
 Comparison of Tools for Digitally Tracking Changes in Text
 Eve Washington 1 , Bernat Ivancsics 1 , Emily Sidnam-Mauch 2 , Ayana Monroe 3 ,

 Kelly Caine 2 , Susan E. McGregor 1

 Columbia University 1 , Clemson University 2 , The University of North Carolina at Chapel Hill 3

 Tracking changes in digital texts is a longstanding interface challenge, as early digital technologies left no
 recorded traces of alterations. Currently, two key categories of tools track text changes: code editing and
 word processing tools. Each has implemented different interface patterns to accomplish several goals:
 attributing change authorship, tracking the time of change, recording the change action taken, and
 specifying the location and content of the change. While some visual characteristics of change tracking are
 consistent across all tools, there are significant differences in change representation divided along the
 tool-type line, that may reflect their specific cultures of use. Overall, however, there is a limited range of
 visual methods for representing changes to digital text over time.

 INTRODUCTION

 Tracking changes in digital text documents is an integral part
 of tasks ranging from collaboratively editing a scholarly
 document like this one to reviewing and editing code. Over the
 past four decades, the need to trace and attribute changes to a
 digital text has been concentrated in two primary areas of
 digital technology use: word processing and software
 development. Both have become increasingly collaborative
 and contested processes. Despite some similarities in overall
 task goals, approaches to visualizing changes to digital text
 documents vary. In this work, we survey the landscape of tools
 for digitally tracking changes in text and identify similarities
 and differences across tools.

 BACKGROUND

 In collaborative document editing, displaying and
 communicating what parts of a document have been changed,
 when, and how is a need. While tools track this to a high level
 of granaularity have existed for decades, understanding the
 state of a whole document at a given point of time remains
 difficult (Viégas et al., 2004).

 The history of tools for tracking and comparing
 versions of digital texts stretches back nearly half a century,
 with the introduction of the algorithm for the Unix diff
 command in 1976 (Hunt et al., 1976). Much of the work on
 this topic in the computer science community focuses on the
 algorithms for identifying differences between texts (e.g.
 Heckel, 1978; Miller & Myers, 1985; Tridgell & Mackerras,
 1996). Much less emphasis has been placed on the visual
 display of those differences, although this capability is usually
 incorporated into various pieces of version control software
 (VCS) that incorporate diff -like features (Ruparelia, 2010).

 Alongside these tools, which were largely developed
 by and for programmers using digital computers, is the
 evolution of digital word processing, which took place on
 standalone devices that were in use widespread use by the late
 1970s and early 1980s (Kirschenbaum, 2016). As digital
 computers became more mainstream, dedicated word
 processors became obsolete and were replaced by computer
 software programs for word processing, many of which
 incorporated the visual editing conventions of typesetting, as

 demonstrated by the introduction of "revision marks" in
 Microsoft Word as early as 1987 (Inc, 1987). A new instance
 of text tracking developed upon the mass adoption of the
 internet and world wide web in the mid-1990s; wikis were
 developed through the crossover of code editing and word
 processing. These wikis applied version control methods and
 interfaces to non-code text documents (Viégas et al., 2004).

 METHODOLOGY

 Through examining VCS and document review/track changes
 capabilities in word processing programs, our goal is to
 identify the user interface presentation mechanisms for the
 following elements in text tracking tools: 1) Authorship
 attribution; 2) Date/time of change; 3) Type of change (e.g.
 addition, deletion); 4) Substance of change (new text/old text);
 and 5) Location of change within the document.

 To do this, we reviewed four instances of each type
 of software tool (VCSs and word processing programs). We
 selected our VCSs for review from a list generated as part of
 the 2021 Stack Overflow Developers Survey. Drawing on
 responses from 83,439 software developers from 181 different
 countries, the survey results show the most popular software
 development tools that included some form of version control
 display were: git, Visual Studio Code, and IntelliJ IDEA, each
 of which was used by 20% or more of respondents (Stack
 Overflow Developer Survey 2021 , n.d.). We chose to complete
 this list with the popular code-sharing site GitHub, which is
 powered by git but provides a visual representation of codes
 changes, in contrast with git's native text-based approach.

 Word processing software tools were selected based
 on their degree of difference from one another, in order to try
 to capture the widest variety of interface choices. By
 consulting blog posts discussing available tools (e.g., “9 Best
 Collaborative Document Editing Software in 2022,” 2020;
 Sha, 2021; Vigliarolo, 2020), we identified four distinct
 categories of word processing tools: wikis, paid-commercial,
 free-commercial, and open-source.We then selected the tools
 most frequently listed in these posts in each given category as
 the tool for our review.

