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Abstract

The study of monotone Boolean functions (MBFs) has a long history. We ex-

plore a connection between MBFs and ordinary differential equation (ODE)

models of gene regulation, and, in particular, a problem of the realization of an

MBF as a function describing the state transition graph of an ODE. We formu-

late a problem of joint realizability of finite collections of MBFs by establishing

a connection between the parameterized dynamics of a class of ODEs and a

collection of MBFs. We pose a question of what collections of MBFs can be

realized by ODEs that belong to nested classes defined by increased algebraic

complexity of their right-hand sides. As we progressively restrict the algebraic

form of the ODE, we show by a combination of theory and explicit examples

that the class of jointly realizable functions strictly decreases. Our results im-

pact the study of regulatory network dynamics, as well as the classical area of

MBFs. We conclude with a series of potential extensions and conjectures.

Keywords: Monotone Boolean functions,, gene regulatory networks, switching

systems,
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1. Introduction

The study of Boolean functions in general and monotone Boolean functions

in particular has a long history [1, 2, 3, 4, 5, 6, 7]. One area in which monotone

Boolean functions (MBFs) have been used is in modeling the dynamics of gene
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regulatory networks. In these models the (Boolean) state of each node i in the5

regulatory network is updated based on the (Boolean) states of the nodes j that

that are connected by an edge from j to i. The monotonicity requirement on a

Boolean function (Definition 2.2) reflects the fact that the edges in gene regu-

latory networks are signed and thus the effect of one gene on another is always

either monotonically increasing (activating edge) or monotonically decreasing10

(repressing edge).

An alternative class of network models uses continuous time dynamics of

ordinary differential equations. We are interested in a particular class of such

models with piecewise linear right-hand sides [8, 9, 10, 11, 12, 13, 14]. For the

most general of these models, which we call K-systems, the right-hand side is15

fully determined by a finite collection of constants K = (K1, . . . ,Kn), where Ki

is a collection of constants that describes the activity of node i in the regulatory

network. Each collection Ki within K also satisfies a monotonicity condition

that reflects the monotone effect of the edges in the network.

The main goal of this paper is to show that there is a close relationship20

between K-systems and collections of monotone Boolean functions. In order to

show this connection, we first show that to each K-system one can associate

a state transition graph (STG), which is a finite directed graph that coarsely

captures the progression of the trajectories of the K-system. There are a finite

number of STGs, which permits an imposition of an equivalence relation on the25

(infinite) set of K-systems, with an equivalence class denoted [K].

Our first major result is the correspondence between the equivalence classes

[K] and collections of MBFs. For a fixed regulatory network with n nodes, each

equivalence class [K] has the form [K] = ([K1], . . . , [Kn]). Then each [Ki] for a

node i with mi input edges and bi output edges corresponds to a collection of bi30

monotone Boolean functions withmi inputs. Moreover, each such collection of bi

MBFs, satisfying an additional condition that the truth sets are linearly ordered

by inclusion, is associated to an equivalence class [Ki]. Using this result, the

equivalence classes [K] are arranged into a parameter graph (PG) specific to the

regulatory network under consideration. The edges of the PG are determined35
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by the adjacency of the collections of MBFs associated to each [K].

Our next set of results examines the effect of imposing algebraic restrictions

on the form of the right-hand side of the differential equations of the network

model, which results in additional structure on the set K. These additional

algebraic restrictions decrease the size of the parameter graph. We ask which40

MBFs, and which collections of MBFs, are realizable as parameter nodes of the

corresponding restricted parameter graphs.

The classes of algebraic functions that we chose to examine are nested; the

most restricted and smallest class consists of linear functions, Σ, which is a sub-

set of functions that can be obtained as products of sums of individual variables,45

ΠΣ, and lastly sums of products of sums, ΣΠΣ. These classes are all special

cases of K-systems and therefore admit STGs and PGs. These algebraic restric-

tions are motivated by the software DSGRN [15, 16, 17, 18], which calculates

the PGs and STGs for network models with the class of ΠΣ functions, and in

principle can be extended to other classes of algebraic expressions.50

We show that the classes Σ, ΠΣ, and ΣΠΣ do impose constraints on pairs

of MBFs that can be realized as parameter nodes of a PG. In fact, we show

that the classes of pairs of MBFs with three inputs that are realizable as linear

functions are a strict subset of ΠΣ-jointly realizable pairs, which is in turn a

strict subset of ΣΠΣ-jointly realizable pairs of MBFs. We also show that there55

are pairs of MBFs for any n ≥ 4 inputs that are K-jointly realizable but are not

ΣΠΣ realizable.

These results show that the increased complexity of the algebraic expression

provides a richer class of models as measured by the set of MBFs that can be

realized in a PG. At the same time, the connection between differential equation60

models and collections of MBFs allows for the formulation of a host of interesting

questions (see the Discussion) about what k-tuples of MBFs can be realized as

nodes of parameter graphs of differential equation models as the complexity of

the right-hand side varies.
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2. K-systems and Monotone Boolean Functions65

A regulatory network is a useful abstraction for organizing information about

interacting units. Nodes represent units and (directed) edges interaction be-

tween the nodes.

Definition 2.1. A regulatory network RN is a triple RN := {V,E, s} where

• V is the set of vertices;70

• E ⊂ V × V is a finite set of oriented edges, where (i, j) denotes the edge

from i to j;

• s : E → {+,−} is the sign of the edge.

We will generally use n = |V |. We denote S(i) to be the set of sources of node

i and T (i) the set of targets of node i:

S(i) = {j ∈ V | (j, i) ∈ E} and T (i) = {j ∈ V | (i, j) ∈ E}.

We split the set of sources into activating and repressing inputs as S(i) =

S(i)+ ∪ S(i)− where

j ∈ S+(i) iff e = (j, i) ∈ E and s(e) = +

and

j ∈ S−(i) iff e = (j, i) ∈ E and s(e) = −

The interpretation of the signed edges comes from biology; a positive edge

signifies up-regulation, where the rate of change of the target node concentra-75

tion increases as the concentration of the source node increases. A negative edge

signifies down-regulation, where the rate of change of the target node concen-

tration decreases as the concentration of the source node increases. Inherent in

this description is monotonicity of the rate of change of the target node with

respect to changes in each of the source nodes [19, 18, 20, 21, 22, 23].80
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One of the natural ways to associate dynamics to a network is using Boolean

functions. Every node is assumed to be either OFF, corresponding to low con-

centration, represented by the state 0, or ON, corresponding to high concentra-

tion, represented by the state 1. A Boolean function is given by f : Bn → B

with B := {0, 1}. In examples, we will often write elements of Bn as strings (e.g.85

10010 ∈ B5).

Definition 2.2. [24] A Boolean function f : Bn → B is positive (resp. negative)

in yi if f |yi=0 ≤ f |yi=1 (resp. f |yi=0 ≥ f |yi=1), where f |yi=β is the function

with yi fixed at β ∈ B. We say that f is monotone in yi if it is either positive

or negative in yi and is monotone if it is monotone in yi for all i.90

Positive and negative monotone Boolean functions (MBF) capture the effect

of positive and negative edges in the network RN, respectively. We will use the

notation

MBF(n) := {f : Bn → B | f is monotone}

MBF+(n) := {f : Bn → B | f is positive in xi for all i ∈ {1, ..., n}}

The dynamics of the network with n nodes is described by iteration of f : Bn →

Bn, where f := (f1, f2, . . . , fn) is a collection of MBFs. Monotone Boolean

function models are widely used due to their simplicity, but matching their

predictions to experimental values of continuous variables like concentration

always poses a challenge. An effort to combine the simplicity of Boolean maps95

with a continuous time description was initiated by [9, 10, 25]. To explain this

approach we extend the definition of regulatory network given in Definition 2.1.

Definition 2.3. A weighted regulatory network is a regulatory network RN

with positive, real-valued weights assigned to each node,

γ = (γ1, . . . , γn)

and each edge

θi = {θs1i, θs2i, . . . , θsbi i} where {s1, s2, . . . , sbi} = T (i). (1)
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1 2

θ11 = 3

θ12 = 1.5

θ21 = 2

γ1 = 1

γ2 = 1
θ11

θ21

θ12

S+(1) = {1} S−(1) = {2}

S+(2) = {1} S−(2) = ∅

Figure 1: An example weighted regulatory network. Here V = {1, 2}. We use → to denote

a positive (activating) edge, and a to denote a negative (inhibiting) edge. We also illustrate

the sets of sources for each node.

We want to bring attention to the the indexing we use: θji is associated to the

edge from i to j, in the tradition of [15]. The node weights are called decay rates

and the edge weights are called thresholds. We make a generic assumption that100

for each node i, the bi thresholds in the collection θi are distinct.

The idea of decay rates comes from biology and indicates how quickly a gene

product will break down under natural cellular processes. A common model of

enzymatic gene regulation is the sigmoidal Hill function model, which has a

half-saturation value. These half-saturation values are sometimes treated as105

thresholds, here represented as weights on edges. An example weighted regula-

tory network is shown in Figure 1.

2.1. K-systems

The most general attempt to combine the simplicity of Boolean maps with

a continuous time description resulted in switching K-systems, consisting of a110

system of differential equations on Rn
+. The “K” in K-system denotes a finite

collection of real values that satisfy a monotonicity assumption (Definition 2.4)

and are used to parameterize a system of ordinary differential equations (ODEs)

with discontinuous right-hand sides.

Given a weighted regulatory network, we associate to each node i a contin-

uous non-negative variable xi ∈ R+, usually representing the concentration of

6



a gene product. The phase space of the gene concentrations x = (x1, . . . , xn) is

Rn
+. The thresholds θi divide the xi axis into bi +1 intervals, where bi = |θi| is

the number of targets of node i. We enumerate these by the integers 0, . . . , bi

in ascending order. Then

X = Rn
+ \ {xi = θji | i ∈ 1, . . . , n, θji ∈ θi}

is an open rectangular grid where each component of X is an open domain. As115

we will see next, the collection of real numbers K determines an ODE system

defined on X whose solutions are consistent with a discrete mapping between

open domains in X and this discrete map can be interpreted as a collection of

MBFs. The following definition of the K-system goes back to at least Thieffry

and Romero [26]; we follow the exposition in [13].120

Definition 2.4. Recall the definition of a regulatory network RN in Defini-

tion 2.1, particularly the nodes V and the sources S±(i). Let

K := {Ki,A,B ∈ R+ | i ∈ V,A ⊂ S+(i), B ⊂ S−(i)} (2)

be a collection of non-negative numbers that satisfies the monotonicity assump-

tion:

• For each i ∈ V , if A ( A′ ⊂ S+(i) then

Ki,A,B ≤ Ki,A′,B for all B ⊂ S−(i).

• For each i ∈ V , if B ( B′ ⊂ S−(i) then

Ki,A,B ≥ Ki,A,B′ for all A ⊂ S+(i).

For convenience, we associate the real-valued collection K to a collection of

parameter assignment functions

ki : 2
S+(i) × 2S

−(i) → R+, ki(A,B) := Ki,A,B

denoting k = (k1, . . . , kn).
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Note that the class of K-systems is very large since the number of constants

Ki associated to a node i ∈ V with ai source nodes is proportional to the size125

of the power set of {1, . . . , ai}

We continue the example from Figure 1 by listing an example assignment of

numbers K that satisfy the monotonicity assumption.

K1,∅,2 = 0.1 K2,∅,∅ = 0.2 (3)

K1,∅,∅ = 0.5 K2,1,∅ = 0.4

K1,1,2 = 5

K1,1,∅ = 6

Up to now, the construction of K has depended only on the structure of an

unweighted regulatory network RN. We now take into account the weights130

associated to RN as in Definition 2.3. The K-system ODE described next

depends on the these weights.

The dynamics of variables xi are affected by the incoming edges to node

i in the regulatory network RN. For each xj ∈ S(i), the value of xj is either

above or below the threshold θij assigned to the edge from j to i in the weighted

regulatory network. If xj ∈ S+(i) has an activating effect, then xj > θij implies

that xi will be produced at a greater rate than when xj < θij . The inequalities

are swapped for a repressing effect, xj ∈ S−(i). With this in mind, we define

the activity function for a node i and x ∈ X, as follows:

ζi : X → 2S
+(i) × 2S

−(i), ζi(x) = (Ai, Bi) (4)

Ai = {j ∈ S+(i) | xj > θij}

Bi = {j ∈ S−(i) | xj > θij}.

