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Abstract8

Research shows that gene duplication followed by either repurposing or removal of dupli-9

cated genes is an important contributor to evolution of gene and protein interaction networks.10

We aim to identify which characteristics of a network can arise through this process, and which11

must have been produced in a different way. To model the network evolution, we postulate12

vertex duplication and edge deletion as evolutionary operations on graphs. Using the novel13

concept of an ancestrally distinguished subgraph, we show how features of present-day networks14

require certain features of their ancestors. In particular, ancestrally distinguished subgraphs15

cannot be introduced by vertex duplication. Additionally, if vertex duplication and edge dele-16

tion are the only evolutionary mechanisms, then a graph’s ancestrally distinguished subgraphs17

must be contained in all of the graph’s ancestors. We analyze two experimentally derived genetic18

networks and show that our results accurately predict lack of large ancestrally distinguished sub-19

graphs, despite this feature being statistically improbable in associated random networks. This20

observation is consistent with the hypothesis that these networks evolved primarily via vertex21

duplication. The tools we provide open the door for analyzing ancestral networks using current22

networks. Our results apply to edge-labeled (e.g. signed) graphs which are either undirected or23

directed.24
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Figure 1: Panel (a) illustrates vertex duplication. The left graph is G, and the right graph is G
′ = D2(G). Vertex

2 is duplicated, resulting in the addition of vertex 2′ and new edges. Vertex 2′ inherits all of the connections of
vertex 2. Since 2 possesses a self-loop, G′ also contains connections between 2 and 2′. Panels (b) and (c) highlight
distinguishable subgraphs of G′ (full lines). In each case, a vertex that is a distinguisher of the subgraph is shown
(dashed line). Distinguishers need not be unique. In G

′, vertex 2 is a distinguisher of 1 and 2 (panel (c)) , and 2′ is
also a distinguisher of 1 and 2 (panel (b)) .
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1 Introduction28

Gene duplication is one of the most important mechanisms governing genetic network growth29

and evolution [1, 2, 3]. Another important process is the elimination of interactions between30

existing genes, and even entire genes themselves. These two mechanisms are often linked, whereby31

a duplication event is followed by the removal of some of the interactions between the new gene32

and existing genes in the network [4, 5, 6, 7, 8, 9]. De novo establishment of new interactions or33

addition of new genes into the network by horizontal gene transfer is also possible, but significantly34

less likely [10].35

A common description of protein-protein interaction networks and genetic regulatory networks36

is that of a graph. Several papers study how gene duplication, edge removal and vertex removal37

affect the global structure of the interaction network from a graph theoretic perspective [11, 12,38

13, 14, 10]. They study the effects that the probability of duplication and removal have on various39

network characteristics, such as the degree distribution of the network. These papers conclude40

that by selecting proper probability rates of vertex doubling, deletion of newly created edges after41

vertex doubling, and addition of new edges, one can recover the degree distribution observed in42

inferred genetic networks in the large graph limit. This seems to be consistent with the data43

from Saccharomyces cerevisiae [14, 10] but since regulatory networks are finite, the distributions44
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of genetic networks are by necessity only approximations to the theoretical power distributions.45

Other investigations are concerned with general statistical descriptors of large networks. These46

descriptors include the distribution of path lengths, number of cyclic paths, and other graph char-47

acteristics [15, 16, 17, 18]. These methods are generally applicable to any type of network (social48

interactions, online connections, etc) and are often used to compare networks across different sci-49

entific domains.50

We take a novel approach to analyzing biological network evolution. We pose the following51

question:52

Question 1. Given a current network, with no knowledge of its evolutionary path, can one recover53

structural traces of its ancestral network?54

To answer this question we formulate a general model of graph evolution, with two operations:55

the duplication of a vertex and removal of existing vertices or edges. The effect of vertex duplication,56

shown in Figure 1, is defined by a vertex and its duplicate sharing the same adjacencies. This57

model does not put any constraints on which vertices or edges may be removed, the order of58

evolutionary operations, nor limits the number of operations of either type. Previous investigations59

of the evolution of networks under vertex duplication study special cases of our model [4, 5, 7, 8].60

Suppose that a particular sequence of evolutionary operations transforms a graph G into a graph61

