of these operations given by the
semantic dependencies of the city layout. For instance, operations
like merging or splitting blocks affect the impacted blocks and the
dividing road segment, and all the lots and buildings contained in
the blocks.

4.1 Buildings

Because the height of a building (rounded to a closest integer num-
ber of floors) is defined such that its volume corresponds to the
actual number of agents in the underlying lot, operations that only
affect the behavioral attributes of lots (amount of agents) without
modifying their geometric attributes (contour shape of the lot) can
be seen as operations on buildings.

The Transfer operation only affects buildings and has no other
dependencies. Given two buildings and the amount of population
and jobs to relocate (P, S;), it tries to transfer as much of these

Urban Brush: Intuitive and Controllable Urban Layout Editing

amounts as possible from one building to another, while maintain-
ing the validity of the two underlying lots (see Section 3.2).The
desired amount to transfer might not be feasible due, for instance,
to target lot reaching maximum capacity, or source lot not having
enough agents.

4.2 Lots

We introduce two operations on lots: Merge and Split, which use
the operations on buildings. Unlike the Transfer operation (Sec-
tion 4.1), Merge and Split are atomic operations, and they modify
the geometry of the affected lots.

Merge joints two adjacent lots, destroys their buildings, and
creates a new and larger building that includes all the agents from
the input lots. Suppose the newly created building cannot absorb all
agents from the original buildings due to the maximum capacity of
the population and jobs in the lots. In that case, the operation fails
and is canceled to maintain consistency (otherwise, we are either
invalidating a parcel or violating the constant-agent constraint).
Merge can be used, for instance, during a Transfer operation, where
the target building reaches maximal capacity: instead of reducing
the transferred amount, the target building can merge with its
neighbor to absorb more.

The Split operation divides a lot in two. As in [40], we calculate
the lot’s PCA-aligned bounding box and split it according to its
larger side. The two new lots are then populated with buildings that
attempt to absorb the agents from the original lot. Similar to Merge,
if the split causes an excess of agents, it is not executed because
the city would become inconsistent. This operation prevents tall
buildings with large foundations from becoming small buildings
with large foundations, which is not plausible. The split can be
controlled indirectly. For example, a lot will split every time the
included building’s height goes beneath a given threshold.

4.3 Roads and Blocks

A block is an agglomeration of lots surrounded by roads. Similar
to lots, we define atomic operations Merge Blocks and Split Block.
However, contrary to lots, blocks and roads are mutually depen-
dent, an operation on two adjacent blocks affects the separating
road segment between them. Similarly, operations involving road
segments affect adjacent blocks.

Operation Merge Blocks affects two adjacent blocks with a road
segment in the middle. It erases all lots in both blocks and stores
all agents and jobs in temporary buffers. Then it removes the road
in the middle and merges the blocks into one. The newly created
block is subdivided into lots, buildings are created and occupied
by the agents and jobs. Buildings have different sizes because each
building’s size is proportional to the lot it occupies.

Similarly, the Split Block operation takes a block, finds its PCA-
aligned bounding box, and divides the block by inserting a road
segment. It first removes all the agents into a temporary buffer and
deletes all lots and included buildings. It then adds the road and
creates two smaller blocks. The blocks are then populated by the
agents and jobs in the same way as the merge operation.

800

UIST ’21, October 10-14, 2021, Virtual Event, USA

5 BASIC BRUSHES

The atomic operations are combined into user-controlled parame-
terized brushes. The brushes modify the city geometry locally, just
like the sculpting tools induce spatial transformations on localized
areas of the sculpted material. They can push away, attract, or even
relocate some of the city’s volume within itself. The brushes can
be applied to population, jobs, to their sum, or to the total building
volume. We will describe them on population.

We introduce three local brushes in our framework: Attractor,
Repulsor, and Drag & Drop reallocate a certain number of agents
and manipulate the underlying blocks, lots, and buildings.

5.1 Brush Parameters

The brushes have several shared intuitive parameters (see the menu
from our implementation in Figure 15 and Table 2) that control
their influence.

Table 2: Brush common parameters

Affects Action

Impact region concentric circles

Population adds/removes agents

Height adds/removes building height

Amount adds/removes an absolute amount
Percentage adds/removes a percentage

Target max saturation value

Continuous adds/removes continuously or per click
Jobs/Population/Both ~ what is affected

Allow Merge allow buildings to merge if needed
Allow Split allow buildings to split if needed

reallocate based on road or
Euclidean distance

Travel time distance

General properties of the brushes include user-specific options
regarding the number of agents to be moved (see Repulsor and
Attractor). Each brush has the influence region and the impact
region (Figure 3). The brush (Table 2) is specified as two concentric
circles. The inner circle is the impact region, where the immediate
effect (for example, for removing agents) is applied. The influence
region specified as the outer circle defines where the brush can make
the modifications to compensate for its action to maintain overall
consistency. For instance, it can be where the affected quantities
(e.g., agents) are deposited or drawn from, depending on the type
of the brush. They can be moved either using Euclidean distance
or traveling time distance along the roads (Figure 3). Note that the
influence radius can be infinite, allowing agents to be relocated
anywhere in the urban layout.

Changing the Stroke Style affects the distribution weights when
the brush computes the amount to remove or add. Uniform manip-
ulates the same quantity (absolute amount or percentage) over the
brush’s inner region. Gaussian specifies a falloff from the center of
the brush (absolute amount or percentage). The weights follow a
Gaussian distribution of parameters N(c, rinner /2) where c is the
brush’s center and rj,per the inner radius. In the same way, the
outer circle can be set to uniform or Gaussian.

UIST 21, October 10-14, 2021, Virtual Event, USA

The brush transfer mode can either be discrete, i.e., controlled
by mouse clicks, or continuous (Figure 3).

5.2 Repulsor

The Repulsor brush removes a specified amount of population from
the lots in the brush center. It moves it to the influence area without
modifying the road and block geometry (Figure 4). This is achieved
by iteratively transferring agents between pairs of buildings in
the two regions (sorted by distance to the brush center) using the
Transfer operation (see Appendix B.1 for details).

There are two possible extreme cases. On the one hand, the user
may set the influence region to zero, and no change will be made to
the city. On the other hand, if the influence region’s radius is very
large or infinite, the excess of agents is distributed to many lots,
leading to visually imperceptible changes. In both cases, the city’s
population and jobs are constant through the brush application so
the city remains consistent.

Merge and Split: The Repulsor brush can be alternatively used
with an option allowing for the use of the atomic, merge, and split
operation (split in the impact region, merge in the influence region).
These two regions will then attempt to adapt to the new amounts
of agents by either splitting their lots or merging neighboring ones,
thus decreasing or increasing the number of agents that can be
consistently handled.

5.3 Attractor

The Attractor brush acts intuitively as the opposite of Repulsor by
pulling agents in (Figure 5). Similar to Repulsor, it iterates simulta-
neously over the lots in the impact and the influence region and
transfers agents based once again on the Transfer operation (see
Appendix B.2). Note that the brush may pull fewer agents than
expected if there were not enough of them in the influence region.