The map ζ := (ζ1, . . . , ζn), defined on X, is constant on each open domain of

X.

The composition of the parameter assignment function with the activity135

function, ki◦ζi, assigns to a vector x ∈ X a scalar parameter ki(A,B) = ki(ζi(x))
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x2

x1θ21 θ11

θ12

x

k◦ζ
γ
(x) (1, 1) (2, 1) (3, 1)

(1, 2) (2, 2) (3, 2)

ζ1(x) = (∅, {2}), ζ2(x) = ({1}, ∅)

k ◦ ζ

γ
(x) = (.1, .4)

κ(.1, .4) = (1, 1)

Figure 2: Continuing the example from Figure 1 we construct the state transition graph.

Above left is X and right is D. For any x in the shaded domain, the value of k◦ζ
γ

(x) is

constant and located in the lower left domain. This determines the value ΦK(2, 2) = (1, 1)

denoted with a dashed arrow; see (8).

in the set K. Recalling the decay rates γ from Definition 2.3, we are now in a

position to define a differential equation parameterized by K and defined on X.

Definition 2.5. The system

ẋi = −γixi + ki(ζi(x)) (5)

is called the K-system on X associated to the weighted regulatory network RN.

Note that since ζ is constant on the open domains of X, the differential140

equation is linear in each such domain. On the boundaries of the domains, the

system is undefined due to the discontinuity in ki(ζi(x)). However, we extend

the system by continuity, whenever possible, from X to Rn
+. The assumption of

the non-negativity of k guarantees that the non-negative orthant Rn
+ is positively

invariant and the concentrations xi remain non-negative for all t ≥ 0.145
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2.1.1. State transition graph

Let

D :=

n∏

i=1

{0, 1, . . . , bi}

be a set of n integer sequences that will be referred to as states. Recall that bi

is the number of targets of the node i in RN, bi = |θi|. We construct a function

between the points of X and the states in D. Let κi : X → {0, 1, . . . , bi} be a

map

κi(x) = ` when xi ∈ (θ`∗i, θ
`+1
∗i ) (6)

where superscript ` indicates the `-th domain of the xi axis. Collecting the

maps κi in a single map we define κ : X → D to be the index assignment

map κ = (κ1, . . . , κn). We say that D indexes the open domains of X. By

construction, the index assignment map is constant on each domain in X. The150

map κ takes a vector x ∈ X and assigns it to the state representing the domain

of X in which x lies.

The function
k ◦ ζ

γ
=

(
k1 ◦ ζ1
γ1

, . . . ,
kn ◦ ζn
γn

)

is a map k◦ζ
γ

: X → X. We define a discrete map ΦK : D → D on the set of

states D by requiring that

ΦK ◦ κ = κ ◦
k ◦ ζ

γ
, (7)

i.e. that the following diagram commutes

X X

D D

k◦ζ
γ

κ κ

ΦK

(8)

Note that the solution of (5) with initial condition x0 converges to the target

point k◦ζ
γ
(x0). The map ΦK takes the state d = κ(x0) and assigns it to the

state ΦK(d) which contains the target point k◦ζ
γ
(x0). In this way, the map155

ΦK captures the behavior of solutions of (5). It is important to note that the

convergence of the solution starting at x0 toward its target point k◦ζ
γ
(x0) is
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(1, 1) (2, 1) (3, 1)

(1, 2) (2, 2) (3, 2) (1, 2)

(1, 1) (2, 1) (3, 1)

(2, 2) (3, 2)

Figure 3: Left: The state transition graph is the asynchronous update dynamics, and so does

not allow the diagonal transition; instead, we replace the dashed arrow with arrows capturing

one-step adjacency. Right: the completed STG, where the process that was illustrated for

state (2, 2) is repeated for each state.

only valid while the solutions remain in the component of X containing x0;

when they enter a neighboring domain, the target point will change.

To capture this behavior, we define a state transition graph on states d ∈ D160

that coarsely describes solutions of (5). It represents the asynchronous update

dynamics for the discrete valued function ΦK .

Definition 2.6 (State transition graph). The state transition graph (STG) is

a directed graph with nodes D, where two nodes d, d′ ∈ D are connected by a

directed edge d → d′, if and only if165

1. either d = d′ and ΦK(d) = d; or

2. d and d′ differ in exactly one component, say i, and

d′i = di + 1 and ΦK
i (d) > di, or

d′i = di − 1 and ΦK
i (d) < di

We construct the state transition graph of our example network in Figures 2

and 3.

The number of maps ΦK for a given RN is finite. This induces an equiv-

alence relation over all collections K satisfying the monotonicity condition in170

Definition 2.4 that are consistent with the structure of RN.

Definition 2.7. For a given weighted regulatory network, we define an equiv-
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y1y2 g11 g21

00 0 0

01 0 0

10 1 1

11 1 1

y1 g12

0 0

1 0

(1, 1) (2, 1) (3, 1)

(1, 2) (2, 2) (3, 2)

y1y2 g11 g21

00 0 1

01 0 0

10 1 1

11 1 1

y1 g12

0 0

1 0

(1, 1) (2, 1) (3, 1)

(1, 2) (2, 2) (3, 2)

Figure 4: Left: the collection of MBFs corresponding to our example network and choice of

K in (3), and the associated state transition graph. Right: A collection of MBFs adjacent (in

the parameter graph) to the collection on the left. The single change is highlighted in gray.

The corresponding state transition graph is also pictured; differences caused by the shaded

entry are shown as dashed edges

.

alence relation on the collection of all parameter sets K. We set

K ∼= K ′ ⇐⇒ ΦK(d) = ΦK′

(d) for all d ∈ D.

Notice that each equivalence class [K] has a component structure composed of

n independent equivalence classes, [K] = ([K1], . . . , [Kn]), one for each node

i ∈ V in the regulatory network. This is because the monotonicity assumption

in Definition 2.4 applies independently to each node.175

2.2. Equivalence classes [K] are collections of MBFs

We now discuss the connection between equivalence classes [K] and mono-

tone Boolean functions. Each equivalence class [K] is uniquely associated to a

collection of
∏n

i=1 bi MBFs, where bi = |T (i)| is the number of targets of node

i in RN. We label these MBFs gsi, one for each threshold θsi in the weighted180

regulatory network, and construct them below.
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Let [K] = ([K1], . . . , [Kn]) be an equivalence class, and consider an element

Ki ∈ [Ki], where Ki = {Ki,A,B}A⊂S+(i),B⊂S−(i) is a collection of constants for

node i in RN. Define a function

αi : B
S(i) → 2S

+(i) × 2S
−(i)

where αi(~y) = (Ai, Bi) for

Ai = {j ∈ S(i) | yj = 1} ∩ S+(i), Bi = {j ∈ S(i) | yj = 1} ∩ S−(i).

Here we use the standard multi-index notation BS(i) = {yj1yj2 . . . yjmi
| jk ∈

S(i), yjk ∈ B}, i.e. elements of BS(i) are Boolean strings of length |S(i)| indexed

by elements of S(i) in order. As an example, if S(i) = {2, 4, 5, 7}, then ~y =

y2y4y5y7, where yi ∈ B.185

Let {θs1i, θs2i, . . . θsbi i} be the bi thresholds associated to the bi targets of

node i in RN. With this assignment, we define positive Boolean functions gsi :

BS(i) → B for all s ∈ T (i), as

gsi(~y) =




1 when Ki,αi(~y) > θsiγs

0 when Ki,αi(~y) < θsiγs

and negative Boolean functions as

gsi(~y) =




0 when Ki,αi(~y) > θsiγs

1 when Ki,αi(~y) < θsiγs

Note that the strict inequality can be changed to non-strict inequality in one

of the two equations and this will not affect our results. Since none of these

possibilities is a priori better, we chose to require that both inequalities are

strict.

We observe that if j ∈ S+(i), then gsi will be positive in xj , and if j ∈ S−(i),

then gsi will be negative in xj . Therefore, any gsi constructed in this way will be

a monotone Boolean function gsi ∈ MBF(|Si|). As we show next, the collection

G = {gsi | i = 1, . . . , n, s ∈ T (i)}
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is an equivalent representation of the equivalence class [K].190

Proposition 2.8. Fix a weighted regulatory network RN and thus sets S+(i), S−(i),

and T (i), as well as the weights γi and θji for all i = 1, . . . , n, j ∈ T (i). Then

ΦK = ΦK′

⇐⇒ G = G′.

Proof. Consider two different collections K,K ′ associated to parameter assign-

ment functions k, k′ respectively. Note that the set of states D, the function

κ : X → D and the function ζ : X → 2S
+(i) × 2S

−(i) are uniquely determined

by the weighted regulatory network RN. Therefore, ΦK and ΦK′

differ only in

the functions k and k′:

ΦK ◦ κ = κ ◦
k ◦ ζ

γ
ΦK′

◦ κ = κ ◦
k′ ◦ ζ

γ
.

Therefore it follows that

ΦK = ΦK′

⇐⇒ κ ◦
k

γ
= κ ◦

k′

γ
⇐⇒ κ ◦

k

γ
◦ α = κ ◦

k′

γ
◦ α.

This in turn leads to the equivalencies:

⇐⇒ κ(Ki,αi(~y)/γi) = κ(K ′
i,αi(~y)

/γi) ∀i = 1, . . . , n and ∀~y ∈ BS(i)

⇐⇒ Ki,αi(~y)/γi,K
′
i,αi(~y)

/γi ∈ (θ`∗i, θ
`+1
∗i ) for some `

⇐⇒ Ki,αi(~y),K
′
i,αi(~y)

∈ (θ`∗iγi, θ
`+1
∗i γi) for some `

⇐⇒
(
Ki,αi(~y) > θjiγi ⇐⇒ K ′

i,αi(~y)
> θjiγi

)
∀j ∈ T (i)

⇐⇒
(
gji ∈ G ⇐⇒ gji ∈ G′

)
.

For an example, compare the collection K in (3) for the weighted regulatory

network in Figure 1 to the equivalent collection of three monotone Boolean

functions in the left panel of Figure 4.

2.3. Parameter Graph195

The fact that we can view equivalence classes [K] as collections of monotone

Boolean functions allows us to organize the equivalence classes [K] into a graph,
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0 1 0 1 0 1×20 node graph

Figure 5: Continuing the example, we show the parameter graph for the network in Figure 1.

The parameter graph takes the form of a product graph, with one factor for each node in RN.

The factor associated to node 1, which has two inputs and two outputs in RN, is the 20 node

graph on the left. It is isomorphic to the graph shown in Appendix B, Figure B.9. The factor

associated to node 2, which has one input and one output in RN, is shown on right. Each

parameter node in the factor on the right contains the associated monotone Boolean function,

where gray shading means g12 = 0, and similarly white shading implies g12 = 1.

called the parameter graph (PG), where each node is associated to an equiva-

lence class. Let [K] and [K ′] be different equivalence classes, with associated

collections of MBFs G = {gsi} and G′ = {g′si}. The nodes [K] and [K ′] will

be connected by an edge, if, and only if, there is i ∈ {1, . . . , n}, s ∈ T (i), and

~y ∈ BS(i) such that

gsi(~y) 6= g′si(~y)

gsi(~z) = g′si(~z) ∀~z 6= ~y

g`j = g′`j whenever j 6= i or ` 6= s.

In other words, there is exactly one MBF whose value differs on one input. An

example of a single adjacency is shown in Figure 4 and the parameter graph for

our running example is shown in Figure 5.

2.4. Representative networks

It will be convenient to consider a subset of weighted regulatory networks200

RN with γi = 1 for all i. It turns out that the class of weighted regulatory

networks with this property exhibits the same parameter graphs with the same

collection of state transition graphs as the collection of weighted graphs with

general positive decay rates γ = (γ1, . . . , γn).

