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Abstract

Large programs of dynamic gene expression, like cell cyles and circadian rhythms, are con-
trolled by a relatively small “core” network of transcription factors and post-translational
modifiers, working in concerted mutual regulation. Recent work suggests that system-inde-
pendent, quantitative features of the dynamics of gene expression can be used to identify
core regulators. We introduce an approach of iterative network hypothesis reduction from
time-series data in which increasingly complex features of the dynamic expression of indi-
vidual, pairs, and entire collections of genes are used to infer functional network models that
can produce the observed transcriptional program. The culmination of our work is a compu-
tational pipeline, Iterative Network Hypothesis Reduction from Temporal Dynamics (Inher-
ent dynamics pipeline), that provides a priority listing of targets for genetic perturbation to
experimentally infer network structure. We demonstrate the capability of this integrated
computational pipeline on synthetic and yeast cell-cycle data.

Author summary

In this work we discuss a method for identifying promising experimental targets for
genetic network inference by leveraging different features of time series gene expression
data along a chained set of previously published software tools. We aim to locate small
networks that control oscillations in the genome-wide expression profile in biological
functions such as the circadian rhythm and the cell cycle. We infer the most promising
targets for further experimentation, emphasizing that modeling and experimentation are
an essential feedback loop for confident predictions of core network structure. Our major
offering is the reduction of experimental time and expense by providing targeted guidance
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from computational methods for the inference of oscillating core networks, particularly in
novel organisms.

1 Introduction

Systems biologists aim to understand molecular systems comprised of gene/protein interac-
tions. The challenge of understanding the mechanistic properties of the system stem from
high-dimensional and often nonlinear interactions between genes and proteins in a network.
The complexity of interactions leads to an intractably large hypothesis space that cannot be
exhaustively explored by experimental approaches. Thus, there is a need for constructing
computational approaches for prioritizing models that can then be interrogated by
experimentalists.

Experimentally, networks have been inferred from high-throughput genomic and proteo-
mic approaches that identify protein-protein [1-3], protein-DNA [4] or gene by gene interac-
tions [5, 6]. Although these approaches can map interactions, they don’t indicate whether the
interaction is spurious or performs a specific function, and don’t reveal the sign of the interac-
tion (e.g. activation or repression). Alternatively, experimental approaches utilizing genetic
manipulations such as gene knockouts or over-expression coupled with ‘omics analyses of the
resulting cellular responses have been used to infer functional network connections. For exam-
ple, if the gene for transcription factor A is knocked out and the expression of gene B goes
down, it can be inferred that A activates B [6, 7]. This inference is functional and has been
used to identify clusters of co-regulated genes, but the approach lacks the capability to infer
whether the regulation is direct. Although physical interaction experiments and genetic experi-
ments have been used successfully in genetically tractable model systems with well-annotated
genomes, they are expensive and time consuming. These approaches are also largely intracta-
ble for non-model systems of interest. Thus, the development of computational approaches for
network inference is important.

From a computational perspective, the generic approach has been to infer local network
interactions that are then assembled into the global network of interest, and then construct the
models and estimate associated parameters that describe the nonlinear relationships between
nodes in the networks. Ideally, these approaches utilize data that describe the entire system
and is relatively easy to collect. For Gene Regulatory Networks (GRNs) that control programs
of gene expression, transcriptomics measurements have been used to infer underlying network
topology [8, 9]. For GRNs that control gene expression dynamics, time-series transcriptomic
measurements have been used to infer both network topology and the type of interactions
(activation or repression) enabling the construction of directed network graphs, e.g. [10-14].
Some methods explicitly leverage prior biological knowledge in the form of experimental evi-
dence of interactions to improve inferences [11, 15-17]. Others refine inferences by improving
coarse, global network properties of very large interaction networks such as node degrees, hier-
archical structure, clustering coefficients, synchronizability, etc. The methods in [18, 19] are
general and do not incorporate dynamic models of particular systems or study the ability of
the proposed networks to reproduce the observed dynamics of the system they are meant to
describe. Among the many GRN inference methods, very few use both prior biological knowl-
edge and relevant dynamic models built from the topological (network) description of interac-
tions. One such method [20] does incorporate both prior knowledge and dynamics of the
inferred networks, but assumes a linear relationship between the expression of each gene and
the remaining genes, requires a choice of a “known” reference network built from
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experimental evidence in pathway databases, and parameter sampling from a parameter space
whose dimension grows quadratically with the number of nodes in the network.