Merge and Split: The Attractor brush can be alternatively used
with the option allowing for the use of the atomic operations Merge
in the impact region and Split in the influence region. The impact
area will attempt to accommodate more agents by merging the
lots as shown in Figure 6, where small and abundant buildings are
combined into larger and taller ones. Similarly, the influence region
will try to accommodate fewer agents by splitting blocks.

5.4 Drag & Drop

This brush allows moving agents from one area of the city to another.
It does not use two concentric circles. Instead, the user selects a
region from where agents will be drawn (impact). Then, as the user
brushes through the influence region, the agents are added to the
buildings under the brush as buildings in the first region get flatten
out. The algorithm is similar to the Repulsor, except that it computes
the lots’ distances to the brush center twice (at the first click and
then on the second selection).

Merge and Split can be alternatively used in the influence and
impact areas similar to the Repulsor and Attractor.

5.5 Mask

The mask brush locks the lots in the impact regions. Locked lots
will not be affected by the brushes above. Additionally, users can
choose to lock specific lot types, such as parks, etc.

801

Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes

5.6 Road Break and Connect

Here we define two simple brushes applied to roads that expand
the previous brushes.

The Break brush can be viewed as an extension of the Repulsor
(Section 5.2) that also deletes roads in empty regions and merges
the affected blocks. It can either remove vertices or edges of road
segments, depending on the selected mode. A valid block should
be sealed by roads and should not obtain any dead-end roads or
arterials. When using brush removal, some nodes and roads are
eliminated, making the original closed blocks unsealed, leading to
invalid blocks. In this case, the blocks are removed as well as all
lots and buildings in them. The affected buildings’ population is
moved to the influence area using the Repulsor brush. An example
is the top part of Figure 8 shows this brush in action.

Similarly, the Connect brush is an extension of the Attractor
(Section 5.3) that attracts agents from the influence region, but also
splits blocks, adding roads between them when applied to blocks.

6 STYLE-PRESERVING BRUSH

Until now, sculpting a city had strong similarities with clay sculpt-
ing. However, road connectivity makes the layout anisotropic that
needs to be treated differently, for example, as a non-homogeneous
material that includes vessel network, which connectivity needs to
be maintained. We are not aware of any previous work that solves
this problem.

6.1 Concept of City Style

The road connectivity and geometry are essential for the over-
all look and feel of the urban layout. We want to make sure that
the brushes do not alter their visual consistency. While the basic
brushes did not globally affect the road network, style needs to be
considered for more extensive changes.

The urban layout appearance is predominantly determined by
the spatial distribution of intersections that, in effect, determines
the road layout [2, 38]. Therefore, we capture the urban layout style
by a careful categorization of the intersections and statistics of the
intersection types’ distribution and orientation, the junction angles,
and distances between them.

6.1.1 Style extraction from a urban layout. Let us recall that the
road layout is an oriented graph R = [V, E] with a set of vertices v €
V that represent the intersections and edges edges e € E,e = v; —
vj that represent roads. Edges are further classified into arterials
e? and streets e®. Each intersection vj; is classified according to
the edges it connects. We will call an edge connecting a vertex its
connection.

Each intersection v also has its arity that corresponds to the
number of connecting edges. We consider intersections of arity
two, three, four, etc. but we do not consider the intersection of arity
one (dead-ends). We define the vertex identifier (vID) as a sequence
of letters identifying its connectivity in the counter-clockwise order
starting with the positive direction of the x — axis as indicated by
the arrow in Figure 9. Moreover, the directions of each connecting
road is stored as the angle towards the +x axis. The middle example
in Figure 9 has the first connection to a street road and the next
two to arterials. Its arity is three, and the vID is s(15)-a(85)-s(230).

Urban Brush: Intuitive and Controllable Urban Layout Editing

b)

UIST ’21, October 10-14, 2021, Virtual Event, USA

\
g P, Influence region N

< p N < N

r N \

t < N

U N

¥ N
N
Impact re]

d)

Figure 3: Brush impact region (red) and influence region (light green) over the same area using: (a) Euclidean distance (b)
Travel time distance. (c) In the discrete mode, the affected lots are not stored, and the influence region of the next step may
cover the impact region of the previous steps; (d) In the continuous mode, we store the lots in a separate data structure that
allows next steps not to change agents distribution in the lots that were previously in the impact region.

Figure 4: Applying the repulsor brush to remove 100% of the agents.

a) b)

c)

Figure 5: Using the Attractor brush to pull in: (a) population only (blue), (b) jobs only (green), (c) or both. The brush only takes

agents from the influence region (white circle).

The vID histogram is denoted by vIDpy, and it stores the fre-
quency of each vID in a given urban layout U or in a selected area.
An example in Figure 7 show an urban layout and its vID. The
Jjunction histogram is denoted by Jy and it stores the directions
for each item from the vID histogram. The top graph shows the
vID, the middle graphs are branching angles, and the bottom graph
shows the average distance between intersections. The directions
are quantized 72 bins by binning the angles from 0° to 360° by 5°
per each vID. Each value is stored as the mean and the standard
deviation. Last, the intersection distance histogram Dy stores per
each vID the distance to the nearest intersection as the mean and
the standard deviation.

802

The example in Figure 7 shows a pretty regular city layout and an
organic one. The regular layout has more pronounced bins around
integer multiples of xX90° than the organic one, as visible in its Jg.

6.2 Re-Build Brush

The goal is to re-build an empty part of a city or a region destroyed
by the Break brush. More precisely, the first input is the usual
brush parameters, where the impact region of the brush defines the
region that should be populated by a new urban layout, and the
influence region is the region from which the population and jobs
to be moved to the newly generated buildings are extracted.

The second input is the set of histograms vIDy, Ji, and Dy
that characterize the desired city style. Note that the style can

UIST 21, October 10-14, 2021, Virtual Event, USA Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes

Figure 6: Small buildings merge, for example when the user adds agents. The underlying lots are then merged.

10 by

< oy . CYR PRIy 03 s 9
& e 5% Py ot ‘11.5:,‘;,5355‘5,19 &5 5"‘5“’.,.5'@;-'.“"9‘ il s'.;?‘.-‘.s‘,-*,ss:.-ﬂa:,"",.‘

0.012 c)

(]

[} 50 100 150 200 250 300 350

2 Syl
4

300 3so

== arterial
= Street
h)

o
P I e o

0
APty e g g2t e 88 P 2% 0 0P 8% S S

Figure 7: Urban layout histograms The top graph is the vID frequency, middle graph shows the branching angles, and the
bottom graph distances between intersections. A regular urban layout (a) has a dominant presence of branching angles that
are k X 90° (c) and a high number of streets of the same length (d). Organic pattern (e) has more randomized street angles (g) as
well as the distances of intersections (h). The distributions of vIDs (b) and (f) are similar. Note a high number of roads of type

$-$-§-S.

be captured from an arbitrary city, or district, thus allowing style roads during the simulation. In other words, each road generates

transfer. new markers. This allows for the generation of closed graphs as
We introduce an algorithm for generating the road pattern using opposed to only trees. Third, we generate the layout hierarchically.

space colonization. The roads are generated hierarchically (see Arterial roads first cover the area while generating markers for

Figure 10). First, we generate the arterials, then the streets. As streets that are connected in the second pass (see Appendix C).

each road is expanded, it attempts to connect and replicates the
layout style by sampling the distributions. Each road also generates 7 LARGE-SCALE MODIFICATION
intersections that act as oriented markers that define not only where,

The atomic operations and brushes can be applied interactively
but also how the roads connect.

as shown in Section 5, 6 and through the examples in Section 9.
However, because each operation is consistent, it can also be used
in an automatic mode to modify the urban layout. This approach’s
key idea is to identify the problematic part that needs attention
after a large-scale operation. We demonstrate this approach on
three examples: city expansion, shrink, and changing relief.