To see this, fix a set K and its parameter assignment function k from Defi-205

nition 2.4. Consider a weighted regulatory network RN with the collections of

sources S+(i), S−(i), targets T (i), decay rates γ = (γ1, . . . , γn), and thresholds

{θji}. Consider a network R̂N with the same collection of sources S+(i), S−(i)
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and targets T (i), but with all decay rates set to γ̂i = 1 and the thresholds set

to {θ̂ji = γiθji}.210

The threshold assignment induces a bijection x 7→ x̂ with x̂ = γx, from X

to X̂:

X̂ = Rn
+ \ {x̂i = θ̂ji | i = 1, . . . , n, j ∈ T (i)}.

The key observation is that

x̂i ∈
(
γiθ

`
∗i, γiθ

`+1
∗i

)
⇔ xi =

x̂i

γi
∈
(
θ`∗i, θ

`+1
∗i

)
. (9)

This allows us to conclude that the activity functions ζ and ζ̂ (defined in (4))

satisfy ζ̂(x̂) = ζ(x̂/γ) = ζ(x), which leads to

θji <
ki ◦ ζ

γi
(x) < θsi

for some j, s ∈ T (i), if and only if

θ̂ji < ki ◦ ζ̂(x̂) < θ̂si.

In other words, the following diagram commutes:

X X

X̂ X̂

k◦ζ
γ

γx γx

k◦ζ̂

Since the underlying network topology is the same between two weighted

networks RN and R̂N, the discrete states of the state transition graph are the

same D = D̂. Using (9) again, we conclude that the index assignment functions

κ and κ̂ from (6) satisfy the following:

κ̂(x̂) = ` ⇔ κ(x) = `.

Recalling that ΦK ◦ κ = κ ◦ (k ◦ ζ)/γ from (7), we see that

Φ̂K ◦ κ̂(x̂) = ΦK ◦ κ(x).

This means that the state transition graphs are identical under K applied to

RN and R̂N.
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We conclude that by considering the restricted class of weighted regulatory

networks with γi = 1 for all i we will recover the same set of state transition

graphs as the general system. Therefore we we will assume γi = 1 from now on,

and we will write gsi as

gsi(~y) =




1 when Ki,αi(~y) > θsi

0 when Ki,αi(~y) < θsi

or (10)

gsi(~y) =




0 when Ki,αi(~y) > θsi

1 when Ki,αi(~y) < θsi

.

2.5. Differential equations from monotone Boolean functions

In Definition 2.5 we associated an ordinary differential equation to a weighted

regulatory networkRN. A more explicit way to do so is due to [9, 10, 25]. Again

consider a weighted regulatory network RN with nodes i ∈ V summarizing

regulatory activity for continuous variables xi. Assume that regulation of xi by

its regulatory input xj switches abruptly at the real-valued threshold θij from

RN, written as one of two maps

σ+
ij(xj) =





1 xj > θij

0 xj < θij
σ−
ij(xj) =





0 xj > θij

1 xj < θij

whenever j ∈ S(i) is a source of node i. We write σi = (σis1 , . . . , σismi
), where

sj ∈ S(i), mi = |S(i)|, σis = σ+
is whenever s ∈ S+(i), and σis = σ−

is whenever215

s ∈ S−(i). In other words, σ+ models an activating input and σ− a repressing

input.

We shall again assume that any two thresholds θji and θki are distinct for

variable xi. Also as before, these thresholds {θij | i = 1, . . . , n, j ∈ S(i)} divide

Rn
+ into an open rectangular grid X. In addition, assume that for very node

i ∈ V there is an associated Boolean function fi : BS(i) → B that converts

inputs of the node i to the new state of node i. Then we consider the following

system of ODEs on X:

ẋi = −xi + fi(σi(x)) (11)
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3. Algebraic switching systems

The system of ODEs (11) has no continuous parameters. In order to intro-

duce such parameters and allow comparison with K-systems we parameterize

both the domain and the range of each function fi : Bn → B. To parameterize

the domain we replace in the definition of σij the Boolean values 0 < 1 by

continuous, non-negative, real parameter values Lij < Uij . To capture the sign

along the network edges, we again consider two types of σij functions

σ+
ij(xj) =





Uij xj > θij

Lij xj < θij
σ−
ij(xj) =





Lij xj > θij

Uij xj < θij
.

We introduce the interaction function Λi as a real-valued replacement for

the function fi. All interaction functions will be algebraic expressions over the

real numbers using addition and multiplication. In this notation, Equation (11)

reads

ẋi = −xi + Λi(σi(x)),

and we refer to it as a switching system, as in [15, 17].

For every x ∈ X, the composition Λi(σi(x)) assigns a real number that220

is a combination of numbers {Lij or Uij | j ∈ S(i)}, where for each j only

one of Lij or Uij enters the function Λi. This combination is constant on each

domain in X. For monotone functions Λi, the image of Λi(σi(x)) is a set K that

satisfies the monotonicity assumption in Definition 2.4. Therefore the switching

system with monotone Λi for all i is a K-system (5) and therefore gives rise to225

a parameter graph and to a state transition graph for each parameter node.

In this paper we consider three basic algebraic forms of functions Λi. The

set of linear (Σ) Λ functions is given by

Σ(n) :=

{
Λi : R

n
+ → R+ | V ⊆ {1, . . . n},Λi(z1, . . . , zn) =

∑

i∈V

zi

}
.

The products of sums (ΠΣ) Λ functions are

ΠΣ(n) :=

{
Λi : R

n
+ → R+ | Λi(z1, . . . , zn) =

∏

Wk

(∑

i∈Wk

zi

)}
,
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where the sets Wk partition S(i). The sums of products of sums (ΣΠΣ) Λ

functions are

ΣΠΣ(n) :=



Λi : R

n
+ → R+ | Λi(z1, . . . , zn) =

∑

Wk


∏

Vk,j


 ∑

i∈Vk,j

zi







 ,

(12)

where the disjoint union of Vk,j is Wk. As before, the sets Wk partition S(i),

and the sets Vk,j partition the set Wk. Observe that these classes of functions

contain progressively more functions, i.e. for n ≥ 3,

Σ(n) ( ΠΣ(n) ( ΣΠΣ(n).

The restriction of the class of functions Λ to a product of sums (ΠΣ) goes

back to at least Snoussi [14], and was used extensively in the development of

DSGRN (Dynamic Signatures Generated by Regulatory Networks) [15, 17, 16,

27, 28]. The main contribution of the DSGRN approach is the definition and230

explicit construction of a parameter graph (Section 2.3) in terms of inequalities

in the input combinations of {Lij , Uij | j ∈ S(i)} and thresholds {θki | k ∈ T (i)}

given a collection of nonlinearities in ΠΣ.

As we have shown in Section 2.2, each component [Ki] of the parameter

node [K] = ([K1], . . . , [Kn]) is equivalent to a collection of monotone Boolean235

functions, one for each edge in the regulatory network. When a node i has

a single target, then there is only one MBF associated to node i, namely gji,

where j is the sole target of i. In the case of multiple targets, |T (i)| > 1, there

is a collection of |T (i)| MBFs for node i. We consider a single component [Ki],

first where node i has a single target and second where node i has more than240

one target. We ask which such singletons or collections of monotone Boolean

functions can be associated to a parameter node in the parameter graphs of K-,

Σ-, ΠΣ- and ΣΠΣ-systems.

Definition 3.1. We say that a monotone Boolean function h : Bn → B is ∗-

realizable, where ∗ can stand for K, Σ, ΠΣ or ΣΠΣ, if there exists a regulatory245

network RN with a node j with a single target ` and weight θ`j and a parameter
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node [K] = ([K1], . . . , [Kn]) for the ∗-system, such that the Boolean map g`j

that corresponds to [Kj ] is h.

We say that a k-tuple of monotone Boolean functions h1, h2, . . . , hk : Bn → B

is ∗-jointly realizable if there exists a regulatory network RN with a node250

j with k targets `1, . . . , `k and weights {θ`ij} and a parameter node [K] =

([K1], . . . , [Kn]) for the ∗-system such that the collection of Boolean maps

g`1j , g`2j , . . . , g`kj that corresponds to [Kj ] are the maps h1, h2, . . . , hk respec-

tively.

Remark 3.2. We note that Σ-realizability is a special case of ΠΣ-realizability,255

which is in turn a special case of ΣΠΣ-realizability, which is in turn a special case

of K-realizability. These observations rely on the fact that Σ ⊂ ΠΣ ⊂ ΣΠΣ

and that the images of any monotone Λ functions give rise to K-systems.

The definition of realizability 3.1 uses arbitrary functions h ∈ MBF. In

some cases, it will be convenient to assume gki ∈ MBF+(mi), instead of the

weaker condition gki ∈ MBF(mi), where recall mi = |S(i)| is the number of

sources of i. This is achieved via a coordinate change. For each j ∈ S(i), define

the function β
(i)
j : B → B as

β
(i)
j (b) =




b if j ∈ S+(i)

1− b if j ∈ S−(i)

(13)

Then define

β(i) : Bmi → Bmi , β(i) = (β
(i)
1 , . . . , β(i)

mi
)

component-wise. We observe that gki ◦ β(i) ∈ MBF+(mi) and that β(i) is an

involution i.e. β(i) ◦ β(i) = Id. We will use the notation β for a function where260

we do not specify the network node identity i.

Using the coordinate change β, we can see that h : Bmi → B is ∗-realizable

if and only if, f := h ◦ β ∈ MBF+(mi) is a positive Boolean function and is

also ∗-realizable, via the collection K ′ defined as

K ′
i,A′,∅ = Ki,A,B
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where

A′ = A ∪B,

and network RN′ which is the same as RN except that all edges are now

activating. Likewise, if h1, h2, . . . , hk : Bn → B is ∗-jointly realizable if, and

only if, f1 = h1 ◦ β(1), . . . , fk := hk ◦ β(k) ∈ MBF+(n) are positive Boolean

functions and are also ∗-jointly realizable. Therefore it is sufficient to consider265

in proofs only positive Boolean functions.

The central question that we pose in this paper is to ask how much re-

striction the algebraic forms Σ, ΠΣ, and ΣΠΣ impose on the richness of the

potential dynamics of the switching system. We will interpret the number of

k-tuples of MBFs that can be represented in the parameter graph as the rich-270

ness of that particular class of switching systems. This question generalizes and

extends a classical problem of determining when a monotone Boolean function

is a threshold function.

Definition 3.3. [24] A Boolean function f : Bn → B, is called a threshold

function (or a linearly separable function) if there exist real numbers a1, . . . , an ∈

R and a threshold θ ∈ R such that for all ~y = (y1, . . . , yn) ∈ Bn,

f(~x) =




1 if

∑n
j=1 ajyj > θ

0 otherwise

. (14)

The (n+ 1)-tuple (a1, a2, . . . , an, θ) is called a (separating) structure of f .

As we will see later in Lemma 4.21, any monotone Boolean function f is275

a threshold function if and only if f is Σ-realizable, i.e. representable in the

parameter graph of a Σ system. Framed in terms of threshold functions, de-

termining which f functions are Σ-realizable is then equivalent to determining

which MBFs are indeed threshold functions.

This is a classical problem in the Boolean literature. Paull [2] showed that280

monotonicity is a necessary condition for a Boolean function to be a threshold

function. As shown by Chow [6] and Elgot [3], a Boolean function is a threshold

function if, and only if, it is assumable, where assumable was defined by Winder
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[5]. An algorithm for determining whether a Boolean function is a threshold

function was given by Peled and Simeone [29]. Their algorithm will produce285

a1, . . . , an in the sense of Definition 3.3 if the Boolean function is indeed a

threshold function. An algorithm for producing additional linearly separable

Boolean functions and further characterization of threshold functions was given

in Rao and Zhang [30]. The number of threshold functions for n ≤ 8 was found

in [4], and extended to n = 9 by Gruzling [31].290

Note that f is a threshold function if the set of points in Bn ⊂ Rn at which

f attains value 1 is linearly separable from those points where f attains value

0. Following this connection, Pantovic et al. [32], Zunic [33], and Wang and

Williams [34] all examined partitions of sets of points with surfaces that are not

necessarily hyperplanes. This is intimately related to the questions of ΠΣ- and295

ΣΠΣ-realizability, i.e. which monotone Boolean functions are representable in

a parameter graph of a ΠΣ- vs. ΣΠΣ- systems.