G′. We seek to discover which characteristics and features of the ancestor G may be recovered from62

knowledge of G′. Although this work is motivated by biological applications, the results in our63

paper apply to any edge-labeled directed or undirected graph.64

Our results are in two related directions. First, we introduce the concept of a ancestrally dis-65

tinguished subgraph and show that G must contain all (ancestrally) distinguished subgraphs of G′.66

This implies that vertex duplication and edge deletion can not introduce distinguished subgraphs.67

Next, we define the distinguishability of graph as the size of of its largest distinguished subgraph.68

Our theoretical analysis suggests that small distinguishability is a signature of networks that evolve69

primarily via vertex duplication. We confirm this result by showing that the distinguishabilities of70

three published biological networks and artificial networks evolved by simulated vertex duplication71

both exhibit distinguishability that is smaller than their expected distinguishability under random72

edge relabeling.73
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2 Main Results74

2.1 Ancestral Networks Contain Distinguished Subgraphs75

We begin by introducing a new graph property that we call ancestral distinguishability (Definition76

4.7) shortened to distinguishability hereafter. We say two vertices are distinguishable if there exists77

a mutual neighbor for which the edges connecting the vertices to this neighbor have different edge78

labels. Here, edge labels denote the type of underlying interaction between two vertices (e.g. edges79

labeled +1 for “activation”, or −1 for “inhibition”). In a directed graph, a mutual neighbor is either80

a predecessor of both vertices or a successor of both vertices. Since, by definition of duplication, a81

vertex and its duplicate must be connected to each of their neighbors by edges with the same label82

(Figure 1, Definition 4.6), we show that a vertex and its duplicate can never be distinguishable.83

Additionally, deletion of edges can not create distinguishability between two vertices.84

We combine these results to prove that vertex duplication and edge deletion cannot create new85

subgraphs for which every pair of vertices is distinguishable. This observation yields our first main86

result that any such distinguished subgraph in the current network G′, must have also occurred in87

the ancestral network G (Corollary 4.10). In fact this result is a corollary of a stronger theorem88

regarding the existence of a certain graph homomorphism from G′ to G (Theorem 4.9).89

Main Result 1. If G′ is a network formed from G by vertex duplication and edge deletion, then all90

distinguished subgraphs of G′ are isomorphic to distinguished subgraphs of G. In other words, no91

distinguished subgraph in G′ could have been introduced by vertex duplication and edge deletion.92

We develop Main Result 1 in the setting for which vertex duplication and edge deletion are the93

only evolutionary mechanisms. However, if there are evolutionary mechanisms other than vertex94

duplication and edge deletion, the the second formulation of Main Result 1 offers an important95

insight. If a sequence of arbitrary evolutionary steps (vertex duplication, edge deletion, or some96

other mechanism) takes a network G to a network G′ containing a distinguished subgraph H, then97

either H is isomorphic to a subgraph of G or at least one step in the evolutionary sequence was98

not vertex duplication or edge deletion.99
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Figure 2: Colored points represent 500 directed graphs generated from random 25-vertex seed graphs by repeated
random vertex duplication and subsequent edge deletion until a predetermined number of edges is achieved. Color
indicates final number of edges after deletion. Each of the 500 grey points represents a randomly generated ER-graph
with number of vertices, positive edges, and negative edges equal to that of a corresponding evolved graph. The
corresponding figure for undirected graphs is Figure 2a in the SI.

2.2 A Robust Signature of Duplication100

We next aim to determine if the effects of evolution by vertex duplication and edge deletion can101

be identified in biological networks. We consider the distinguishability of a graph, which is the102

number of vertices in its largest distinguished subgraph. Since vertex duplication and edge deletion103

cannot create distinguishability, the distinguishability of a graph cannot increase under this model104

of evolution (Corollary 4.12). Since observations indicate that evolution is dominated by duplication105

and removal, we predict that genetic networks exhibit low distinguishability.106

To quantify the degree to which the distinguishability of a graph G is low, we compute the107

distinguishability deviation ofG: the difference between the distinguishability ofG and the expected108

distinguishability of G under random edge relabeling (Equation 7). Since low distinguishability is a109

signature of vertex duplication, we expect random relabeling to remove this signature and therefore110

increase distinguishability. In other words, we expect networks evolved by vertex duplication and111

edge deletion to have negative distinguishability deviation.112

We calculate the distinguishability deviation of networks constructed by simulated evolution113

via vertex duplication and edge deletion. These networks are formed in two stages from 25-vertex114