6.2.1 Space Colonization of Urban Layouts. We extend the space
colonization algorithm for tree growth [28, 33] and interactive
tree modeling [20] to allow for the generation of urban layouts.
Space colonization populates some volume with markers that act as
attractors. The tree develops by extending branches that compete
for the markers by growing towards them and consuming them.

The resulting emergent phenomenon is the shape of the tree. 7.1 Geometric Inconsistencies

We include three important modifications to this algorithm. First, Inconsistencies are localized and small parts of the city where the
we consider the orientation and the type of each marker represented consistency has been violated. We have already defined consistency
as vID. The markers are the intersections, and the roads attempt to from the viewpoint of agents and jobs in Section 4, and through
connect them. Second, instead of filling the area with the markers the notion of style in Section 6. Here we expand this definition
before the simulation, the markers are generated by the expanded by adding geometric terms. Following the hierarchical subdivision

803

Urban Brush: Intuitive and Controllable Urban Layout Editing

UIST ’21, October 10-14, 2021, Virtual Event, USA

Figure 8: Sequence of brush Breaking roads (top). The population is relocated to the neighborhood by using Repulsor brush.
Similarly, the Connect brush (bottom) splits blocks and lots into two by adding road segments, and occupies them by using

the Attractor brush.

a{0)-s{92)-a{170) s{15)-a{85)-a{230)

arterial co—

street

a{10)-5{84)-a{170)-s{210]

Figure 9: Vertex ID identifies each intersection. Counting from the positive direction of the +x axis counter-clockwise, we
store the types of connecting roads and their angle. The left example starts with an arterial, the next intersection is a street,
and it ends with another arterial resulting in vID a(0)-s(92)-a(170).

of the city from Section 3, we define an inconsistent building, lot,
block, and road segment.

An inconsistent building is either taller than its maximum
height or smaller than the minimum height. It is handled implicitly
by the atomic operations from Section 4.

An inconsistent lot is either too small or large or has a high
aspect ratio. A small lot will be merged with its neighbors, and a
large lot will be split by using atomic operations. A lot that has
its aspect ratio large (we use 1.7X in our implementation) is also
marked as inconsistent. Such a highly asymmetrical lot will be

804

merged with the neighboring lot on its large side. If there is no lot,
it is removed, and the agents from its building are transferred.
Similarly, an inconsistent block has either a too small or too
large area and will be merged with its neighbor or split in two. A
high-aspect-ratio block is merged with a block on its larger side,
but only if it is not adjacent to an arterial road. The block merge
operation (Section 4.3) removes the road segment between the
two blocks. We do not want to affect arterial roads because they
are essential for the overall city connectivity and appearance. The
extreme lot and block sizes parameter can be extracted from the
city style since the size of blocks is related to the length of the street

UIST 21, October 10-14, 2021, Virtual Event, USA

€)

b)-
f)- g

C

)-d
-h

)

Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes

)-
)-

Figure 10: Urban layout generation An urban layout with a missing part (a) is completed with arterial roads (b-d). Once the
arterial roads have been generated the streets are generated (e-g). Then the lots are occupied and people relocated leading to

a complete layout (h).

segments that surround them. The geometric inconsistencies can
be learned from style, except for road slope, which is a physical
constraint.

Finally, a road segment is inconsistent if it is located in a water
body (e.g., alake), or its slope is greater than a maximum allowed
value, indicating that the road is too steep. Such a road segment is
removed, and the adjacent blocks are deleted while removing their
lots, buildings and relocating their population. Note that we do not
define operations for merging and splitting road segments because
they are handled implicitly by merging and splitting the blocks.

7.2 Handling Inconsistencies

When a large change is applied to a city, such as uniformly scaling
the entire urban layout or editing the terrain to add a mountain or
a lake, the current framework will apply the operation directly to
the urban layout, leading to local geometric inconsistencies.

The lists of inconsistencies are then created, one for road seg-
ments, blocks, lots, and buildings. Each list is ordered by the amount
by which it violates the layout. For example, a lot inside a lake has
+00, a lot with high aspect ratio stores the value of the aspect ratio,
roads are sorted by their slope, etc.

We then process the lists in their hierarchical order. First, we
eliminate all roads with a high slope, which also causes the blocks
and the associated lots and buildings to disappear. This is performed
by automatically calling the Repulsor brush, with block split en-
abled. Then the list of inconsistent blocks is processed, starting
with the highest value of inconsistency. Next, we use the block
merge operation to fix the blocks. Eventually, all inconsistent lots
are corrected, starting with the highest value of inconsistency.

After all the inconsistencies have been fixed, we get a consistent
urban layout. However, some parts may have become empty (e.g.,
is an existing lake was moved elsewhere) or have disconnected,
(e.g., if we grow a uniform table mountain in the city, the upper
part may end-up disconnected from the down position). The newly
emptied areas are checked, and the Re-Build brush is automatically
called to fill them, using a city style learned from the surroundings.

805

The connectivity is then verified, and the smallest disconnected
components are removed, and the agents and jobs they hosted are
relocated.

Several parameters are left under the user’s control during global
operations: Each brush has its influence area. For example, when we
add a hill in the city and some blocks become invalid, it is unclear
how far the agents should be relocated. The user can control this
by setting a global parameter for the entire city or by providing a
map of varying parameter values.

8 USER STUDY

We have performed a detailed user study to validate the usability
of our approach.

8.1 Population

The study was performed by 12 participants, aged from 20 to 50,
seven male and, five female. Four participants are graduate students
majoring in computer graphics, six of them are graduate students
with no or little experience of graphics where one of them is an
expert in urban planning. One undergraduate student in computer
science and one college staff. They self-identified their 3D modeling
skills as novices (2 participants), familiar with 3D modeling (4),
and experienced with 3D modeling, previously working on Unity
Engine and SketchUp (4). When we asked about their experience
in computer graphics, they reported: no computer graphics experi-
ence (3 participants), little experience (1), familiar with computer
graphics (5), and an expert (1).

8.2 Study Protocol

The user study lasted about one hour, and it was divided into three
parts. 1) We introduced our system to each participant, described
each brush’s functions, and showed them some generated results
using our system. 2) We assigned each participant two tasks. a) For
the first one, we showed them an urban layout and urban model
of San Francisco from Google map and Google earth (shown in
Figure 11). We asked the user to compare the initial urban model

Urban Brush: Intuitive and Controllable Urban Layout Editing

UIST ’21, October 10-14, 2021, Virtual Event, USA

Table 3: User study responses and time on tasks. Q1: "I could easily achieve the task", Q2: "The tool is intuitive for city mod-
ification", Q3: "The model is intuitive for creating urban models". Scale: 0 strongly disagree, 1 disagree, 2 neutral, 3 agree, 4

strongly agree.

