

Genetic Networks Encode Secrets of Their Past

Peter Crawford-Kahrl^{1,4}, Robert R. Nerem^{2,4}, Bree Cummins³, and Tomas Gedeon³

¹ Courant Institute of Mathematical Sciences, New York University, New York, NY, USA

²*Institute for Quantum Science and Technology, University of Calgary, Alberta T2N 1N4, Canada*

³*Department of Mathematical Sciences, Montana State University, Bozeman, MT, USA*

⁴These authors contributed equally to this work.

Abstract

Research shows that gene duplication followed by either repurposing or removal of duplicated genes is an important contributor to evolution of gene and protein interaction networks. We aim to identify which characteristics of a network can arise through this process, and which must have been produced in a different way. To model the network evolution, we postulate vertex duplication and edge deletion as evolutionary operations on graphs. Using the novel concept of an ancestrally distinguished subgraph, we show how features of present-day networks require certain features of their ancestors. In particular, ancestrally distinguished subgraphs cannot be introduced by vertex duplication. Additionally, if vertex duplication and edge deletion are the only evolutionary mechanisms, then a graph's ancestrally distinguished subgraphs must be contained in all of the graph's ancestors. We analyze two experimentally derived genetic networks and show that our results accurately predict lack of large ancestrally distinguished subgraphs, despite this feature being statistically improbable in associated random networks. This observation is consistent with the hypothesis that these networks evolved primarily via vertex duplication. The tools we provide open the door for analyzing ancestral networks using current networks. Our results apply to edge-labeled (e.g. signed) graphs which are either undirected or directed.

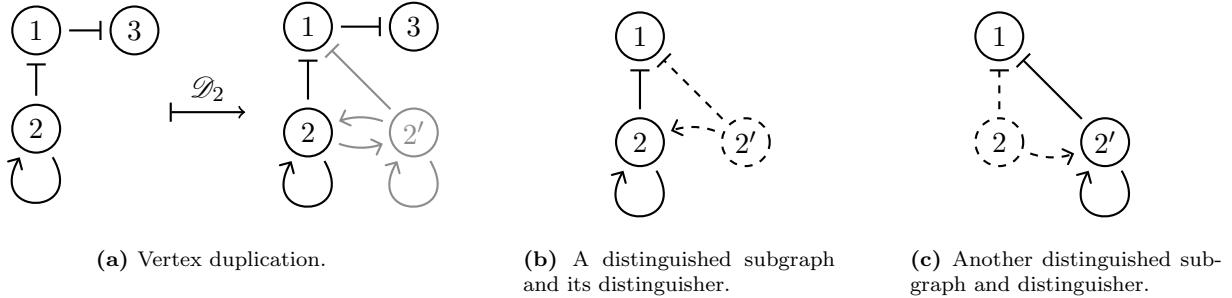


Figure 1: Panel (a) illustrates vertex duplication. The left graph is G , and the right graph is $G' = \mathcal{D}_2(G)$. Vertex 2 is duplicated, resulting in the addition of vertex $2'$ and new edges. Vertex $2'$ inherits all of the connections of vertex 2. Since 2 possesses a self-loop, G' also contains connections between 2 and $2'$. Panels (b) and (c) highlight distinguishable subgraphs of G' (full lines). In each case, a vertex that is a distinguisher of the subgraph is shown (dashed line). Distinguishers need not be unique. In G' , vertex 2 is a distinguisher of 1 and 2 (panel (c)), and $2'$ is also a distinguisher of 1 and 2 (panel (b)).

27 **Keywords:** genetic networks, network models, molecular evolution, graph similarity

28 1 Introduction

29 Gene duplication is one of the most important mechanisms governing genetic network growth
 30 and evolution [1, 2, 3]. Another important process is the elimination of interactions between
 31 existing genes, and even entire genes themselves. These two mechanisms are often linked, whereby
 32 a duplication event is followed by the removal of some of the interactions between the new gene
 33 and existing genes in the network [4, 5, 6, 7, 8, 9]. De novo establishment of new interactions or
 34 addition of new genes into the network by horizontal gene transfer is also possible, but significantly
 35 less likely [10].

36 A common description of protein-protein interaction networks and genetic regulatory networks
 37 is that of a graph. Several papers study how gene duplication, edge removal and vertex removal
 38 affect the global structure of the interaction network from a graph theoretic perspective [11, 12,
 39 13, 14, 10]. They study the effects that the probability of duplication and removal have on various
 40 network characteristics, such as the degree distribution of the network. These papers conclude
 41 that by selecting proper probability rates of vertex doubling, deletion of newly created edges after
 42 vertex doubling, and addition of new edges, one can recover the degree distribution observed in
 43 inferred genetic networks in the large graph limit. This seems to be consistent with the data
 44 from *Saccharomyces cerevisiae* [14, 10] but since regulatory networks are finite, the distributions

45 of genetic networks are by necessity only approximations to the theoretical power distributions.

46 Other investigations are concerned with general statistical descriptors of large networks. These
47 descriptors include the distribution of path lengths, number of cyclic paths, and other graph char-
48 acteristics [15, 16, 17, 18]. These methods are generally applicable to any type of network (social
49 interactions, online connections, etc) and are often used to compare networks across different sci-
50 entific domains.

51 We take a novel approach to analyzing biological network evolution. We pose the following
52 question:

53 *Question 1.* Given a current network, with no knowledge of its evolutionary path, can one recover
54 structural traces of its ancestral network?

55 To answer this question we formulate a general model of graph evolution, with two operations:
56 the duplication of a vertex and removal of existing vertices or edges. The effect of vertex duplication,
57 shown in Figure 1, is defined by a vertex and its duplicate sharing the same adjacencies. This
58 model does not put any constraints on which vertices or edges may be removed, the order of
59 evolutionary operations, nor limits the number of operations of either type. Previous investigations
60 of the evolution of networks under vertex duplication study special cases of our model [4, 5, 7, 8].