Each of these different approaches have enjoyed some limited successes, yet challenges
remain. It might be expected that the different approaches could be synergistic, and compen-
sate for the unique challenges of each method. Interestingly, it has been discovered that aggre-
gating models leads to better predictive value than individual models alone. This concept was
reported as an outcome of the DREAM challenge [21]. A similar conclusion was reached when
the outputs from epidemiological models aimed at predicting the dynamics of influenza [22]
and COVID-19 [23] infections were used in an ensemble forecast. The average of the outputs
of multiple models has been the best predictor of true dynamics throughout the pandemic.
The challenge of this approach for network inference lies in the method used to combine and
weight the outputs of different methods.

Despite the capacity of current high throughput methods to produce large quantities of
gene expression data, the problem of recovering an underlying GRN from experimental mea-
surements remains under-determined, because the size of potential networks far outstrips the
abundance of available data. This imbalance results in a nonidentifiability problem, in which
multiple models, which may differ in both their structure and their parameterizations, can
explain the observed data.

Here we describe a method for network inference that serially combines the output from
computational tools into a pipeline for network inference. This pipeline is called the Inherent
dynamics pipeline (Iterative Network Hypothesis Reduction from Temporal Dynamics) [24]
and is appropriate for the identification of key regulatory elements and interactions in small
“core” networks that drive genome-wide oscillatory gene expression activity. As a testbed, we
utilize in silico networks that have oscillating properties as well as experimentally verified regu-
latory interactions in the budding yeast cell cycle that control a large program of phase-specific
gene expression as cells progress through the cell cycle. The Inherent dynamics pipeline is
composed of tools that infer the set of nodes that function in the control network, the local
arrangement of edges that connect the nodes, and finally the global structure and function of
the network.

Rather than a mechanism for identifying the “correct” network model, we regard the Inher-
ent dynamics pipeline as an iterative hypothesis reduction machine that transforms what
would be an intractable problem, given the enormity of possible genetic controls, into a man-
ageable set of testable hypotheses even in the absence of prior biological knowledge. Our pipe-
line leverages dynamic content contained in time series gene expression data in multiple ways
at different stages to iteratively prune hypothesis space and ultimately produces a set of candi-
date networks. The prevalence of regulatory elements in the resulting set of networks provides
a prioritized list of experimental interventions and the prevalence of various edges provides
predictions of the impact of these interventions. We show that the Inherent dynamics pipeline
is capable of providing experimental guidance for the discovery of core oscillators from gene
expression time series data.

2 Results
2.1 Inherent dynamics pipeline

In principle every gene and every pairwise positive or negative regulatory interaction may be
an important element in the network responsible for the oscillatory expression. This leads to
an intractably large collection of hypothetical core oscillating networks. To address this chal-
lenge, our procedure is a three step framework for identifying GRNSs that function as biological
oscillators. An underlying assumption is that time-series gene expression data contain
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Fig 1. Schematic of the three stages of the Inherent dynamics pipeline in which each step uses different features of the input gene expression time
series data. In the node finding step, each gene expression time trace is used independently to score the strength of periodicity. Genes with stronger
periodicity and higher amplitude are hypothesized to be part of the core network and are correspondingly ranked higher. Top ranked nodes are passed
into the edge finding step, where time series are used in pairs to score the likelihood of a positive or negative regulatory event in one or the other
direction. A ranking is determined using high to low likelihoods and top ranked edges are passed to the network finding step, where subsets of gene
expression data consisting of three or more time traces are compared to the global dynamics of network models to produce top ranking networks that
are consistent with the order of peaks and troughs across the time series. Statistics of these top ranked networks are used to suggest experimental

intervention at the node level.

https://doi.org/10.1371/journal.pchi.1010145.9001

sufficient information so that different features of the data may be used to reduce (1) the num-
ber of regulatory elements involved in producing the observed gene expression program (node
finding), (2) the number of possible pairwise interactions between those regulatory elements
(edge finding), and (3) the type of complex regulation occurring at each element (network
finding). A schematic of the Inherent dynamics pipeline is shown in Fig 1. The focus is on
identifying key regulatory components of the GRN that form a relatively small, strongly con-
nected core network exhibiting the observed dynamics, and not on the numerous connections
needed regulate all of the periodic outputs of this network.