The parameter graph node [K] = ([K1], . . . , [Kn]) represents n collections

of monotone Boolean functions, where each [Kj ] corresponds to bj = |T (j)|

MBFs, the number of targets of j in RN. Not every collection of bj monotone300

Boolean functions is ∗-jointly realizable for the algebraic classes we consider.

We introduce the idea of considering multiple Boolean functions simultaneously

and asking which of them are *-jointly realizable, i.e. realizable in a node in the

parameter graph of a K, Σ, ΠΣ or ΣΠΣ system.

4. Realizability Results305

The main results are summarized in Table 1, where we consider pairs of ∗-

jointly realizable MBFs. The equality sign between two categories indicates that

whenever a pair of MBFs with given set of inputs n (row index) is realizable

in one category, it is also realizable in the other category. The strict subset

relationship shows that any pair of functions realizable in the smaller category310

is also realizable in the larger category, and, furthermore, there is a pair of

Boolean functions f ≺ g that is realizable in the larger category that is not

22



n ∗-Joint Realizability of f ≺ g

1 Σ = ΠΣ = ΣΠΣ = K

2 Σ = ΠΣ = ΣΠΣ = K

3 Σ ( ΠΣ ( ΣΠΣ = K

≥ 4 Σ ( ΠΣ ( ΣΠΣ ( K

Table 1: Summary of the results. The n is the number of inputs for each of the pair of MBF,

where f ≺ g means that the truth set of f is a subset of truth set of g (Definition 4.5). The

(in)equalities express realizability relations among categories of functions (see text). Row 1

and 2 are a result of Proposition 4.22. Row 3 is a result of Subsections 4.4.1, 4.4.2, and 4.5.

Row 4 is a result of Subsection 4.4.3.

realizable in the smaller category.

4.1. K-realizability

The main goal of this section is to prove the following two results: (1) any315

monotone Boolean function is K-realizable, and (2) any k-tuple f1 ≺ . . . ≺ fk

of MBFs is K-jointly realizable. Therefore K-systems are general enough to

represent any collection of monotone Boolean functions.

Definition 4.1. For a Boolean function f : Bn → B, we define the truth set of

f as

True(f) := {~y ∈ Bn | f(~y) = 1}.

Similarly we define the false set of f as

False(f) := {~y ∈ Bn | f(~y) = 0}.

For U ⊆ Bn any subset, we will also use the notation

True(f)|U := {~y ∈ U | f(~y) = 1}, False(f)|U := {~y ∈ U | f(~y) = 0}.

We start our discussion ofK-realizability andK-joint realizability by proving

two results relating K-realizability to the existence of what we call a realizing320

function.

23



Definition 4.2. The positive monotonicity assumption for a function R : Bn →

R+ is the following: for all j ∈ {1, . . . , n}, for all ~y ∈ Bn with yj = 0

R(~y) ≤ R(~y + êj).

Next Theorem provides characterization of K-realizability and K-joint real-

izability of monotone Boolean functions.

Theorem 4.3.

325

1. f ∈ MBF+(n) is K-realizable if, and only if, there exist

• a weighted regulatory network RN with a node i with only one target

j and a weight θji and

• a function R(i) such that R(i) : Bn → R+ satisfies the positive mono-

tonicity assumption and

f(~y) =




1 if R(i)(~y) > θji

0 if R(i)(~y) < θji

.

2. A k-tuple of MBFs f1, f2, . . . , fk ∈ MBF+(n) is K-jointly realizable if,

and only if, there exist330

• a weighted regulatory network RN with a node i with k targets `1, . . . , `k

and weights {θ`ji} and

• a function R(i) such that R(i) : Bn → R+ satisfies the positive mono-

tonicity assumption and for all j ∈ {1, . . . , k}, fj can be expressed as

fj(~y) =




1 if R(i)(~y) > θ`ji

0 if R(i)(~y) < θ`ji

. (15)

Proof. Using Definition 3.1, Equation (10), and setting

R(i)(~y) ≡ Ki,αi(~y), ~y ∈ Bn,
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the theorem follows. It remains to note that the positive monotonicity assump-

tion on R(i) induces the (positive) monotonicity condition on Ki from Defini-

tion 2.4. Likewise, when f1, . . . , fk ∈ MBF+(n), then S(i) = S+(i) and Ki335

satisfying the monotonicity condition in Definition 2.4 implies that R(i) must

satisfy the positive monotonicity condition.

Definition 4.4. If Theorem 4.3 is satisfied, then the pair (R(i),RN) is called

a realizing function and realizing network for f1, . . . , fk, respectively.

Theorem 4.3 shows that K-systems can be thought of as arising from mono-340

tone Boolean functions via realizing functions R(i), one for each node i in a

realizing network RN. In the following, we will restrict our focus to a single

node in RN and drop the superscript.

Definition 4.5. For two Boolean functions f, g : Bn → B, we say f implies g

and write f ≺ g if, and only if, True(f) ⊆ True(g).345

Now we prove the main result of this section, namely that all k-tuples of

MBFs that are linearly ordered f1 ≺ f2 ≺ . . . ≺ fk are K-(jointly) realizable for

all k ≥ 1.

Theorem 4.6.

1. f ∈ MBF+(n) if and only if f is K-realizable.350

2. A collection f1, . . . , fb ∈ MBF+(n) of monotone Boolean functions has a

linear order f1 ≺ f2 ≺ . . . ≺ fb if and only if it is K-jointly realizable.

Proof. Since realizability is a special case of joint realizability and since a single

MBF trivially has an order, it is sufficient to prove the second point.

(⇒) Let R(~y) :=
∑b

j=1 fj(~y). R satisfies the positive monotonicity as-355

sumption of Definition 4.2, since if yi = 0 for some ~y, then R(~y) ≤ R(~y + êi)

by summation and the positivity of fj . Now for each j ∈ {1, . . . , b}, let

θj = b − j + 1
2 . Suppose ~y ∈ True(fj). Then ~y ∈ True(fk) for k = j, . . . , b,

since True(fj) ⊆ True(fk) by the ≺ relationship. So R(~y) = b − j + 1 and we
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have θj = b − j + 1/2 < R(~y) as desired. Then the function R and thresholds360

θ1, . . . , θb satisfy the assumptions of Theorem 4.3.

(⇐) Given the b thresholds, establish the indexing θb < · · · < θ1 using the

order of R. Then for any i < j, we have θi > θj and (θi,∞) ⊆ (θj ,∞). Given

the realizing function R, define a collection of b positive monotone Boolean

functions by

True(fi) = R−1(θi,∞).

Then by construction

fi(~y) =




1 if R(~y) > θi

0 if R(~y) < θi

.

Moreover, if i < j, we have True(fi) ⊂ True(fj), implying fi ≺ fj .

4.2. ∗-Realizability

In this section we discuss technical points needed later for Σ, ΠΣ, and ΣΠΣ

realizability.365

Since Σ, ΠΣ, and ΣΠΣ realizability are based on Λ functions, Λ : Rn
+ → R+,

we need to consider a restricted class of realizing functions of the form

R := Λ ◦ φ,

where φ : Bn → Rn
+ component-wise monotonically encodes a Boolean vector

into a real valued vector, i.e. φ = (φ1, . . . , φn), where φi : B → R+, φi(0) <

φi(1) and Λ is an algebraic function that belongs to one of the classes Σ(n) (

ΠΣ(n) ( ΣΠΣ(n).

The following Lemma is a direct consequence of Theorem 4.3, the defini-370

tion of the classes of algebraic functions Σ(n), ΠΣ(n) and ΣΠΣ(n), and the

previously made observation that all switching systems are K-systems.

Lemma 4.7. In the following, ∗ could be Σ, ΠΣ, or ΣΠΣ. A function f ∈

MBF
+(n) is ∗-realizable if, and only if, there exist a realizing network RN and

realizing function R = Λ ◦ φ, where375
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1. the ∗-interaction function Λ : Rn → R belongs to the class Λ ∈ ΣΠΣ(n),

Λ ∈ ΠΣ(n), or Λ ∈ Σ(n) if ∗ = ΣΠΣ, ∗ = ΠΣ, or ∗ = Σ respectively;

and

2. for each i ∈ {1, . . . , n}, the function φi : B → R+ satisfies φi(0) < φi(1).

Similarly, a k-tuple of MBFs f1, f2, . . . , fk ∈ MBF+(n) is ∗-jointly realiz-380

able if and only if there exist a realizing network RN and a realizing function

R = Λ ◦ φ for Λ a ∗-interaction function from (1) and φ a map satisfying (2).

The general question of which k-tuples of Boolean functions are ∗-jointly

realizable seems very difficult and is likely connected to fundamental problems

in algebraic geometry. We focus here on some initial results for k = 2 and will385

consider pairs of Boolean functions with different numbers of inputs. We start

with definitions and results that enumerate consequences of joint realizability

of f ≺ g on relationships between True and False sets on subsets of the space of

Boolean inputs.

In the following, and many times throughout the rest of the manuscript, it390

will be useful to view Bn as a hypercube embedded in Rn
+ with side lengths of 1.

This gives rise to a geometrical structure of Bn, where if ~y = (y1, . . . , yi−1, 0, yi+1, . . . , yn),

then ~y + êi = (y1, . . . , yi−1, 1, yi+1, . . . , yn), where êi is the standard i-th basis

vector in Rn. This defines the geometrical idea of floor and ceiling in the i-th

direction of the hypercube Bn. When f ≺ g, there are relationships between395

the True and False sets on the floors and ceilings in all directions.

Definition 4.8. We define the ceiling (of Bn) in the i-th normal direction as

the set

Ci := {(y1, y2, . . . , yn) ∈ Bn | yi = 1}

and similarly we define the floor (of Bn) in the i-th normal direction as the set

Fi := {(y1, y2, . . . , yn) ∈ Bn | yi = 0}.

Notice that Ci and Fi are both hypercubes of dimension (n − 1), that Bn =

Ci ∪ Fi, and that Ci = Fi + êi.
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Next we define the idea of a collapse, in which a floor and ceiling of Bn are

considered objects embedded in the hypercube Bn−1.400

Definition 4.9. For a given i ∈ {1, . . . , n}, we define the i-th collapse as the

function Coli : Bn → Bn−1 which removes the i-th coordinate, defined as

Coli((y1, . . . , yn)) := (y1, . . . , yi−1, yi+1, . . . , yn)

Then for any subset U ⊂ Bn we have

Coli(U) = {(y1, . . . , yi−1, yi+1, . . . , yn) ∈ Bn−1 | (y1, . . . , yn) ∈ U}.

Using the notions of floor, ceiling, and collapse, we move through a series

of results that are critical to future proofs involving ∗-joint realizability for Λ

function classes. The following Lemma shows the relationship between truth

sets of any monotone Boolean function on the floor and ceiling in any direction

of the Boolean cube.405

Lemma 4.10. If f ∈ MBF+(n), then for all i ∈ {1, . . . , n},

Coli(True(f)|Fi
) ⊆ Coli(True(f)|Ci

)

Proof. Observe that the hypercube can be viewed as a distributive lattice via

the relation ≤ on the corners of the hypercube by

~y ≤ ~z ∈ Bn ⇐⇒ (yi = 1 ⇒ zi = 1) for all i = 1, . . . , n.

Notice that since any f ∈ MBF+(n) is positive monotone, True(f) is an upper-

set of Bn viewed as a lattice. Therefore, for any ~y ∈ True(f)|Fi
, we have ~y+ êi ∈

True(f)|Ci
. Under the collapse operation, we have Coli(~y) = Coli(~y+ êi), com-

pleting the proof.

The next Lemma compares truth sets of a pair of monotone Boolean func-410

tions where both are evaluated on the same subset of the Boolean hypercube.

Proposition 4.11. If f, g ∈ MBF+(n) and f ≺ g, then for all i ∈ {1, . . . , n},

Coli(True(f)|Fi
) ⊆ Coli(True(g)|Fi

) and Coli(True(f)|Ci
) ⊆ Coli(True(g)|Ci

).