61 Suppose that a particular sequence of evolutionary operations transforms a graph G into a graph
62 G' . We seek to discover which characteristics and features of the ancestor G may be recovered from
63 knowledge of G' . Although this work is motivated by biological applications, the results in our
64 paper apply to any edge-labeled directed or undirected graph.

65 Our results are in two related directions. First, we introduce the concept of a ancestrally dis-
66 tinguished subgraph and show that G must contain all (ancestrally) distinguished subgraphs of G' .
67 This implies that vertex duplication and edge deletion can not introduce distinguished subgraphs.
68 Next, we define the distinguishability of graph as the size of of its largest distinguished subgraph.
69 Our theoretical analysis suggests that small distinguishability is a signature of networks that evolve
70 primarily via vertex duplication. We confirm this result by showing that the distinguishabilities of
71 three published biological networks and artificial networks evolved by simulated vertex duplication
72 both exhibit distinguishability that is smaller than their expected distinguishability under random
73 edge relabeling.

74 **2 Main Results**

75 **2.1 Ancestral Networks Contain Distinguished Subgraphs**

76 We begin by introducing a new graph property that we call ancestral distinguishability (Definition
77 4.7) shortened to distinguishability hereafter. We say two vertices are distinguishable if there exists
78 a mutual neighbor for which the edges connecting the vertices to this neighbor have different edge
79 labels. Here, edge labels denote the type of underlying interaction between two vertices (e.g. edges
80 labeled $+1$ for “activation”, or -1 for “inhibition”). In a directed graph, a mutual neighbor is either
81 a predecessor of both vertices or a successor of both vertices. Since, by definition of duplication, a
82 vertex and its duplicate must be connected to each of their neighbors by edges with the same label
83 (Figure 1, Definition 4.6), we show that a vertex and its duplicate can never be distinguishable.
84 Additionally, deletion of edges can not create distinguishability between two vertices.

85 We combine these results to prove that vertex duplication and edge deletion cannot create new
86 subgraphs for which every pair of vertices is distinguishable. This observation yields our first main
87 result that any such distinguished subgraph in the current network G' , must have also occurred in
88 the ancestral network G (Corollary 4.10). In fact this result is a corollary of a stronger theorem
89 regarding the existence of a certain graph homomorphism from G' to G (Theorem 4.9).

90 *Main Result 1.* If G' is a network formed from G by vertex duplication and edge deletion, then all
91 distinguished subgraphs of G' are isomorphic to distinguished subgraphs of G . In other words, no
92 distinguished subgraph in G' could have been introduced by vertex duplication and edge deletion.

93 We develop Main Result 1 in the setting for which vertex duplication and edge deletion are the
94 only evolutionary mechanisms. However, if there are evolutionary mechanisms other than vertex
95 duplication and edge deletion, the the second formulation of Main Result 1 offers an important
96 insight. If a sequence of arbitrary evolutionary steps (vertex duplication, edge deletion, or some
97 other mechanism) takes a network G to a network G' containing a distinguished subgraph H , then
98 either H is isomorphic to a subgraph of G or at least one step in the evolutionary sequence was
99 not vertex duplication or edge deletion.

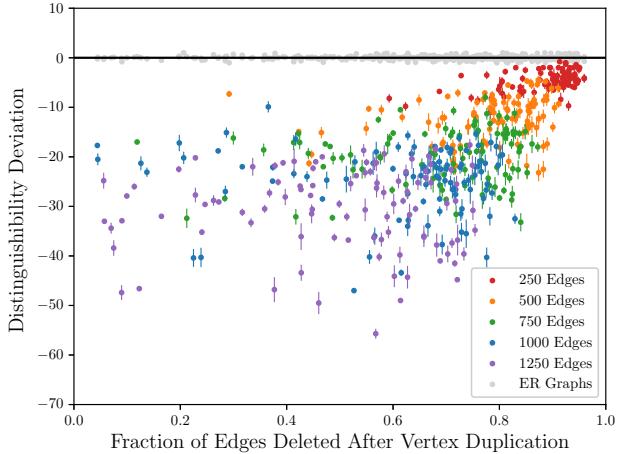


Figure 2: Colored points represent 500 directed graphs generated from random 25-vertex seed graphs by repeated random vertex duplication and subsequent edge deletion until a predetermined number of edges is achieved. Color indicates final number of edges after deletion. Each of the 500 grey points represents a randomly generated ER-graph with number of vertices, positive edges, and negative edges equal to that of a corresponding evolved graph. The corresponding figure for undirected graphs is Figure 2a in the SI.

100 2.2 A Robust Signature of Duplication

101 We next aim to determine if the effects of evolution by vertex duplication and edge deletion can
 102 be identified in biological networks. We consider the distinguishability of a graph, which is the
 103 number of vertices in its largest distinguished subgraph. Since vertex duplication and edge deletion
 104 cannot create distinguishability, the distinguishability of a graph cannot increase under this model
 105 of evolution (Corollary 4.12). Since observations indicate that evolution is dominated by duplication
 106 and removal, we predict that genetic networks exhibit low distinguishability.

107 To quantify the degree to which the distinguishability of a graph G is low, we compute the
 108 distinguishability deviation of G : the difference between the distinguishability of G and the expected
 109 distinguishability of G under random edge relabeling (Equation 7). Since low distinguishability is a
 110 signature of vertex duplication, we expect random relabeling to remove this signature and therefore
 111 increase distinguishability. In other words, we expect networks evolved by vertex duplication and
 112 edge deletion to have negative distinguishability deviation.

113 We calculate the distinguishability deviation of networks constructed by simulated evolution
 114 via vertex duplication and edge deletion. These networks are formed in two stages from 25-vertex
 115 Erdős-Rényi graphs (ER-graphs [19]) with two edge labels denoting positive and negative interac-
 116 tion. First, vertex duplication is applied 225 times, each time to a random vertex. Next, edges are

117 randomly deleted until some target final number of edges is reached. The deletions simulate both
118 evolutionary steps and the effect of incomplete data in experimentally derived networks. We note
119 that the operation of vertex duplication and edge removal commute in a sense that any graph that
120 can be built by an arbitrary order of these operations can be also built by performing the duplica-
121 tions first and then performing an appropriate number of deletions. Therefore our construction is
122 general.