2.1.1 Node finding. Node finding is perhaps the most critical step to uncovering the gene
regulatory network (GRN) that is responsible for producing the transcriptional dynamics
underpinning the biological process in question, since errors made during this step will focus
attention on irrelevant genes. This is a difficult task as it requires identifying the core set of
genes from perhaps tens of thousands of transcribed genes. Approaches to extract a small
number of core genes from tens of thousands would be experimentally time-consuming and
expensive, and thus largely intractable.

The current implementation of the Inherent dynamics pipeline focuses on discovering
GRNs that produce oscillatory dynamics, such as those in cell-cycle and circadian systems.
The node finding step in the Inherent dynamics pipeline employs the periodicity detection
algorithm DLX]JTK [25]. DLxJTK uses JTK CYCLE [26] and the de Lichtenberg algorithm
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Table 1. Metrics table: Key terminology for scoring and ranking nodes, edges, and networks in the Inherent
dynamics pipeline in order of computation.

Step Term Definition
Node finding | DLxJTK node ranking ranking of genes according to the most periodic gene expression
Edge finding | local edge ranking ranking of activating and repressing interactions according to
LEM simulation
top-ranked LEM edges the top N edges in the local edge ranking, a user choice
local node participation score the median rank of all edges in the top-ranked LEM edges that
(for gene g) involve g
local node ranking rank ordering of genes according to their local node
participation score
Network oscillation score (for a network) | the proportion of network behavior that permits a stable
finding oscillation according to DSGRN
pattern match score (for a the proportion of stable oscillations that exhibit a DSGRN
network) pattern match
top-ranked DSGRN networks networks with the desired oscillation and pattern match scores
edge prevalence score (for edge g | the proportion of top-ranked DSGRN networks that include g
global edge ranking rank ordering of edges according to their edge prevalence score
global node participation score | the median rank of all edges in the global edge ranking that
(for gene g) involve g
global node ranking rank ordering of genes according to their global node

participation score

https://doi.org/10.1371/journal.pcbi.1010145.t001

[27] to quantify periodicity and amplitude as key features of gene expression profiles, see
Methods Section 4.2.1. These two features have been shown to be characteristic gene expres-
sion features of core genes in GRNs that produce oscillatory dynamics [25, 28]. DLxJTK com-
bines the quantification of periodicity and amplitude into one score, providing a ranked list of
genes where the top of the list is enriched for core regulatory elements most critical to control-
ling oscillatory dynamics. This ranked list will be referred to as the DLXJTK node ranking
(Table 1).

In a general framework of node finding, features besides periodicity and amplitude can be
used (e.g. annotation or orthology to known nodes) to provide a ranking of the functional
importance of transcribed gene products. However it is accomplished, the output of the node
finding step—a small set of candidate core genes—is passed on to the edge finding step to eval-
uate regulatory relationships in a pairwise manner.

2.1.2 Edge finding. Ideally, node finding will have produced a list of candidate core genes,
which are essential to produce the dynamic expression program of interest with high sensitiv-
ity and specificity. It has been shown [11], and our results confirmed that the dynamics of
pairs of gene expression profiles of core regulatory elements at moderate temporal resolution
contain enough information to meaningfully rank all potential interaction edges. In particular,
by considering only local models of single-edge regulation of each node/target separately, it is
possible with high sensitivity and specificity to identify true target/regulator pairs by ranking
true edges above incorrect edges [11].