(16)
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Proof. Recall that f ≺ g implies True(f) ⊆ True(g), which implies that True(f)|Fi
⊆

True(g)|Fi
and that True(f)|Ci

⊆ True(g)|Ci
. Since in both cases, the collapse

operation occurs over the same set, we have (16) as desired.

Finally, we arrive at a comparison of truth sets of a pair of compatible415

monotone Boolean functions on different subset of the hypercube.

Proposition 4.12. If f, g ∈ MBF+(n) and f ≺ g, then for all i ∈ {1, . . . , n},

Coli(True(f)|Fi
) ⊆ Coli(True(g)|Ci

)

Proof. By Lemma 4.10 we see have Coli(True(f)|Fi
) ⊆ Coli(True(f)|Ci

), and by

Proposition 4.11 we have Coli(True(f)|Ci
) ⊆ Coli(True(g)|Ci

), which completes

the proof.

The following two technical results for special forms of Λ functions are used420

extensively in the coming sections to derive the results in Table 1. Proofs for

Theorem 4.14 and Theorem 4.15 are found in Appendix A.

Definition 4.13. Let Λ be a ∗-interaction function. We say zi is a factor (of

Λ) if there is another map Λ′ that does not depend on zi such that Λ = ziΛ
′.

Similarly we say zi is a simple term (of Λ) if we can write Λ as Λ = zi + Λ′.425

Notice if Λ is a Σ-interaction function, for all i ∈ {1, . . . , n}, zi is a simple term.

The following theorem shows that the truth sets of jointly realizable mono-

tone Boolean functions evaluated along the directions that correspond to factors

or simple terms have special properties.

Theorem 4.14. Let ∗ be Σ, ΠΣ, or ΣΠΣ. Let f, g ∈ MBF+(n), with f ≺ g,

be ∗-jointly realizable. Let (Λ ◦ φ,RN) ∗-jointly realize (f, g). For each ` ∈

{1, . . . , n}, if z` is a factor or a simple term of Λ, then

Col`(True(f)|C`
) ⊆ Col`(True(g)|F`

), or (17)

Col`(True(f)|C`
) ⊇ Col`(True(g)|F`

) (18)

29



The final theorem of this Section shows that each pair of jointly realizable430

monotone Boolean functions with n inputs gives rise to a pair of jointly realizable

monotone Boolean function with n−1 inputs associated to the floor and ceiling.

Theorem 4.15. Let ∗ be Σ, ΠΣ, or ΣΠΣ. Let n > 1. Let f, g ∈ MBF+(n)

be ∗-jointly realizable MBFs on Bn with f ≺ g. Let ` ∈ {1, . . . , n} and U ∈

{F`,C`}. Then435

a) the functions f ′
U , g

′
U ∈ MBF+(n− 1) defined by

True(f ′
U ) = Col`(True(f)

∣∣
U
) and True(g′U ) = Col`(True(g)

∣∣
U
)

are ∗-jointly realizable MBFs on Bn−1, and

b) there is a single ∗-interaction function Λ′ along with maps φC`
, φF`

and

weighted regulatory networks RNC`
and RNF`

such that (Λ′ ◦φF`
,RNF`

)

∗-jointly realizes (f ′
F`
, g′

F`
) and (Λ′◦φC`

,RNC`
) ∗-jointly realizes (f ′

C`
, g′

C`
).

4.3. Joint realizability in Bn and realizability in Bn+1
440

We will show that there is a bijection η between pairs (f, g) ∈ MBF+(n)×

MBF+(n) satisfying f ≺ g and h ∈ MBF+(n + 1). We use η to relate the

∗-joint realizability of a pair f ≺ g and the ∗-realizability of single function

η(f, g) ∈ MBF+(n+1). We will use this fact at the end of the section to prove

rows 1 and 2 of Table 1.445

Definition 4.16. Define the map

η : {(f, g) | f, g ∈ MBF+(n) and f ≺ g} → MBF+(n+ 1)

by h = η(f, g), where for ~y ∈ Bn+1,

h(~y) =




f(y1, . . . , yn) if yn+1 = 0

g(y1, . . . , yn) if yn+1 = 1

.

Lemma 4.17. The map η is a bijection onto MBF+(n+ 1).
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Proof. First we describe the range of η. Let f, g ∈ MBF+(n) with f ≺ g. By

definition f and g describe the floor and ceiling of η(f, g) = h in the (n+ 1)-th

direction,

True(f) = Coln+1

(
True(h)

∣∣
Fn+1

)
and True(g) = Coln+1

(
True(h)

∣∣
Cn+1

)
.

(19)

Then the positive monotonicity of f and g induce positive monotonicity on the

floor and ceiling of h, and f ≺ g gives positive monotonicity in the (n + 1)-th

direction. So the range of η is contained in MBF+(n+ 1).

It is clear that η is injective. Indeed, if η(f, g) = η(f ′, g′) then it follows450

immediately from the definition that f = f ′ and g = g′.

To show that η is surjective, consider h ∈ MBF+(n + 1) and define f and

g by setting (19) to be true. Since h satisfies positive monotonicity on its floor

and ceiling, f, g ∈ MBF+(n). Also, since

Coln+1

(
True(h)

∣∣
Fn+1

)
⊆ Coln+1

(
True(h)

∣∣
Cn+1

)
,

by Lemma 4.10, we have that f ≺ g. We have then constructed the desired pair

(f, g) with f ≺ g such that η(f, g) = h is well-defined.

As a consequence of this result, note that η−1(h) = (f, g) is well defined.

Theorem 4.18. Let n ≥ 1. Suppose f ≺ g is ∗-jointly realizable, where f, g ∈455

MBF+(n). Then h = η(f, g) is ∗-realizable.

Proof. Suppose f ≺ g is ∗-jointly realizable. Then by Lemma 4.7 there exists

(Λ◦φ, RN) that ∗-jointly realizes f and g. Moreover, the proof of Theorem 4.6

tells us that the thresholds in RN associated to these functions satisfy θg < θf .

We seek to construct (Λ′ ◦ φ′, RN′) that ∗-realizes h. To build RN′, we take460

RN and add a source to the node under consideration from any other node in

the network. It remains to discover the weight, θ′ of that edge.

Case 1: (∗ = Σ or ∗ = ΣΠΣ). By the assumption since f ≺ g is ∗-jointly
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realizable, we have

f(y1, . . . , yn) =




1 if Λ(φ1(y1), . . . φn(yn)) > θf

0 if Λ(φ1(y1), . . . φn(yn)) < θf

g(y1, . . . , yn) =




1 if Λ(φ1(y1), . . . φn(yn)) > θg

0 if Λ(φ1(y1), . . . φn(yn)) < θg

For ~y ∈ Bn+1, we assign Λ′◦φ′ = Λ◦φ+φ′
n+1 for φ

′ = (φ1, . . . , φn, φ
′
n+1) with

some choice of φ′
n+1. We know f(y1, . . . , yn) = h(y1, . . . , yn, 0) and g(y1, . . . , yn) =

h(y1, . . . , yn, 1), so whatever φ′
n+1 and θ′ we choose must satisfy

f(y1, . . . , yn) = h(y1, . . . , yn, 0) =




1 if Λ(φ1(y1), . . . φn(yn)) + φ′

n+1(0) > θ′

0 if Λ(φ1(y1), . . . φn(yn)) + φ′
n+1(0) < θ′

and

g(y1, . . . , yn) = h(y1, . . . , yn, 1) =




1 if Λ(φ1(y1), . . . φn(yn)) + φ′

n+1(1) > θ′

0 if Λ(φ1(y1), . . . φn(yn)) + φ′
n+1(1) < θ′

Consider the assignment φ′
n+1(0) = ε, φ′

n+1(1) = θf + ε− θg, and θ′ := θf + ε,

where ε is any sufficiently small real number 0 < ε < θf − θg. It is easy to check

that with this assignment, h(y1, . . . , yn, 0) = 1 if and only if f(y1, . . . , yn) = 1465

and that h(y1, . . . , yn, 1) = 1 if and only if g(y1, . . . , yn) = 1. This completes

the construction of (Λ′ ◦ φ′, RN′) that ∗-realizes h.

Case 2: (∗ = ΠΣ) The proof proceeds analogously with Case 1, where the

only difference is replacement of a simple term by a factor in Λ′. It is easy to

verify that the following assignments ∗-realize h: φ′ = (φ1, . . . , φn, φ
′
n+1),

Λ′ ◦ φ′(y1, . . . , yn, yn+1) = φ′
n+1(yn+1) · (Λ ◦ φ(y1, . . . , yn)) ,

θ′ = θf , φ
′
n+1(0) = 1, φn+1(1) = θf/θg.

We do not know if the converse of Theorem 4.18 is true in general. However,

with an additional constraint we obtain the following partial converse.470
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Theorem 4.19. Let n ≥ 1. Suppose (Λ ◦ φ,RN) ∗-realizes h ∈ MBF(n + 1).

If zi is a factor or simple term of Λ, then f, g ∈ MBF+(n) defined by

True(f) = Coli(True(h)|Fi
), True(g) = Coli(True(h)|Ci

)

are ∗-jointly realizable.

Proof. Without loss of generality assume i = n + 1. Let θ be the threshold

associated to the realization of h.

Case 1: (zn+1 is a factor) Then Λ = zn+1Λ
′ and from Lemma 4.7

h(y1, . . . , yn+1) =




1 if φn+1(yn+1)Λ

′(φ1(y1), . . . φn(yn)) > θ

0 if φn+1(yn+1)Λ
′(φ1(y1), . . . φn(yn)) < θ

If we restrict our attention to f , dividing by φn+1(0), the above equation

gives us

f(y1, . . . , yn) = h(y1, . . . , yn, 0) =




1 if Λ′(φ1(y1), . . . φn(yn)) > θ/φn+1(0)

0 if Λ′(φ1(y1), . . . φn(yn)) < θ/φn+1(0)

.

Restricting our attention to g we see that

g(x1, . . . , xn) = h(x1, . . . , xn, 1) =




1 if Λ′(φ1(x1), . . . φn(xn)) > θ/φn+1(1)

0 if Λ′(φ1(x1), . . . φn(xn)) < θ/φn+1(1).

Construct RN′ by removing the source edge associated to n + 1 and adding

one target edge to the node under consideration. Assign to one target edge the475

weight θf = θ/φn+1(0) and assign θg = θ/φn+1(1) to the other. After setting

φ′ = (φ1, . . . , φn), we obtain (Λ′ ◦ φ′, RN′) that ∗-jointly realizes (f, g).

Case 2: (zn+1 is a simple term) The argument for this case is similar

but instead of dividing by φn+1(yn+1), we will subtract. Specifically, since yn+1

is a simple term,

h(y1, . . . , yn+1) =




1 if φn+1(yn+1) + Λ′(φ1(y1), . . . φn(yn)) > θ

0 if φn+1(yn+1) + Λ′(φ1(y1), . . . φn(yn)) < θ
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and so

f(y1, . . . , yn) = h(y1, . . . , yn, 0) =




1 if Λ′(φ1(y1), . . . φn(yn)) > θ − φn+1(0)

0 if Λ′(φ1(y1), . . . φn(yn)) < θ − φn+1(0)

g(y1, . . . , yn) = h(y1, . . . , yn, 1) =




1 if Λ′(φ1(y1), . . . φn(yn)) > θ − φn+1(1)

0 if Λ′(φ1(y1), . . . φn(yn)) < θ − φn+1(1)

Construct RN′ as before with threshold assignments θf = max{0, θ−φn+1(0)},

θg = max{0, θ − φn+1(1)}, and a further perturbation by small enough ε > 0 if

θf = θg. Then tuple (Λ′ ◦ φ′, RN′) ∗-jointly realizes (f, g).480

The following Corollary is an immediate result of Theorems 4.18 and 4.19.

It states that, in the Σ class of functions, joint realizability of a pair (f, g) in

dimension n is equivalent to the realizability of η(f, g) in dimension n+1, since

every term in Λ is simple.

Corollary 4.20. Let n ≥ 1. Suppose f ≺ g and let h = η(f, g). Then (f, g) is485

Σ-jointly realizable if and only if h is Σ-realizable.