123 As shown in Figure 2, these simulations indicate that networks evolved by vertex duplication
124 have negative distinguishability deviation. For each graph represented by a colored point in Fig-
125 ure 2, we construct an ER-graph with the same number of vertices, positive edges, and negative
126 edges. These graphs are represented by grey points and show that ER-graphs exhibit near-zero
127 distinguishability deviation. This negativity is robust against edge deletion; even graphs that had
128 80% of their edges deleted after vertex duplication exhibited statistically significant negative dis-
129 tinguishability deviation. This result also holds when the seed ER graphs are larger, imitating a
130 case where the resulting evolved networks are less paralog-rich (SI Figure 2).

131 Having established evidence that graphs evolved by vertex duplication exhibit negative dis-
132 tinguishability deviation, we evaluate if this property is observable in biological networks. We
133 consider three networks. The first is a *D. melanogaster* protein-protein interaction network de-
134 veloped by [20], represented by an edge-labeled undirected graph consisting of 3,352 vertices and
135 6,125 edges. Second, we investigate the directed human blood cell regulatory network recorded in
136 [21] consisting of 31 vertices and 150 edges. Both networks have label set $L = \{-1, +1\}$, signifying
137 negative and positive regulation, respectively.

138 Third, we investigate an *E. coli* transcriptional network from [22] with 2,273 genes and over
139 4,000 regulatory interactions. This data requires modeling choices because the interactions include
140 multi-edges, which our methodology does not address. We suggest that multi-edges of the same
141 regulation type are redundant and may be merged. On the other hand, multi-edges containing both
142 positive and negative regulation (mixed multi-edges) may be indicative of a complex regulatory
143 interaction that is not easy to characterize. We choose two methods for handling mixed multi-
144 edges. In the first method, we drop mixed multi-edges, resulting in 4,029 interactions. As edge
145 deletion is built into our model, we expect to see negative distinguishability even after dropping
146 multi-edges. In the second method, we merge these edges into a single edge with a third label,

147 so that the label set is $L = \{-1, 0, +1\}$, resulting in 4913 interactions. The results for the first
148 method are reported here in the main text. Computing the distinguishability deviation in the
149 second network is computationally infeasible because the distinguishability graph is very dense,
150 primarily due to hub vertices. An approach using subsampling is discussed and reported in SI
151 Section 4.

152 The distinguishability deviations of these networks confirm our predictions as they exhibit
153 negative distinguishability deviation. Respectively, the distinguishabilities of the *D. melanogaster*,
154 blood cell, and *E. coli* networks are 7, 4, and 10 and their expected distinguishabilities approximated
155 by 100 random edge sign relabelings are $31.2 \pm .7$, $5.6 \pm .6$, and 16 ± 1 . Thus, these networks have
156 distinguishability deviations of

$$-24.2 \pm .7 \text{ and } -1.6 \pm .6 \text{ and } -6 \pm 1 \quad (1)$$

157 with statistical significance of 34.6, 2.3, and 6 standard deviations, respectively. A consistent but
158 weaker result for the *E. coli* network with three labels is reported in SI Section 4. These results are
159 consistent with the hypothesis that biological networks inferred from experimental data are subject
160 to long sequences of vertex duplication and edge removal without the evolutionary operation of
161 novel vertex or edge addition.

162 The joint evidence of negative distinguishability deviations in both simulated and observed data
163 leads to the following result.

164 *Main Result 2.* Negative distinguishability deviation is a likely signature of evolution via vertex
165 duplication and edge deletion.

166 While we do not offer a rigorous mathematical proof, in Subsection 4.4 we give evidence for a
167 conjecture (Conjecture 4.15) which, if true, would prove that vertex duplication always decreases
168 distinguishability deviation. SI Section 3 gives a detailed description of the simulated evolution
169 scheme we used in Figure 2. For completeness, we show in this section that negative distinguisha-
170 bility deviation cannot be fully explained by the single vertex characteristics (i.e. signed degree
171 sequence) or small world properties of the networks.

172 **3 Discussion**

173 We introduce the concept of distinguished subgraphs, in which every vertex has differentiating
174 regulatory interactions from every other vertex in the subgraph. We show that distinguished
175 subgraphs cannot be created by vertex duplication and edge deletion. Remarkably, this implies
176 that any of a network’s distinguished subgraphs must appear in all of its ancestors under a model
177 of network evolution that allows duplication and removal, but does not allow for the addition of
178 new vertices or edges. Furthermore, this result shows that distinguished subgraphs cannot be
179 introduced by vertex duplication and edge deletion.

180 In biological networks the addition of regulatory interactions between existing genes (neofunc-
181 tionalization [23]), or the addition of entirely new genes via horizontal gene transfer [10] are possible,
182 but are considered less likely than gene duplication or loss of function of a regulatory interaction
183 [24]. With this in mind, we consider a model of network evolution in which long sequences of ver-
184 tex duplication and edge removal are interspersed by infrequent additions of new edges or vertices.
185 Under this model, Main Result 1 (Corollary 4.10) applies to any sequence of consecutive vertex
186 duplications and edge removals.

187 We investigate whether the predicted features of vertex duplication can be found in biological
188 networks inferred from experimental observations. Using the metric of distinguishability deviation
189 we show that three inferred biological networks and a population of simulated networks evolved by
190 vertex duplication exhibit negative distinguishability deviation that is statistically improbable in
191 associated random networks. We propose that negative distinguishability deviation is a marker of
192 evolution by vertex duplication and edge removal.

193 We remark that distinguishability deviation can only be computed on labeled or signed graphs,
194 which is a feature that is often not available in inferred biological networks. For example, ChIP-
195 chip or ChIP-seq measurements result in binding site information, which provides direction but
196 not knowledge of putative activating or repressing behavior. Similarly, while uncommon, there are
197 networks that are undirected and yet signed, such as the *D. melanogaster* dataset that we analyze
198 in this paper.