Erdös-Rényi graphs (ER-graphs [19]) with two edge labels denoting positive and negative interac-115

tion. First, vertex duplication is applied 225 times, each time to a random vertex. Next, edges are116
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randomly deleted until some target final number of edges is reached. The deletions simulate both117

evolutionary steps and the effect of incomplete data in experimentally derived networks. We note118

that the operation of vertex duplication and edge removal commute in a sense that any graph that119

can be built by an arbitrary order of these operations can be also built by performing the duplica-120

tions first and then performing an appropriate number of deletions. Therefore our construction is121

general.122

As shown in Figure 2, these simulations indicate that networks evolved by vertex duplication123

have negative distinguishability deviation. For each graph represented by a colored point in Fig-124

ure 2, we construct an ER-graph with the same number of vertices, positive edges, and negative125

edges. These graphs are represented by grey points and show that ER-graphs exhibit near-zero126

distinguishability deviation. This negativity is robust against edge deletion; even graphs that had127

80% of their edges deleted after vertex duplication exhibited statistically significant negative dis-128

tinguishability deviation. This result also holds when the seed ER graphs are larger, imitating a129

case where the resulting evolved networks are less paralog-rich (SI Figure 2).130

Having established evidence that graphs evolved by vertex duplication exhibit negative dis-131

tinguishability deviation, we evaluate if this property is observable in biological networks. We132

consider three networks. The first is a D. melanogaster protein-protein interaction network de-133

veloped by [20], represented by an edge-labeled undirected graph consisting of 3,352 vertices and134

6,125 edges. Second, we investigate the directed human blood cell regulatory network recorded in135

[21] consisting of 31 vertices and 150 edges. Both networks have label set L = {−1,+1}, signifying136

negative and positive regulation, respectively.137

Third, we investigate an E. coli transcriptional network from [22] with 2,273 genes and over138

4,000 regulatory interactions. This data requires modeling choices because the interactions include139

multi-edges, which our methodology does not address. We suggest that multi-edges of the same140

regulation type are redundant and may be merged. On the other hand, multi-edges containing both141

positive and negative regulation (mixed multi-edges) may be indicative of a complex regulatory142

interaction that is not easy to characterize. We choose two methods for handling mixed multi-143

edges. In the first method, we drop mixed multi-edges, resulting in 4,029 interactions. As edge144

deletion is built into our model, we expect to see negative distinguishability even after dropping145

multi-edges. In the second method, we merge these edges into a single edge with a third label,146

6



so that the label set is L = {−1, 0,+1}, resulting in 4913 interactions. The results for the first147

method are reported here in the main text. Computing the distinguishability deviation in the148

second network is computationally infeasible because the distinguishability graph is very dense,149

primarily due to hub vertices. An approach using subsampling is discussed and reported in SI150

Section 4.151

The distinguishability deviations of these networks confirm our predictions as they exhibit152

negative distinguishability deviation. Respectively, the distinguishabilities of the D. melanogaster,153

blood cell, and E. coli networks are 7, 4, and 10 and their expected distinguishabilities approximated154

by 100 random edge sign relabelings are 31.2± .7, 5.6± .6, and 16± 1. Thus, these networks have155

distinguishability deviations of156

− 24.2± .7 and − 1.6± .6 and − 6± 1 (1)

with statistical significance of 34.6, 2.3, and 6 standard deviations, respectively. A consistent but157

weaker result for the E. coli network with three labels is reported in SI Section 4. These results are158

consistent with the hypothesis that biological networks inferred from experimental data are subject159

to long sequences of vertex duplication and edge removal without the evolutionary operation of160

novel vertex or edge addition.161

The joint evidence of negative distinguishability deviations in both simulated and observed data162

leads to the following result.163

Main Result 2. Negative distinguishability deviation is a likely signature of evolution via vertex164

duplication and edge deletion.165

While we do not offer a rigorous mathematical proof, in Subsection 4.4 we give evidence for a166

conjecture (Conjecture 4.15) which, if true, would prove that vertex duplication always decreases167

distinguishability deviation. SI Section 3 gives a detailed description of the simulated evolution168

scheme we used in Figure 2. For completeness, we show in this section that negative distinguisha-169

bility deviation cannot be fully explained by the single vertex characteristics (i.e. signed degree170

sequence) or small world properties of the networks.171
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3 Discussion172