As promised, we now show the equivalence of threshold (linearly separable)

functions and Σ-realizability, see Definition 3.3.

Lemma 4.21. Let f ∈ MBF+(n).

1. If f is Σ-realizable then f is a threshold function.490

2. If f is a threshold function with separating structure (a1, . . . , an, θ
′) such

that a1, . . . , an ≥ 0 and θ′ > −n, then f is Σ-realizable.

Proof. (1) Suppose f is Σ-realizable, and let (Λ ◦ φ, RN) Σ-realize f . We

construct a1, . . . , an and θ′ as in the sense of Definition 3.3 as follows: set

ai = φi(1)− φi(0), and let θ′ = max{0, θ − (φ1(0) + · · ·+ φn(0))}.495

(2) Now suppose f is a threshold function with separating structure (a1, . . . , an, θ
′)

such that a1, . . . , an ≥ 0 and θ′ > −n. Set Λ = z1 + · · · + zn. Set φi(0) = 1,

φi(1) = 1 + ai, and θ = θ′ + n, to obtain the desired (Λ ◦ φ, θ).
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The following proposition, together with Remark 3.2, proves the first two

rows of Table 1.500

Proposition 4.22. Assume f ≺ g ∈ MBF+(n) with n = 1 or n = 2. Then

the pair (f, g) is Σ-realizable.

Proof. By simple enumeration, one can check that, for n = 1, 2, 3, all functions

in MBF+(n) are threshold functions, and admit separating structures with

a1, . . . , an, θ > 0. Via Lemma 4.21, these functions are Σ-realizable. This fact,505

when combined with Corollary 4.20, proves the first two rows of Table 1.

4.4. Strict subset relations in Table 1.

This section contains a series of examples illustrating the differences be-

tween Σ, ΠΣ, and ΣΠΣ realizability, proving some of the strict subset results

in Table 1. We will use Theorems 4.14 and 4.15 extensively.510

The idea behind all of the examples is to show that there exists a pair of

∗-jointly realizable functions (f, g) that are not ∗′-jointly realizable, where ∗′ is

a more restrictive class than ∗. The proofs are inductive, with different base

case constructions and very similar inductive steps. The methodology for the

induction is to take an (f, g) ∗-jointly realizable, but not ∗′-jointly realizable,

pair in Bn and to set (f, g) to be the floors of new (f̃ , g̃) functions in Bn+1. It

then remains to construct ceilings that ensure f̃ , g̃ ∈ MBF+(n + 1). For any

~y ∈ Cn+1, we choose to set f̃(~y) = g̃(~y) = 1. By this choice,

True(f̃) ⊇ Cn+1, True(g̃) ⊇ Cn+1,

which ensures that f̃ , g̃ ∈ MBF+(n+1). By the contrapositive of Theorem 4.15

(a), this construction ensures that (f̃ , g̃) are not ∗′-jointly realizable. We then

show that (f̃ , g̃) are ∗-jointly realizable.

4.4.1. Σ-jointly realizable ( ΠΣ-jointly realizable for n ≥ 3.

In this section we prove the first strict inclusion in the third and fourth rows515

of Table 1.
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y1y2y3 φ(y1y2y3) Λ(φ(y1y2y3))

000 (1,1,1) 2

001 (1,1,2) 4

100 (4,1,1) 5

010 (1,4,1) 5

110 (4,4,1) 8

101 (4,1,2) 10

011 (1,4,2) 10

111 (4,4,2) 16

Figure 6: Left: An example pair f, g : B3 → B with f ≺ g. Dark grey is False(f) ∩ False(g),

light grey is False(f)∩True(g), and white is True(f)∩True(g). Nodes are labels with y1y2y3.

The pair (f, g) are ΠΣ-jointly realizable, but not Σ-jointly realizable. Right: A table of values

proving (f, g) are ΠΣ-jointly realizable. Here Λ = (z1 + z2)z3 and θ1 = 4.5, θ2 = 9. The

coloring in the table column is consistent with vertex coloring on the left.

Lemma 4.23. Let n ≥ 3. There exists a pair f ≺ g ∈ MBF+(n) such that

(f, g) is not Σ-jointly realizable, but is ΠΣ-jointly realizable.

Proof. We first construct an explicit pair (f, g) for n = 3. Consider the pair

f ≺ g of MBFs depicted on the left of Figure 6. We use Theorem 4.14 to show520

that (f, g) is not Σ-jointly realizable, and provide an explicit (Λ ◦ φ, RN) that

ΠΣ-jointly realizes (f, g). Choose any RN with a node with three sources and

two targets, with threshold values to be determined.

First, we illustrate the use of Theorem 4.14. Observe that True(f)|C1
=

{101, 111}, and so Col1(True(f)|C1
) = {01, 11}. Similarly True(g)|F1

= {010, 011},

so Col1(True(g)|F1
) = {10, 11}. Therefore, we can see that

Col1(True(f)|C1
) * Col1(True(g)|F1

) and Col1(True(f)|C1
) + Col1(True(g)|F1

) .

By the contrapositive of Theorem 4.14, we see that if (Λ ◦ φ, RN) ∗-jointly

realizes (f, g), then Λ cannot have a simple term or factor z1. Therefore, (f, g)525

is not Σ-jointly realizable, as any Σ-interaction function Λ has every variable as

a simple term.
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However, (f, g) is ΠΣ-jointly realizable. To see this, set Λ = (z1 + z2)z3,

φ1(0) = φ2(0) = φ3(0) = 1, φ1(1) = 4, φ2(1) = 4.1, φ3(1) = 2, and θ1 = 4.5,

θ2 = 9. The results of such an assignment are displayed in the table in Figure 6.530

We now prove the inductive step. Let n ≥ 3. Assume there exists f, g :

Bn → B such that (f, g) is not Σ-jointly realizable, but is ΠΣ-jointly realizable.

Let(Λ ◦ φ, RN) with thresholds θ1 and θ2 ΠΣ-jointly realize (f, g). Now over

Bn+1 define

f̃(y1 . . . yn+1) :=




f(y1 . . . yn) yn+1 = 0

1 yn+1 = 1

g̃(y1 . . . yn+1) :=




g(y1 . . . yn) yn+1 = 0

1 yn+1 = 1

Observe that

Coln+1

(
True(f̃)|Fn+1

)
= True(f), Coln+1

(
True(g̃)|Fn+1

)
= True(g),

in other words the floor of f̃ has the same truth set as f and the floor of

g̃ has the same truth set as g. Since (f, g) are not Σ-jointly realizable, the

contrapositive of Theorem 4.15 (a) tells us that (f̃ , g̃) are not Σ-jointly realizable.

Let m = min{Λ(φ(Bn))} and define φ̃n+1(0) = 1 and φ̃n+1(1) = max{2, C},535

where C is large enough such that mC > max{θ1, θ2}. Define Λ̃ = zn+1Λ

and φ̃ := (φ1, . . . , φn, φ̃n+1). Then Λ̃ is a valid ΠΣ-interaction function, and

(Λ̃ ◦ φ̃,RN) ΠΣ-jointly realizes (f̃ , g̃), completing the proof.

4.4.2. ΠΣ-jointly realizable ( ΣΠΣ-jointly realizable for n ≥ 3

In this section we prove the second strict inclusion in the third and fourth540

rows of Table 1.

Lemma 4.24. Let n ≥ 3. There exists a pair f ≺ g ∈ MBF+(n) such that

(f, g) is not ΠΣ-jointly realizable, but is ΣΠΣ-jointly realizable.

Proof. Again, we construct an explicit pair (f, g) for n = 3. Consider the pair

f ≺ g shown in Figure 7. We will show that (f, g) is not ΠΣ-jointly realizable.545
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011 111

y1y2y3 φ(y1y2y3) Λ(φ(y1y2y3))

000 (1,1,1) 2

100 (3,1,1) 4

010 (1,3.1,1) 4.1

001 (1,1,4) 5

101 (3,1,4) 7

011 (1,3.1,4) 7.1

110 (3,3.1,1) 10.3

111 (3,3.1,4) 13.3

Figure 7: An example pair f, g : B3 → B with f ≺ g. Dark grey is False(f) ∩ False(g), light

grey is False(f) ∩ True(g), and white is True(f) ∩ True(g). Nodes are labels with y1y2y3. The

pair (f, g) is ΣΠΣ-jointly realizable, but not ΠΣ-jointly realizable. Right: A table of values

proving (f, g) are ΣΠΣ-jointly realizable. Here Λ = z1z2 + z3 and and θ1 = 4.5, θ2 = 9. The

coloring in the rightmost column is consistent with vertex coloring on the left.

Suppose, by way of contradiction, that (Λ ◦ φ, RN) ΠΣ-jointly realizes (f, g)

for some RN with a node with three sources and two targets.

From Lemma 4.7, we can see that the only allowable ΠΣ-interaction function

for n = 3 are

z1 + z2 + z3, (z1 + z2)z3, (z1 + z3)z2, (z2 + z3)z1, z1z2z3

For f ≺ g in Figure 7, observe that

Col1(True(f)|C1
) * Col1(True(g)|F1

) and Col1(True(f)|C1
) + Col1(True(g)|F1

),

(20)

and

Col2(True(f)|C2
) * Col2(True(g)|F2

) and Col2(True(f)|C2
) + Col2(True(g)|F2

).

(21)

By Theorem 4.14, we see that z1 and z2 cannot be simple terms or factors of Λ.

This constraint implies that Λ = (z1+z2)z3. The following inequality argument

will show that this choice of Λ is also impossible. To reduce notation, we will550

write φi(0) = `i and φi(1) = ui.
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We have the following relations from Figure 7:

Λ(φ(100)) < Λ(φ(001)) (dark grey < light grey)

Λ(φ(010)) < Λ(φ(001)) (dark grey < light grey)

−−

Λ(φ(101)) < Λ(φ(110)) (light grey < white)

Λ(φ(011)) < Λ(φ(110)) (light grey < white)

Written in the language of ` and u this means

(u1 + `2)`3 < (`1 + `2)u3

(`1 + u2)`3 < (`1 + `2)u3

(u1 + `2)u3 < (u1 + u2)`3

(`1 + u2)u3 < (u1 + u2)`3.

We consider first and fourth equation; the second and third together lead to

similar contradiction. First equation:

(u1 + `2)`3 < (`1 + `2)u3

u1`3 + `2`3 < `1u3 + `2u3

u1`3 − `1u3 < `2(u3 − `3)

Fourth equation:

(`1 + u2)u3 < (u1 + u2)`3

`1u3 + u2u3 < u1`3 + u2`3

u2(u3 − `3) < u1`3 − `1u3

Comparing the last line in each equation block we get

u2(u3 − `3) < u1`3 − `1u3 < `2(u3 − `3),

which, after cancellation, gives

u2 < `2.
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Therefore φ2(0) > φ2(1), contradicting Lemma 4.7, so Λ = (z1 + z2)z3 is also

impossible. Therefore, (f, g) is not ΠΣ-jointly realizable.

However, the pair (f, g) is ΣΠΣ-jointly realizable. To see this, let Λ =

z1z2+ z3, let φ1(0) = φ2(0) = φ3(0) = 1, φ1(1) = 3, φ2(1) = 3.1, and φ3(1) = 4,555

and let θ1 = 4.5, and θ2 = 9. Such an assignment is displayed in the table in

Figure 7.

We now prove the inductive step. Let n ≥ 3. Assume there exists f, g : Bn →

B such that (f, g) is not ΠΣ-jointly realizable, but is ΣΠΣ-jointly realizable. Let

(Λ ◦ φ, RN) with thresholds θ1 and θ2 ΣΠΣ-jointly realize (f, g). Define

f̃(y1 . . . yn+1) :=




f(y1 . . . yn) yn+1 = 0

1 yn+1 = 1

g̃(y1 . . . yn+1) :=




g(y1 . . . yn) yn+1 = 0

1 yn+1 = 1

As in the proof of Lemma 4.23, observe that

Coln+1

(
True(f̃)|Fn+1

)
= True(f), Coln+1

(
True(g̃)|Fn+1

)
= True(g),

in other words the floor of f̃ has the same truth set as f and the floor of g̃ has the

same truth set as g. Since (f, g) are not ΠΣ-jointly realizable, the contrapositive

of Theorem 4.15 (a) tells us that (f̃ , g̃) are not ΠΣ-jointly realizable. Let m =560

min{Λ(φ(Bn))}. Define φ̃n+1(0) := 1 and φ̃n+1(0) := max{2, C}, where C

is large enough such that m + C > max{θ1, θ2}. Define Λ̃ := zn+1 + Λ and

φ̃ := (φ1, . . . , φn, φ̃n+1). Then Λ̃ is a valid ΣΠΣ-interaction function, and (Λ̃◦ φ̃,

RN) ΣΠΣ-jointly realizes (f̃ , g̃), completing the proof.