 After determining our sample, we reviewed
 documentation of the relevant track changes/versioning
 functionality, and evaluated our five elements of interest using

C
op

yr
ig

ht
 2

02
2

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s

So
ci

et
y.

 A
ll

rig
ht

s
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

26
61

52
1

Proceedings of the 2022 HFES 66th International Annual Meeting 1365

http://crossmark.crossref.org/dialog/?doi=10.1177%2F1071181322661521&domain=pdf&date_stamp=2022-10-27

 either visual references sourced from the program's official
 documentation or from a team member’s installation instance.

 RESULTS

 Code Editors with Version Control Support

 git. git is the core technology that drives many
 software version control packages but is also popularly used
 as a terminal or command-line utility during code
 development. Given its importance to the version control
 ecosystem and the ongoing popularity of its command-line
 interface, we chose to include the text-based representation of
 changes to files using the basic ̀git diff` operation as a
 baseline for our review.

 As illustrated in Figure 1, git uses a line-based
 method to describe and visualize code changes. The first line
 shows the method of comparison (basic ̀git diff`) and the file
 name(s) - in this case, two different versions of the same file.
 The third line describes the "mode" and includes shortened
 hash of the files' respective contents, while the next two lines
 reiterate the filenames.

 The fifth line begins the summary change
 description, in the form of the range of line numbers where
 differences have been found between the two files. In this case
 file ̀a` differs from file ̀b` from lines 1-5, and ̀b` is affected
 from lines 1-5. Following that is the actual substance of the
 change, in which shared lines begin with a space, added begin
 with a ̀+`, and removed lines begin with a ̀ -`. In this default
 configuration (on ChromeOS), color is used to visually
 distinguish line ranges, file contents (which are subtly grey
 as opposed to white), removed text, and added text. The
 default behavior and usage of ̀git diff` output does not
 indicate authorship and/or date/time information (How to
 Read the Output from Git Diff? , n.d.).

 Fig. 1: Output of a basic ̀git diff` command

 GitHub. Similar to git, GitHub observes text changes
 primarily at the line level, with additions and deletions
 color-coded and preceded by a +/- indicator; red represents
 deletions, green additions, and blue indicates ranges of
 non-differing content, described with the same line number
 convention as git. While inline modifications cause the
 whole line to be represented as either an addition or deletion

 (similar to git), GitHub provides an additional inline
 highlight to detail the substance of within-line text changes.

 Figure 2: Side-by-side presentation of changes in GitHub (Comparing
 Commits, n.d.)

 Unlike git, which can only present changes
 vertically on subsequent lines (Figure 1), GitHub offers the
 option to see changes presented side-by-side (Figure 2). In
 this view, changes are vertically aligned, and the distinct line
 numbers in each file/version are displayed. Keeping with
 local git implementations, GitHub only displays the author
 and the date/time of the more recent file in the basic file
 comparison view, though other views display the contributors
 to a file over time.

 Figure 3: Real-time changes visualized in VS Code (Version Control in
 Visual Studio Code, n.d.)

 Visual Studio Code. VS Code displays file changes
 in real-time during editing (Figure 3). Colored vertical margin
 bars indicate additions (green) and modifications (blue); red
 triangles mark deletions. Authorship/attribution and
 date/time information are not visualized in VS Code. VS
 Code also includes a ̀Source Control` tab that shares an
 interface with design choices almost identical to GitHub.

 IntelliJ IDEA. Similar to VS Code, IntelliJ IDEA
 indicates editing changes in real-time using colors: green for
 additions, blue for modifications, and grey for deletions.
 These are displayed in the left margin while editing files and
 in a dedicated comparison tab while comparing saved
 versions.

C
op

yr
ig

ht
 2

02
2

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s

So
ci

et
y.

 A
ll

rig
ht

s
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

26
61

52
1

Proceedings of the 2022 HFES 66th International Annual Meeting 1366

 Figure 4: IntelliJ IDEA commit, whitespace tracked (Review Changes
 | IntelliJ IDEA, n.d.)

 When comparing files using the ‘Commit Tool’,
 IntelliJ IDEA supports viewing changes side-by-side or
 vertically, similar to other tools. Uniquely, line numbers align
 in the side-by-side view, and, in both modes, users can
 customize the interface. For example, users can highlight
 whitespace changes, as shown in Figure 4, where the light
 blue indicates white space changes and movement of code
 snippets within the file (Review Changes | IntelliJ IDEA, n.d.) .