We introduce the concept of distinguished subgraphs, in which every vertex has differentiating173

regulatory interactions from every other vertex in the subgraph. We show that distinguished174

subgraphs cannot be created by vertex duplication and edge deletion. Remarkably, this implies175

that any of a network’s distinguished subgraphs must appear in all of its ancestors under a model176

of network evolution that allows duplication and removal, but does not allow for the addition of177

new vertices or edges. Furthermore, this result shows that distinguished subgraphs cannot be178

introduced by vertex duplication and edge deletion.179

In biological networks the addition of regulatory interactions between existing genes (neofunc-180

tionalization [23]), or the addition of entirely new genes via horizontal gene transfer [10] are possible,181

but are considered less likely than gene duplication or loss of function of a regulatory interaction182

[24]. With this in mind, we consider a model of network evolution in which long sequences of ver-183

tex duplication and edge removal are interspersed by infrequent additions of new edges or vertices.184

Under this model, Main Result 1 (Corollary 4.10) applies to any sequence of consecutive vertex185

duplications and edge removals.186

We investigate whether the predicted features of vertex duplication can be found in biological187

networks inferred from experimental observations. Using the metric of distinguishability deviation188

we show that three inferred biological networks and a population of simulated networks evolved by189

vertex duplication exhibit negative distinguishability deviation that is statistically improbable in190

associated random networks. We propose that negative distinguishability deviation is a marker of191

evolution by vertex duplication and edge removal.192

We remark that distinguishability deviation can only be computed on labeled or signed graphs,193

which is a feature that is often not available in inferred biological networks. For example, ChIP-194

chip or ChIP-seq measurements result in binding site information, which provides direction but195

not knowledge of putative activating or repressing behavior. Similarly, while uncommon, there are196

networks that are undirected and yet signed, such as the D. melanogaster dataset that we analyze197

in this paper.198

One potential application of the negative distinguishability deviation conjecture is a method of199

checking the suitability of random graph models. Often, random statistical models are developed to200
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generate graphs that match properties of social networks [25], properties of biological networks [26],201

or general graph theoretic properties [27]. For example, the discovery of small-world phenomena [28,202

18] lead to the development of the Watts-Strogatz model [29]. Our results imply that an accurate203

random graph model for signed biological networks, or more generally edge-labeled networks that204

primarily evolved via vertex duplication, should generate networks with negative distinguishability205

deviation. Additionally, distinguishability deviation could inform the development of new models206

that more closely agree with experimentally derived networks.207

As an illustration of the utility of Main Result 1, we consider the following example. Certain208

network motifs, i.e. 3-4 vertex subgraphs, have been shown to appear at statistically higher rates209

in inferred biological networks [30]. Motifs seem to be a byproduct of convergent evolution, being210

repeatedly selected for based on their underlying biological function, and appearing in organisms211

and systems across various biological applications [31]. This argument is based on comparison of212

highly observed frequencies of motifs against their low expected frequencies that are computed213

based on random graph models [30]. Changing the null model will affect the identity of the motifs.214

It is intriguing to speculate that a null model based on duplication and deletion may more closely215

reflect the evolutionary process and yield a different concentration of motifs.216

Vertex duplication and edge removal can create motifs not present in the original network.217

For example, consider the feed-forward loop, any three vertex subgraph isomorphic to a directed218

graph with edge set {(i, j), (j, k), (i, k)} (see [32]). In Figure 1a, no feed-forward loops can be219

found in G, but there are two in G′, both of which contain the vertices 1, 2, and 2′. In contrast,220

the introduction of motifs that are also distinguished subgraphs by vertex duplication and edge221

deletion is forbidden by Main Result 1. Indeed, the feed-forward loops created in Figure 1a are not222

distinguished subgraphs. This ability to identify which motifs could not have arisen from vertex223

duplication and edge deletion could provide new insight into the origin of specific motifs and,224

potentially, their biological importance. Similarly, identifying genes in subgraphs that cannot arise225

from vertex duplication and edge deletion could be useful for finding genes that were introduced226

by mechanisms outside of these operations, such as horizontal gene transfer.227

Finally, our mathematical results are general enough to survey network models beyond genetics228

to discern if vertex duplication may have played a role in their evolution. For example, current229

ecological networks reflect past speciation events, where a new species initially shares the ecological230
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interactions of their predecessors. This can be viewed as vertex duplication and therefore ecological231