4.4.3. ΣΠΣ-jointly realizable ( K-jointly realizable for n ≥ 4565

In this section we prove the last strict inclusion in the fourth row of Table 1.

Lemma 4.25. Let n ≥ 4. There exists a pair f ≺ g ∈ MBF+(n) such that

(f, g) is not ΣΠΣ-jointly realizable, but (f, g) is K-jointly realizable.
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Figure 8: An example pair f, g : B4 → B with f ≺ g. Dark grey is False(f) ∩ False(g), light

grey is False(f)∩True(g), and white is True(f)∩True(g). Nodes are labels with y1y2y3y4. The

pair (f, g) is K-jointly realizable, but not ΣΠΣ-jointly realizable. Visually, the inner cube is

the floor in the fourth direction, and the outer cube is the ceiling in the fourth direction.
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Proof. Recall that any pair f ≺ g ∈ MBF+(n) is K-jointly realizable by Theo-

rem 4.6. It remains to construct an example that is not ΣΠΣ-jointly realizable

and apply induction. We construct an explicit pair for n = 4. Consider the pair

(f, g) in Figure 8. Observe that the floor (inner cube) has the same truth set as

the cube in Figure 7. In Lemma 4.24 we showed that this pair can be realized

by the ΣΠΣ-interaction function Λ = z1z2 + z3. It turns out this is the only

valid ΣΠΣ-interaction function that can realize the pair. To see this, we first

list all possible ΣΠΣ-interaction functions for n = 3, which are

z1 + z2 + z3 (z1 + z2)z3 (z1 + z3)z2 (z2 + z3)z1

z1z2z3 z1z2 + z3 z1z3 + z2 z2z3 + z1

Via Equations (20) and (21) we can rule out all but z1z2 + z3 and (z1 + z2)z3.

In addition, Lemma 4.24 showed that Λ = (z1 + z2)z3 also does not work.570

Therefore, we can make the following claim: if (Λ◦φ, RN) ΣΠΣ-jointly realizes

the pair of MBFs from Figure 8, then Λ = z1z2 + z3.

Suppose that f ≺ g ∈ MBF+(4) in Figure 8 are ΣΠΣ-jointly realizable.

Then by Theorem 4.15 the floor (inner cube) and ceiling (outer cube) pairs

(f ′
F4

, g′
F4

) and (f ′
C4

, g′
C4

) defined rigorously in Theorem 4.15 are ΣΠΣ-jointly

realizable, and there is a single ΣΠΣ-interaction function Λ along with maps

φC4
, φF4

, realizing networksRN′
C4

,RN′
F4

, and thresholds θC4,1, θC4,2, θF4,1, θF4,2

such that (Λ◦φF4
, RN′

F4
) ΣΠΣ-jointly realizes (f ′

F4
, g′

F4
) and (Λ◦φC4

, RN′
C4

)

ΣΠΣ-jointly realizes (f ′
C4

, g′
C4

). By our above claim, we know Λ = z1z2 + z3.

However, consider (f ′
C4

, g′
C4

). By inspection, we see that

Col3(True(f
′
C4

)|C3
) * Col3(True(g

′
C4

)|F3
)

Col3(True(f
′
C4

)|C3
) + Col3True(g

′
C4

)|F3
)

By Theorem 4.14 we know that if (Λ◦φC4
,RN′

C4
) ΣΠΣ-jointly realizes (f ′

C4
, g′

C4
),

then z3 cannot be a factor or simple term of Λ. This contradicts our claim that

Λ = z1z2 + z3, and so (f, g) are not ΣΠΣ-jointly realizable.575

We now prove the inductive step. Let n ≥ 4. Assume there exists f, g :

Bn → B such that (f, g) is not ΣΠΣ-jointly realizable, but isK-jointly realizable.

42



Define

f̃(y1 . . . yn+1) :=




f(y1 . . . xn) yn+1 = 0

1 yn+1 = 1

g̃(y1 . . . yn+1) :=




g(y1 . . . yn) yn+1 = 0

1 yn+1 = 1

Observe that f̃ ′, g̃′ ∈ MBF+(n + 1) such that f̃ ′ ≺ g̃′. Since f̃ ′
Fn+1

= f and

g̃′
Fn+1

= g, by Theorem 4.15 we know (f̃ , g̃) is not ΣΠΣ-jointly realizable. By

Theorem 4.6, we know all pairs f ≺ g ∈ MBF+(n + 1) are always K-jointly

realizable.

4.5. ΣΠΣ-joint realizability = K-joint realizability for n = 3580

This is the final result remaining to be proven in Table 1. To find the

total number of pairs (f, g) such that f, g ∈ MBF+(3) and f ≺ g, we use

the bijection given in Definition 4.16. The number of K-realizable pairs (f, g)

where f ≺ g ∈ MBF+(3) is the same as
∣∣MBF+(4)

∣∣. In [1] it was found

that
∣∣MBF+(4)

∣∣ = 168. We used the software DSGRN to find that 150 MBFs585

in MBF+(4) are Σ-realizable. The software was also used to computationally

check that there are exactly 150 pairs f ≺ g ∈ MBF+(3) that are Σ-jointly

realizable. We explicitly constructed the remaining 18 pairs (fi ≺ gi), i =

1, . . . 18 that are provably not Σ-joint realizable by applying Theorem 4.14 to

at least one direction in each case. These pairs are all presented in Appendix590

Table B.2 with the direction that allows application of Theorem 4.14 indicated.

Finally, in Appendix Table B.3, we provide specific realizing functions Λ◦φ and

realizing network thresholds θ1, θ2 that ΣΠΣ-jointly realize all 18 pairs.

5. Discussion

In this work we linked two classes of dynamical systems, one a continuous595

time ordinary differential equation (ODE) model and the other a discrete time

monotone Boolean function (MBF) model. Both of these classes have been used
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to model dynamics of gene regulatory networks. We show that a very general

class of ODE models with a discontinuous right hand side admits an equivalence

relation, such that all ODEs in an equivalence class share the approximate600

description of dynamics in terms of the identical state transition graph STG.

We then showed that each equivalence class corresponds to a collection of MBFs.

The collections of MBFs can be arranged into a parameter graph where edges

between the collections indicate a one-step change in one of the MBFs.

After establishing the equivalence between collections of MBFs and equiva-605

lence classes of K systems of ODEs, we pose the question about what restric-

tions, if any, the algebraic form of the right-hand side of the ODE imposes on

k-tuples of MBFs that correspond to realizable equivalence classes of ODEs.

We show that the classes of pairs of MBFs with three inputs that are realiz-

able as linear functions are a strict subset of ΠΣ-jointly realizable pairs, which610

is in turn a strict subset of ΣΠΣ-jointly realizable pairs of MBFs. We also show

that there are pairs of MBFs with any n ≥ 4 inputs that are K-jointly real-

izable, but are not ΣΠΣ realizable. To summarize,the increased complexity of

the algebraic expression provides a richer class of models as measured by the

set of MBFs that can be realized in a parameter graph.615

Our work opens up many interesting questions about the joint realizability

of collections of MBFs. We will briefly discuss two potential sets of questions.

First, we defined an infinite nested set of classes of nonlinearities. While we

only discussed the first three Σ ( ΠΣ ( ΣΠΣ, adding alternating products

and sums creates larger and larger classes of functions. Do our results extend in620

this direction? In other words, are there pairs of monotone Boolean functions

that are realizable in a parameter graph via class s + 1, but are not realizable

in class s? Furthermore, is it possible that there are pairs of MBFs that are not

realizable in any of the infinite progression of algebraic classes with alternating

products and sums, but are K-jointly realizable?625

The second class of questions generalizes pairs of monotone Boolean func-

tions to k-tuples, Our results derive some constraints for pairs of MBFs, which

are then used to prove the main results about differences in ∗-joint realizability.
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While these results apply pairwise to any k-tuple of MBFs with f1 ≺ f2 ≺ . . . ≺

fk, to rule out realizability of some tuples, we do not know if there any additional630

constraints that arise from considering, say, triples of functions f ≺ g ≺ h, or

k-tuples of MBFs.

By providing a link between a class of discontinuous differential equations

and the collection of k-tuples of MBFs, this paper provides an opening to a class

of new problems in the field of monotone Boolean functions.635

Appendix A. Proofs of Theorem 4.14 and 4.15.

Proof of Theorem 4.14. We will proceed by contradiction. Suppose z` is a factor

or simple term and suppose the negation of Equations (17) and (18). The

negation of (17) is there exists some point ~y ∈ F` such that g(~y) = 0 and

f(~y+ ê`) = 1. The negation of (18) implies there exists some point ~w ∈ F` such

that g(~w) = 1 and f(~w + ê`) = 0. Let θf and θg be the thresholds from RN

associated to the two functions respectively. From the definition of ∗-jointly

realizable, we know

g(~y) = 0 ⇐⇒ Λ(φ(~y)) < θg (A.1)

f(~y + ê`) = 1 ⇐⇒ Λ(φ(~y + ê`)) > θf (A.2)

g(~w) = 1 ⇐⇒ Λ(φ(~w)) > θg (A.3)

f(~w + ê`) = 0 ⇐⇒ Λ(φ(~w + ê`)) < θf (A.4)

We now proceed by cases.

Case 1: (z` is a factor) Recall from the definition of factor that there

exists a function Λ′ that does not depend on z` such that Λ = z`Λ
′. We have

z` = φ`(v`) for any ~v ∈ Bn. Taking ~v ∈ F` we have

Λ(φ(~v)) = φ`(0)Λ
′(φ′(Col`(~v)))

Λ(φ(~v + ê`)) = φ`(1)Λ
′(φ′(Col`(~v))).

We used the collapse operation because Λ′ is independent of z` and we took

φ′(Col`(~v)) = (φ1(v1), . . . , φ`−1(v`−1), φ`+1(v`+1), . . . , φn(vn)). Lastly, we used
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Col`(~v) = Col`(~v + ê`). We conclude that for any ~v ∈ F`

φ`(1)

φ`(0)
Λ(φ(~v)) = Λ(φ(~v + ê`)).

From (A.2) and (A.4), we may write

φ`(1)

φ`(0)
Λ(φ(~y)) > θf ⇐⇒ Λ(φ(~y)) >

φ`(0)

φ`(1)
θf

φ`(1)

φ`(0)
Λ(φ(~w)) < θf ⇐⇒ Λ(φ(~w)) <

φ`(0)

φ`(1)
θf

and combining with (A.1) and (A.3) we obtain

θg >
φ`(0)

φ`(1)
θf and θg <

φ`(0)

φ`(1)
θf

a clear contradiction.

Case 2: (z` is a simple term) Similar to Case 1, the key fact is, if z` is a

simple term, we know for any ~v ∈ F`

Λ(φ(~v)) + (φ`(1)− φ`(0)) = Λ(φ(~v + ê`)),

We then make a similar argument as before. Equations (A.2) and (A.4) give

Λ(φ(~y)) + (φ`(1)− φ`(0)) > θ1 ⇐⇒ Λ(φ(~y)) > θ1 − (φ`(1)− φ`(0))

Λ(φ(~w)) + (φ`(1)− φ`(0)) < θ1 ⇐⇒ Λ(φ(~w)) < θ1 − (φ`(1)− φ`(0))

and combining with (A.1) and (A.3) we obtain

θg > θf − (φ`(1)− φ`(0)) and θg < θf − (φ`(1)− φ`(0))

which is our desired contradiction.