User Modeling CG Time [min] Time [min]
D Exp. Exp. Age on Task1 on Task2 01 Q2 Q3
#1 0 0 23 28 32 2 3 3
#2 0 0 22 22 28 4 4 3
#3 0 0 24 30 35 4 3 4
#4 0 1 25 29 42 3 4 4
#5 1 0 25 19 42 3 2 4
#6 1 1 48 28 33 4 3 4
#7 1 2 24 12 20 3 4 2
#8 1 2 26 16 22 3 4 4
#9 2 2 26 24 50 3 4 4
#10 2 2 25 15 44 3 4 4
#11 2 2 26 19 47 3 2 3
#12 2 3 24 25 33 3 2 4
avg. 1.00 1.25 26.50 22.75 35.67 3.17 3.25 3.58

stdev. 0.85 1.06 6.88 6.75 9.54 0.58 0.87 0.67

with references and modify the urban city to resemble the reference.
b) For the second task, we gave the user a template of a city and
asked them to create their own. They were asked to modify the
geometry of the provided template terrain and make at least one
large-scale change, such as adding a river, creating a mountain,
etc. 3) Eventually, we asked the participants to complete a survey
querying their experience with the system.

8.3 Results and Observations

The main differences between the provided starting model and
the target model are land use and job and population distribution.
Therefore, to create the target layout, the participants needed to
modify the land use and distribute the jobs and populations to
achieve visual similarity. Our system is an urban editing tool that
maintains the city’s consistency when atomic brushes are used. Our
goal was to evaluate user’s experience, which we did by evaluating:
(1) The user’s ability to successfully edit the urban layout towards
the specified target; (2) User’s satisfaction about their city editing
experience with our system. (3) User’s satisfaction with the city
layouts they have built.

All participants successfully modified the San Francisco urban
layout and created a downtown model (shown in Figure 12). The
participants changed the land use (adding a park, beach, etc.) and
built a downtown via distributing the jobs and population to the
target area by re-allocating the job and population distribution with
given brushes.

In the second task, all participants created their city by using
our system. Although creating a new urban city with new terrain
requires the users to be more familiar with all the brushes, par-
ticipants could easily carve the new landscape, built a new road
network, and re-allocate the job and population after the basic
training. Figure 13 shows the initial template urban given to the
participants and the cities created by the participants.

806

Figure 14 presents the frequency and timing of usage of each
brush by each user for the first task. The Repulsor brush was used
most frequently since creating parks and jobs, and population re-
allocation can be done by Repulsors with different attributes quickly.
The second frequently used operation was Drag and Drop. An inter-
esting point through the statistics is that the user #5 used drag and
drop brush much more than Repulsor while other users use Repul-
sor most. The usage of the brushes from participants varies, which
shows that there is no universal solution that fits all participants
to complete their task. The feedback from the user study does not
indicate a preference for specific brushes. Users can choose to edit
the city layout or the distribution of the population and jobs at their
own will. Our system will allow the users with different strategies
to use our system easily with no restriction and encourage users
to edit the city with their creativity. All participants finished the
first task in under 30 minutes (20.8 in average, between 12 and 28
minutes). The amount of time for the second task varied, while all
the participants completed the second task in under one hour the
minimum time on task was 20 and the maximum 50 minutes with
the average time 35.1 minutes. Table 3 shows each participant’s
information and the time used on each task.

To ensure low latency and real-time operation, we have dedicated
a significant amount of work to optimize our system for speed.
It uses GPU computations, and it is also optimized in C++ with
OpenMP to use all CPU cores. The users did not mention any latency
when using the brushes, even when the influence area was infinite.
Achieving interactive feedback required some restrictions on brush
operations, e.g., we do not allow users to use brush removal in
continuous mode.

The qualitative questions show that the participants thought
our system is useful for urban planning and urban modeling. Also,
they mentioned that the system is user-friendly. To be specific,
we asked three questions Q1: "I could easily achieve the task"
(responses 2,3,3,3,3,3,3,3,3,4,4,4 u 3.17,0 0.58), "The tool

UIST 21, October 10-14, 2021, Virtual Event, USA

Yot PointiNational

HistoriciSite:
Q& FortMasoniCenten(
oo : /forA Sh.Culturelt
CrissylField =
_ .
| Palace of Fine Arts ¢
Presidio of \\
_--San Francisco. La
3
llonds|Endlabyinth (7). e o Alta Plaza Parl
- ==\ TERRACE FILLMORE
A SEA CLIFF (DISTRICT
PP Londsitnd cafomiaSt p
~ Lookout T ey B
SutroiBaths, er INNER
. RICHMOND RICHMOND
. R DISTRICT Tk ol
e Baiboa St !
Balboa st K — Painted |
] = puonS! . X
= FolSt ookt
DutchWindmill e Fulon St s FH"_- =
Golden an Francisco De
Gate Park Young Museum HAIGHT-ASHBURY,
: COLE VALLEY
e Irving St
st
OceanBeache INNER SUNSET LELCh S
Kirkham St EUREKA VALLEY
OUTER SUNSET GOLDEN GATE Iwin Peakse § H
HEIGHTS k] i
NOE VAL
SUNSET DISTRICT
Tormval st PARKSIDE e O RTAD Glen
a) 00gle Canyon|Rark

b)

d)

Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes

Figure 11: a) Reference San Francisco image from Google maps, b) initial urban model, c¢) urban distribution from Google earth,
and d) initial urban distribution. The green color of the building represents jobs, and blue represents the population. The red

color represents a saturated building.

is intuitive for city modification" (responses 2,2,2,3,3,3,4,4,4,4,4,4
p = 3.25,0 = 0.87) and "The model is intuitive for creating urban
models" (responses 2,3,3,3,4,4,4,4,4,4,4,4, p = 3.58, 0 = 0.67), where
we use the scale is: 0 strongly disagree, 1 disagree, 2 neutral, 3 agree,
4 strongly agree. We did not encounter failure cases during the user
study, and no obvious and unacceptable artifacts occurred. The
users can correct the artifacts created by mistakes through brushes
and edit the city’s local detail by zooming in/out the terrain. All
users were pleased when they successfully built their urban cities
and enjoyed the experience of using our system. One of the par-
ticipants, a graduate student majoring in urban planning, showed
great interest in the urban modeling performance and visualiza-
tion of the urban city. A young professional 3D artist who tested
the system stated that "it feels like a Substance Painter for cities."
Besides, one of the main goals of our tool is to encourage creativ-
ity. In our user study, participants with different skill levels could
build their own city: the capital of Congo (#User 2) was created

807

by an urban planning expert, Venice (#User 10) was recreated by a
computer graphics expert, and Taichi (#User 9) was designed by a
non-experienced user.

The participants also shared some other suggestions. Although
the urban planning expert said that our system outperformed the
system she was using in the lab in efficiency and visualization, she
suggested that more features could be added as further work. In
particular, we could add bridges that would connect isolated ter-
rains and highlight the layout of the group of the same land-use
area. Also, some participants would like to see brushes that can
switch the terrain, population, and jobs between two regions. One
participant wanted to have more refined and more direct control
over the city layout. They also gave us some suggestions on improv-
ing the brush’s performance, which can sharply increase the user
experience when using the system. We will optimize the brushes
and add more features in our further work.