networks may exhibit significant negative distinguishability deviation. Evaluating the distinguisha-232

bility deviation of ecological networks could indicate if the duplication process has been a significant233

factor in their evolution. More broadly, the study of the evolutionary processes that produce net-234

works has been used to understand why networks from distinct domains, be they social, biological,235

genetic, internet connections, etc, have properties unique to their domain (e.g. exponents of power236

law distributions [33]). Distinguishability deviation is yet another tool to understand the effect237

evolutionary processes have on networks.238

4 Methods239

We proceed with preliminary definitions to familiarize the reader with the language and notation240

used in this paper.241

4.1 Definitions242

Throughout this paper we fix an edge label set L. We assume that |L| ≥ 2, otherwise the results243

are trivial. For example, to consider signed regulatory networks with both activating and inhibiting244

interactions one could take L = {+1,−1}. We use this choice in examples, along with the notation245

a and → to represent directed edges with labels −1 and +1 respectively.246

Definition 4.1. A graph is the 3-tuple G := (V,E, `) where V is a set of vertices, E ⊆ {(i, j) :247

i, j ∈ V } is a set of directed edges, and ` : E → L is a map labeling edges with elements of L.248

Our results apply to both directed graphs and undirected graphs. To facilitate this, we use graph249

to mean either an undirected or directed graph, and view undirected graphs as a special case of250

directed graphs, as seen in the following definition.251

Definition 4.2. A graph G = (V,E, `) is undirected if (i, j) ∈ E and `(i, j) = a if and only if252

(j, i) ∈ E and `(j, i) = a. For an unlabeled graph, ` = ∅.253

Definition 4.3. A subgraph of a graph G = (V,E, `) is a graph H = (V ′, E′, `|E′) such that254

V ′ ⊆ V and E′ ⊆ E ∩ (V ′ × V ′). If H is undirected, we require that G is also undirected, i.e. E′
255

satisfies (i, j) ∈ E if and only if (j, i) ∈ E.256
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Definition 4.4. Let (V,E, `) be a graph. We say j ∈ V is a neighbor of i ∈ V if either (j, i) ∈ E257

or (i, j) ∈ V .258

Definition 4.5. Let G′ = (V ′, E′, `′) and G = (V,E, `) be two graphs. A map Φ: V ′ → V is259

a graph homomorphism (from G′ to G) if ∀i, j ∈ V ′, if (i, j) ∈ E′, then (Φ(i),Φ(j)) ∈ E and260

`′(i, j) = `(Φ(i),Φ(j)). In other words, a graph homomorphism is a map on vertices that respects261

edges and edge labels.262

The following definition specifies an operation on a graph which duplicates a vertex d, producing263

a new graph that is identical in all respects except for the addition of one new vertex, d′, that copies264

the edge connections of d. This definition captures the behavior of gene duplication in genetic265

networks.266

Definition 4.6. Given a graph G = (V,E, `) and a vertex d ∈ V , we define the vertex duplication of267

d as the graph operation which constructs a new graph, denoted Dd(G) := G′ = (V ′, E′, `′), where268

V ′ := V ∪ {d′}, and (i, j) ∈ E′ with `′(i, j) = a if and only if either269

1. (i, j) ∈ E with `(i, j) = a,270

2. j = d′ and (i, d) ∈ E with `(i, d) = a,271

3. i = d′ and (d, j) ∈ E with `(d, j) = a,272

4. or j = i = d′ and (d, d) ∈ E with `(d, d) = a.273

An example of vertex duplication is shown in Figure 1a, where the left graph is G, and vertex 2274

is duplicated, producing the right graph, G′. All of new edges added during duplication are shown275

in grey.276

4.2 Distinguishability277

We now introduce an important invariant property under vertex duplication and edge removal.278

Definition 4.7. Let G = (V,E, `) be a graph. Two vertices i, j ∈ V are distinguishable (in G) if279

and only if there exists a vertex k that is a neighbor of both i and j such that either280

(i, k), (j, k) ∈ E and `(i, k) 6= `(j, k) (2)
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or281

(k, i), (k, j) ∈ E and `(k, i) 6= `(k, j). (3)

We say that k is a distinguisher of i and j. It is worth noting that there may be multiple dis-282

tinguishers of i and j, i.e. distinguishers need not be unique. Furthermore, if G is undirected,283