199 One potential application of the negative distinguishability deviation conjecture is a method of
200 checking the suitability of random graph models. Often, random statistical models are developed to

201 generate graphs that match properties of social networks [25], properties of biological networks [26],
202 or general graph theoretic properties [27]. For example, the discovery of small-world phenomena [28,
203 18] lead to the development of the Watts-Strogatz model [29]. Our results imply that an accurate
204 random graph model for signed biological networks, or more generally edge-labeled networks that
205 primarily evolved via vertex duplication, should generate networks with negative distinguishability
206 deviation. Additionally, distinguishability deviation could inform the development of new models
207 that more closely agree with experimentally derived networks.

208 As an illustration of the utility of Main Result 1, we consider the following example. Certain
209 network motifs, i.e. 3-4 vertex subgraphs, have been shown to appear at statistically higher rates
210 in inferred biological networks [30]. Motifs seem to be a byproduct of convergent evolution, being
211 repeatedly selected for based on their underlying biological function, and appearing in organisms
212 and systems across various biological applications [31]. This argument is based on comparison of
213 highly observed frequencies of motifs against their low expected frequencies that are computed
214 based on random graph models [30]. Changing the null model will affect the identity of the motifs.
215 It is intriguing to speculate that a null model based on duplication and deletion may more closely
216 reflect the evolutionary process and yield a different concentration of motifs.

217 Vertex duplication and edge removal can create motifs not present in the original network.
218 For example, consider the feed-forward loop, any three vertex subgraph isomorphic to a directed
219 graph with edge set $\{(i, j), (j, k), (i, k)\}$ (see [32]). In Figure 1a, no feed-forward loops can be
220 found in G , but there are two in G' , both of which contain the vertices 1, 2, and $2'$. In contrast,
221 the introduction of motifs that are also distinguished subgraphs by vertex duplication and edge
222 deletion is forbidden by Main Result 1. Indeed, the feed-forward loops created in Figure 1a are not
223 distinguished subgraphs. This ability to identify which motifs could not have arisen from vertex
224 duplication and edge deletion could provide new insight into the origin of specific motifs and,
225 potentially, their biological importance. Similarly, identifying genes in subgraphs that cannot arise
226 from vertex duplication and edge deletion could be useful for finding genes that were introduced
227 by mechanisms outside of these operations, such as horizontal gene transfer.

228 Finally, our mathematical results are general enough to survey network models beyond genetics
229 to discern if vertex duplication may have played a role in their evolution. For example, current
230 ecological networks reflect past speciation events, where a new species initially shares the ecological

231 interactions of their predecessors. This can be viewed as vertex duplication and therefore ecological
232 networks may exhibit significant negative distinguishability deviation. Evaluating the distinguisha-
233 bility deviation of ecological networks could indicate if the duplication process has been a significant
234 factor in their evolution. More broadly, the study of the evolutionary processes that produce net-
235 works has been used to understand why networks from distinct domains, be they social, biological,
236 genetic, internet connections, etc, have properties unique to their domain (e.g. exponents of power
237 law distributions [33]). Distinguishability deviation is yet another tool to understand the effect
238 evolutionary processes have on networks.

239 4 Methods

240 We proceed with preliminary definitions to familiarize the reader with the language and notation
241 used in this paper.

242 4.1 Definitions

243 Throughout this paper we fix an edge label set L . We assume that $|L| \geq 2$, otherwise the results
244 are trivial. For example, to consider signed regulatory networks with both activating and inhibiting
245 interactions one could take $L = \{+1, -1\}$. We use this choice in examples, along with the notation
246 \dashv and \rightarrow to represent directed edges with labels -1 and $+1$ respectively.

247 **Definition 4.1.** A graph is the 3-tuple $G := (V, E, \ell)$ where V is a set of vertices, $E \subseteq \{(i, j) :$
248 $i, j \in V\}$ is a set of directed edges, and $\ell : E \rightarrow L$ is a map labeling edges with elements of L .

249 Our results apply to both directed graphs and undirected graphs. To facilitate this, we use graph
250 to mean either an undirected or directed graph, and view undirected graphs as a special case of
251 directed graphs, as seen in the following definition.

252 **Definition 4.2.** A graph $G = (V, E, \ell)$ is undirected if $(i, j) \in E$ and $\ell(i, j) = a$ if and only if
253 $(j, i) \in E$ and $\ell(j, i) = a$. For an unlabeled graph, $\ell = \emptyset$.

254 **Definition 4.3.** A subgraph of a graph $G = (V, E, \ell)$ is a graph $H = (V', E', \ell|_{E'})$ such that
255 $V' \subseteq V$ and $E' \subseteq E \cap (V' \times V')$. If H is undirected, we require that G is also undirected, i.e. E'
256 satisfies $(i, j) \in E$ if and only if $(j, i) \in E$.

257 **Definition 4.4.** Let (V, E, ℓ) be a graph. We say $j \in V$ is a neighbor of $i \in V$ if either $(j, i) \in E$
 258 or $(i, j) \in V$.

259 **Definition 4.5.** Let $G' = (V', E', \ell')$ and $G = (V, E, \ell)$ be two graphs. A map $\Phi: V' \rightarrow V$ is
 260 a graph homomorphism (from G' to G) if $\forall i, j \in V'$, if $(i, j) \in E'$, then $(\Phi(i), \Phi(j)) \in E$ and
 261 $\ell'(i, j) = \ell(\Phi(i), \Phi(j))$. In other words, a graph homomorphism is a map on vertices that respects
 262 edges and edge labels.

263 The following definition specifies an operation on a graph which duplicates a vertex d , producing
 264 a new graph that is identical in all respects except for the addition of one new vertex, d' , that copies
 265 the edge connections of d . This definition captures the behavior of gene duplication in genetic
 266 networks.

