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Abstract

The study of monotone Boolean functions (MBFs) has a long history. We ex-
plore a connection between MBFs and ordinary differential equation (ODE)
models of gene regulation, and, in particular, a problem of the realization of an
MBEF as a function describing the state transition graph of an ODE. We formu-
late a problem of joint realizability of finite collections of MBF's by establishing
a connection between the parameterized dynamics of a class of ODEs and a
collection of MBFs. We pose a question of what collections of MBFs can be
realized by ODEs that belong to nested classes defined by increased algebraic
complexity of their right-hand sides. As we progressively restrict the algebraic
form of the ODE, we show by a combination of theory and explicit examples
that the class of jointly realizable functions strictly decreases. Our results im-
pact the study of regulatory network dynamics, as well as the classical area of
MBFs. We conclude with a series of potential extensions and conjectures.
Keywords: Monotone Boolean functions,, gene regulatory networks, switching
systems,
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1. Introduction

The study of Boolean functions in general and monotone Boolean functions
in particular has a long history [1, 2, 3, 4, 5, 6, 7]. One area in which monotone

Boolean functions (MBFs) have been used is in modeling the dynamics of gene
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regulatory networks. In these models the (Boolean) state of each node 4 in the
regulatory network is updated based on the (Boolean) states of the nodes j that
that are connected by an edge from j to ¢. The monotonicity requirement on a
Boolean function (Definition 2.2) reflects the fact that the edges in gene regu-
latory networks are signed and thus the effect of one gene on another is always
either monotonically increasing (activating edge) or monotonically decreasing
(repressing edge).

An alternative class of network models uses continuous time dynamics of
ordinary differential equations. We are interested in a particular class of such
models with piecewise linear right-hand sides [8, 9, 10, 11, 12, 13, 14]. For the
most general of these models, which we call K-systems, the right-hand side is
fully determined by a finite collection of constants K = (Kq,..., K,,), where K;
is a collection of constants that describes the activity of node i in the regulatory
network. Each collection K; within K also satisfies a monotonicity condition
that reflects the monotone effect of the edges in the network.

The main goal of this paper is to show that there is a close relationship
between K-systems and collections of monotone Boolean functions. In order to
show this connection, we first show that to each K-system one can associate
a state transition graph (STG), which is a finite directed graph that coarsely
captures the progression of the trajectories of the K-system. There are a finite
number of STGs, which permits an imposition of an equivalence relation on the
(infinite) set of K-systems, with an equivalence class denoted [K].

Our first major result is the correspondence between the equivalence classes
[K] and collections of MBF's. For a fixed regulatory network with n nodes, each
equivalence class [K] has the form [K] = ([K4],...,[K,]). Then each [K;] for a
node i with m; input edges and b; output edges corresponds to a collection of b;
monotone Boolean functions with m; inputs. Moreover, each such collection of b;
MBFs, satisfying an additional condition that the truth sets are linearly ordered
by inclusion, is associated to an equivalence class [K;]. Using this result, the
equivalence classes [K] are arranged into a parameter graph (PG) specific to the

regulatory network under consideration. The edges of the PG are determined
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by the adjacency of the collections of MBF's associated to each [K].

Our next set of results examines the effect of imposing algebraic restrictions
on the form of the right-hand side of the differential equations of the network
model, which results in additional structure on the set K. These additional
algebraic restrictions decrease the size of the parameter graph. We ask which
MBFs, and which collections of MBF's, are realizable as parameter nodes of the
corresponding restricted parameter graphs.

The classes of algebraic functions that we chose to examine are nested; the
most restricted and smallest class consists of linear functions, ¥, which is a sub-
set of functions that can be obtained as products of sums of individual variables,
I1¥, and lastly sums of products of sums, XIIX. These classes are all special
cases of K-systems and therefore admit ST Gs and PGs. These algebraic restric-
tions are motivated by the software DSGRN [15, 16, 17, 18], which calculates
the PGs and STGs for network models with the class of IIY¥ functions, and in
principle can be extended to other classes of algebraic expressions.

We show that the classes X, 11X, and XII¥ do impose constraints on pairs
of MBFs that can be realized as parameter nodes of a PG. In fact, we show
that the classes of pairs of MBF's with three inputs that are realizable as linear
functions are a strict subset of II3-jointly realizable pairs, which is in turn a
strict subset of XII3-jointly realizable pairs of MBFs. We also show that there
are pairs of MBF's for any n > 4 inputs that are K-jointly realizable but are not
YIIY realizable.

These results show that the increased complexity of the algebraic expression
provides a richer class of models as measured by the set of MBFs that can be
realized in a PG. At the same time, the connection between differential equation
models and collections of MBF's allows for the formulation of a host of interesting
questions (see the Discussion) about what k-tuples of MBFs can be realized as
nodes of parameter graphs of differential equation models as the complexity of

the right-hand side varies.
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2. K-systems and Monotone Boolean Functions

A regulatory network is a useful abstraction for organizing information about
interacting units. Nodes represent units and (directed) edges interaction be-

tween the nodes.
Definition 2.1. A regulatory network RN is a triple RN := {V, E, s} where
e V is the set of vertices;

e £ CV xV is a finite set of oriented edges, where (i, j) denotes the edge

from i to j;
e s: F — {+,—} is the sign of the edge.

We will generally use n = |V|. We denote S(i) to be the set of sources of node
i and T(i) the set of targets of node i:

S(@i)={ieVI|(i)eland T(i) ={jeV|(ij) € E}.

We split the set of sources into activating and repressing inputs as S(i) =

S(i)T U S(i)~ where
j€St(i)iff e= (j,i) € F and s(e) = +

and

j€ST(4) iff e=(4,7) € E and s(e) = —

The interpretation of the signed edges comes from biology; a positive edge
signifies up-regulation, where the rate of change of the target node concentra-
tion increases as the concentration of the source node increases. A negative edge
signifies down-regulation, where the rate of change of the target node concen-
tration decreases as the concentration of the source node increases. Inherent in
this description is monotonicity of the rate of change of the target node with

respect to changes in each of the source nodes [19, 18, 20, 21, 22, 23].
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One of the natural ways to associate dynamics to a network is using Boolean
functions. Every node is assumed to be either OFF, corresponding to low con-
centration, represented by the state 0, or ON, corresponding to high concentra-
tion, represented by the state 1. A Boolean function is given by f : B" — B
with B := {0, 1}. In examples, we will often write elements of B™ as strings (e.g.

10010 € BP).

Definition 2.2. [24] A Boolean function f : B® — B is positive (resp. negative)

in y; if finO < fyizl (resp. finO > f

with y; fixed at 8 € B. We say that f is monotone in y; if it is either positive

yi=1), where f

y;=p is the function

or negative in y; and is monotone if it is monotone in y; for all 7.

Positive and negative monotone Boolean functions (MBF) capture the effect
of positive and negative edges in the network RIN, respectively. We will use the

notation

MBF(n) := {f : B" — B | f is monotone}

MBF*(n) := {f:B" — B| f is positive in 2; for all i € {1,...,n}}

The dynamics of the network with n nodes is described by iteration of f : B® —
B"™, where f := (f1, f2,...,fn) is a collection of MBFs. Monotone Boolean
function models are widely used due to their simplicity, but matching their
predictions to experimental values of continuous variables like concentration
always poses a challenge. An effort to combine the simplicity of Boolean maps
with a continuous time description was initiated by [9, 10, 25]. To explain this

approach we extend the definition of regulatory network given in Definition 2.1.

Definition 2.3. A weighted regulatory network is a regulatory network RIN

with positive, real-valued weights assigned to each node,

Y=, 7n)

and each edge

0, ={0s,i,055, ... ,stii} where {s1,82,...,8, } = T(i). (1)



100

105

110

\/\ = 1
011 d@\/@ 0o =15 )
’y =
021 =2 ?

B21
Sty ={1}y S(1)={2}
SH2) = {1} S-(2) =0

Figure 1: An example weighted regulatory network. Here V = {1,2}. We use — to denote
a positive (activating) edge, and - to denote a negative (inhibiting) edge. We also illustrate

the sets of sources for each node.

We want to bring attention to the the indexing we use: 6;; is associated to the
edge from i to j, in the tradition of [15]. The node weights are called decay rates
and the edge weights are called thresholds. We make a generic assumption that

for each node 7, the b; thresholds in the collection @; are distinct.

The idea of decay rates comes from biology and indicates how quickly a gene
product will break down under natural cellular processes. A common model of
enzymatic gene regulation is the sigmoidal Hill function model, which has a
half-saturation value. These half-saturation values are sometimes treated as
thresholds, here represented as weights on edges. An example weighted regula-

tory network is shown in Figure 1.

2.1. K-systems

The most general attempt to combine the simplicity of Boolean maps with
a continuous time description resulted in switching K -systems, consisting of a
system of differential equations on R”}. The “K” in K-system denotes a finite
collection of real values that satisfy a monotonicity assumption (Definition 2.4)
and are used to parameterize a system of ordinary differential equations (ODEs)
with discontinuous right-hand sides.

Given a weighted regulatory network, we associate to each node 7 a contin-

uous non-negative variable z; € R, usually representing the concentration of
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a gene product. The phase space of the gene concentrations x = (z1,...,2,) is
R . The thresholds 8; divide the z; axis into b; 4 1 intervals, where b; = |0;] is
the number of targets of node i. We enumerate these by the integers 0,...,b;

in ascending order. Then
X:Ri\{l’l: ji|i€1,...,n, 031601}

is an open rectangular grid where each component of X is an open domain. As
we will see next, the collection of real numbers K determines an ODE system
defined on X whose solutions are consistent with a discrete mapping between
open domains in X and this discrete map can be interpreted as a collection of
MBFs. The following definition of the K-system goes back to at least Thieffry

and Romero [26]; we follow the exposition in [13].

Definition 2.4. Recall the definition of a regulatory network RIN in Defini-

tion 2.1, particularly the nodes V and the sources S*(i). Let
K:={K;ap€R,|ieV,ACSt(i),BC S (i)} (2)

be a collection of non-negative numbers that satisfies the monotonicity assump-

tion:
e Foreachi e V,if AC A’ C S*(i) then

Kiap <K;ap for allBCS’(z)

e ForeachieV,if BC B’ C S™(i) then

Kiap>K;ap forall AC S+(Z)

For convenience, we associate the real-valued collection K to a collection of

parameter assignment functions
i 02570 %250 SR, k(A B):=K;ap

denoting k = (k1,...,kn).