Equation (2) holds for a vertex k if and only if Equation (3) also holds.284

We say U ⊆ V is a distinguishable set (in G) if for all i, j ∈ U with i 6= j, the vertices i and285

j are distinguishable. Similarly, we refer to any subgraph whose vertex set is distinguishable as a286

distinguished subgraph.287

Remark 4.8. As long as |L| ≥ 2, for any graph G, there is a graph G′ that contains G as a288

distinguished subgraph. To see this, consider a subgraph G. Then for each pair i, j ∈ G add a new289

vertex k and edges {(i, k), (j, k)} with different labels, so that `(i, k) 6= `(j, k). Then i and j are290

distinguishable and G is embedded as a distinguishable subgraph in a larger graph G′.291

To illustrate the concept of distinguishable sets, consider the graphs shown in Figure 1a. The292

leftmost graph G has only one distinguishable sets, {1, 2}. Here, 2 is a distinguisher of 1 and293

2. After duplication of 2 the new graph G′ contains two distinguishable sets, {1, 2} and {1, 2′}.294

However, vertices 2 and 2′ are not distinguishable. Any mutual neighbor of 2 and 2′ shares exactly295

the same edges with matching labels. Figure 1b and 1c show example distinguishable subsets of G′.296

In each case, the distinguishable set is shown as full lines, and a distinguisher is shown as dashed297

lines.298

The insight that the duplication of a gene d produces an indistinguishable pair d and d′ is299

general and leads to our main result in Theorem 4.9.300

4.3 Distinguished Subgraphs301

Fix two graphs G and G′. Suppose that G is an ancestor of G′, that is, there exists a sequence302

of graphs G1, . . . , GM with Gm := (Vm, Em, `m), such that G = G1, G′ = GM , and for each303

m ∈ {1, . . . ,M}, either Gm+1 is a subgraph of Gm, or Gm+1 = Ddm(Gm), for some dm ∈ Vm.304

To address Question 1, we present Theorem 4.9. It states that whenever G is an ancestor305

of G′, then there must exist a graph homomorphism from G′ to its ancestor G such that the306

homomorphism is injective on distinguishable sets of vertices. This result allows us to conclude307
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several corollaries that characterize the properties of the ancestor network.308

The proof of the following theorem makes use of Lemma A.1 in Appendix A.309

Theorem 4.9. Let G = (V,E, `) be an ancestor of G′ = (V ′, E′, `′). Then there is a graph310

homomorphism Φ: V ′ → V such that for all distinguishable sets U ⊆ V ′, the restriction Φ|U is311

1-to-1, and Φ(U) is a distinguishable set in G.312

Proof. Let G1, . . . , GM be the evolutionary path connecting ancestor G with the current graph G′,313

where Gm := (Vm, Em, `m). At each step, we construct a map Φm from Gm+1 to Gm satisfying the314

required conditions. The composition Φ := Φ1 ◦ · · · ◦ ΦM−1 then verifies the desired result.315

We now construct Φm. IfGm+1 is a subgraph ofGm, let Φm be the inclusion map ι : Vm+1 ↪→ Vm.316

The inclusion map is obviously a graph homomorphism, and is injective on all of Vm+1. Let317

i, j ∈ Vm+1 be distinguishable vertices in Gm+1, and let k be a distinguisher of i and j. Since ι is318

a homomorphism, ι(k) = k ∈ Vm is a distinguisher of ι(i), ι(j) ∈ Vm.319

If Gm+1 = Ddm(Gm), let Φm : Vm+1 → Vm be defined as320

Φm(i) :=















dm if i = d′m

i otherwise

.

We verify by using Definition 4.6 that this map satisfies the required properties in Lemma A.1.321

It is worth noting that the proof of Theorem 4.9 is constructive; however, the construction322

relies on the knowledge of the specific evolutionary path, i.e a sequence of events that form the323

graph sequence G1, . . . , GM . In almost all applications, this sequence is unknown or only partially324

understood. However the existence of the homomorphism allows us to conclude features of G using325

knowledge of the graph G′.326

Corollary 4.10. Let G be the ancestor of G′. Any distinguished subgraph of G′ is isomorphic to a327

subgraph of G.328

Proof. Consider a distinguished subgraph of G′ with vertex set U ⊆ V ′. Since U is distinguishable,329

by Theorem 4.9 Φ|U is an injective graph homomorphism, so it is an isomorphism onto its image.330

Therefore, Φ|U is the desired isomorphism.331
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This result describes structures that must have been present in any ancestor graph G, and puts332

a lower bound on the size of G.333

Definition 4.11. The distinguishability of a graph G = (V,E, `) is the size of a maximum distin-334

guishable subset U ⊆ V . Let D(G) denote the distinguishability of a graph G.335

Corollary 4.12. Let G be the ancestor of G′. The distinguishability of G is greater than or equal

to the distinguishability of G′,

D(G) ≥ D(G′).