267 **Definition 4.6.** Given a graph $G = (V, E, \ell)$ and a vertex $d \in V$, we define the vertex duplication of
 268 d as the graph operation which constructs a new graph, denoted $\mathcal{D}_d(G) := G' = (V', E', \ell')$, where
 269 $V' := V \cup \{d'\}$, and $(i, j) \in E'$ with $\ell'(i, j) = a$ if and only if either

270 1. $(i, j) \in E$ with $\ell(i, j) = a$,

271 2. $j = d'$ and $(i, d) \in E$ with $\ell(i, d) = a$,

272 3. $i = d'$ and $(d, j) \in E$ with $\ell(d, j) = a$,

273 4. or $j = i = d'$ and $(d, d) \in E$ with $\ell(d, d) = a$.

274 An example of vertex duplication is shown in Figure 1a, where the left graph is G , and vertex 2
 275 is duplicated, producing the right graph, G' . All of new edges added during duplication are shown
 276 in grey.

277 **4.2 Distinguishability**

278 We now introduce an important invariant property under vertex duplication and edge removal.

279 **Definition 4.7.** Let $G = (V, E, \ell)$ be a graph. Two vertices $i, j \in V$ are distinguishable (in G) if
 280 and only if there exists a vertex k that is a neighbor of both i and j such that either

$$(i, k), (j, k) \in E \text{ and } \ell(i, k) \neq \ell(j, k) \tag{2}$$

281 or

$$(k, i), (k, j) \in E \text{ and } \ell(k, i) \neq \ell(k, j). \quad (3)$$

282 We say that k is a distinguisher of i and j . It is worth noting that there may be multiple dis-
283 tinguishers of i and j , i.e. distinguishers need not be unique. Furthermore, if G is undirected,
284 Equation (2) holds for a vertex k if and only if Equation (3) also holds.

285 We say $U \subseteq V$ is a distinguishable set (in G) if for all $i, j \in U$ with $i \neq j$, the vertices i and
286 j are distinguishable. Similarly, we refer to any subgraph whose vertex set is distinguishable as a
287 distinguished subgraph.

288 *Remark 4.8.* As long as $|L| \geq 2$, for any graph G , there is a graph G' that contains G as a
289 distinguishable subgraph. To see this, consider a subgraph G . Then for each pair $i, j \in G$ add a new
290 vertex k and edges $\{(i, k), (j, k)\}$ with different labels, so that $\ell(i, k) \neq \ell(j, k)$. Then i and j are
291 distinguishable and G is embedded as a distinguishable subgraph in a larger graph G' .

292 To illustrate the concept of distinguishable sets, consider the graphs shown in Figure 1a. The
293 leftmost graph G has only one distinguishable sets, $\{1, 2\}$. Here, 2 is a distinguisher of 1 and
294 2. After duplication of 2 the new graph G' contains two distinguishable sets, $\{1, 2\}$ and $\{1, 2'\}$.
295 However, vertices 2 and $2'$ are not distinguishable. Any mutual neighbor of 2 and $2'$ shares exactly
296 the same edges with matching labels. Figure 1b and 1c show example distinguishable subsets of G' .
297 In each case, the distinguishable set is shown as full lines, and a distinguisher is shown as dashed
298 lines.

299 The insight that the duplication of a gene d produces an indistinguishable pair d and d' is
300 general and leads to our main result in Theorem 4.9.

301 4.3 Distinguished Subgraphs

302 Fix two graphs G and G' . Suppose that G is an ancestor of G' , that is, there exists a sequence
303 of graphs G_1, \dots, G_M with $G_m := (V_m, E_m, \ell_m)$, such that $G = G_1$, $G' = G_M$, and for each
304 $m \in \{1, \dots, M\}$, either G_{m+1} is a subgraph of G_m , or $G_{m+1} = \mathcal{D}_{d_m}(G_m)$, for some $d_m \in V_m$.

305 To address Question 1, we present Theorem 4.9. It states that whenever G is an ancestor
306 of G' , then there must exist a graph homomorphism from G' to its ancestor G such that the
307 homomorphism is injective on distinguishable sets of vertices. This result allows us to conclude

308 several corollaries that characterize the properties of the ancestor network.

309 The proof of the following theorem makes use of Lemma A.1 in Appendix A.

310 **Theorem 4.9.** *Let $G = (V, E, \ell)$ be an ancestor of $G' = (V', E', \ell')$. Then there is a graph*
311 *homomorphism $\Phi: V' \rightarrow V$ such that for all distinguishable sets $U \subseteq V'$, the restriction $\Phi|_U$ is*
312 *1-to-1, and $\Phi(U)$ is a distinguishable set in G .*

313 *Proof.* Let G_1, \dots, G_M be the evolutionary path connecting ancestor G with the current graph G' ,
314 where $G_m := (V_m, E_m, \ell_m)$. At each step, we construct a map Φ_m from G_{m+1} to G_m satisfying the
315 required conditions. The composition $\Phi := \Phi_1 \circ \dots \circ \Phi_{M-1}$ then verifies the desired result.

316 We now construct Φ_m . If G_{m+1} is a subgraph of G_m , let Φ_m be the inclusion map $\iota: V_{m+1} \hookrightarrow V_m$.
317 The inclusion map is obviously a graph homomorphism, and is injective on all of V_{m+1} . Let
318 $i, j \in V_{m+1}$ be distinguishable vertices in G_{m+1} , and let k be a distinguisher of i and j . Since ι is
319 a homomorphism, $\iota(k) = k \in V_m$ is a distinguisher of $\iota(i), \iota(j) \in V_m$.

320 If $G_{m+1} = \mathcal{D}_{d_m}(G_m)$, let $\Phi_m: V_{m+1} \rightarrow V_m$ be defined as

$$\Phi_m(i) := \begin{cases} d_m & \text{if } i = d'_m \\ i & \text{otherwise} \end{cases}.$$

321 We verify by using Definition 4.6 that this map satisfies the required properties in Lemma A.1. \square

322 It is worth noting that the proof of Theorem 4.9 is constructive; however, the construction
323 relies on the knowledge of the specific evolutionary path, i.e a sequence of events that form the
324 graph sequence G_1, \dots, G_M . In almost all applications, this sequence is unknown or only partially
325 understood. However the existence of the homomorphism allows us to conclude features of G using
326 knowledge of the graph G' .