 Word Processing Tools

 Microsoft Word. The track changes feature in
 Microsoft Word has two viewing options, ̀Simple Markup`
 and ̀All Markup.` The first uses red lines in the left margin to
 indicate where text changes have occurred and comments
 appear as speech bubble icons in the right margin, as shown in
 Figure 5.

 Figure 5: Sample Simple Markup view in Microsoft Word (Track
 Changes in Word, n.d.)

 The ̀All Markup` view displays expanded and
 attributed comments in the right margin, in addition to a
 precise record of text changes and a leader line to their exact
 location within a line. However, users can extensively
 customize this interface, e.g., to use a combination of
 right-margin "speech bubbles" and inline edits. Users can
 select which types of changes they want to see (comments,
 insertions, deletions, or formatting) and from which users they
 want to see these changes (Track Changes in Word, n.d.) .

 Figure 6: Sample All Markup view in Microsoft Word (Track Changes
 in Word, n.d.)

 Google Docs. ‘Suggestion Mode’ in Google Docs
 tracks changes to files at the character level. Authorship
 (including username and photo icon, if available) and
 date/time information is automatically expanded in the right
 margin, aligned vertically with the edit. Inline, each user's
 changes appear in a distinct text color, along with a description
 of the change: additions, deletions, replacements, and
 formatting. Deletions and replacements are additionally shown
 inline, with the removed text displayed with strikethrough
 formatting, as shown in Figure 7. Similar to git and GitHub,
 Google Docs automatically records document-level versions
 by user and timestamp in a separate view.

 Figure 7: Google Docs 'Suggestion Mode'

 Libre Office. Though LibreOffice requires users to
 opt-in to change tracking via the ‘record’ method, users can
 choose from a variety of visual indicators. By default, added
 text is underlined in an alternate color, and removed text is
 shown in strikethrough. When users hover over a change, an
 attribution pop-up appears with any available authorship and
 date/time information. Like Word, left margin lines indicate
 which lines have been changed, as shown in Figure 8.

 Figure 8: Change and attribution information in LibreOffice (Track,
 Accept and Reject Changes in LibreOffice Writer, n.d.)

C
op

yr
ig

ht
 2

02
2

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s

So
ci

et
y.

 A
ll

rig
ht

s
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

26
61

52
1

Proceedings of the 2022 HFES 66th International Annual Meeting 1367

 Like Microsoft Word, LibreOffice allows both
 functional and aesthetic customizations of the visual interface.
 Text color can be used to distinguish among deletion,
 insertion, or formatting changes, assigned by user. Text
 formatting associated with the change type can also be
 customized, e.g., removed text can appear in bold instead of
 strikethrough. Users can also have changed lines indicated
 with highlighting, lines, or not at all (Changes , n.d.).

 Wikipedia. Although Wikipedia content is similar to
 that typically edited via word processing software, its change
 tracking implementation is closer to that of code editors. Each
 "line" corresponds to a paragraph, and any change within a
 paragraph applies "change" formatting to the entire paragraph.
 Changes are shown side-by-side with a left-margin ̀ -` and a
 yellow line indicating the previous version and a ̀+` and a
 blue line indicating the new version.

 Figure 9: Wikipedia Diff Viewer (Help:Diff - Wikipedia, n.d.)

 Changes within the paragraph are indicated in bold in the
 color of the border, and nearby paragraphs are displayed,
 shaded in grey, for context. If whole paragraphs are added or
 removed, the adjacent area appears blank, and no text
 formatting is applied, as shown in Figure 9 (Help:Diff -
 Wikipedia , n.d.).

 Like git and other code editors, Wikipedia can only
 show differences between two versions of a page at a time, but
 authorship attribution and date/time of change is displayed
 above the change summary.

 DISCUSSION

 Reviewing how text changes are represented visually across
 code editing and word processing tools, we found a set of
 common conventions within tool categories, as well as areas
 of crossover.