Proof. Let U ⊆ V ′ be a distinguishable set in G′. Then Φ(U) is distinguishable in G, and since336

Φ|U is injective, |Φ(U)| = |U |.337

Identifying distinguishable sets can be computationally challenging, and so we recast the prob-338

lem of finding distinguishable sets in terms of a more familiar computational problem. We construct339

a new graph whose cliques are distinguishable sets of the original graph.340

Definition 4.13. The distinguishability graph of G = (V,E, `) is a undirected graph D(G) :=341

(V,E∗, ∅) where (i, j) ∈ E∗ if and only if i and j are distinguishable in G.342

Recall that a set of vertices is distinguishable if and only if each pair of vertices in that set343

is distinguishable. Therefore distinguishable sets in G are cliques in the distinguishability graph344

D(G), see SI Section C. We also prove that the clique problem is efficiently reducible to calculating345

the distinguishability of a graph. Since it is easy to show computing distinguishability is in the346

class NP, this reduction implies that computing the distinguishability is NP-complete.347

4.4 Distinguishability Deviation348

We now search for consequences of Corollary 4.12 in inferred biological networks. To do so, we349

seek a metric that evaluates how the distinguishability of a network compares with expected distin-350

guishability in an appropriately selected class of random graphs. Since vertex duplication cannot351

increase distinguishability, we expect genetic networks to exhibit low distinguishability when com-352

pared with similar random graphs. The most obvious graphs to compare against are those with the353

same structure as G, and with the same expected fraction of positive and negative edges as G, but354
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in which each edge has a randomly assigned label. Before formalizing this notion in Definition 4.14,355

we adjust our perspective on undirected graphs in order to reduce notational complexity. For the356

rest of this manuscript, we adopt the convention that if E is an edge set for an undirected graph,357

then E ⊆ {{i, j} : i, j ∈ V }, i.e. edges of undirected graphs are unordered pairs of vertices. The358

notation e ∈ E then refers to e = (i, j) in a directed graph and e = {i, j} in an undirected graph.359

Definition 4.14. Let G = (V,E, `) be a graph. We define the probability of each label in G by360

counting its relative edge label abundance361

pG(a) :=
|{e ∈ E : `(e) = a}|

|E|
. (4)

Let {`r}r∈R be the set of all possible edge label maps, `r : E → L, where R is an index set. Denote362

Gr := (V,E, `r) to be the graph with the same vertices and edges as G but with edge labels363

determined by `r. We define the expected distinguishability of G as364

〈D(G)〉 :=
∑

r∈R

P (Gr)D(Gr). (5)

where365

P (Gr) =
∏

e∈E

pG(`r(e)). (6)

We interpret P (Gr) as the probability of the graph Gr conditioned on using the unlabeled structure366

of G.367

In addition, we define the distinguishability deviation of G as the difference between its distin-368

guishability and its expected distinguishability, i.e.369

D(G)− 〈D(G)〉. (7)

Expected distinguishability 〈D(G)〉 can be approximated by randomly relabeling G with prob-370

ability according to Equation (6) and calculating the distinguishability of the resultant graph.371

Repeating the process multiple times and averaging yields an approximation of expected distin-372

guishability. We utilize this method in our calculations of distinguishability deviation in Section373

2. In particular, the distinguishability deviations in Figure 2 were calculated by averaging over 10374
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random graphs. The distinguishability deviations of the biological networks in Equation (1) were375

found by averaging over 100 random graphs.376

The results of distinguishability deviation calculations in published biological networks and377

simulated networks lead us to the following conjecture.378

Conjecture 4.15. Let Gn be the set of all graphs G = (V,E, `) with n vertices. Let Un ⊆ Gn be379

the set of those graphs for which380

1

|V |

∑

d∈V

〈D(Dd(G))〉 − 〈D(G)〉 > 0; (8)

that is, the set of graphs for which the expected distinguishability increases under vertex duplication.381

Then the fraction of graphs with this property approaches 1 for large graphs382

lim
n→∞

|Un|

|Gn|
= 1.