Urban Brush: Intuitive and Controllable Urban Layout Editing

User #1, no modeling experience, 28 mins

>

User #7, familiar with modeling, 24 mins

)\ & 4

UIST ’21, October 10-14, 2021, Virtual Event, USA

User #3, little modeling experience, 19 mins

\ o

User #9, familiar with modeling, 19 mins

Figure 12: The urban models generated by participants for the first task.

9 IMPLEMENTATION AND RESULTS

Our system was implemented in C++ with Qt to define the user
interface (see Figure 15 for the parameters of the brushes from
Table 2). Our tests were performed on a desktop computer equipped
with Intel 19-9900k at 4.2 GHZ and Nvidia RTX 2080 GPU.

9.1 Results

In addition to the results generated by user study participants, in
this section we will show more results for specific functions that
will be useful for urban modeling.

Style Transfer is simple with the style-preserving brush from
Section 6. An example in Figure 16 shows a regular urban layout
that has been cleared by several continuous moves of the block
Break brush (visible in Figure 16 b)). The style-preserving brush
then takes parameters from an irregular city and, with a single click,
connects all affected intersections from Section 6 c) leading to a
new layout. This operation takes a few seconds.

Sculpting: An example in Figure 17 shows how using the Re-
pulsor and Attractor can be used to manipulate the overall height
of buildings. A letter "A" has been embossed into the buildings by
adding agents to certain buildings.

Shrink and Expand: We applied multiple global shrinking and
expansion of an urban layout to show the consistency of the global

808

operations. An input layout is shrunk globally by 1/3 in the x
direction, causing some blocks to be invalid because of their size
or aspect ratio (marked in red). The invalid blocks are locally and
consistently fixed, resulting in a new layout. The layout is then
shrunk in the y direction resulting in a new layout in Figure 18.
The new layout has much higher buildings, but their overall height
is relatively uniform, which was also the case for the input. We
then expand the city in the x and y directions resulting in a new
city similar to the input Figure 18 g). This example shows that we
achieve reversible deformations in terms of the global aspect of an
entire city.

Sea level rise: an example in Figure 19 shows an urban lay-
out divided in two by an ocean. The flooded area is automatically
cleared by the system using the Repulsor and break brush, excess of
the population and jobs are relocated nearby, causing the buildings
to grow.

10 LIMITATIONS AND FUTURE WORK

While all participants enjoyed their experience with the system,
some pointed out aspects to be improved. In particular, users lacked
an undo function when some unexpected results occurred due
to their selection of the wrong brush or mistakes in the setting
of attributes, such as buildings growing too tall or too short or

UIST 21, October 10-14, 2021, Virtual Event, USA

ve»

Initial urban template User #2, 28 mins

User #7, 50 mins User #9, 47 mins

Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes

User #5, 20 mins

Lo

User #10, 33 mins

Figure 13: Urban models created by participants for the second task. The first figure shows the initial urban template, and the

others are the users’ cities.

100%
950%

80

*®

70%

60%

50%

40%

30%

2

g

10%

0%

Repulsor Attractor

Drag'Drop

HUserl
B User2
W User3
Brush Usage frert
WUser5
m User6
W User?7
HUser8
W User9
M User 10
HUserll
HUser12
Hewm oo —-

Road Break

Figure 14: User Study Statistics: Frequency and usage of individual brushes in the user studies.

downtown areas growing larger than expected. Indeed, fixing these
with a series of brush operations takes more time and effort than
using undo/redo, which would be an easy addition to our system. To
allow precise tuning, offering a detailed visualization of the object’s
attributes in the tools’ influence area, e.g., height of buildings,
area of blocks, the number of population and jobs, would also be a
valuable improvement.

In the future, the current algorithm should be extended towards
more accurate city design. To achieve this, we could specify local

809

land-use, e.g., use for school, industry, etc. The associated attributes
and relationships with the local layout could also be explored. For
instance, the acceptable ratio of jobs vs. population and their max
values could vary according to land use. Moreover, connectivity
rules and restrictions between areas of different uses are the next
interesting topic that could be explored in future work. For instance,
school and residency should not be close to heavily polluted in-
dustrial areas. More brushes can be designed for such land-use
partition, together with user-editable attributes. In addition, more

Urban Brush: Intuitive and Controllable Urban Layout Editing

General Properties

@ By Population () By Height

@ By Amount O By Percentage
@ By Target O Continuous
() Both (@ Jobs () Population

Amount: 100

Allow Merge
Allow Split
[] use Travel Time Distance

|:| Maintain mean travel distance

UIST ’21, October 10-14, 2021, Virtual Event, USA

Inner Circle Properties
Inner Radius: 100

Stroke Style

@ Uniform

O z@ussian

Outer Circle Properties

Outer Radius: 200

[] nfinite

Stroke Style

@ uniform

O zaussian

Figure 15: Brush parameters: (a) General Properties (b) Inner/Outer Circle Properties

a) b)

Figure 16: Style transfer example starts with a regular city (a) where the central part is deleted (b). Then the rebuild brush is
used with irregular histograms from another city (c) to reconnect the layout (d).

diverse urban structures could be implemented, such as brushes
for terrain changes, bridges, and highways. Other features such
as building rendering and climate simulation could be added to
improve completeness. Lastly, we could investigate the consistency
between the attributes in the system (road size and type, building
size, etc.), which can be learned from examples to improve the
plausibility of the resulting city.

11 CONCLUSIONS

We presented the first expressive design method for urban layouts.
Inspired by an analogy with clay sculpting, it provides the user with
various editing brushes that allow maintaining the city function-
ality and visual style. Moreover, the brushes can be automatically
triggered by larger-scale user interaction (from shrinking or ex-
panding the city to moving a lake or sculpting the terrain), enabling
seamless application of any kind of global change. Finally, thanks
to its ability to keep the city consistent and functional, our method

810

could be an excellent complement to current city reconstruction
and generation techniques, which results are difficult to edit.

Among our contributions, the notion of city style, introduced
in this paper, brings a wide range of applications: It could be used
to analyze and cluster existing cities, for instance, for adapting the
style of buildings to one of the layouts, or to build new cities which
layout interpolates between predefined styles (e.g., using optimal
mass transport for histogram interpolation as in [11]).

Our work aims at mid-level operations, and its limitations stem
from this objective. As observed in the user study, very low-level
control over individual roads and buildings is provided. Also, more
global edits, such as in [19] is not possible because we do not allow
operations on large road segments. As future work, it would be
interesting to combine such low-level and large-scale operations
with our brushes and see how they perform in authoring large-
and small-scale cities. Also, extra brushes could be introduced to
address style editing while minimizing the current layout changes.

UIST 21, October 10-14, 2021, Virtual Event, USA Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes

Figure 17: The Repulsor and Attractor brushes allow for intuitive changes of building height. A letter "A" was embossed in the
building heights in this way.