 All tools make use of text color and formatting to
 visually indicate text additions, deletions, and replacements.
 At the same time, version control software shares more
 conventions across instances, using green/red for
 additions/deletions, and ̀ -/+` to distinguish between original
 and updated contents. Word processing programs, by contrast,
 shared some defaults (e.g. strikethrough for deleted text) but
 support near-complete user customization. Across all the tools,
 we identified only four attributes that were modified; 1) Page

 annotation, 2) text color, 3) text highlight, and 4)
 text-decoration (strikethrough, underline). Different
 modifications of each of these attributes allowed for four
 different types of changes to be communicated; 1) Addition,
 2) Deletion, 3) Inline modification, and 4) White Space
 change, for at least one tool in either category.

 Page annotation Text Color Text highlight Text decoration

 Addition

 Git
 Github
 Google Docs
 VS Code

 Git
 Google Docs
 Libre Office
 Wikipedia
 Word

 Github
 IntelliJ IDEA

 Libre Office

 Deletion

 Git
 Github
 Google Docs
 VS Code
 Word

 Git Github Google Docs
 Libre Office
 Wikipedia

 Inline
 modification

 Libre Office
 VS Code
 Word

 White Space
 Google Docs Github

 IntelliJ
 IDEA

 Table 1: For all the observed types of changes, the visual indicators
 used to identify the change for each of the tools

 While both types of tool can track precise text
 changes, moreover, the unit of emphasis differs, with code
 editors emphasizing changes at the line level (with some
 further distinguishing inline differences), while word
 processing programs typically show character-level changes
 indicated by precise leader lines. Wikipedia represents a type
 of crossover, following code editor conventions at the
 paragraph level.

 Other distinctions between the tool types further
 reflect their cultures of use, despite the fact that, as text
 editors, any of them could theoretically be used for either code
 writing or word processing. For example, both human
 programmers and computers read and refer to code by line
 number, making this type of reference especially relevant in
 version control software; this is less relevant in human-facing
 text documents. Likewise, computer programs are often
 intentionally modular, making the immediately surrounding
 code in a computer program less meaningful than it is in a
 written document; this may be why unchanged portions of
 code are typically collapsed in version control displays, but
 the entire text (including deleted elements) is often are
 displayed and attributed at a highly granular level in word
 processing documents.

 In word processing, accuracy of language is often
 dependent on character-level distinctions, from conjugation to
 punctuation. Formatting and white space are similarly key to
 accurate interpretation and are therefore often given the same
 degree of emphasis as adding or removing characters.
 Semantic meaning in computer code, by contrast, is highly
 constrained by the language in use; the fact that only one

C
op

yr
ig

ht
 2

02
2

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s

So
ci

et
y.

 A
ll

rig
ht

s
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

26
61

52
1

Proceedings of the 2022 HFES 66th International Annual Meeting 1368

 version control system clearly records whitespace reflects the
 fact that the vast majority of programming languages are
 whitespace-independent. Word processing tools also
 universally attributed authorship and date/time information to
 changes, while the code editors did not. This aligns with the
 idea that the source of an edit in word processing informs
 interpretations of the change, while other considerations (e.g.
 brevity, functionality) may be more important in code
 documents. Thus, word processing programs' change tracking
 emphasizes a collage of authorship over time, while code
 editors display differences between point-in-time "snapshots"
 that, on the surface, are attributed to a single user.

 Research indicates that users prefer that similar tools
 use similar interface conventions (Experience, n.d.), so the
 shared visual representations of text changes within tool types
 is not surprising. In the case of version control systems,
 moreover, many internally rely on or at least natively support
 git, so their shared interface choices are understandable. In
 word processing, Microsoft Word predates all other tools
 evaluated, so competitor programs may attract users more
 easily by adopting its core conventions.

 Still, five out of the eight tools we reviewed offered
 options for customization. For IntelliJ IDEA, Word, and Libre
 Office, for example, users can select the page layout of
 changes, but they also allow users to filter what types of
 changes are visible and how they are represented. These
 options offer a glimpse into the breadth options for visually
 representing changes in digital text, many of which are
 underexplored. Likewise, we note that Wikipedia remains the
 only substantive example of an effort to display change
 tracking on a large corpus of published, human-readable text,
 suggesting that there is opportunity for significant
 experimentation in this area, as, the overall range of change
 representations across all types of tools remains somewhat
 limited.

 LIMITATIONS AND FUTURE WORK

 A major limitation of this work is the number of tools and
 options configurations we could feasibly review; as such, there
 may be variations we have missed in focusing on the most
 popular or best-known tools. A future, more comprehensive
 exploration may reveal more variation than presented here.

 Another limitation is in our descriptive approach to
 visual analysis. Our current approach of summarizing user
 interface choices is sufficient to understand patterns at a high
 level, but a more substantive comparison would require a
 more formal and in-depth heuristic analysis, such as Nielsen's
 Usability Heuristics or another system of evaluation.