Note that the class of K-systems is very large since the number of constants

s K; associated to a node ¢ € V with a; source nodes is proportional to the size
of the power set of {1,...,a;}

We continue the example from Figure 1 by listing an example assignment of

numbers K that satisfy the monotonicity assumption.

K17@72 =0.1 K27@7@ =0.2 (3)
Kigp=05 Kyig=04
Ki12=5

Ki19=6

Up to now, the construction of K has depended only on the structure of an

10 unweighted regulatory network RN. We now take into account the weights

associated to RN as in Definition 2.3. The K-system ODE described next
depends on the these weights.

The dynamics of variables x; are affected by the incoming edges to node

i in the regulatory network RN. For each x; € S(i), the value of z; is either

above or below the threshold ¢;; assigned to the edge from j to ¢ in the weighted

regulatory network. If z; € ST (i) has an activating effect, then x; > 6;; implies

that x; will be produced at a greater rate than when z; < 6;;. The inequalities

are swapped for a repressing effect, ; € S7(¢). With this in mind, we define

the activity function for a node i and x € X, as follows:

G X =250 %250 ((2) = (4, By) (4)

Ai = {] S S+(Z) | Tj > 0,»]-}

B; = {] S S_(Z) | Tj > 91]}
The map ¢ := (¢1,...,(n), defined on X, is constant on each open domain of
X.

135 The composition of the parameter assignment function with the activity

function, k;0(;, assigns to a vector x € X a scalar parameter k; (A, B) = k;({;(x))
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Figure 2: Continuing the example from Figure 1 we construct the state transition graph.
Above left is X and right is D. For any x in the shaded domain, the value of %(w) is
constant and located in the lower left domain. This determines the value ®¥(2,2) = (1,1)

denoted with a dashed arrow; see (8).

in the set K. Recalling the decay rates v from Definition 2.3, we are now in a

position to define a differential equation parameterized by K and defined on X.

Definition 2.5. The system
& = —ywi + ki(Gi()) (5)
is called the K -system on X associated to the weighted regulatory network RIN.

Note that since ¢ is constant on the open domains of X, the differential
equation is linear in each such domain. On the boundaries of the domains, the
system is undefined due to the discontinuity in k;(¢;(z)). However, we extend
the system by continuity, whenever possible, from X to R”}. The assumption of
the non-negativity of k guarantees that the non-negative orthant R} is positively

invariant and the concentrations x; remain non-negative for all ¢ > 0.
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2.1.1. State transition graph
Let

D= ﬁ{o,l,...,bi}
=1

be a set of n integer sequences that will be referred to as states. Recall that b;
is the number of targets of the node ¢ in RN, b; = |0;|. We construct a function
between the points of X and the states in D. Let x; : X — {0,1,...,b;} be a
map

ki(z) =0 when z; € (0,05 (6)
where superscript ¢ indicates the /-th domain of the x; axis. Collecting the
maps k; in a single map we define k : X — D to be the index assignment
map k = (K1,...,kn). We say that D indexes the open domains of X. By
construction, the index assignment map is constant on each domain in X. The
map k takes a vector x € X and assigns it to the state representing the domain
of X in which z lies.

The function

¥ MmO M

koc_(kloC1 knOCn>

is a map % : X = X. We define a discrete map ®X : D — D on the set of

states D by requiring that

ko(
Y

K ork=ro

: (7)

i.e. that the following diagram commutes
ko¢
X "= X
" " (8)

D-*,p

Note that the solution of (5) with initial condition zy converges to the target

point %(wo). The map ®F takes the state d = x(zg) and assigns it to the

state ®%(d) which contains the target point %(mo). In this way, the map

@K captures the behavior of solutions of (5). It is important to note that the

convergence of the solution starting at zy toward its target point %(xo) is

10



160

165

170

L2)—@2) (B2 (2)—(22)

A I
o) (@ 1) | Clan)+—(@n) CG)

Figure 3: Left: The state transition graph is the asynchronous update dynamics, and so does

not allow the diagonal transition; instead, we replace the dashed arrow with arrows capturing
one-step adjacency. Right: the completed STG, where the process that was illustrated for

state (2,2) is repeated for each state.

only valid while the solutions remain in the component of X containing xg;
when they enter a neighboring domain, the target point will change.

To capture this behavior, we define a state transition graph on states d € D
that coarsely describes solutions of (5). It represents the asynchronous update

dynamics for the discrete valued function ®%.

Definition 2.6 (State transition graph). The state transition graph (STG) is
a directed graph with nodes D, where two nodes d,d’ € D are connected by a
directed edge d — d’, if and only if

1. either d = d’ and ®¥(d) = d; or
2. d and d’ differ in exactly one component, say 4, and

d,=d; +1 and ®X(d) > d;, or

d, =d; —1 and ®F(d) < d;

We construct the state transition graph of our example network in Figures 2
and 3.

The number of maps ®¥ for a given RN is finite. This induces an equiv-
alence relation over all collections K satisfying the monotonicity condition in

Definition 2.4 that are consistent with the structure of RIN.

Definition 2.7. For a given weighted regulatory network, we define an equiv-

11
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Figure 4: Left: the collection of MBFs corresponding to our example network and choice of
K in (3), and the associated state transition graph. Right: A collection of MBFs adjacent (in
the parameter graph) to the collection on the left. The single change is highlighted in gray.
The corresponding state transition graph is also pictured; differences caused by the shaded

entry are shown as dashed edges

alence relation on the collection of all parameter sets K. We set
K~K' < ®%(d)=o"(d) foralldeD.

Notice that each equivalence class [K] has a component structure composed of
n independent equivalence classes, [K] = ([Ki],...,[Ky]), one for each node
t € V in the regulatory network. This is because the monotonicity assumption

in Definition 2.4 applies independently to each node.

2.2. Equivalence classes [K] are collections of MBFs

We now discuss the connection between equivalence classes [K] and mono-
tone Boolean functions. Each equivalence class [K] is uniquely associated to a
collection of [];_, b; MBFs, where b; = |T'(¢)| is the number of targets of node
7 in RIN. We label these MBFs gg;, one for each threshold €g; in the weighted

regulatory network, and construct them below.

12
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Let [K] = ([K1],...,[K,]) be an equivalence class, and consider an element
K; € [K;], where K; = {K; a,B}acs+(i),Bcs— (i) s a collection of constants for

node 7 in RIN. Define a function

a; 1 BSO) —5 257() 957 ()

where o; (%) = (4;, B;) for

Ai={j€8@) |y =13nS"(), Bi={jeS)|y;=1}nS5 (i)

Here we use the standard multi-index notation BS(®) = Wi Vs -+ Yjm, | Ik €
S(i),y;, € B}, i.e. elements of BS() are Boolean strings of length |S(i)| indexed
by elements of S(i) in order. As an example, if S(i) = {2,4,5,7}, then ¢ =
Y2YaYsy7, where y; € B.

Let {0s,:, 055, - 9557;1‘} be the b; thresholds associated to the b; targets of

node ¢ in RIN. With this assignment, we define positive Boolean functions gg; :

B3®) — B for all s € T(i), as

. 1  when Ki,ai(ﬂ) > sts

9si ()
0 when Kj o, ) < 8si7s

and negative Boolean functions as

0  when K; o,y > Osivs
9si(9) =
1 when K; o, (5 < 8si7s
Note that the strict inequality can be changed to non-strict inequality in one
of the two equations and this will not affect our results. Since none of these
possibilities is a priori better, we chose to require that both inequalities are
strict.
We observe that if j € ST (i), then g; will be positive in x;, and if j € S~ (i),
then g,; will be negative in ;. Therefore, any g,; constructed in this way will be

a monotone Boolean function g,; € MBF(|S;]). As we show next, the collection

G={gsili=1,...,n, s€T(i)}

13
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is an equivalent representation of the equivalence class [K].

Proposition 2.8. Fiz a weighted requlatory network RN and thus sets S (i), S~ (i),
and T(i), as well as the weights y; and 0;; for alli=1,...,n, j € T(i). Then

oK — oK — =0

Proof. Consider two different collections K, K’ associated to parameter assign-
ment functions k, k' respectively. Note that the set of states D, the function
Kk : X — D and the function ¢ : X — 257 x 257 are uniquely determined
by the weighted regulatory network RN. Therefore, ®* and ®¥ " differ only in

the functions k and k’:

!
@Kon:ﬁokOC @K/om:nokoc.
v v
Therefore it follows that
/ k k' k k'
K =K «— Ko—-=kKko— < Ko—oa=kKo—oaq.
v Y v Y

This in turn leads to the equivalencies:

K(Ki o, )/%) = H(Kz{,ai(g]‘)/’yi) Vi=1,...,nand Vi € B5®
Ki,ai(g)/’yi,Kl{’ai(g)/% € (9@,951) for some ¢

Ki’ai(g),[(;’ai(g) € (0%,7i, 05 ;) for some ¢

(Kii(p) > 05 == K| 4.5 > 0500) Vi € T(i)

A

(gji €l — gji € G/)
O

For an example, compare the collection K in (3) for the weighted regulatory
network in Figure 1 to the equivalent collection of three monotone Boolean

functions in the left panel of Figure 4.

2.3. Parameter Graph

The fact that we can view equivalence classes [K] as collections of monotone

Boolean functions allows us to organize the equivalence classes [K] into a graph,

14
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Figure 5: Continuing the example, we show the parameter graph for the network in Figure 1.
The parameter graph takes the form of a product graph, with one factor for each node in RIN.
The factor associated to node 1, which has two inputs and two outputs in RN, is the 20 node
graph on the left. It is isomorphic to the graph shown in Appendix B, Figure B.9. The factor
associated to node 2, which has one input and one output in RN, is shown on right. Each
parameter node in the factor on the right contains the associated monotone Boolean function,

where gray shading means g12 = 0, and similarly white shading implies g12 = 1.

called the parameter graph (PG), where each node is associated to an equiva-
lence class. Let [K] and [K’] be different equivalence classes, with associated
collections of MBFs G = {¢s;} and G’ = {¢;}. The nodes [K] and [K'] will
be connected by an edge, if, and only if, there is ¢ € {1,...,n}, s € T(4), and
7 € B5® such that
95i(9) # 94:(Y)
95i(2) = gu(2) VEAY
gej = gp; whenever j # i or £ # s.