If Conjecture 4.15 is true it would imply vertex duplication decreases distinguishability devi-383

ation on average for the majority of large graphs. This follows from Corollary 4.12 which shows384

duplication does not increase distinguishability. Therefore, if duplication increases expected distin-385

guishability, it must decrease distinguishability deviation. Part of the difficulty in proving Conjec-386

ture 4.15 arises because the distribution of edge labels in G′ = Dd(G) and G may be significantly387

different, which causes the probabilities of edge label assignments `r to change significantly between388

G and G′.389

However, as evidence in support of the conjecture we prove a version of Conjecture 4.15 in SI390

Section B for a modified expected distinguishability that is taken over a fixed probability of edge391

labels. To provide the main idea of the proof, fix a probability of edge labels, which is be used for392

both G and G′ = Dd(G). Let {`r} and {`′s} be the sets of all possible edge label maps of G and G′
393

respectively, and denote Gr := (V,E, `r) and G′

s := (V ′, E′, `′s). For this fixed labeling probability,394

if we randomize the labels of G then the probability of a specific labeling `r : V → L is the same395

as the probability of any labeling `s : V
′ → L such that `s|V = `r. Therefore, the probability of a396

specific Gr is the same as the probability of any such G′

s. Then, noting that Gr is a subgraph of397

G′

s, it follows from Corollary 4.12 with G′

s as an ancestor of Gr that D(G′

s) ≥ D(Gr), as required.398
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This shows that if the expected distinguishability is taken over a fixed labeling probability, then399

the expected distinguishability of a graph G cannot be more than that of G′. In fact, we show in400

SI Section B that under this assumption as long as d′ has at least one neighbor, then the modified401

expected distinguishability of G′ is strictly greater than that of G.402

A Proof of Lemma A.1403

Lemma A.1. Let G = (V,E, `) be a graph. Let G′ = Dd(G) = (V ′, E′, `′), for some d ∈ V . Let404

φ : V ′ → V be the map defined as405

φ(i) :=















d if i = d′

i otherwise

.

Then φ is a graph homomorphism such that for all distinguishable sets U ⊆ V ′, the restriction φ|U406

is 1-to-1, and φ(U) is a distinguishable set in G.407

Proof. We first show φ is a graph homomorphism. Let i, j ∈ V ′. If i, j 6= d′, then (φ(i), φ(j)) =408

(i, j). Inspecting Definition 4.6 we see (i, j) ∈ E if and only if (i, j) ∈ E′, and `(i, j) = `′(i, j).409

Now suppose i = d′ and j 6= d′. The case where i 6= d′ and j = d′ follows a symmetric410

argument. Suppose that (d′, j) ∈ E′. Then (φ(d′), φ(j)) = (d, j), and from the construction of411

E′ in Definition 4.6 we see that (d′, j) ∈ E′ if and only if (d, j) ∈ E. Finally, by definition,412

`′(d′, j) = `(d, j). When i = j = d′, the proof follows similarly.413

To prove the properties of φ on a distinguishable set, we first show that d and d′ are not414

distinguishable. Suppose by way of contradiction that k is a distinguisher of d and d′ in G′.415

From the definition of vertex duplication, if (d, k) ∈ E′, then (d′, k) ∈ E′, and `′(d, k) = `′(d′, k).416

Similarly, (k, d) ∈ E′, then (k, d′) ∈ E′, and `′(k, d) = `′(k, d′). Therefore, neither (2) nor (3) in417

Definition 4.7 can be satisfied, a contradiction. We conclude that d and d′ are not distinguishable.418

Let U ⊆ V ′ be a distinguishable set. Then since d and d′ are not distinguishable, U can contain419

at most one of them. Notice that φ is 1-to-1 on V \ {d}, as well as on V \ {d′}. Consequently φ|U420

is 1-to-1.421

Finally, we show that φ(U) is distinguishable. Let i, j ∈ U . Let k be a distinguisher of i and j.422
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Then since φ is a graph homomorphism, it respects edge labels, so φ(k) is a distinguisher of φ(i)423

and φ(j).424
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