 ACKNOWLEDGEMENTS

 This material is based upon work supported by the
 National Science Foundation under Grant No. 1940670, Grant
 No. 1940679, Grant No. 1940713. Any opinions, findings, and
 conclusions or recommendations expressed in this material are
 those of the author(s) and do not necessarily reflect the views
 of the National Science Foundation.

 REFERENCES

 9 Best Collaborative Document Editing Software in 2022. (2020, October 1).
 Bit Blog . https://blog.bit.ai/collaborative-document-editing-software/

 Changes . (n.d.). Retrieved February 23, 2022, from
 https://help.libreoffice.org/latest/en-US/text/shared/optionen/01060600.
 html?&DbPAR=SHARED&System=WIN

 Comparing commits . (n.d.). GitHub Docs. Retrieved February 23, 2022, from
 https://docs.github.com/en/pull-requests/committing-changes-to-your-p
 roject/viewing-and-comparing-commits/comparing-commits

 Experience, W. L. in R.-B. U. (n.d.). Jakob’s Law of Internet User Experience
 (2 min. Video) (Video) . Retrieved February 23, 2022, from
 https://www.nngroup.com/videos/jakobs-law-internet-ux

 Heckel, P. (1978). A technique for isolating differences between files.
 Communications of the ACM , 21 (4), 264–268.
 https://doi.org/10.1145/359460.359467

 Help:Diff—Wikipedia . (n.d.). Retrieved February 23, 2022, from
 https://en.wikipedia.org/wiki/Help:Diff#How_it_looks

 How to read the output from git diff? (n.d.). Stack Overflow. Retrieved
 February 23, 2022, from
 https://stackoverflow.com/questions/2529441/how-to-read-the-output-f
 rom-git-diff

 Hunt, J. W., McIlroy, M. D., & Bell Telephone Laboratories. (1976). An
 algorithm for differential file comparison . Bell Laboratories.

 Inc, I. M. G. (1987). InfoWorld . InfoWorld Media Group, Inc.
 Incremental Diff – Sublime Text Documentation . (n.d.). Retrieved February 23,

 2022, from https://www.sublimetext.com/docs/incremental_diff.html
 Kirschenbaum, M. G. (2016). Track Changes: A Literary History of Word

 Processing . Harvard University Press.
 Miller, W., & Myers, E. W. (1985). A file comparison program. Software:

 Practice and Experience , 15 (11), 1025–1040.
 https://doi.org/10.1002/spe.4380151102

 Review changes | IntelliJ IDEA . (n.d.). IntelliJ IDEA Help. Retrieved
 February 23, 2022, from
 https://www.jetbrains.com/help/idea/viewing-changes-information.html

 Ruparelia, N. B. (2010). The history of version control. ACM SIGSOFT
 Software Engineering Notes , 35 (1), 5–9.
 https://doi.org/10.1145/1668862.1668876

 Sha, A. (2021, February 26). 10 Best Free Word Processors You Can Use .
 Beebom. https://beebom.com/best-free-word-processors/

 Snapshot . (n.d.). Retrieved February 23, 2022, from
 https://docs.github.com/en/pull-requests/committing-changes-to-your-p
 roject/viewing-and-comparing-commits/comparing-commits

 Stack Overflow Developer Survey 2021 . (n.d.). Stack Overflow. Retrieved
 February 23, 2022, from
 https://insights.stackoverflow.com/survey/2021/?utm_source=social-sh
 are&utm_medium=social&utm_campaign=dev-survey-2021

 Track, Accept and Reject Changes in LibreOffice Writer . (n.d.). Retrieved
 February 23, 2022, from
 https://www.libreofficehelp.com/track-changes-libreoffice-writer/

 Track changes in Word . (n.d.). Retrieved February 23, 2022, from
 https://support.microsoft.com/en-us/office/track-changes-in-word-197b
 a630-0f5f-4a8e-9a77-3712475e806a

 Tridgell, A., & Mackerras, P. (1996). The rsync algorithm. Undefined .
 https://www.semanticscholar.org/paper/The-rsync-algorithm-Tridgell-
 Mackerras/d9695436e01795fa572df1f01d8643056a96f205

 Version Control in Visual Studio Code . (n.d.). Retrieved February 23, 2022,
 from https://code.visualstudio.com/docs/editor/versioncontrol