In other words, there is exactly one MBF whose value differs on one input. An
example of a single adjacency is shown in Figure 4 and the parameter graph for

our running example is shown in Figure 5.

2.4. Representative networks

It will be convenient to consider a subset of weighted regulatory networks
RN with v; = 1 for all ¢. It turns out that the class of weighted regulatory
networks with this property exhibits the same parameter graphs with the same
collection of state transition graphs as the collection of weighted graphs with
general positive decay rates v = (y1,...,n)-

To see this, fix a set K and its parameter assignment function k from Defi-
nition 2.4. Consider a weighted regulatory network RIN with the collections of
sources ST (i), S~ (i), targets T'(7), decay rates v = (71, ..,Vn), and thresholds

{0;:}. Consider a network RN with the same collection of sources St(4), S~ (i)

15



and targets T'(i), but with all decay rates set to 4; = 1 and the thresholds set
20 tO {éﬂ = v;0i}.
The threshold assignment induces a bijection x — & with & = vz, from X
to X:
X=Ri\{&=0;;|i=1,...,n, jeT(i)}

The key observation is that

€ (10,70 YY) & @=L e (65,051 9)

] *19 kg
1

This allows us to conclude that the activity functions ¢ and ¢ (defined in (4))
satisfy C(&) = ¢(&/7) = ¢(x), which leads to
kio¢

i

0]'2' < (SU) < 957;

for some j,s € T'(4), if and only if

0ji < kio (%) < 0.

In other words, the following diagram commutes:

X 5 X
X%x

Since the underlying network topology is the same between two weighted
networks RN and f/{N, the discrete states of the state transition graph are the
same D = D. Using (9) again, we conclude that the index assignment functions

k and & from (6) satisfy the following:
k() =4 < k(z) =L
Recalling that ®% o k = ko (k o ¢)/~ from (7), we see that
K o i) = K o k(x).

This means that the state transition graphs are identical under K applied to

RN and RN.

16
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We conclude that by considering the restricted class of weighted regulatory
networks with «; = 1 for all ¢ we will recover the same set of state transition
graphs as the general system. Therefore we we will assume ; = 1 from now on,
and we will write gs; as

1 when Kl,m(ﬁ) > 0

0 when Ki,ai(gj) < B

or (10)

0  when K; o, 5 > 0s
9si(y) = :
1 when K; 4,5 < 0si
2.5. Differential equations from monotone Boolean functions

In Definition 2.5 we associated an ordinary differential equation to a weighted
regulatory network RN. A more explicit way to do so is due to [9, 10, 25]. Again
consider a weighted regulatory network RIN with nodes ¢ € V summarizing
regulatory activity for continuous variables x;. Assume that regulation of z; by
its regulatory input x; switches abruptly at the real-valued threshold 6;; from

RN, written as one of two maps

1 x>0, 0 z;>0;
+ _ i = Vi - _ i = Yij
Uz‘j(xj) = Uij(x.j) =
0 z; <0 1 x5 <0y
whenever j € S(i) is a source of node i. We write o; = (0ys,,...,0is,, ), Where

s;j € S(i), m; = |S(4)|, 0is = U;g whenever s € ST (i), and 0,5 = 0;, whenever
s € S7(i). In other words, o+ models an activating input and o~ a repressing
input.

We shall again assume that any two thresholds 0;; and 0; are distinct for
variable x;. Also as before, these thresholds {0;; | i =1,...,n,j € S(i)} divide
R’ into an open rectangular grid X. In addition, assume that for very node
i € V there is an associated Boolean function f; : BS(®) — B that converts
inputs of the node i to the new state of node i. Then we consider the following

system of ODEs on X:
& = —x; + fi(oi(7)) (11)

17
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3. Algebraic switching systems

The system of ODEs (11) has no continuous parameters. In order to intro-
duce such parameters and allow comparison with K-systems we parameterize
both the domain and the range of each function f; : B™ — B. To parameterize
the domain we replace in the definition of o;; the Boolean values 0 < 1 by
continuous, non-negative, real parameter values L;; < U;;. To capture the sign
along the network edges, we again consider two types of o;; functions
ot (2) = Uy x5 >0 o (3) = Lij ;> 0;

ij J
Lij T; < 9”- U T < 92‘]‘

We introduce the interaction function A; as a real-valued replacement for
the function f;. All interaction functions will be algebraic expressions over the
real numbers using addition and multiplication. In this notation, Equation (11)
reads

T; = —x; + AZ‘(Ui(:L‘)),

and we refer to it as a switching system, as in [15, 17].

For every x € X, the composition A;(0;(z)) assigns a real number that
is a combination of numbers {L;; or U;; | j € S(i)}, where for each j only
one of L;; or U;; enters the function A;. This combination is constant on each
domain in X. For monotone functions A;, the image of A;(o;(z)) is a set K that
satisfies the monotonicity assumption in Definition 2.4. Therefore the switching
system with monotone A; for all 7 is a K-system (5) and therefore gives rise to
a parameter graph and to a state transition graph for each parameter node.

In this paper we consider three basic algebraic forms of functions A;. The

set of linear (X) A functions is given by

3(n) = {Ai RY =Ry |V C{L...n}Ai(21,. .., 20) = Zzz} .
iev
The products of sums (IIX) A functions are

IIX(n) == {Aizmi—>R+|Ai(zl,...,zn):H<Z z)} :

Wi \ieWy,
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where the sets W, partition S(i). The sums of products of sums (XIIX) A

functions are

SIIX(n) = A : R — Ry \Ai(zl,...,zn)zz H Z 2 ,

Wi \Vk,; \t€Vk,;
12)

where the disjoint union of V3 ; is Wj. As before, the sets W), partition S(i),
and the sets Vj, ; partition the set Wj,. Observe that these classes of functions

contain progressively more functions, i.e. for n > 3,
Y(n) CIIX(n) C XIIX(n).

The restriction of the class of functions A to a product of sums (IIX) goes
back to at least Snoussi [14], and was used extensively in the development of
DSGRN (Dynamic Signatures Generated by Regulatory Networks) [15, 17, 16,
27, 28]. The main contribution of the DSGRN approach is the definition and
explicit construction of a parameter graph (Section 2.3) in terms of inequalities
in the input combinations of {L;;,U;; | j € S(4)} and thresholds {0, | k € T'(¢)}
given a collection of nonlinearities in IIX.

As we have shown in Section 2.2, each component [K;] of the parameter
node [K] = ([Ki],...,[K,]) is equivalent to a collection of monotone Boolean
functions, one for each edge in the regulatory network. When a node i has
a single target, then there is only one MBF associated to node i, namely g;;,
where j is the sole target of 7. In the case of multiple targets, |T'(i)| > 1, there
is a collection of |T'(¢)] MBF's for node i. We consider a single component [K],
first where node i has a single target and second where node ¢ has more than
one target. We ask which such singletons or collections of monotone Boolean
functions can be associated to a parameter node in the parameter graphs of K-,

Y-, I13- and XII¥-systems.

Definition 3.1. We say that a monotone Boolean function h : B — B is *-
realizable, where * can stand for K, X, II3 or XIIX, if there exists a regulatory

network RN with a node j with a single target £ and weight 6,; and a parameter
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node [K| = ([K1i),...,[Ky]) for the s-system, such that the Boolean map gy;
that corresponds to [Kj] is h.

We say that a k-tuple of monotone Boolean functions hq, ho, ..., hy : B™ — B
is x-jointly realizable if there exists a regulatory network RIN with a node

J with k targets (1,...,¢; and weights {0,,;} and a parameter node [K] =

([K4l, ..., [Ky]) for the s-system such that the collection of Boolean maps
901, 9esjs - - - G5 that corresponds to [K;] are the maps hi, ho, ..., hy respec-
tively.

Remark 3.2. We note that Y-realizability is a special case of IIX-realizability,
which is in turn a special case of X.I1X.-realizability, which is in turn a special case
of K-realizability. These observations rely on the fact that 3 C IIX C XIIX

and that the images of any monotone A functions give rise to K-systems.

The definition of realizability 3.1 uses arbitrary functions h € MBF. In
some cases, it will be convenient to assume gg; € MBF+(mi), instead of the
weaker condition gi; € MBF(m;), where recall m; = |S(¢)| is the number of
sources of ¢. This is achieved via a coordinate change. For each j € S(i), define
the function ﬂ;i) :B— Bas

, b if j € S+ (i)
8y (b) = (13)
1-b ifje S (4)
Then define

component-wise. We observe that g; o 30 € MBF T (m;) and that 8 is an
involution i.e. 3 o f(9) =1d. We will use the notation /3 for a function where
we do not specify the network node identity 1.

Using the coordinate change 3, we can see that h : B™ — B is x-realizable
if and only if, f := ho 3 € MBF™(m;) is a positive Boolean function and is

also *-realizable, via the collection K’ defined as

!
K',A’,(i) =K aB

K2
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where

A =AUB,

and network RN’ which is the same as RN except that all edges are now
activating. Likewise, if hi,ho,..., hy : B" — B is x-jointly realizable if, and
only if, fi = hy o BV, ..., fx := hj o ) € MBFT(n) are positive Boolean
functions and are also *-jointly realizable. Therefore it is sufficient to consider
in proofs only positive Boolean functions.

The central question that we pose in this paper is to ask how much re-
striction the algebraic forms ¥, I3, and XIIY impose on the richness of the
potential dynamics of the switching system. We will interpret the number of
k-tuples of MBF's that can be represented in the parameter graph as the rich-
ness of that particular class of switching systems. This question generalizes and
extends a classical problem of determining when a monotone Boolean function

is a threshold function.

Definition 3.3. [24] A Boolean function f : B® — B, is called a threshold
function (or a linearly separable function) if there exist real numbers ay, ..., a, €

R and a threshold 6 € R such that for all ¥ = (y1,...,yn) € B",

1 if Z?:l a;y; > 0

0 otherwise

F(@) = (14)

The (n 4 1)-tuple (a1, as, ..., an,0) is called a (separating) structure of f.