327 **Corollary 4.10.** *Let G be the ancestor of G' . Any distinguished subgraph of G' is isomorphic to a*
328 *subgraph of G .*

329 *Proof.* Consider a distinguished subgraph of G' with vertex set $U \subseteq V'$. Since U is distinguishable,
330 by Theorem 4.9 $\Phi|_U$ is an injective graph homomorphism, so it is an isomorphism onto its image.
331 Therefore, $\Phi|_U$ is the desired isomorphism. \square

332 This result describes structures that must have been present in any ancestor graph G , and puts
333 a lower bound on the size of G .

334 **Definition 4.11.** The distinguishability of a graph $G = (V, E, \ell)$ is the size of a maximum distin-
335 guishable subset $U \subseteq V$. Let $D(G)$ denote the distinguishability of a graph G .

Corollary 4.12. *Let G be the ancestor of G' . The distinguishability of G is greater than or equal to the distinguishability of G' ,*

$$D(G) \geq D(G').$$

336 *Proof.* Let $U \subseteq V'$ be a distinguishable set in G' . Then $\Phi(U)$ is distinguishable in G , and since
337 $\Phi|_U$ is injective, $|\Phi(U)| = |U|$. \square

338 Identifying distinguishable sets can be computationally challenging, and so we recast the prob-
339 lem of finding distinguishable sets in terms of a more familiar computational problem. We construct
340 a new graph whose cliques are distinguishable sets of the original graph.

341 **Definition 4.13.** The distinguishability graph of $G = (V, E, \ell)$ is a undirected graph $D(G) :=$
342 (V, E^*, \emptyset) where $(i, j) \in E^*$ if and only if i and j are distinguishable in G .

343 Recall that a set of vertices is distinguishable if and only if each pair of vertices in that set
344 is distinguishable. Therefore distinguishable sets in G are cliques in the distinguishability graph
345 $D(G)$, see SI Section C. We also prove that the clique problem is efficiently reducible to calculating
346 the distinguishability of a graph. Since it is easy to show computing distinguishability is in the
347 class \mathcal{NP} , this reduction implies that computing the distinguishability is \mathcal{NP} -complete.

348 4.4 Distinguishability Deviation

349 We now search for consequences of Corollary 4.12 in inferred biological networks. To do so, we
350 seek a metric that evaluates how the distinguishability of a network compares with expected distin-
351 guishability in an appropriately selected class of random graphs. Since vertex duplication cannot
352 increase distinguishability, we expect genetic networks to exhibit low distinguishability when com-
353 pared with similar random graphs. The most obvious graphs to compare against are those with the
354 same structure as G , and with the same expected fraction of positive and negative edges as G , but

355 in which each edge has a randomly assigned label. Before formalizing this notion in Definition 4.14,
 356 we adjust our perspective on undirected graphs in order to reduce notational complexity. For the
 357 rest of this manuscript, we adopt the convention that if E is an edge set for an undirected graph,
 358 then $E \subseteq \{\{i, j\} : i, j \in V\}$, i.e. edges of undirected graphs are unordered pairs of vertices. The
 359 notation $e \in E$ then refers to $e = (i, j)$ in a directed graph and $e = \{i, j\}$ in an undirected graph.

360 **Definition 4.14.** Let $G = (V, E, \ell)$ be a graph. We define the probability of each label in G by
 361 counting its relative edge label abundance

$$\mathbf{p}_G(a) := \frac{|\{e \in E : \ell(e) = a\}|}{|E|}. \quad (4)$$

362 Let $\{\ell_r\}_{r \in R}$ be the set of all possible edge label maps, $\ell_r : E \rightarrow L$, where R is an index set. Denote
 363 $G_r := (V, E, \ell_r)$ to be the graph with the same vertices and edges as G but with edge labels
 364 determined by ℓ_r . We define the expected distinguishability of G as

$$\langle \mathbf{D}(G) \rangle := \sum_{r \in R} P(G_r) \mathbf{D}(G_r). \quad (5)$$

365 where

$$P(G_r) = \prod_{e \in E} \mathbf{p}_G(\ell_r(e)). \quad (6)$$

366 We interpret $P(G_r)$ as the probability of the graph G_r conditioned on using the unlabeled structure
 367 of G .

368 In addition, we define the distinguishability deviation of G as the difference between its distin-
 369 guishability and its expected distinguishability, i.e.

$$\mathbf{D}(G) - \langle \mathbf{D}(G) \rangle. \quad (7)$$

370 Expected distinguishability $\langle \mathbf{D}(G) \rangle$ can be approximated by randomly relabeling G with prob-
 371 ability according to Equation (6) and calculating the distinguishability of the resultant graph.
 372 Repeating the process multiple times and averaging yields an approximation of expected distin-
 373 guishability. We utilize this method in our calculations of distinguishability deviation in Section
 374 2. In particular, the distinguishability deviations in Figure 2 were calculated by averaging over 10

375 random graphs. The distinguishability deviations of the biological networks in Equation (1) were
 376 found by averaging over 100 random graphs.

377 The results of distinguishability deviation calculations in published biological networks and
 378 simulated networks lead us to the following conjecture.

379 **Conjecture 4.15.** *Let \mathcal{G}_n be the set of all graphs $G = (V, E, \ell)$ with n vertices. Let $\mathcal{U}_n \subseteq \mathcal{G}_n$ be
 380 the set of those graphs for which*

$$\frac{1}{|V|} \sum_{d \in V} \langle \mathbb{D}(\mathcal{D}_d(G)) \rangle - \langle \mathbb{D}(G) \rangle > 0; \quad (8)$$

381 *that is, the set of graphs for which the expected distinguishability increases under vertex duplication.
 382 Then the fraction of graphs with this property approaches 1 for large graphs*

$$\lim_{n \rightarrow \infty} \frac{|\mathcal{U}_n|}{|\mathcal{G}_n|} = 1.$$

383 If Conjecture 4.15 is true it would imply vertex duplication decreases distinguishability devi-
 384 ation on average for the majority of large graphs. This follows from Corollary 4.12 which shows
 385 duplication does not increase distinguishability. Therefore, if duplication increases expected distin-
 386 guishability, it must decrease distinguishability deviation. Part of the difficulty in proving Conjec-
 387 ture 4.15 arises because the distribution of edge labels in $G' = \mathcal{D}_d(G)$ and G may be significantly
 388 different, which causes the probabilities of edge label assignments ℓ_r to change significantly between
 389 G and G' .