We adopt the Local Edge Machine (LEM) [11], as our method of ranking all allowable
edges over a fixed node set, see Methods Section 4.2.2. In our particular case, this is the collec-
tion of nodes from the DLxJTK node ranking. LEM uses a Bayesian framework to infer a pos-
terior probability distribution on the space of possible single-edge regulation models
separately for each target node. LEM’s original intent was to infer the most likely regulator and

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010145 October 10, 2022 5/31


https://doi.org/10.1371/journal.pcbi.1010145.t001
https://doi.org/10.1371/journal.pcbi.1010145

PLOS COMPUTATIONAL BIOLOGY Discovering genetic networks through hypothesis reduction

form of regulation (activation or repression) of a given target from a list of potential regulators.
However, by considering each of N nodes as a potential target with all N nodes as potential reg-
ulators with either an activating or repressing effect, LEM estimates 2N” probabilities for each
potential edge, and thereby provides a local edge ranking (Table 1). The word “local” is chosen
here to refer to an inference based on data for a single target and regulator, in contrast to a
“global” inference performed over all the edges of a purported GRN simultaneously. In this
way, edge ranking can be used to reduce hypothesis space to the most promising region(s) of
network space by effectively eliminating certain target/regulator pairs from the space of possi-
ble networks. The nodes in the top ranked LEM edges can be scored to form a rank-ordered
list of regulatory elements called a local node ranking in which a subset of the nodes from the
DLxJTK node ranking has been reordered to reflect the node participation in top-ranked
edges (Table 1).

2.1.3 Network finding. The network finding step accepts a ranked list of gene interactions
that are ideally enriched by regulatory connections critical to the molecular process under con-
sideration. Although DLXJTK and LEM have a strong tendency to highly rank ground truth
nodes [25] and edges [11] respectively, false positives and false negatives do exist within the
lists of top-ranked nodes and edges. Furthermore, even when both tools work perfectly, there
is no guarantee that the top pairwise LEM interactions will produce a network of complex
interactions that faithfully reproduces the observed data. The challenge of network finding is
two-fold: (1) to quantify the ability of complex GRNs built from highly ranked edges to exhibit
the experimental data and (2) to correct for over-ranked and under-ranked edges.

The task of network finding is complicated by the enormity of network space, which pre-
cludes exhaustive evaluation of all network models (see Methods Section 4.2.3). The top
ranked gene interactions from LEM provide both a small initial network, or “seed network”
(Fig 2), and a list of potential network interactions that localize the network search. Candidate
networks within the allowable region are then provided numerical scores using a network
finding tool set based on the software DSGRN [29, 30]. Given a network we use DSGRN to
provide two numerical scores. The oscillation score (Table 1) indicates the proportion (with
respect to parameters) of network model behavior that exhibits stable oscillations. The pattern
match score (Table 1) indicates the proportion of the stable oscillations identified from the
network model that exhibit a pattern match, i.e., the stable oscillation reproduces the periodic
order of the maxima and minima seen in the gene expression time series data (discussed in
Methods Section 4.2.3). The collection of top-ranked DSGRN networks according to these
scores provides experimental guidance for the most promising intervention targets in the form
of revised local node and edge rankings called global node and edge rankings determined by
a global node participation score and an edge prevalence score (see Table 1 and Methods Sec-
tion 4.3). The term “global” here refers to the ability of a GRN model to holistically reproduce
the proper dynamics of a collection of time series. The global node and edge rankings are sub-
sets of the local node and edge rankings that have been reordered to reflect their participation
in networks that exhibit the desired dynamics (Fig 2).

2.2 Applications

Because it is hard to establish ground truth in biological systems, we first examined synthetic
data in which the regulatory interactions of a core oscillator are known. We show that the
Inherent dynamics pipeline can prioritize edges as targets for further investigation under con-
ditions that mimic distinct experimental regimes, as well as identifying nodes that are not part
of the core oscillator. The synthetic data do not include any added noise; we remark that the
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Fig 2. Schematic of the network finding step. From upper left in a horseshoe to lower left: The node finding step produces a thresholded list of nodes
that are passed into edge finding. Edge finding ranks all possible edges between these top nodes and the very top ranked of these are used to create a
seed network. The seed network is the initial condition for a neighborhood search in network space. In this neighborhood, a collection of strongly
connected networks are sampled and scored according to user-specified choices of the oscillation and pattern match scores in Table 1. The participation
and prevalence of nodes and edges in the top ranked networks globally matching the dynamics in the experimental data permit a reordering of nodes
and edges that provides hypotheses for experimental guidance.

https://doi.org/10.1371/journal.pcbi.1010145.9002

effects of data quality and noise have been explored previously for each module in the Inherent
dynamics pipeline [11, 25, 31, 32].