As we will see later in Lemma 4.21, any monotone Boolean function f is
a threshold function if and only if f is Y-realizable, i.e. representable in the
parameter graph of a ¥ system. Framed in terms of threshold functions, de-
termining which f functions are X-realizable is then equivalent to determining
which MBFs are indeed threshold functions.

This is a classical problem in the Boolean literature. Paull [2] showed that
monotonicity is a necessary condition for a Boolean function to be a threshold
function. As shown by Chow [6] and Elgot [3], a Boolean function is a threshold

function if, and only if, it is assumable, where assumable was defined by Winder
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[6]. An algorithm for determining whether a Boolean function is a threshold
function was given by Peled and Simeone [29]. Their algorithm will produce
ai,...,a, in the sense of Definition 3.3 if the Boolean function is indeed a
threshold function. An algorithm for producing additional linearly separable
Boolean functions and further characterization of threshold functions was given
in Rao and Zhang [30]. The number of threshold functions for n < 8 was found
in [4], and extended to n =9 by Gruzling [31].

Note that f is a threshold function if the set of points in B® C R™ at which
f attains value 1 is linearly separable from those points where f attains value
0. Following this connection, Pantovic et al. [32], Zunic [33], and Wang and
Williams [34] all examined partitions of sets of points with surfaces that are not
necessarily hyperplanes. This is intimately related to the questions of I13- and
Y113 -realizability, i.e. which monotone Boolean functions are representable in
a parameter graph of a II¥- vs. XII3- systems.

The parameter graph node [K] = ([K1],...,[K,]) represents n collections
of monotone Boolean functions, where each [Kj] corresponds to b; = |T'(j)]
MBFs, the number of targets of j in RIN. Not every collection of b; monotone
Boolean functions is *-jointly realizable for the algebraic classes we consider.
We introduce the idea of considering multiple Boolean functions simultaneously
and asking which of them are *-jointly realizable, i.e. realizable in a node in the

parameter graph of a K, 3, II¥ or XII¥ system.

4. Realizability Results

The main results are summarized in Table 1, where we consider pairs of *-
jointly realizable MBF's. The equality sign between two categories indicates that
whenever a pair of MBFs with given set of inputs n (row index) is realizable
in one category, it is also realizable in the other category. The strict subset
relationship shows that any pair of functions realizable in the smaller category
is also realizable in the larger category, and, furthermore, there is a pair of

Boolean functions f < g that is realizable in the larger category that is not
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n x-Joint Realizability of f < ¢

1 ¥ = II¥ = X[II¥ = K
2 |Y = II¥ = XII¥ = K
3 |¥ ¢ II¥ ¢ 3¥II¥ = K
>4 ¥ ¢ II¥ ¢ XII¥ ¢ K

Table 1: Summary of the results. The n is the number of inputs for each of the pair of MBF,
where f < g means that the truth set of f is a subset of truth set of g (Definition 4.5). The
(in)equalities express realizability relations among categories of functions (see text). Row 1
and 2 are a result of Proposition 4.22. Row 3 is a result of Subsections 4.4.1, 4.4.2, and 4.5.

Row 4 is a result of Subsection 4.4.3.

realizable in the smaller category.

4.1. K-realizability

The main goal of this section is to prove the following two results: (1) any
monotone Boolean function is K-realizable, and (2) any k-tuple f1 < ... < fx
of MBFs is K-jointly realizable. Therefore K-systems are general enough to

represent any collection of monotone Boolean functions.

Definition 4.1. For a Boolean function f : B™ — B, we define the truth set of
f as
True(f) :=={y e B" | f(y) =1}.

Similarly we define the false set of f as
False(f) := {g € B" | f(¥) = 0}.
For U C B™ any subset, we will also use the notation
True(f)lv :=={yeU| f(y) =1}, False(f)lv:={geU]|f(¥) =0}

We start our discussion of K-realizability and K-joint realizability by proving
two results relating K-realizability to the existence of what we call a realizing

Sfunction.
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Definition 4.2. The positive monotonicity assumption for a function R : B™ —

R is the following: for all j € {1,...,n}, for all ¥ € B” with y; =0
R(Y) < R(Y+ &)

Next Theorem provides characterization of K-realizability and K-joint real-

izability of monotone Boolean functions.

Theorem 4.3.

325
1. f € MBF T (n) is K-realizable if, and only if, there exist

o a weighted regulatory network RIN with a node © with only one target
J and a weight 0;; and

e a function R such that R® : B — R satisfies the positive mono-
tonicity assumption and

1 if RO > 0

0 ifRO(®Y) <0

2. A k-tuple of MBFs fi, fo,..., fr € MBFT(n) is K-jointly realizable if,

330 and only if, there exist

o a weighted requlatory network RIN with a node i with k targets €1, . .., lx
and weights {0;,:} and

e a function R\ such that R : B® — R, satisfies the positive mono-

tonicity assumption and for all j € {1,...,k}, f; can be expressed as

1 if RO®) > 6y,
0/ S (15)
0 RO < by,

Proof. Using Definition 3.1, Equation (10), and setting

R(Z) (g) = Ki,ai(g)v g S Bna
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the theorem follows. It remains to note that the positive monotonicity assump-
tion on R induces the (positive) monotonicity condition on K; from Defini-
tion 2.4. Likewise, when fi,..., fr € MBF'(n), then S(i) = S*(i) and K;
satisfying the monotonicity condition in Definition 2.4 implies that R must

satisfy the positive monotonicity condition. O

Definition 4.4. If Theorem 4.3 is satisfied, then the pair (R RN) is called

a realizing function and realizing network for fi, ..., fi, respectively.

Theorem 4.3 shows that K-systems can be thought of as arising from mono-
tone Boolean functions via realizing functions R(?, one for each node i in a
realizing network RN. In the following, we will restrict our focus to a single

node in RN and drop the superscript.

Definition 4.5. For two Boolean functions f,g : B" — B, we say f implies g

and write f < ¢ if, and only if, True(f) C True(g).

Now we prove the main result of this section, namely that all k-tuples of
MBFs that are linearly ordered f; < fo < ... < f; are K-(jointly) realizable for
all k> 1.

Theorem 4.6.
1. f € MBF T (n) if and only if f is K-realizable.

2. A collection fi, ..., f, € MBFT(n) of monotone Boolean functions has a

linear order fi < fo < ... < fp if and only if it is K-jointly realizable.

Proof. Since realizability is a special case of joint realizability and since a single
MBF trivially has an order, it is sufficient to prove the second point.

(=) Let R(Y) = Z;'-:l fi(¥). R satisfies the positive monotonicity as-
sumption of Definition 4.2, since if y; = 0 for some ¢, then R(y) < R(¥ + é;)
by summation and the positivity of f;. Now for each j € {I1,...,b}, let
0; = b—j+ 1. Suppose § € True(f;). Then § € True(fy) for k = j,...,b,
since True(f;) C True(fx) by the < relationship. So R(y) = b— j + 1 and we
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have 0; =b—j + 1/2 < R(Y) as desired. Then the function R and thresholds
01, ...,0, satisfy the assumptions of Theorem 4.3.

(<) Given the b thresholds, establish the indexing 6, < --- < 6; using the
order of R. Then for any ¢ < j, we have 6; > 6; and (;,00) C (6;,00). Given
the realizing function R, define a collection of b positive monotone Boolean
functions by

True(f;) = R™*(6;,00).

Then by construction

1 i R() > 6,
0 if R(F) < 6;

Moreover, if i < j, we have True(f;) C True(f;), implying f; < f;. O

4.2. *-Realizability

In this section we discuss technical points needed later for X, 113, and 11X
realizability.

Since ¥, II¥, and XIIX realizability are based on A functions, A : R} — R,

we need to consider a restricted class of realizing functions of the form
R:=Ao¢,

where ¢ : B” — R’} component-wise monotonically encodes a Boolean vector
into a real valued vector, i.e. ¢ = (¢1,...,dy), where ¢; : B — Ry, ¢;(0) <
¢i(1) and A is an algebraic function that belongs to one of the classes 3(n) C
II13(n) C XIIX(n).

The following Lemma is a direct consequence of Theorem 4.3, the defini-
tion of the classes of algebraic functions X(n), II¥(n) and XIIX(n), and the

previously made observation that all switching systems are K-systems.

Lemma 4.7. In the following, * could be X, IIX, or XIIX. A function f €
MBF (n) is x-realizable if, and only if, there exist a realizing network RN and

realizing function R = A o ¢, where
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1. the x-interaction function A : R™ — R belongs to the class A € ZIIX(n),
A € IIX(n), or A € B(n) if x = XX, * = [IX, or x = X respectively;

and
2. for each i € {1,...,n}, the function ¢; : B — Ry satisfies ¢;(0) < ¢;(1).

Similarly, a k-tuple of MBFs fi, fo, ..., fr € MBFT(n) is %-jointly realiz-
able if and only if there exist a realizing network RIN and a realizing function

R =Ao¢ for A a x-interaction function from (1) and ¢ a map satisfying (2).

The general question of which k-tuples of Boolean functions are *-jointly
realizable seems very difficult and is likely connected to fundamental problems
in algebraic geometry. We focus here on some initial results for k£ = 2 and will
consider pairs of Boolean functions with different numbers of inputs. We start
with definitions and results that enumerate consequences of joint realizability
of f < g on relationships between True and False sets on subsets of the space of
Boolean inputs.

In the following, and many times throughout the rest of the manuscript, it

will be useful to view B" as a hypercube embedded in R’} with side lengths of 1.

This gives rise to a geometrical structure of B”, where if §¥ = (y1,...,¥i-1,0, Yit1,- . -

then ¥+ é; = (y1,---+Yi—1, 1, Yit1,---,Yn), where &; is the standard i-th basis
vector in R™. This defines the geometrical idea of floor and ceiling in the i-th
direction of the hypercube B™. When f < g, there are relationships between

the True and False sets on the floors and ceilings in all directions.