Proof of Theorem 4.15. Let f, g : Bn → B, with f ≺ g, be ∗-jointly realizable640

MBFs, and let (Λ◦φ,RN) jointly ∗-realize (f, g). Let θf and θg be the thresholds

associated to the two realizations of these functions.

We seek to construct a ∗-interaction function Λ′ : Rn−1
+ → R+, a map

φ′ : Bn−1 → Rn−1
+ , and a weighted regulatory network RN′

U with thresholds θ′f

and θ′g so that (Λ′ ◦ φ′, RN′
U ) ∗-jointly realizes f ′

U , g
′
U : Bn−1 → B. In doing so645
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we will prove a). In each of the following cases, the construction of Λ′ does not

depend on whether U = F` or U = C`, and so b) will follow immediately.

Recall that we are going to collapse over the `th dimension. In the following

proof, we will be considering a node in RN that has an incoming edge from

node ` and two targets, one of which is associated to the MBF f and the other650

to g. It will be useful to define the graph RN′ to be the network RN without

the edge from ` to the node under consideration. RN′ is an intermediate step

to the construction of RN′
U .

Using the observations in Remark 3.2, we note that regardless of the specific

value of ∗, we can always assume that Λ ∈ ΣΠΣ defined in (12). Therefore

there exist sets W1, . . . ,WL, where W1, . . . ,WL partitions the set {1, . . . , n},

and for each k ∈ {1, . . . , L}, there exists Mk ∈ N so that the sets Vk,1, . . . , Vk,Mk

partition the set Wk, such that

Λ =
∑

Wk


∏

Vk,j


 ∑

i∈Vk,j

zi






There is exactly one set in the partition, call it Wp, such that ` ∈ Wp. Further-

more, there is exactly one Vp,∗ that contains `, call it Vp,q. We now proceed by

cases. Define the map δ : {1, . . . , n} \ {`} → {1, . . . , n− 1} as

δ(j) =




j if j < `

j − 1 if j > `

We will use the map δ to construct the interaction function Λ′. If ∗ is ΣΠΣ, we

need to consider Cases 1, 2, and 3. However, if ∗ is ΠΣ, then W1 = {1, . . . , n},655

and we only need to consider Cases 2 and 3, and if ∗ is Σ, then W1 = V1,1 =

{1, . . . , n}, and we only need to consider Case 3.

Case 1: (Wp = {`}) In this case the map Λ has the form

Λ = z` +
∑

Wk

k 6=p


∏

Vk,j


 ∑

i∈Vk,j

zi





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where zi = φi(yi) for ~y ∈ Bn. We construct the interaction function Λ′ as

Λ′ =
∑

Wk

k 6=p


∏

Vk,j


 ∑

i∈Vk,j

zδ(i)






and define zδ(i) = φ′
i(yi) = φδ−1(i)(yi). We then set φ′ = (φ′

1, . . . , φ
′
n−1). This

construction ensures, for any ~y = (y1, . . . , yn) ∈ Bn,

Λ(φ(~y)) = Λ′(φ′(yδ−1(1), . . . , yδ−1(n−1))) + φ`(y`)

If U = F`, then for all ~y = (y1, . . . , yn) ∈ U , we know y` = 0. Therefore,

Λ(φ(~y)) = Λ′(φ′(yδ−1(1), . . . , yδ−1(n−1))) + φ`(0).

Set θ′f = max{0, θf −φ`(0)} and θ′g = max{0, θg −φ`(0)}. It is possible that

θ′f = θ′g at this point. However, since Λ◦φ takes on finitely many values, we can

always perturb one threshold by a small enough ε to guarantee our inequalities

still hold. After this potential perturbation, replace θf and θg in RN′ with θ′f

and θ′g to complete the construction of RN′
F`
. This construction means that

Λ(φ(y1, . . . , yn)) ≶ θf ⇐⇒ Λ′(φ′(yδ−1(1), . . . , yδ−1(n−1))) ≶ θ′f

and likewise for θg and θ′g. Therefore (Λ′ ◦ φ′, RN′
F`
) ∗-jointly realizes f ′

F`
and

g′
F`
.

Similarly, if U = C`, then for all ~y = (y1, . . . , yn) ∈ U , we have

Λ(φ(~y)) = Λ′(φ′(yδ−1(1), . . . , yδ−1(n−1))) + φ`(1).

We set θ′f = max{0, θf − φ`(1)} and θ′g = max{0, θg − φ`(1)}, perturbed by660

small enough ε > 0, if necessary, to replace θf and θg in RN′ and complete the

construction of RN′
C`

. Then (Λ′ ◦ φ′, RN′
C`

) ∗-jointly realizes f ′
C`

and g′
C`

.

Case 2: (Wp\{`} 6= ∅ and Vp,q = {`}) The interaction function Λ′ without

the `th element is

Λ′ =
∑

Wk



∏

Vk,j

j 6=q


 ∑

i∈Vk,j

zδ(i)






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In this case we know that Wp is a partition of at minimum size two. Pick exactly

one t ∈ Wp\{q}. Construct zδ(j) = φ′
j(yj) as follows: if U = Fi, then for ~y ∈ Bn

φ′
j(yj) =




φδ−1(j)(yj)φ`(0) if j ∈ Vp,t

φδ−1(j)(yj) otherwise

.

However, if U = Ci, then

φ′
j(yj) =




φδ−1(j)(yj)φ`(1) if j ∈ Vp,t

φδ−1(j)(yj) otherwise

.

We have ensured for any ~y = (y1, . . . , yn) ∈ U ,

Λ(φ(~y)) = Λ′(φ′(yδ−1(1), . . . , yδ−1(n−1)))

Setting θ′f = θf and θ′g = θg obtains the desired result; i.e., RN′
U = RN′ and

(Λ′ ◦ φ′,RN′) ∗-jointly realizes f ′
U , g

′
U .

Case 3: (Wp \ {`} 6= ∅ and Vp,q \ {`} 6= ∅) In this case the original

interaction function Λ takes the form

Λ =
∑

Wk




∏

Vk,j

(k,j) 6=(p,q)


 ∑

i∈Vk,j

zi





+


∏

Vp,q


 ∑

i∈Vp,q

zi




 .

The interaction function Λ′ is constructed as

Λ′ =
∑

Wk




∏

Vk,j

(k,j) 6=(p,q)


 ∑

i∈Vk,j

zδ(i)





+



∏

Vp,q



∑

i∈Vp,q

i 6=`

zδ(i)





 .

Pick exactly one element t ∈ Vp,q \ {`}, and construct φ′
j as follows: if U = F`,

then

φ′
j(yj) :=




φδ−1(j)(yj) + φ`(0) if j = δ(t)

φδ−1(j)(yj) otherwise

.

However, if U = C`, then

φ′
j(yj) :=




φδ−1(j)(yj) + φ`(1) if j = δ(t)

φδ−1(j)(yj) otherwise

.
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We then set φ′ = (φ′
1, . . . , φ

′
n−1). This construction ensures, for any ~y =

(y1, . . . , yn) ∈ U ,

Λ(φ(~y)) = Λ′(φ′(yδ−1(1), . . . , yδ−1(n−1)))

and so by setting RN′
U = RN′ as in Case 2, we obtain the desired result.665

Appendix B. Supporting tables and figures

Table B.2 lists explicitly all pairs f ≺ g ∈ MBF+(3) of Boolean functions

with three inputs that are not Σ-jointly realizable. These correspond to non-

threshold monotone Boolean functions in MBF+(4) with 4 inputs. In each case

the direction that allows us to use Theorem 4.14 to rule out Σ-joint realizability670

is indicated in the last column.

In Table B.3 we show explicitly the form of the interaction function Λ ∈

ΣΠΣ, the values φ(1) = (φ1(1), φ2(1), φ3(1)), and the value of the thresholds

θg, θf that ΣΠΣ-jointly realize all pairs fi ≺ gi given in Table B.2. In all cases,

we set φ1(0) = φ2(0) = φ3(0) = 1. This list, together with 150 pairs that are Σ-675

jointly realizable, exhausts all pairs f ≺ g of functions in MBF+(3) and proves

that for n = 3 every such pair is ΣΠΣ-joint realizable.

Figure B.9 shows all pairs f ≺ g ∈ MBF+(2). It is also the factor of

the parameter graph associated to node 1 in the network in Figure 1, after

transforming the Boolean functions to be positive under the map β given in680

(13).

Acknowledgments This research was supported by NSF grant DMS-1839299

(B.C, T.G), DARPA FA8750-17-C-0054 (B.C, T.G) and NIH 5R01GM126555-

01 (P.CK, B.C, T.G).

References685

References

[1] R. Church, et al., Nunmerical analysis of certain free distributive structures,

Duke Mathematical Journal 6 (3) (1940) 732–734.

50



Input

000 001 010 100 110 101 011 111 Direction(s)

f1 ≺ g1 00 01 00 01 11 01 01 11 y1

f2 ≺ g2 00 00 01 01 01 01 11 11 y2

f3 ≺ g3 00 01 01 00 01 11 01 11 y3

f4 ≺ g4 00 01 01 00 11 01 01 11 y2

f5 ≺ g5 00 01 00 01 01 01 11 11 y3

f6 ≺ g6 00 00 01 01 01 11 01 11 y1

f7 ≺ g7 00 01 00 00 11 01 01 11 y1, y2

f8 ≺ g8 00 00 00 01 01 01 11 11 y2, y3

f9 ≺ g9 00 00 01 00 01 11 01 11 y1, y3

f10 ≺ g10 00 01 00 01 11 01 11 11 y1, y3

f11 ≺ g11 00 00 01 01 01 11 11 11 y1, y2

f12 ≺ g12 00 01 01 00 11 11 01 11 y2, y3

f13 ≺ g13 00 01 00 00 11 01 11 11 y1

f14 ≺ g14 00 00 00 01 01 11 11 11 y2

f15 ≺ g15 00 00 01 00 11 11 01 11 y3

f16 ≺ g16 00 00 00 01 11 01 11 11 y1

f17 ≺ g17 00 00 01 00 01 11 11 11 y2

f18 ≺ g18 00 01 00 00 11 11 01 11 y3

Table B.2: All 18 non Σ-jointly realizable pairs (f, g) for n = 3 such that f ≺ g. The column

for input ~y shows the pair of values of fi(y)gi(y). For example, column 001 has 01 in the first

row. This means that f1(001) = 0 and g1(001) = 1. The direction(s) that allow the use of

Theorem 4.14 to rule out Σ-joint realizability are indicated in the last column.
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i Λ φ(111) θg θf

1 z1z2 + z3 (3, 2, 3) 3.5 6.5

2 z1 + z2z3 (3, 3, 2) 3.5 6.5

3 z2 + z1z3 (2, 3, 3) 3.5 6.5

4 z1z2 + z3 (2, 3, 3) 3.5 6.5

5 z1 + z2z3 (3, 2, 3) 3.5 6.5

6 z2 + z1z3 (3, 3, 2) 3.5 6.5

7 z1z2 + z3 (3, 3, 4) 4.5 8

8 z1 + z2z3 (4, 3, 3) 4.5 8

9 z2 + z1z3 (3, 4, 3) 4.5 8

10 z2(z1 + z3) (4, 2, 4) 4.5 9

11 z3(z1 + z2) (4, 4, 2) 4.5 9

12 z1(z2 + z3) (2, 4, 4) 4.5 9

13 z1z2 + z3 (2, 3, 4) 4.5 6.5

14 z1 + z2z3 (4, 2, 3) 4.5 6.5

15 z2 + z1z3 (3, 4, 2) 4.5 6.5

16 z2(z1 + z3) (4, 2, 3) 4.5 7.5

17 z3(z1 + z2) (3, 4, 2) 4.5 7.5

18 z1(z2 + z3) (2, 3, 4) 4.5 7.5

Table B.3: Example (Λ◦φ, θ1, θ2) that ΣΠΣ-jointly realize all pairs fi ≺ gi given in Table B.2.

For all rows, φ1(0) = φ2(0) = φ3(0) = 1.
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Figure B.9: All 20 pairs of functions f ≺ g ∈ MBF
+(2). Each node in the above graph

represents a pair of functions, where dark grey is False(f) ∩ False(g), light grey is False(f) ∩

True(g), and white is True(f) ∩ True(g).
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