()

®) (h)

Figure 18: Starting from an initial urban area (a), the user shrinks the city globally by 1/3 in x direction. All intersections are
moved by the corresponding distance that makes some of the roads, blocks, and lots inconsistent. All invalid blocks (marked
in red) are then merged (b), resulting in a new, more elevated layout (c). The same process is then repeated in the y direction
(d-e). We then expand the city back by 1/3 in the y direction (e) and the x direction (f), resulting in a city similar to the input
(g). Note that the city is different, yet the layout is similar.

811

Urban Brush: Intuitive and Controllable Urban Layout Editing

UIST ’21, October 10-14, 2021, Virtual Event, USA

Figure 19: An urban layout is divided in two by a mass of water, causing the building close to the coast to grow.

ACKNOWLEDGMENTS

We would like to thank the reviewers for their valuable and con-
structive comments, and to Romain Pascual for his help with an
early version of the system. This research was funded in part by
National Science Foundation grant #10001387, Functional Procedu-
ralization of 3D Geometric Models.

REFERENCES

[1] Sharaf Al-kheder, Jun Wang, and Jie Shan. 2008. Fuzzy inference guided cellular

[10

(11

]

automata urban-growth modelling using multi-temporal satellite images. Inter-
national Journal of Geographical Information Science 22, 11-12 (2008), 1271-1293.

Sawsan AlHalawani, Yong-Liang Yang, Peter Wonka, and Niloy J Mitra. 2014.
What makes London work like London?. In Comp. Graph. Forum, Vol. 33. Wiley
Online Library, 157-165.

Daniel G Aliaga, Carlos A Vanegas, and Bedrich Benes. 2008. Interactive example-
based urban layout synthesis. ACM Trans. on Grap. 27, 5 (2008), 1-10.

Michael Batty. 2007. Cities and complexity: understanding cities with cellular
automata, agent-based models, and fractals. The MIT press.

Marie-Paule Cani, Takeo Igarashi, and Geoff Wyvill. 2008. Interactive Shape Design.
Morgan & Claypool Publishers, ISSN:1933-8996. 78 pages. https://hal.archives-
ouvertes.fr/hal-00336304

Guoning Chen, Gregory Esch, Peter Wonka, Pascal, Miiller, and Eugene Zhang.
2007. Interactive procedural street modeling. ACM Trans. on Grap. 27, 3 (2007),
35. https://doi.org/10.1145/1278780.1278822

Keith C Clarke and Leonard J Gaydos. 1998. Loose-coupling a cellular automa-
ton model and GIS: long-term urban growth prediction for San Francisco and
Washington/Baltimore. International journal of geographical information science
12,7 (1998), 699-714.

Guillaume Cordonnier, Eric Galin, James Gain, Bedrich Benes, Eric Guérin, Adrien
Peytavie, and Marie-Paule Cani. 2017. Authoring Landscapes by Combining
Ecosystem and Terrain Erosion Simulation. ACM Transactions on Graphics -
Siggraph 2017 36, 4 (2017).

Guillaume Dewaele and Marie-Paule Cani. 2004. Interactive global and Local
Deformations for Virtual Clay. Graphical Models 66, 6 (2004), 352-369.

Arnaud Emilien, Adrien Bernhardt, Adrien Peytavie, Marie-Paule Cani, and Eric
Galin. 2012. Procedural Generation of Villages on Arbitrary Terrains. The Visual
Computer 28, 6-8 (June 2012).

Arnaud Emilien, Ulysse Vimont, Marie-Paule Cani, Pierre Poulin, and Bedrich
Benes. 2015. WorldBrush: Interactive Example-based Synthesis of Procedural
Virtual Worlds. ACM Trans. on Grap. 34, 4, Article 106 (July 2015), 11 pages.

812

(12]

https://doi.org/10.1145/2766975

Arnaud Emilien, Ulysse Vimont, Marie-Paule Cani, Pierre Poulin, and Bedrich
Benes. 2015. Worldbrush: Interactive example-based synthesis of procedural
virtual worlds. ACM Trans. on Grap. 34, 4 (2015), 1-11.

[13] James Gain, Harry Long, Guillaume Cordonnier, and Marie-Paule Cani. 2017.

(14]

(15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

EcoBrush: Interactive Control of Visually Consistent Large-Scale Ecosystems.
Computer Graphics Forum, Eurographics 2017 36, 2 (2017).

Eric Galin, Eric Guérin, Adrien Peytavie, Guillaume Cordonnier, Marie-Paule
Cani, Bedrich Benes, and James Gain. 2019. A review of digital terrain modeling.
In Comp. Graph. Forum, Vol. 38. Wiley Online Library, 553-577.

Stefan Greuter, Jeremy Parker, Nigel Stewart, and Geoff Leach. 2003. Real-time
procedural generation of pseudo infinite cities. In Proceedings of the 1st interna-
tional conference on Computer graphics and interactive techniques in Australasia
and South East Asia. 87—ff.

Michael W Hancock and Bud Wright. 2013. A policy on geometric design of
highways and streets. American Association of State Highway and Transportation
Officials: Washington, DC, USA (2013).

Suzi Kim, Dodam Kim, and Sunghee Choi. 2020. CityCraft: 3D virtual city creation
from a single image. The Visual Computer 36, 5 (2020), 911-924.

Thomas Lechner, Pin Ren, Ben Watson, Craig Brozefski, and Uri Wilenski. 2006.
Procedural modeling of urban land use. In ACM SIGGRAPH 2006 Research posters.
135-es.

Markus Lipp, Daniel Scherzer, Peter Wonka, and Michael Wimmer. 2011. Interac-
tive modeling of city layouts using layers of procedural content. In Comp. Graph.
Forum, Vol. 30. Wiley Online Library, 345-354.

Stephen Longay, Adam Runions, Francois Boudon, and Przemyslaw
Prusinkiewicz. 2012. TreeSketch: interactive procedural modeling of
trees on a tablet. In Proc. of the Intl. Symp. on SBIM. 107-120.

Paul Merrell and Dinesh Manocha. 2008. Continuous model synthesis. (2008),
1-7. https://doi.org/10.1145/1457515.1409111

Paul Merrell, Eric Schkufza, and Vladlen Koltun. 2010. Computer-generated
residential building layouts. In ACM SIGGRAPH Asia 2010 papers (Seoul, South
Korea) (SIGGRAPH ASIA ’10). ACM, New York, NY, USA, Article 181, 12 pages.
https://doi.org/10.1145/1866158.1866203

Pascal Miiller, Peter Wonka, Simon Haegler, Andreas Ulmer, and Luc Van Gool.
2006. Procedural modeling of buildings. ACM Trans. on Grap. 25, 3 (July 2006),
614-623. https://doi.org/10.1145/1141911.1141931

Pascal Miiller, Gang Zeng, Peter Wonka, and Luc Van Gool. 2007. Image-based
Procedural Modeling of Facades. ACM Trans. on Grap. 26, 3, Article 85 (July 2007).
https://doi.org/10.1145/1276377.1276484

Przemyslaw Musialski, Michael Wimmer, and Peter Wonka. 2012. Interactive
Coherence-Based Facade Modeling. Comp. Graph. Forum 31, 2pt3 (May 2012),
661-670. https://doi.org/10.1111/j.1467-8659.2012.03045.x

https://hal.archives-ouvertes.fr/hal-00336304
https://hal.archives-ouvertes.fr/hal-00336304
https://doi.org/10.1145/1278780.1278822
https://doi.org/10.1145/2766975
https://doi.org/10.1145/1457515.1409111
https://doi.org/10.1145/1866158.1866203
https://doi.org/10.1145/1141911.1141931
https://doi.org/10.1145/1276377.1276484
https://doi.org/10.1111/j.1467-8659.2012.03045.x

UIST 21, October 10-14, 2021, Virtual Event, USA

[26] Przemyslaw Musialski, Peter Wonka, Daniel G Aliaga, Michael Wimmer, Luc
Van Gool, and Werner Purgathofer. 2013. A survey of urban reconstruction. In
Comp. Graph. Forum, Vol. 32. Wiley Online Library, 146-177.