Definition 4.8. We define the ceiling (of B™) in the i-th normal direction as
the set

Ci = {(ylvaa"'7yn) eBn | Y; = 1}

and similarly we define the floor (of B™) in the i-th normal direction as the set

Fi = {(ylvaa"'7yn) S B" | Y; = 0}

Notice that C; and F; are both hypercubes of dimension (n — 1), that B" =
C,UF,;, and that C; = F,; + é;.
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Next we define the idea of a collapse, in which a floor and ceiling of B™ are

considered objects embedded in the hypercube B" 1.

Definition 4.9. For a given i € {1,...,n}, we define the i-th collapse as the

function Col; : B” — B™~! which removes the i-th coordinate, defined as

001i((y17 e 7yn)) = (yla e Yi—1,Yit1y e - 7yn)

Then for any subset U C B™ we have

CoLi(U) = {(y1+-- -, Yim1:Yit1,- -+ Yn) EB" | (y1,...,yn) € U}

Using the notions of floor, ceiling, and collapse, we move through a series
of results that are critical to future proofs involving *-joint realizability for A
function classes. The following Lemma shows the relationship between truth
sets of any monotone Boolean function on the floor and ceiling in any direction

of the Boolean cube.

Lemma 4.10. If f € MBF™(n), then for alli € {1,...,n},
Col;(True(f)|r,) C Coli(True(f)|c,)

Proof. Observe that the hypercube can be viewed as a distributive lattice via

the relation < on the corners of the hypercube by
J<ZeB" <= (yy=1=2=1) foralli=1,...,n.

Notice that since any f € MBF™T(n) is positive monotone, True(f) is an upper-
set of B™ viewed as a lattice. Therefore, for any § € True(f)|r,, we have y+¢é; €
True(f)|c,. Under the collapse operation, we have Col;(y) = Col;(¥+ é;), com-
pleting the proof. O

The next Lemma compares truth sets of a pair of monotone Boolean func-

tions where both are evaluated on the same subset of the Boolean hypercube.
Proposition 4.11. If f,g € MBF " (n) and f < g, then for alli € {1,...,n},
Col;(True(f)|r,) € Col;(True(g)|r,) and Col;(True(f)|c,) € Col;(True(g)|c,)-

(16)
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Proof. Recall that f < g implies True(f) C True(g), which implies that True(f)
True(g)|r, and that True(f)|c, € True(g)|c,. Since in both cases, the collapse

operation occurs over the same set, we have (16) as desired. O

Finally, we arrive at a comparison of truth sets of a pair of eompatible

monotone Boolean functions on different subset of the hypercube.

Proposition 4.12. If f,g € MBF ™ (n) and f < g, then for alli € {1,...,n},
Col;(True(f)|r,) C Coli(True(g)lc,)

Proof. By Lemma 4.10 we see have Col;(True(f)|r,) C Col;(True(f)|c;), and by
Proposition 4.11 we have Col;(True(f)

c,;) C Col;(True(g)

¢, ), which completes

the proof. O

The following two technical results for special forms of A functions are used
extensively in the coming sections to derive the results in Table 1. Proofs for

Theorem 4.14 and Theorem 4.15 are found in Appendix A.

Definition 4.13. Let A be a x-interaction function. We say z; is a factor (of
A) if there is another map A’ that does not depend on z; such that A = z;A’.
Similarly we say z; is a simple term (of A) if we can write A as A = z; + A'.

Notice if A is a X-interaction function, for all ¢ € {1,...,n}, z; is a simple term.

The following theorem shows that the truth sets of jointly realizable mono-
tone Boolean functions evaluated along the directions that correspond to factors

or simple terms have special properties.

Theorem 4.14. Let * be X, IS, or Y. Let f,g € MBF ™ (n), with f < g,
be x-jointly realizable. Let (A o ¢, RN) x-jointly realize (f,g). For each £ €

{1,...,n}, if z¢ is a factor or a simple term of A, then
Coly(True(f)|c,) C Coly(True(g)|r,), or (17)
Coly(True(f)|c,) 2 Coly(True(g)|r,) (18)
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The final theorem of this Section shows that each pair of jointly realizable
monotone Boolean functions with n inputs gives rise to a pair of jointly realizable

monotone Boolean function with n —1 inputs associated to the floor and ceiling.

Theorem 4.15. Let * be ¥, IIX, or XX, Let n > 1. Let f,g € MBFT(n)
be x-jointly realizable MBFs on B™ with f < g. Let £ € {1,...,n} and U €
{Fg,Cg}. Then

a) the functions f};, gty € MBFT(n — 1) defined by

True(f};) = Colg(True(f)’U) and True(gy;) = Coly(True(g)|,)

are x-jointly realizable MBFs on B!, and

b) there is a single x-interaction function A’ along with maps ¢c,, dr, and
weighted regulatory networks RNg, and RNw, such that (Ao ¢w,,RNw,)
x-jointly realizes (fg,, 9p,) and (A opc,,RNg, ) *-jointly realizes (f¢,, 9¢,)-

4.3. Joint realizability in B" and realizability in B" !

We will show that there is a bijection 7 between pairs (f, g) € MBF™(n) x
MBF* (n) satisfying f < g and h € MBF*'(n + 1). We use 7 to relate the
x-joint realizability of a pair f < ¢g and the x-realizability of single function
n(f,g) € MBFT(n+41). We will use this fact at the end of the section to prove
rows 1 and 2 of Table 1.

Definition 4.16. Define the map
n:{(f,9)| f,g € MBFT(n) and f < g} - MBF*(n+1)

by h = n(f,g), where for i € B+

. fyi, o syn) i Yy =0
h(y) =

9y, yn)  Hypp=1

Lemma 4.17. The map 7 is a bijection onto MBF™ (n + 1).
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Proof. First we describe the range of 1. Let f,g € MBFT(n) with f < g. By
definition f and g describe the floor and ceiling of n(f,g) = h in the (n + 1)-th

direction,

True(f) = Col, 1 (True(h)‘FnH) and True(g) = Col, 41 (True(h)‘cnﬂ) :
(19)

Then the positive monotonicity of f and g induce positive monotonicity on the
floor and ceiling of h, and f < g gives positive monotonicity in the (n + 1)-th
direction. So the range of 7 is contained in MBF ™ (n 4 1).

It is clear that 7 is injective. Indeed, if n(f,g) = n(f’,¢’) then it follows
immediately from the definition that f = f’ and g = ¢'.

To show that 7 is surjective, consider h € MBF ™ (n 4 1) and define f and
g by setting (19) to be true. Since h satisfies positive monotonicity on its floor

and ceiling, f,g € MBF ™ (n). Also, since

Col, 11 (True(h)

) C Col,+1 (True(h)|cn+1) ’

Fn+1

by Lemma 4.10, we have that f < g. We have then constructed the desired pair
(f,g) with f < g such that n(f,g) = h is well-defined. O

As a consequence of this result, note that n71(h) = (f, g) is well defined.

Theorem 4.18. Let n > 1. Suppose f < g is x-jointly realizable, where f,g €
MBF " (n). Then h = n(f,g) is *-realizable.

Proof. Suppose f < g is x-jointly realizable. Then by Lemma 4.7 there exists
(Ao @, RN) that x-jointly realizes f and g. Moreover, the proof of Theorem 4.6
tells us that the thresholds in RN associated to these functions satisfy 6, < 0.
We seek to construct (A’ o ¢/, RN’) that x-realizes h. To build RN’ we take
RN and add a source to the node under consideration from any other node in
the network. It remains to discover the weight, 6’ of that edge.

Case 1: (x = X or * = XII¥). By the assumption since f < g is *-jointly
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realizable, we have

1 if A(¢1(y1), . ~¢n(yn)) > af
f(yla"'ayn) =
0 if A(d1(y1), - Pnlyn)) <Oy

LA A(d1(y1), - - - dnlyn)) > b,
g(yla"'7yn) =
0 if A(d)l(yl)v s ¢n(yn)) < 09
For i € B"*!, we assign A'o¢’ = Aog+¢/, , for ¢/ = (¢1,...,¢n, ¢}, 1) with
some choice of ¢, 1. Weknow f(y1,...,yn) = h(y1,-..,yn,0) and g(y1,...,yn) =

h(y1,...,yn, 1), so whatever ¢;,; and 6’ we choose must satisfy

1 if A(¢1(y1); - - - dn(yn)) + @111 (0) > 0
0 if A(d)l (yl)v s ¢n(yn)) + Qﬁz—&-l(o) < 0/

f(yla"'7yn>:h<y17"'ayn50):

and

1 if A(¢1(y1>7¢n(yn))+¢%+1(1) >9/

0 if Adr(y1),- - Pnlyn)) + &y (1) <O

91, yn) = My, Yn, 1) =

Consider the assignment ¢}, 1(0) =€, ¢, (1) =05+ € —0,, and ' := 05 + ¢,
where € is any sufficiently small real number 0 < € < 8y — 6. It is easy to check
that with this assignment, h(y1,...,¥yn,0) = 1 if and only if f(y1,...,yn) =1
and that h(y1,...,yn,1) = 1 if and only if g(y1,...,y,) = 1. This completes
the construction of (A’ o ¢, RN’) that *-realizes h.

Case 2: (x =IIX) The proof proceeds analogously with Case 1, where the
only difference is replacement of a simple term by a factor in A’. It is easy to

verify that the following assignments *-realize h: ¢ = (¢1,...,¢0n, &)1 1),
Ao ¢/(y1a s Yny y’ﬂ-i-l) = ¢;’L+l(y’ﬂ+1) : (A © ¢(y17 oo 7yn)) s

0 =05, ¢, 1(0) =1, ¢py1(1) =05/0,. —~

We do not know if the converse of Theorem 4.18 is true in general. However,

with an additional constraint we obtain the following partial converse.
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Theorem 4.19. Let n > 1. Suppose (Ao ¢p,RN) x-realizes h € MBF(n + 1).
If z; is a factor or simple term of A, then f,g € MBF™ (n) defined by

True(f) = Col;(True(h)

F;), True(g) = Col;(True(h)

Ci)
are x-jointly realizable.

Proof. Without loss of generality assume ¢ = n + 1. Let 6 be the threshold
associated to the realization of h.