We then examined the well-studied cell cycle of the budding yeast Saccharomyces cerevisiae.
Using YEASTRACT [7], we leveraged the years of compiled experimental evidence to identify
well-substantiated regulatory relationships between yeast cell-cycle genes. We demonstrated
the performance of the Inherent dynamics pipeline under ideal conditions and then under
conditions with decreased information availability.

In Table 1, we list important terminology for evaluating the output of the Inherent dynam-
ics pipeline, see Methods Section 4.3 for details. Importantly, every term that is listed as a rank
or median rank means that lower numerical scores indicate better performance. Those that
are listed as proportions indicate that a higher numerical score is associated to better perfor-
mance. The local and global edge and node rankings together are the primary metrics priori-
tizing experiments.

2.2.1 Synthetic ground truth network. We studied the performance of the Inherent
dynamics pipeline on a synthetic, strongly connected regulatory network with nodes A, B, C,
D, E, and F called the ground truth network shown in Fig 3A. Strongly connected networks
are those in which there exists a path connecting each node to every other node, and thus
there is at least one feedback loop between each pair of nodes in a network. This ground truth
network was designed to achieve high oscillation and pattern match scores (Table 1) to mimic
robust clock-like behavior. Three synthetically-generated time series, shown in Fig 3B-3D,
were simulated with Hill models under widely separated parameterizations in order to pro-
duce disparate dynamical behavior, see Methods Section 4.4.1 for details. We added an
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Fig 3. Panel A. Ground truth regulatory network, where sharp arrows indicate activation (or positive regulation) and blunt arrows indicate
repression (or negative regulation). Panels B-D. Synthetic time series from 3 different parameterizations of a single Hill model (see Methods
Section 4.4.1). Panel E. The subnetwork formed from the network in panel A of this figure by removing the node D. Panels F-H. Synthetic time
series from the same parameters as in panels B-D of this figure, but excluding node D.

https://doi.org/10.1371/journal.pcbi.1010145.g003
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additional spurious time series, a shifted and stretched sine wave denoted G, also see Methods
Section 4.4.1, which represents a node that does not participate in the simulated network. This
false node G provides a negative control of the algorithm in the sense of being a “true nega-
tive.” Because all of the nodes in the synthetic networks are strongly connected, the node find-
ing step was not needed for the synthetic data and the Inherent dynamics pipeline was run on
the edge and network finding steps only.

We ran the Inherent dynamics pipeline beginning with the edge finding step for each of the
three synthetically-generated time-series datasets under the hyperparameters given in Methods
Section 4.4.2. Since the Inherent dynamics pipeline is stochastic, we ran five independent com-
putations for every condition and report mean outcomes plus/minus one standard deviation
in S1 and S2 Tables. For each dataset and each run of the Inherent dynamics pipeline, the edge
finding step ranks 98 edges, which are the positive and negative edges for each pair of target/
source nodes taken from A-G. As seen previously, the top of the local edge ranking is enriched
with true positives (S3, S4 and S5 Tables), consistent with the high accuracy of LEM reported
in [11].

Local inference informs building functional global network models. Due to the high
AUC scores of LEM’s ranking of edges [11], we hypothesized that sampling networks in the
neighborhood defined by top LEM edges put us in a region of network space that had high
oscillation and pattern match scores. This claim is empirically backed by Fig 4 in which sam-
pling networks at top-ranked LEM edges shows higher oscillation and pattern match scores
(Fig 4A) as opposed to sampling networks from bottom-ranked LEM edges (Fig 4B). In fact,
approximately half of the sampled networks, of which there are 2000 in total, exhibited a
DSGRN pattern match to the observed data (see S2 Table, column 2) and therefore could not
be excluded as potentially accurate models. In other words, the ability of a network model to
reproduce a particular dataset was not rare in the set of networks constructed from high rank-
ing LEM edges. The large number of consistent networks is a manifestation of an identifiability
problem, wherein many networks of differing topologies were capable of producing the
observed transcriptional oscillations. This is due to the inherent flexibility of network structure
to produce different dynamics. Since a large number of network structures could explain the
observed data, we do not seek to provide a “true” network to the user. Instead, we use statistics
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over the aggregate of high performing networks to pinpoint genes of interest for experimental
intervention (i.e. Fig 5).