Gen Nishida, Ignacio Garcia-Dorado, Daniel G Aliaga, Bedrich Benes, and Adrien
Bousseau. 2016. Interactive sketching of urban procedural models. ACM Trans.
on Grap. 35, 4 (2016), 1-11.

Wociech Palubicki, Karl Horel, Stephen Longay, Adam Runions, Brendt. Lane,
Radomir Méch, and Prezemyslaw Prusinkiewicz. 2009. Self-organizing Tree
Models for Image Synthesis. ACM Trans. on Grap. 28, 3, Article 58 (2009), 10 pages.
Yoav I H. Parish and Pascal Miiller. 2001. Procedural modeling of cities. In
SIGGRAPH °01: Proceedings of the 28th annual conference on Computer graphics
and interactive techniques. ACM Press, 301-308. https://doi.org/10.1145/383259.
383292

Juval Portugali. 2009. Self-Organization and the City. Springer New York, New
York, NY, 7953-7991. https://doi.org/10.1007/978-0-387-30440-3_471
Przemyslaw Prusinkiewicz, Mark Hammel, Jim Hanan, and Radomir Mech. 1996.
L-systems: from the theory to visual models of plants. In Proceedings of the CSIRO,
Vol. 3. Citeseer, 1-32.

Oriol Pueyo, Albert Sabria, Xavier Pueyo, Gustavo Patow, and Michael Wimmer.
2020. Shrinking city layouts. Computers & Graphics 86 (2020), 15-26.

Adam Runions, Brendan Lane, and Przemyslaw Prusinkiewicz. 2007. Modeling
Trees with a Space Colonization Algorithm. EG Nat. Phenom. (2007), 63-70.
Michael Schwarz and Pascal Miller. 2015. Advanced Procedural Modeling of
Architecture. ACM Trans. on Grap. 34, 4 (2015), 107:1-107:12.

Ruben M Smelik, Tim Tutenel, Rafael Bidarra, and Bedrich Benes. 2014. A survey
on procedural modelling for virtual worlds. In Comp. Graph. Forum, Vol. 33. Wiley
Online Library, 31-50.

[36] Jing Sun, Xiaobo Yu, George Baciu, and Mark Green. 2002. Template-based
generation of road networks for virtual city modeling. In Proceedings of VRST.
33-40.

Carlos A Vanegas, Daniel G Aliaga, Bedrich Benes, and Paul Waddell. 2009.
Visualization of simulated urban spaces: Inferring parameterized generation of
streets, parcels, and aerial imagery. IEEE Trans. on Vis. and Comp. Graphics 15, 3
(2009), 424-435.

Carlos A. Vanegas, Daniel G. Aliaga, Bedifich Benes, and Paul A. Waddell. 2009.
Interactive design of urban spaces using geometrical and behavioral modeling.
(2009), 1-10. https://doi.org/10.1145/1661412.1618457

Carlos A Vanegas, Ignacio Garcia-Dorado, Daniel G Aliaga, Bedrich Benes, and
Paul Waddell. 2012. Inverse design of urban procedural models. ACM Trans. on
Grap. 31, 6 (2012), 1-11.

Carlos A Vanegas, Tom Kelly, Basil Weber, Jan Halatsch, Daniel G Aliaga, and
Pascal Miiller. 2012. Procedural generation of parcels in urban modeling. In Comp.
Graph. Forum, Vol. 31. Wiley Online Library, 681-690.

Wolfram von Funck, Holger Theisel, and Hans-Peter Seidel. 2006. Vector Field
Based Shape Deformations. ACM Transactions on Graphics - SSIGGRAPH 2006 25,
3 (2006).

Paul Waddell. 2002. UrbanSim: Modeling urban development for land use, trans-
portation, and environmental planning. Journal of the American planning associ-
ation 68, 3 (2002), 297-314.

Basil Weber, Pascal Mueller, Peter Wonka, and Markus Gross. 2009. In-
teractive Geometric Simulation of 4D Cities. Comp. Graph. Forum (April
2009). http://www.procedural.com/publications/2008_EG_Urban_Simulation/
2008.EG.Weber.UrbanSimulation.Paper.pdf

Nora S Willett, Rubaiat Habib Kazi, Michael Chen, George Fitzmaurice, Adam
Finkelstein, and Tovi Grossman. 2018. A mixed-initiative interface for animating
static pictures. In Proceedings of the 31st Annual ACM Symposium on User Interface
Software and Technology. 649-661.

Peter Wonka, Michael Wimmer, Francois Sillion, and William Ribarsky. 2003.
Instant architecture. ACM Trans. on Grap. 22, 3 (2003), 669-677. https://doi.org/
10.1145/882262.882324

Haijun Xia, Bruno Araujo, Tovi Grossman, and Daniel Wigdor. 2016. Object-
oriented drawing. In Proceedings of the 2016 CHI Conference on Human Factors in
Computing Systems. 4610-4621.

[27]

[28]

[29]

[30]

[31]

[32]
[33]
[34]

[35]

[37]

[38]

[39

[40]

[41]

[42

[43]

[44]

[45

[46]

813

Xiaochen Zhou, Pascal Chang, Marie-Paule Cani, and Bedrich Benes

APPENDICES
A JOBS AND POPULATION PER LOT

Population and jobs are initially represented as distributions of
discrete values on a fixed resolution grid (see Figure 2 (e-f)). How-
ever, to interact with them locally, it is necessary to convert them
to a distribution over the city lots. We use the same algorithm
described below for population to calculate the exact amounts of
population P(p;) and jobs S(p;) in each lot p;.

Let Nc and N, be respectively the total number of grid cells
and lots. Let the cells be denoted by ¢;,1 < i < N, and the lots
by pi,1 < i < Np. We use C(x) to refer to the contour polygon of
x, P(x) for the amount of population in x and A(C) to refer to the
area within a closed contour C (see Figure 20).

A lot is habitable if it is not a park (i.e., it includes a building).
The total habitable area (THA) of each grid cell (Figure 20) is:

THA@:)=)| AC(pj) N Cler)).

pjlpj#park

Vi€ [1,N¢],

Under the hypothesis of locally uniform distribution, the population
P(p;) of alot p; is then:
A(C(pi) N C(cj))
P(p;) = Ple))—————~ J7
(pi) Z‘) THa)
J

If a grid cell has a positive population but has no habitable lot
inside or intersecting its contour, the transfer is impossible, and we
discard it. By treating the distribution of the jobs in the same way,
we obtain an urban layout where the amount of people and jobs in
each building (or a lot) is known.