Case 1: (zp4+1 is a factor) Then A = 2,11 A’ and from Lemma 4.7

L if 1 (Yns 1) A (@1(y1), - - Pnlyn)) > 0

0 if prg1(Yns1)N (G1(y1)s -+ Pnlyn)) <0

h(yh s 7yn+1) =

If we restrict our attention to f, dividing by ¢,+1(0), the above equation

gives us

1 if A(61(y1), - - dn(yn)) > 0/dnta(0)
0 if A'(@1(p1),- - Pn(yn)) < O0/dn41(0)

flyr,syn) = By, - yn, 0) =

Restricting our attention to g we see that

1 if A(¢1(@1), - - dn(@n)) > 0/dnya(1)
0 i A(p1(z1),...Pn(zn)) < 0/Ppi1(1).

g(x1, . xn) = h(x1,... 2, 1) =

Construct RN’ by removing the source edge associated to n + 1 and adding
one target edge to the node under consideration. Assign to one target edge the
weight 0y = 0/¢,41(0) and assign 0, = 6/¢,11(1) to the other. After setting
@' = (¢1,...,dn), we obtain (A’ o ¢, RN') that #-jointly realizes (f, g).

Case 2: (z,41 is a simple term) The argument for this case is similar
but instead of dividing by ¢n11(yn+1), we will subtract. Specifically, since y,+1

is a simple term,

1 if (bn-‘rl(yn—i-l) + A/(¢l (y1)7 s ¢n(yn)) > 0
0 if rg1(Yny1) + A (D1(y1), -+ Dnlyn)) <O

h'(ylu e 7yn+1) -
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and so

1 it A(or(yr), - nlyn)) > 0 = Pnia(0)
0 if A(d1(y1), - - On(yn)) <O — dny1(0)

- ym) = h(yrs - yn, 0) =

1 if A(o1(1), - Pn(yn)) > 0 — Prya(1)

0 if A(P1(y1),- - Pnl(yn)) <0 — Pnia1(1)
Construct RN as before with threshold assignments 6y = max{0, 0 — ¢,4+1(0)},

9155 Yn) = h(Y1, -y Yn, 1) =

0y = max{0,0 — ¢,4+1(1)}, and a further perturbation by small enough € > 0 if
w0 07 =60, Then tuple (A’ o ¢/, RN’) %-jointly realizes (f, g). O

The following Corollary is an immediate result of Theorems 4.18 and 4.19.
It states that, in the 3 class of functions, joint realizability of a pair (f,g) in
dimension n is equivalent to the realizability of n(f, g) in dimension n + 1, since

every term in A is simple.

w5 Corollary 4.20. Let n > 1. Suppose f < g and let h = n(f,g). Then (f,g) is
Y -jointly realizable if and only if h is X-realizable.

As promised, we now show the equivalence of threshold (linearly separable)

functions and Y-realizability, see Definition 3.3.
Lemma 4.21. Let f € MBF™(n).
490 1. If f is X-realizable then f is a threshold function.

2. If f is a threshold function with separating structure (ay,...,an,0") such

that ay,...,a, >0 and 8’ > —n, then [ is X-realizable.

Proof. (1) Suppose f is Y-realizable, and let (A o ¢, RN) X-realize f. We

construct ag,...,a, and 0’ as in the sense of Definition 3.3 as follows: set
295  A; = ¢z(1) — ¢z(0)7 and let 0/ = maX{O, 0 — (¢1(0) + -4 ¢n(0))}
(2) Now suppose f is a threshold function with separating structure (ay, ..., an,0’)

such that aq,...,a, > 0and 0 > —n. Set A = 21 + -+ + z,. Set ¢;(0) = 1,
®i(1) =1+ a;, and 6 = 6’ + n, to obtain the desired (A o ¢, 6). O
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The following proposition, together with Remark 3.2, proves the first two
rows of Table 1.

Proposition 4.22. Assume f < g € MBFT(n) withn = 1 orn = 2. Then

the pair (f,g) is X-realizable.

Proof. By simple enumeration, one can check that, for n = 1,2, 3, all functions
in MBF " (n) are threshold functions, and admit separating structures with
a1,--.,0n,0 > 0. Via Lemma 4.21, these functions are Y-realizable. This fact,

when combined with Corollary 4.20, proves the first two rows of Table 1. O

4.4. Strict subset relations in Table 1.

This section contains a series of examples illustrating the differences be-
tween X, 113, and XIIXY realizability, proving some of the strict subset results
in Table 1. We will use Theorems 4.14 and 4.15 extensively.

The idea behind all of the examples is to show that there exists a pair of
*-jointly realizable functions (f, g) that are not ’-jointly realizable, where *’ is
a more restrictive class than *. The proofs are inductive, with different base
case constructions and very similar inductive steps. The methodology for the
induction is to take an (f,g) *-jointly realizable, but not ’-jointly realizable,
pair in B” and to set (f,g) to be the floors of new (f,§) functions in B"+1. Tt
then remains to construct ceilings that ensure f,j € MBF* (n 4+ 1). For any

i € Cp11, we choose to set f(gj') = g(%) = 1. By this choice,

True(f) 2 Cny1, True(g) 2 Cpy,

which ensures that f,§ € MBF T (n+1). By the contrapositive of Theorem 4.15
(a), this construction ensures that (f,§) are not *'-jointly realizable. We then

show that ( 1, J) are x-jointly realizable.

4.4.1. Y-jointly realizable C IIX-jointly realizable for n > 3.
In this section we prove the first strict inclusion in the third and fourth rows

of Table 1.
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v1y2y3 | ¢(y1y2ys) | A(o(y1y2y3))

100 (

010 (1,4,1) 5
110 (4,4,1) 8
101 (4,1,2) 10
011 (1,4,2) 10
111 (4,4,2) 16

Figure 6: Left: An example pair f,g : B3 — B with f < g. Dark grey is False(f) N False(g),
light grey is False(f) N True(g), and white is True(f) N True(g). Nodes are labels with y1y2ys.
The pair (f, g) are IIX-jointly realizable, but not 3-jointly realizable. Right: A table of values
proving (f, g) are IIX-jointly realizable. Here A = (z1 + 22)23 and 61 = 4.5, 62 = 9. The

coloring in the table column is consistent with vertex coloring on the left.

Lemma 4.23. Let n > 3. There exists a pair f < g € MBFT(n) such that

(f, g) is not X-jointly realizable, but is IIX-jointly realizable.

Proof. We first construct an explicit pair (f,g) for n = 3. Consider the pair
f = g of MBFs depicted on the left of Figure 6. We use Theorem 4.14 to show
that (f,g) is not X-jointly realizable, and provide an explicit (A o ¢, RN) that
I1¥-jointly realizes (f,g). Choose any RN with a node with three sources and
two targets, with threshold values to be determined.

First, we illustrate the use of Theorem 4.14. Observe that True(f)|c, =
{101,111}, and so Col;(True(f)|c,) = {01,11}. Similarly True(g)|r, = {010,011},
so Coly(True(g)|r,) = {10,11}. Therefore, we can see that

Coly(True(f)|c,) € Coli(True(g)|r,) and Coly(True(f)|c,) 2 Coli(True(g)|r,) -

By the contrapositive of Theorem 4.14, we see that if (A o ¢, RN) *-jointly
realizes (f, g), then A cannot have a simple term or factor z;. Therefore, (f, g)
is not X-jointly realizable, as any Y-interaction function A has every variable as

a simple term.
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However, (f,g) is IIX-jointly realizable. To see this, set A = (21 + 22)z3,
#1(0) = ¢2(0) = ¢35(0) = 1, p1(1) = 4, ¢a(1) = 4.1, ¢3(1) = 2, and 6; = 4.5,
02 = 9. The results of such an assignment are displayed in the table in Figure 6.

We now prove the inductive step. Let n > 3. Assume there exists f,g :
B"™ — B such that (f,g) is not X-jointly realizable, but is IT¥X-jointly realizable.
Let(A o ¢, RN) with thresholds 6; and 6, IIX-jointly realize (f,g). Now over
B! define

£ e n n :0
Fi.  ynsr1) := Fyre-yn)  Ynnr

1 Ynt1 =1

g(yl .- yn) Ynt1 =0
GWi - Yns1) =

1 Ynt1 =1
Observe that

Colyi1 (True(f) Fn+1) = True(f), Coln41 (True(9)|r,,.) = True(g),

in other words the floor of f has the same truth set as f and the floor of
g has the same truth set as g. Since (f,g) are not X-jointly realizable, the
contrapositive of Theorem 4.15 (a) tells us that (f, §) are not X-jointly realizable.
Let m = min{A(¢(B"))} and define ¢,,1(0) = 1 and ¢,11(1) = max{2,C},
where C is large enough such that mC > max{6;,0>}. Define A= Zna1 A
and ¢ := (1, - .,¢n,<£n+1). Then A is a valid IIS-interaction function, and
(Ao b, RN) II3-jointly realizes (f, J), completing the proof. O

4.4.2. IX-jointly realizable C TIIX-jointly realizable for n > 3
In this section we prove the second strict inclusion in the third and fourth

rows of Table 1.

Lemma 4.24. Let n > 3. There exists a pair f < g € MBFT(n) such that

(f,9) is not IIX-jointly realizable, but is LI -jointly realizable.

Proof. Again, we construct an explicit pair (f,g) for n = 3. Consider the pair

f < g shown in Figure 7. We will show that (f, g) is not IIX-jointly realizable.
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n1y2ys | (Wiyeys) | AMd(y1y2y3))

001 (1,1,4) 5
101 (3,1,4) 7
011 | (1,3.1,4) 7.1
110 | (3,3.1,1) 10.3
111 | (3,3.14) 13.3

Figure 7: An example pair f,g : B3> — B with f < g. Dark grey is False(f) N False(g), light
grey is False(f) N True(g), and white is True(f) N True(g). Nodes are labels with y1y2y3. The
pair (f,g) is SIIX-jointly realizable, but not II¥-jointly realizable. Right: A table of values
proving (f, g) are XII¥-jointly realizable. Here A = 2122 + 23 and and 61 = 4.5, 62 = 9. The

coloring in the rightmost column is consistent with vertex coloring on the left.