 Viégas, F. B., Wattenberg, M., & Dave, K. (2004). Studying cooperation and
 conflict between authors with history flow visualizations. Proceedings
 of the 2004 Conference on Human Factors in Computing Systems -
 CHI ’04 , 575–582. https://doi.org/10.1145/985692.985765

 Vigliarolo, B. (2020, November 5). 5 free alternatives to Microsoft Word .
 TechRepublic.
 https://www.techrepublic.com/article/5-free-alternatives-to-microsoft-
 word/

C
op

yr
ig

ht
 2

02
2

by
 H

um
an

 F
ac

to
rs

 a
nd

 E
rg

on
om

ic
s

So
ci

et
y.

 A
ll

rig
ht

s
re

se
rv

ed
. 1

0.
11

77
/1

07
11

81
32

26
61

52
1

Proceedings of the 2022 HFES 66th International Annual Meeting 1369

https://blog.bit.ai/collaborative-document-editing-software/
https://help.libreoffice.org/latest/en-US/text/shared/optionen/01060600.html?&DbPAR=SHARED&System=WIN
https://help.libreoffice.org/latest/en-US/text/shared/optionen/01060600.html?&DbPAR=SHARED&System=WIN
https://help.libreoffice.org/latest/en-US/text/shared/optionen/01060600.html?&DbPAR=SHARED&System=WIN
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/viewing-and-comparing-commits/comparing-commits
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/viewing-and-comparing-commits/comparing-commits
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/viewing-and-comparing-commits/comparing-commits
https://www.nngroup.com/videos/jakobs-law-internet-ux/
https://www.nngroup.com/videos/jakobs-law-internet-ux/
https://doi.org/10.1145/359460.359467
https://doi.org/10.1145/359460.359467
https://en.wikipedia.org/wiki/Help:Diff#How_it_looks
https://en.wikipedia.org/wiki/Help:Diff#How_it_looks
https://stackoverflow.com/questions/2529441/how-to-read-the-output-from-git-diff
https://stackoverflow.com/questions/2529441/how-to-read-the-output-from-git-diff
https://stackoverflow.com/questions/2529441/how-to-read-the-output-from-git-diff
https://www.sublimetext.com/docs/incremental_diff.html
https://doi.org/10.1002/spe.4380151102
https://doi.org/10.1002/spe.4380151102
https://www.jetbrains.com/help/idea/viewing-changes-information.html
https://www.jetbrains.com/help/idea/viewing-changes-information.html
https://doi.org/10.1145/1668862.1668876
https://doi.org/10.1145/1668862.1668876
https://beebom.com/best-free-word-processors/
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/viewing-and-comparing-commits/comparing-commits
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/viewing-and-comparing-commits/comparing-commits
https://docs.github.com/en/pull-requests/committing-changes-to-your-project/viewing-and-comparing-commits/comparing-commits
https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
https://insights.stackoverflow.com/survey/2021/?utm_source=social-share&utm_medium=social&utm_campaign=dev-survey-2021
https://www.libreofficehelp.com/track-changes-libreoffice-writer/
https://www.libreofficehelp.com/track-changes-libreoffice-writer/
https://support.microsoft.com/en-us/office/track-changes-in-word-197ba630-0f5f-4a8e-9a77-3712475e806a
https://support.microsoft.com/en-us/office/track-changes-in-word-197ba630-0f5f-4a8e-9a77-3712475e806a
https://support.microsoft.com/en-us/office/track-changes-in-word-197ba630-0f5f-4a8e-9a77-3712475e806a
https://www.semanticscholar.org/paper/The-rsync-algorithm-Tridgell-Mackerras/d9695436e01795fa572df1f01d8643056a96f205
https://www.semanticscholar.org/paper/The-rsync-algorithm-Tridgell-Mackerras/d9695436e01795fa572df1f01d8643056a96f205
https://www.semanticscholar.org/paper/The-rsync-algorithm-Tridgell-Mackerras/d9695436e01795fa572df1f01d8643056a96f205
https://code.visualstudio.com/docs/editor/versioncontrol
https://doi.org/10.1145/985692.985765
https://www.techrepublic.com/article/5-free-alternatives-to-microsoft-word/
https://www.techrepublic.com/article/5-free-alternatives-to-microsoft-word/
https://www.techrepublic.com/article/5-free-alternatives-to-microsoft-word/

	MAIN MENU
	Go to Previous View
	Help
	Search
	Print
	Author Index
	Table of Contents