Jobsto | 7
Handie |
Population

to Handle

Max Height

Building Height

lJobs

Figure 20: For a given grid cell (dotted lines), the total habit-
able area is the total area covered by lots that are not parks
(shaded area) (a). We represent a building’s four variables:
population (solid blue), jobs (solid green), population to han-
dle (shaded blue), jobs to handle (shaded green) (b).

B BRUSH ALGORITHMS
B.1 Repulsor

The Repulsor brush removes a specified amount of population from
the lots in the brush center and moves it to the influence area
without modifying the road and block geometry. The algorithm is
as follows.

First, the brush sorts all affected lots by distance to the brush
center (using Euclidian or traveling-time distance). Then, the total
number of agents to relocate is computed, as well as the amount
each lot in the influence region should receive to preserve the total

https://doi.org/10.1145/383259.383292
https://doi.org/10.1145/383259.383292
https://doi.org/10.1007/978-0-387-30440-3_471
https://doi.org/10.1145/1661412.1618457
http://www.procedural.com/publications/2008_EG_Urban_Simulation/2008.EG.Weber.UrbanSimulation.Paper.pdf
http://www.procedural.com/publications/2008_EG_Urban_Simulation/2008.EG.Weber.UrbanSimulation.Paper.pdf
https://doi.org/10.1145/882262.882324
https://doi.org/10.1145/882262.882324

Urban Brush: Intuitive and Controllable Urban Layout Editing

agent-volume (determined based on user-defined weighting scheme
uniform or gaussian). Naturally, at this stage, if a lot in the influence
region has already reached its maximal capacity or is locked (using
the Mask brush), no amount will be assigned to it.

We start the transferring by pairing the first sorted impact lot
and the first influence lot. If the influence lot absorbs all population
from the impact lot, we pair the current influence lot with the
next impacted lot. Otherwise, if the building in the influence lot
achieves its max height or absorbs the max amount of population,
the influence lot will be iterated to the next in the sorted queue.

While the city is consistent after the brush has visited all lots in
both regions, we cannot guarantee that every lot in the influence
region absorbed its part of the impact region’s population excess.
Indeed, a lot could have been assigned more agents to receive than
it can, so there might be more population remaining in the impact
region than desired after the process (since by construction of
the Transfer operation, any not handled agent is returned into its
original lot). As a solution, we reiterate the whole process until no
significant mobility between both regions is observed.

B.2 Attractor

The Attractor brush acts intuitively as the opposite of Repulsor by
pulling agents in. The Attractor first sorts the lots by distance from
the brush center (Euclidean or traveling-time). It computes the total
number of agents to be added to the buildings in the impact region
from a user-specified value. Then it calculates the number of agents
that each lot in the influence region has to provide based on the
previous total amount. It iterates simultaneously over the lots in
the impact and the influence region and transfers agents based on
the Transfer operation in a way similar to the Repulsor. Also similar
to the Repulsor, the process is iterated if necessary.

C HIERARCHICAL ROAD GENERATION

Expanding direction

exp

Expanded vertex

Figure 21: Single arterial node expansion: Starting from 04,
a possible expansion is determined by choosing as a new
connection, among compatible nodes (g, b, c) which are open
(a, ¢), the most aligned one (c).

The road generation is hierarchical. We first expand the arterial
roads and then the streets. All vertices from the impact area of the
brush are marked as open (denoted by the red circles in Figure 21).
Vertex that cannot be further expanded is denoted as closed (a
black dot in Figure 21). A vertex is closed when it is already fully
connected by four roads, or it has an invalid geometry attribute
that makes it unable to be connected, like a vertex on the river.

We keep two lists of open vertices. A vertex that includes vertices
with an open connection of type e is stored in a list for open arterial
roads V4. An open vertex that includes only open connections to
streets e® is stored in open streets V*. Note that V¢ may include

814

UIST ’21, October 10-14, 2021, Virtual Event, USA

open nodes also for streets. They will be relocated to VS once the
arterial connections have been made.

If a road segment has been previously disconnected from a vertex,
we keep the original direction, because it may be used for a future
re-connection as shown in Figure 22.

Figure 22: Each intersection stores the direction of the con-
necting roads. If the area and the roads are removed, the di-
rections are kept for potential reconnect to keep the layout
consistent.

Arterial roads generation: We randomly chose one vertex 0¢
from V' and pick one of its open connections é2. First we determine
the direction of the expansion eT‘f)) (see Figure 21). If the connection
comes with the direction information, i.e., it has been disconnected
before, and the direction is stored as shown in Figure 22, we use it.
If the direction is unknown, we sample the direction histogram Jg
for the compatible type. We then sample the distance histogram Dy
to determine the distance of the expansion d. The new possible
expansion is then located at 0%,,, = 9% + d exp.

Before expanding the road to 9%,,,, we check if there are other
compatible intersections in the vicinity. The candidate area is a disk
at ©¢,,, with radius Dy. The radius is calculated as the average
of all distances between intersections of the same type (a-a in this
case). If compatible nodes are present (a and c in Figure 21, because
node b is closed), we do not generate a new one, but instead, we
connect to an existing one. Any node inside the disk is suitable,
but we chose the node with the most aligned direction (node ¢
in Figure 21) to preserve style. If no compatible node is present,
we generate a new open node at 9%,,,. Its type is determined by
randomly sampling vIDp.

If the expanding segment intersects with another road, it is re-
moved, and the node expansion is terminated. If the expanded node
does not have any open connections e, but it has open connec-
tions e®, it is moved from V4 to V5. All closed nodes are removed
from V2. The expansion of arterial nodes ends when V¢ is empty.
If dead-ends are present, they are removed.

Streets generation: At the end of the arterial expansion, V*
still includes nodes to be expanded. They are processed as street
nodes by using the same algorithm as for arterial expansion.

However, we do not leave any open node during this pass because
there is no sub-category, the streets being the lowest roads in the
hierarchy.

	Abstract
	1 Introduction
	2 Related Work
	3 Urban Layout
	3.1 Input and Structure
	3.2 Lot Structure and Validity
	3.3 Consistent City Editing

	4 Atomic Operations
	4.1 Buildings
	4.2 Lots
	4.3 Roads and Blocks

	5 Basic Brushes
	5.1 Brush Parameters
	5.2 Repulsor
	5.3 Attractor
	5.4 Drag & Drop
	5.5 Mask
	5.6 Road Break and Connect

	6 Style-Preserving Brush
	6.1 Concept of City Style
	6.2 Re-Build Brush

	7 Large-scale Modification
	7.1 Geometric Inconsistencies
	7.2 Handling Inconsistencies

	8 User Study
	8.1 Population
	8.2 Study Protocol
	8.3 Results and Observations

	9 Implementation and Results
	9.1 Results

	10 Limitations and Future Work
	11 Conclusions
	Acknowledgments
	References
	A Jobs and Population per Lot
	B Brush algorithms
	B.1 Repulsor
	B.2 Attractor

	C Hierarchical road generation