Suppose, by way of contradiction, that (A o ¢, RN) IIX-jointly realizes (f,g)
for some RN with a node with three sources and two targets.
From Lemma 4.7, we can see that the only allowable II3-interaction function

for n = 3 are
21+ 20+ 23, (214 22)z3, (21+23)22, (224 23)z1, 212273

For f < g in Figure 7, observe that

Coly(True(f)|c,) € Coli(True(g)|r,) and Coly(True(f)|c,) 2 Coli(True(g)|r,),
(20)

and

Coly(True(f)|c,) € Cola(True(g)|r,) and Colay(True(f)|c,) 2 Cola(True(g)|r,).

(21)
By Theorem 4.14, we see that z; and zo cannot be simple terms or factors of A.
This constraint implies that A = (21 4 22)2z3. The following inequality argument
will show that this choice of A is also impossible. To reduce notation, we will

write d)z(O) = Ez and ¢z(1) = U;.
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We have the following relations from Figure 7:

A(¢(100)) < A(¢(001)) (dark grey < light grey)
A(¢(010)) < A(¢(001)) (dark grey < light grey)

A(6(101)) < A(¢(110)) (light grey < white)

A(#(011)) < A(¢(110)) (light grey < white)
Written in the language of ¢ and u this means

(ug + €2)ls < (b1 + £2)us
(01 + uz)lz < (£1 4 €2)us
(u1 + Lo)uz < (u1 + ug)ls
( ) (

1+ us us < (up + u2)€3

We consider first and fourth equation; the second and third together lead to

similar contradiction. First equation:

(u1 + €2)lz < ({1 + L2)us
U1€3 + £2£3 < 6111,3 + ggu?,

U1£3 — E1U3 < Zg(Ug — £3>
Fourth equation:

(61 + U,Q)u?, < (U1 + u2)€3
€1U3 + ugug < ulfg + ’LL2£3

UQ<U3 — 23) < uls — l1us
Comparing the last line in each equation block we get
UQ(U3 — 33) < u1€3 — Elu?, < gg(u;g — 63),

which, after cancellation, gives

uy < Ls.
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Therefore ¢2(0) > ¢2(1), contradicting Lemma 4.7, so A = (z1 + 22)23 is also
impossible. Therefore, (f, g) is not IIX-jointly realizable.

However, the pair (f,g) is XIIX-jointly realizable. To see this, let A =
2122+ 23, let 61(0) = 92(0) = 93(0) = 1, 61(1) = 3, ¢o(1) = 3.1, and (1) = 4,
and let 81 = 4.5, and 6, = 9. Such an assignment is displayed in the table in
Figure 7.

We now prove the inductive step. Let n > 3. Assume there exists f,g : B" —
B such that (f, g) is not II¥-jointly realizable, but is XII¥-jointly realizable. Let
(A o ¢, RN) with thresholds 6; and 6, XIIX-jointly realize (f,g). Define

r e Yn n :O
Fyi - Yne1) == Fr-yn)  ynta

1 Ynt1 =1

91 Yn) Ynt1=0

G- Yng1) =
1 Ynt1 =1

As in the proof of Lemma 4.23, observe that

Colyiq (True(f)|pn+1) = True(f), Col,iy (True(g)lr,,,) = True(g),

in other words the floor of f has the same truth set as f and the floor of g has the
same truth set as g. Since (f, g) are not II¥-jointly realizable, the contrapositive
of Theorem 4.15 (a) tells us that (f,§) are not IIS-jointly realizable. Let m =
min{A(¢(B"))}. Define ¢,41(0) := 1 and ¢,41(0) := max{2,C}, where C
is large enough such that m + C' > max{f;,02}. Define A= zZn+1 + A and
¢ = (1, On,y ¢Zn+1). Then A is a valid SIIS-interaction function, and (AOQNS,
RN) SII3-jointly realizes (f,§), completing the proof. O

4.4.8. XIIX-jointly realizable C K -jointly realizable for n > 4

In this section we prove the last strict inclusion in the fourth row of Table 1.

Lemma 4.25. Let n > 4. There exists a pair f < g € MBFT(n) such that

(f,9) is not ZIIX-jointly realizable, but (f,g) is K-jointly realizable.
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Figure 8: An example pair f,g : BY — B with f < g. Dark grey is False(f) N False(g), light
grey is False(f)NTrue(g), and white is True(f) N True(g). Nodes are labels with y1y2y3ys. The
pair (f,g) is K-jointly realizable, but not XIIX-jointly realizable. Visually, the inner cube is

the floor in the fourth direction, and the outer cube is the ceiling in the fourth direction.
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Proof. Recall that any pair f < g € MBF™(n) is K-jointly realizable by Theo-
rem 4.6. It remains to construct an example that is not XII3-jointly realizable
and apply induction. We construct an explicit pair for n = 4. Consider the pair
(f,9) in Figure 8. Observe that the floor (inner cube) has the same truth set as
the cube in Figure 7. In Lemma 4.24 we showed that this pair can be realized
by the XIIY-interaction function A = 2129 + 2z3. It turns out this is the only
valid XII¥-interaction function that can realize the pair. To see this, we first

list all possible XII3-interaction functions for n = 3, which are

214+ 20+ 23 (21+22)23 (21+23)22 (224 23)21

212273 z122 + 23 z2123 + 22 2223 + 21

Via Equations (20) and (21) we can rule out all but z12o + 25 and (21 + 22)23.
In addition, Lemma 4.24 showed that A = (z1 + 22)z3 also does not work.
Therefore, we can make the following claim: if (Ao ¢, RIN) XII¥-jointly realizes
the pair of MBFs from Figure 8, then A = 2129 + 23.

Suppose that f < g € MBF'(4) in Figure 8 are XIIX-jointly realizable.
Then by Theorem 4.15 the floor (inner cube) and ceiling (outer cube) pairs
(ff,:9¢,) and (fc,,9¢c,) defined rigorously in Theorem 4.15 are XII¥-jointly
realizable, and there is a single XIIY-interaction function A along with maps
bc,, ¢F,, realizing networks RN, RN, and thresholds 0c, 1, 0c, 2, 0F, 1, 0F, 2
such that (Ao¢r,, RN, ) XII¥-jointly realizes (fg,, gg,) and (Aooc,, RNg, )
YII¥-jointly realizes (fc,,9¢c,)- By our above claim, we know A = 2122 + z3.

However, consider (fg,,9c,)- By inspection, we see that
Cols(True(fc,)|c,) & Cols(True(ge,)|rs)

Colz(True(fg,)lc,) 2 ColsTrue(yg,)|r;)

By Theorem 4.14 we know that if (Aopc,, RN, ) X1IX-jointly realizes (fg,, 9¢, )
then z3 cannot be a factor or simple term of A. This contradicts our claim that
A = z129 + 23, and so (f, g) are not XIIX-jointly realizable.

We now prove the inductive step. Let n > 4. Assume there exists f,g :

B™ — B such that (f, g) is not XII3-jointly realizable, but is K-jointly realizable.
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Define

r ... n n :0
flyr . Yng1) := f<y1 ‘T) Yn+1

1 Ynt1 =1

g(yl .. -yn) Yn+1 = 0

g1 Ynt1) =
1 Ynt1 =1

Observe that f/,§’ € MBFT(n + 1) such that f/ < §. Since fl’;nﬂ = f and
§’Fn+1 = g, by Theorem 4.15 we know (f,g) is not XII3-jointly realizable. By
Theorem 4.6, we know all pairs f < g € MBF+(n + 1) are always K-jointly

realizable. 0

4.5. XIIX-joint realizability = K-joint realizability for n = 3

This is the final result remaining to be proven in Table 1. To find the
total number of pairs (f,g) such that f,g € MBF'(3) and f < g, we use
the bijection given in Definition 4.16. The number of K-realizable pairs (f, g)
where f < g € MBF"(3) is the same as [MBF"(4)|. In [1] it was found
that [MBF " (4)| = 168. We used the software DSGRN fto find that 150 MBFs
in MBF " (4) are Y-realizable. The software was also used to computationally
check that there are exactly 150 pairs f < g € MBF™(3) that are X-jointly
realizable. We explicitly constructed the remaining 18 pairs (f; < ¢;),i =
1,...18 that are provably not X-joint realizable by applying Theorem 4.14 to
at least one direction in each case. These pairs are all presented in Appendix
Table B.2 with the direction that allows application of Theorem 4.14 indicated.
Finally, in Appendix Table B.3, we provide specific realizing functions A o ¢ and
realizing network thresholds 61, 6 that XI1X-jointly realize all 18 pairs.

5. Discussion

In this work we linked two classes of dynamical systems, one a continuous
time ordinary differential equation (ODE) model and the other a discrete time

monotone Boolean function (MBF) model. Both of these classes have been used
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to model dynamics of gene regulatory networks. We show that a very general
class of ODE models with a discontinuous right hand side admits an equivalence
relation, such that all ODEs in an equivalence class share the approximate
description of dynamics in terms of the identical state transition graph STG.
We then showed that each equivalence class corresponds to a collection of MBF's.
The collections of MBFs can be arranged into a parameter graph where edges
between the collections indicate a one-step change in one of the MBF's.

After establishing the equivalence between collections of MBF's and equiva-
lence classes of K systems of ODEs, we pose the question about what restric-
tions, if any, the algebraic form of the right-hand side of the ODE imposes on
k-tuples of MBF's that correspond to realizable equivalence classes of ODEs.

We show that the classes of pairs of MBF's with three inputs that are realiz-
able as linear functions are a strict subset of I1¥-jointly realizable pairs, which
is in turn a strict subset of XII¥-jointly realizable pairs of MBFs. We also show
that there are pairs of MBFs with any n > 4 inputs that are K-jointly real-
izable, but are not XIIX realizable. To summarize,the increased complexity of
the algebraic expression provides a richer class of models as measured by the
set of MBF's that can be realized in a parameter graph.

Our work opens up many interesting questions about the joint realizability
of collections of MBFs. We will briefly discuss two potential sets of questions.
First, we defined an infinite nested set of classes of nonlinearities. While we
only discussed the first three ¥ C IIX C ¥TIX, adding alternating products
and sums creates larger and larger classes of functions. Do our results extend in
this direction? In other words, are there pairs of monotone Boolean functions
that are realizable in a parameter graph via class s + 1, but are not realizable
in class s? Furthermore, is it possible that there are pairs of MBF's that are not
realizable in any of the infinite progression of algebraic classes with alternating
products and sums, but are K-jointly realizable?