390 However, as evidence in support of the conjecture we prove a version of Conjecture 4.15 in SI
 391 Section B for a modified expected distinguishability that is taken over a fixed probability of edge
 392 labels. To provide the main idea of the proof, fix a probability of edge labels, which is be used for
 393 both G and $G' = \mathcal{D}_d(G)$. Let $\{\ell_r\}$ and $\{\ell'_s\}$ be the sets of all possible edge label maps of G and G'
 394 respectively, and denote $G_r := (V, E, \ell_r)$ and $G'_s := (V', E', \ell'_s)$. For this fixed labeling probability,
 395 if we randomize the labels of G then the probability of a specific labeling $\ell_r : V \rightarrow L$ is the same
 396 as the probability of any labeling $\ell_s : V' \rightarrow L$ such that $\ell_s|_V = \ell_r$. Therefore, the probability of a
 397 specific G_r is the same as the probability of any such G'_s . Then, noting that G_r is a subgraph of
 398 G'_s , it follows from Corollary 4.12 with G'_s as an ancestor of G_r that $\mathbb{D}(G'_s) \geq \mathbb{D}(G_r)$, as required.

399 This shows that if the expected distinguishability is taken over a fixed labeling probability, then
 400 the expected distinguishability of a graph G cannot be more than that of G' . In fact, we show in
 401 SI Section B that under this assumption as long as d' has at least one neighbor, then the modified
 402 expected distinguishability of G' is strictly greater than that of G .

403 **A Proof of Lemma A.1**

404 **Lemma A.1.** *Let $G = (V, E, \ell)$ be a graph. Let $G' = \mathcal{D}_d(G) = (V', E', \ell')$, for some $d \in V$. Let
 405 $\phi: V' \rightarrow V$ be the map defined as*

$$\phi(i) := \begin{cases} d & \text{if } i = d' \\ i & \text{otherwise} \end{cases}.$$

406 Then ϕ is a graph homomorphism such that for all distinguishable sets $U \subseteq V'$, the restriction $\phi|_U$
 407 is 1-to-1, and $\phi(U)$ is a distinguishable set in G .

408 *Proof.* We first show ϕ is a graph homomorphism. Let $i, j \in V'$. If $i, j \neq d'$, then $(\phi(i), \phi(j)) = (i, j)$. Inspecting Definition 4.6 we see $(i, j) \in E$ if and only if $(i, j) \in E'$, and $\ell(i, j) = \ell'(i, j)$.

410 Now suppose $i = d'$ and $j \neq d'$. The case where $i \neq d'$ and $j = d'$ follows a symmetric
 411 argument. Suppose that $(d', j) \in E'$. Then $(\phi(d'), \phi(j)) = (d, j)$, and from the construction of
 412 E' in Definition 4.6 we see that $(d', j) \in E'$ if and only if $(d, j) \in E$. Finally, by definition,
 413 $\ell'(d', j) = \ell(d, j)$. When $i = j = d'$, the proof follows similarly.

414 To prove the properties of ϕ on a distinguishable set, we first show that d and d' are not
 415 distinguishable. Suppose by way of contradiction that k is a distinguisher of d and d' in G' .
 416 From the definition of vertex duplication, if $(d, k) \in E'$, then $(d', k) \in E'$, and $\ell'(d, k) = \ell'(d', k)$.
 417 Similarly, $(k, d) \in E'$, then $(k, d') \in E'$, and $\ell'(k, d) = \ell'(k, d')$. Therefore, neither (2) nor (3) in
 418 Definition 4.7 can be satisfied, a contradiction. We conclude that d and d' are not distinguishable.

419 Let $U \subseteq V'$ be a distinguishable set. Then since d and d' are not distinguishable, U can contain
 420 at most one of them. Notice that ϕ is 1-to-1 on $V \setminus \{d\}$, as well as on $V \setminus \{d'\}$. Consequently $\phi|_U$
 421 is 1-to-1.

422 Finally, we show that $\phi(U)$ is distinguishable. Let $i, j \in U$. Let k be a distinguisher of i and j .

423 Then since ϕ is a graph homomorphism, it respects edge labels, so $\phi(k)$ is a distinguisher of $\phi(i)$
424 and $\phi(j)$. □

425 **Acknowledgements**

426 TG was partially supported by National Science Foundation grant DMS-1839299 and National
427 Institutes of Health grant 5R01GM126555-01. PCK and RRN were supported by the National
428 Institutes of Health grant 5R01GM126555-01. BC was supported by National Science Foundation
429 grant DMS-1839299. We acknowledge the Indigenous nations and peoples who are the traditional
430 owners and caretakers of the land on which this work was undertaken at the University of Calgary
431 and Montana State University.

432 **References**

433 [1] W. Li et al., Molecular evolution. Sinauer associates incorporated, 1997.

434 [2] S. Ohno, Evolution by gene duplication. Springer-Verlag Berlin Heidelberg, 1970.

435 [3] L. Patthy, Protein evolution. John Wiley & Sons, 2009.

436 [4] G. C. Conant and A. Wagner, “Asymmetric sequence divergence of duplicate genes,” Genome
437 research, vol. 13, no. 9, pp. 2052–2058, 2003.

438 [5] N. V. Dokholyan, B. Shakhnovich, and E. I. Shakhnovich, “Expanding protein universe and
439 its origin from the biological big bang,” Proceedings of the National Academy of Sciences,
440 vol. 99, no. 22, pp. 14132–14136, 2002.

441 [6] H. Janwa, S. Massey, J. Velev, and B. Mishra, “On the origin of biomolecular networks,”
442 Frontiers in Genetics, vol. 10, 2019.