The second class of questions generalizes pairs of monotone Boolean func-
tions to k-tuples, Our results derive some constraints for pairs of MBFs, which

are then used to prove the main results about differences in *-joint realizability.
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While these results apply pairwise to any k-tuple of MBFs with f; < fo < ... <
fx, to rule out realizability of some tuples, we do not know if there any additional
constraints that arise from considering, say, triples of functions f < g < h, or
k-tuples of MBFs.

By providing a link between a class of discontinuous differential equations
and the collection of k-tuples of MBF's,; this paper provides an opening to a class

of new problems in the field of monotone Boolean functions.

Appendix A. Proofs of Theorem 4.14 and 4.15.

Proof of Theorem 4.14. We will proceed by contradiction. Suppose z; is a factor
or simple term and suppose the negation of Equations (17) and (18). The
negation of (17) is there exists some point ¥ € Fy such that ¢g(y) = 0 and
f(7+é¢) = 1. The negation of (18) implies there exists some point @ € F, such
that g(@) = 1 and f(w + é,) = 0. Let 6 and 0, be the thresholds from RN
associated to the two functions respectively. From the definition of *-jointly

realizable, we know

<

g

V

>

s}

> = B F
B8 8=

We now proceed by cases.
Case 1: (z¢ is a factor) Recall from the definition of factor that there
exists a function A’ that does not depend on 2, such that A = z,A’. We have

ze = ¢¢(vy) for any ¢ € B™. Taking ¥ € F; we have

A(G(0)) = de(0)A'(¢' (Col (7))
AT+ &) = de(1)A' (¢ (Cole(D))).

We used the collapse operation because A’ is independent of 2z, and we took

¢'(Cole(V)) = (¢1(v1)s- -, Pe—1(ve—1), pe41(vVet1)s - -, dn(vn)). Lastly, we used
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Coly(¥) = Coly(¥ + é7). We conclude that for any @ € Fy

Pe(1)
#¢(0)

From (A.2) and (A.4), we may write

Pe(1)
$¢(0)

o) s s ;
(@) MO@) <05 = A@D) <

and combining with (A.1) and (A.3) we obtain

$¢(0)
Be(1)

A(p(0)) = A(@(7 + é)).

$0(0)
be(1)

99 > 9f and 99 < Hf

a clear contradiction.
Case 2: (z is a simple term) Similar to Case 1, the key fact is, if z is a

simple term, we know for any v € F,

AM@(0) + (9e(1) = 9(0)) = A(G(T + €0)),
We then make a similar argument as before. Equations (A.2) and (A.4) give
A@() + (De(1) = 9¢(0)) > 01 <= A((¥)) > 01 — (de(1) — $¢(0))
A(p(W)) + (9e(1) — ¢¢(0)) < 01 <= A(S(W)) < b1 — (de(1) — ¢¢(0))

and combining with (A.1) and (A.3) we obtain

0g > 07 — (de(1) — ¢¢(0)) and Oy < 0y — (¢2(1) — ¢¢(0))
which is our desired contradiction. O

Proof of Theorem 4.15. Let f,g : B — B, with f < g, be *-jointly realizable
MBEFs, and let (Aog, RN) jointly *-realize (f, g). Let 65 and 6, be the thresholds
associated to the two realizations of these functions.

We seek to construct a *-interaction function A’ : Ri71 — R4, a map
¢ B - Riﬁl, and a weighted regulatory network RNy, with thresholds 0%
and 6 so that (A’ o ¢/, RNy;) x-jointly realizes f{;,g;; : B"~' — B. In doing so
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we will prove a). In each of the following cases, the construction of A’ does not
depend on whether U = F; or U = Cy, and so b) will follow immediately.

Recall that we are going to collapse over the /1 dimension. In the following
proof, we will be considering a node in RN that has an incoming edge from
node ¢ and two targets, one of which is associated to the MBF f and the other
to g. It will be useful to define the graph RN’ to be the network RN without
the edge from ¢ to the node under consideration. RN’ is an intermediate step
to the construction of RNy;.

Using the observations in Remark 3.2, we note that regardless of the specific
value of %, we can always assume that A € XIIX defined in (12). Therefore
there exist sets Wh,..., Wy, where Wy,..., Wy, partitions the set {1,...,n},
and for each k € {1,..., L}, there exists M}, € N so that the sets Vi 1,. .., Vi, M,
partition the set Wy, such that

=y (s -

Wi Vk_’j ’L‘Gde

There is exactly one set in the partition, call it W), such that ¢ € W,,. Further-
more, there is exactly one V,, . that contains ¢, call it V}, ,. We now proceed by
cases. Define the map 0 : {1,...,n} \ {¢{} = {1,...,n — 1} as

' j ifj<¥

6(j) =
j—1 ifj>¢

We will use the map § to construct the interaction function A’. If % is Y11, we
need to consider Cases 1, 2, and 3. However, if * is IIX, then W7 = {1,...,n},
and we only need to consider Cases 2 and 3, and if * is 3, then W; = V;; =
{1,...,n}, and we only need to consider Case 3.

Case 1: (W, = {¢}) In this case the map A has the form

A:zg+z H Zzi

Wi Vk’]‘ iEVk’j
k#p
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where z; = ¢;(y;) for ¥ € B™. We construct the interaction function A’ as

V=X T X =

Wy Vk,j iEkaj
k#p

and define z5;) = ¢;(ys) = ¢5-1(:)(ys). We then set ¢' = (¢,...,¢,_;). This

construction ensures, for any § = (y1,...,y,) € B",

A(o(7) = N (&' (Ws-1(1)» - - -+ Ys—1(n—1))) + De(ye)

If U = Fy, then for all ¥ = (y1,...,yn) € U, we know y; = 0. Therefore,

A(B(H) = M@ Ys-11) - - > Y61 (n—1))) + ¢(0).

Set 0 = max{0,0; — ¢¢(0)} and ) = max{0,0, —¢,(0)}. It is possible that
0} = H’g at this point. However, since A o ¢ takes on finitely many values, we can
always perturb one threshold by a small enough € to guarantee our inequalities
still hold. After this potential perturbation, replace §; and 6, in RN’ with 9}

and 0y, to complete the construction of RNg,. This construction means that

A(¢(y1a s vyn)) § ef — A/(¢/(y5*1(1)a s 7y5*1(n71))) § 03‘

and likewise for 6, and 6. Therefore (A’ 0 ¢', RNg,) *-jointly realizes fg, and
9,

Similarly, if U = Cy, then for all ¥ = (y1,...,yn) € U, we have

Ad(7) = N (' (s-1(1)s -+ Ys-1(n—1))) + ¢e(1).

We set 0 = max{0,0; — ¢¢(1)} and 0, = max{0,0, — ¢¢(1)}, perturbed by
small enough € > 0, if necessary, to replace ; and 6, in RN’ and complete the
construction of RN, . Then (A’ o ¢, RNg, ) *-jointly realizes fg, and gg,

Case 2: (W,\{¢} # 0 and V,, ; = {¢}) The interaction function A’ without
the /tB element is

M= LTI D2 =

Wy Vk,j iEVij
J#q
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In this case we know that W, is a partition of at minimum size two. Pick exactly

one t € W, \{q}. Construct zs.;) = ¢’;(y;) as follows: if U = F;, then for j € B"

bs—1(5)(y5)¢e(0) if j € Vp,

bs-1()(Y5) otherwise

o (y;) =

However, if U = C;, then

Bs-10j)(Y;)pe(1) if g€V,

Ps5-1(j) (5) otherwise

oiy;) =

We have ensured for any ¢ = (y1,...,yn) € U,

A7) = N (&' (Ys-11) - - > Y61 (n-1)))

Setting ¢, = 6y and 0;} = f, obtains the desired result; i.e., RN, = RN’ and
(A o ¢ RN’) x-jointly realizes f{;, g;-
Case 3: (W, \{{} # 0 and V,, \ {¢} # 0) In this case the original

interaction function A takes the form

A= T (S E) T -
Wi Vi.j i€Vi Vp.a \i€Vp 4
(k.5)#(p,q)

The interaction function A’ is constructed as

vl (2ol s e
Wi Vi,j 1€V, j Voa \ i€V
(k,3)#(P,q) vy,
Pick exactly one element ¢ € V;, , \ {£}, and construct ¢’ as follows: if U = Fy,
then
bs-1(7)(y5) + ¢e(0) if j = 6(t)

bs-10j)(Y5) otherwise

O (y;) =
However, if U = Cy, then

bs—1(jy(y;) + ¢e(1) if j=6(t)

bs-10j)(Y5) otherwise

oi(y;) =
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We then set ¢/ = (¢},...,¢,,_1). This construction ensures, for any § =

(y17"'7yn) S U7
Ao(@) = AN (&' (Ys-1¢1)s -+ Ys-1(n—-1)))

and so by setting RNj; = RN’ as in Case 2, we obtain the desired result. [

Appendix B. Supporting tables and figures

Table B.2 lists explicitly all pairs f < g € MBFT(3) of Boolean functions
with three inputs that are not ¥-jointly realizable. These correspond to non-
threshold monotone Boolean functions in MBF T (4) with 4 inputs. In each case
the direction that allows us to use Theorem 4.14 to rule out ¥-joint realizability
is indicated in the last column.

In Table B.3 we show explicitly the form of the interaction function A €
YIIX, the values (1) = (¢1(1),d2(1), ¢3(1)), and the value of the thresholds
04,0 that XIIX-jointly realize all pairs f; < g; given in Table B.2. In all cases,
we set ¢1(0) = ¢2(0) = ¢3(0) = 1. This list, together with 150 pairs that are X-
jointly realizable, exhausts all pairs f < g of functions in MBF ™ (3) and proves
that for n = 3 every such pair is XII3-joint realizable.

Figure B.9 shows all pairs f < ¢ € MBFT(2). It is also the factor of
the parameter graph associated to node 1 in the network in Figure 1, after
transforming the Boolean functions to be positive under the map S given in
(13).
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True(g), and white is True(f) N True(g).
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