443 [7] J. S. Taylor and J. Raes, “Duplication and divergence: the evolution of new genes and old
444 ideas,” Annu. Rev. Genet., vol. 38, pp. 615–643, 2004.

445 [8] A. Vázquez, A. Flammini, A. Maritan, and A. Vespignani, “Modeling of protein interaction
446 networks,” Complexus, vol. 1, no. 1, pp. 38–44, 2003.

447 [9] K. H. Wolfe, "Origin of the yeast whole-genome duplication," PLOS Biology, vol. 13, pp. 1–7,
448 08 2015.

449 [10] A. Wagner, "How the global structure of protein interaction networks evolves," Proc. R. Soc.
450 Lond. B, vol. 270, pp. 457–466, 2003.

451 [11] A. Alexei Vazquez, A. Flammina, and A. Vespignani, "Modeling of protein interaction net-
452 works," ComPlexUs, vol. 1, pp. 38–44, 2003.

453 [12] S. Dorogovtsev and J. Mendes, "Evolution of networks," Adv. Phys., vol. 51, p. 1079, 2002.

454 [13] R. Sole, R. Pasor-Santorras, E. Smith, and T. Kepler, "A model of large-scale proteome
455 evolution," Advances in Complex Systems 5, 43 (2002), vol. 5, no. 43, 2002.

456 [14] A. Wagner, "The Yeast Protein Interaction Network Evolves Rapidly and Contains Few Re-
457 dundant Duplicate Genes," Molecular Biology and Evolution, vol. 18, pp. 1283–1292, 07 2001.

458 [15] R. Albert and A. Barabási, "Statistical mechanics of complex networks," Reviews of Modern
459 Physics, vol. 74, 2002.

460 [16] A. Barabási and R. Albert, "Emergence of scaling in random networks," Science, vol. 286,
461 no. 5439, pp. 509–512, 1999.

462 [17] H. Jeong, S. P. Mason, A.-L. Barabási, and Z. N. Oltvai, "Lethality and centrality in protein
463 networks," Nature, vol. 411, p. 41–42, May 2001.

464 [18] D. J. Watts, "Networks, dynamics, and the small-world phenomenon," American Journal of
465 Sociology, vol. 105, no. 2, pp. 493–527, 1999.

466 [19] P. Erdős and A. Rényi, "On random graphs i.," Publ. Math. Debrecen., vol. 290-297, pp. 440–
467 442, 1959.

468 [20] A. Vinayagam, J. Zirin, C. Roesel, Y. Hu, B. Yilmazel, A. Samsonova, R. A. Neumüller,
469 S. Mohr, and N. Perrimon, "Integrating protein-protein interaction networks with phenotypes
470 reveals signs of interactions," Nature Methods, vol. 11, no. 1, pp. 94–9, 2014.

471 [21] S. Collombet, C. V. van Oevelen, J. L. S. Ortega, W. Abou-Jaoudé, B. D. Stefano, M. Thomas-
472 Chollier, T. Graf, and D. Thieffry, “Logical modeling of lymphoid and myeloid cell specification
473 and transdifferentiation,” Proceedings of the National Academy of Sciences, vol. 114, pp. 5792
474 – 5799, 2017.

475 [22] X. Fang, A. Sastry, N. Mih, D. Kim, J. Tan, J. T. Yurkovich, C. J. Lloyd, Y. Gao, L. Yang, and
476 B. O. Palsson, “Global transcriptional regulatory network for escherichia coli robustly connects
477 gene expression to transcription factor activities,” Proceedings of the National Academy of
478 Sciences, vol. 114, no. 38, pp. 10286–10291, 2017.

479 [23] A. Force, M. Lynch, F. B. Pickett, A. Amores, Y. Yan, and J. Postlethwait, “Preservation of
480 duplicate genes by complementary, degenerative mutations.,” Genetics, vol. 151 4, pp. 1531–45,
481 1999.

482 [24] U. Bergthorsson, D. Andersson, and J. Roth, “Ohno’s dilemma: Evolution of new genes under
483 continuous selection,” Proceedings of the National Academy of Sciences, vol. 104, pp. 17004 –
484 17009, 2007.

485 [25] M. E. Newman, D. J. Watts, and S. H. Strogatz, “Random graph models of social networks,”
486 Proceedings of the national academy of sciences, vol. 99, pp. 2566–2572, 2002.

487 [26] Z. M. Saul and V. Filkov, “Exploring biological network structure using exponential random
488 graph models,” Bioinformatics, vol. 23, no. 19, pp. 2604–2611, 2007.

489 [27] B. K. Fosdick, D. B. Larremore, J. Nishimura, and J. Ugander, “Configuring random graph
490 models with fixed degree sequences,” SIAM Review, vol. 60, no. 2, pp. 315–355, 2018.

491 [28] S. Milgram, “The small world problem,” Psychology today, vol. 2, pp. 60–67, 1967.

492 [29] D. Watts and S. Strogatz, “Collective dynamics of ‘small-world’ networks,” Nature, vol. 393,
493 pp. 440–442, 1998.

494 [30] R. Milo, S. Shen-Orr, S. Itzkovitz, N. Kashtan, D. Chklovskii, and U. Alon, “Network motifs:
495 simple building blocks of complex networks,” Science, vol. 298, no. 5594, pp. 824–827, 2002.

496 [31] U. Alon, “Network motifs: theory and experimental approaches,” Nature Reviews Genetics,
497 vol. 8, no. 6, pp. 450–461, 2007.

498 [32] S. S. Shen-Orr, R. Milo, S. Mangan, and U. Alon, “Network motifs in the transcriptional
499 regulation network of *escherichia coli*,” Nature genetics, vol. 31, no. 1, pp. 64–68, 2002.

500 [33] F. Graham, L. Lu, T. Dewey, and D. Galas, “Duplication models for biological networks,”
501 Journal of computational biology : a journal of computational molecular cell biology, vol. 10
502 5, pp. 677–87, 2003.