Pattern matching can provide a large reduction in hypothesized network models. There
is uncertainty in the decay rates, binding affinities, etc. associated with a parametric network
model. Therefore, networks that exhibit the desired dynamical behavior across many such
parameterizations are said to exhibit the behavior more robustly. The pattern match score is a
proxy for the robustness of a network model’s consistency with the data by measuring the
ordering of peaks and valleys in the transcriptional traces of individual genes. We reduce the
stochastic sample of network hypothesis space consisting of 2000 networks when we apply
oscillation and pattern match scores to assign a rank based on robustness to choose top-ranked
DSGRN networks. For the synthetic data, we define top-ranked DSGRN networks as those
with an oscillation score of 100% and a pattern match score of at least 50%, because the net-
work was designed to be a robust oscillator with a fair amount of pattern matching. For an
explanation of the meaning of a 100% oscillation score, see Methods Section 4.2.3. We
acknowledge the correct optimization function is unknown, and this will affect our choices
analyzing experimental data from the yeast cell cycle. Most of the 15 runs of the Inherent
dynamics pipeline showed less than 100 networks fulfilling the criteria of a top-ranked net-
work (see S2 Table, column 3), indicating a hypothesis reduction of an order of magnitude
from the initial sample of 2000.

Global dynamic behaviors can improve local regulatory inferences. When removed from
the context of a global network in the local inference step, a single regulatory interaction
between two genes may appear highly likely due simply to spurious correlations due to limited
precision in their transcriptional profiles. This improper inference is a universal problem with
any inference method based on pairwise comparisons of genes. By analyzing the most likely
regulatory interactions in the context of a global network model, the network finding step was
able to identify false positives in the top-ranked LEM edges. The majority of the false positives
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involved the true negative node G (see Methods Section 4.4.1). LEM ranked these false posi-
tives highly because all of the nodes A-F were able to effectively reproduce the sine wave G
under a Hill model. On the other hand, LEM correctly identified that node G does not regulate
any of nodes A-F (see S3, S4 and S5 Tables and notice that there are no edges with G as a regu-
lator of nodes A-F with one very low-ranked exception). The network finding step then identi-
fied that node G was not able to participate in any feedback systems. This is a clear case where
an analysis of the global dynamics supported by a functional network model can remove false
positives that appear to be viable without the broader context of the entire network.

The functional core oscillator may be condition-specific. The influence a particular node
has on the dynamic output of a GRN may depend on the cellular condition in which the net-
work operates. Thus, what constitutes a core oscillator may depend on the conditions under
which data were collected. We hypothesize that the different parameterizations of the ODE
system that generated the data in Fig 3 are a reasonable proxy for different cellular conditions,
and observe that these varying conditions can change which nodes may be justifiably called
participants in a core oscillator.

A careful analysis of the results of the synthetic network shown in Fig 3D showcases how
the edge rankings can identify true positive edges that do not strongly influence the global
dynamics of the observed oscillations. In the analysis of the data shown in Fig 3D, the repress-
ing edge from node D to node C never appears in the top-ranked LEM edges due to a low
LEM likelihood score, unlike the results for Fig 3B and 3C. Moreover, the repressing edge
from node E to node D has a zero edge prevalence score; i.e., it participates in no top-ranked
DSGRN networks. This is circumstantial evidence that the node D might play a less important
role in the dataset Fig 3D. We explored this phenomenon by examining the five-node subnet-
work of the ground truth network shown in Fig 3E that is formed by removing the node D.

We simulated datasets at the same parameters as in Fig 3B-3D excluding node D. The
results are shown in Fig 3F-3H. It is apparent that D is a critical node for oscillations in the
parameter set for Fig 3B, as the removal of node D causes all oscillations to cease as shown in
Fig 3F. This effect is attenuated for the parameter set for Fig 3C, which shows damped oscilla-
tions after the removal of node D. However, the removal of node D from the parameter set for
Fig 3D does not halt strong oscillatory behavior, seen by comparing Fig 3D and 3H, although
the quantitative values of the individual nodes are different. This presents strong evidence that
the five-node subnetwork in Fig 3E can operate as the true core oscillator of the ground truth
network under some parameterizations. We view these different parameterizations as proxies
for distinct experimental conditions, such as different growth media or temperature. Thus the
Inherent dynamics pipeline can distinguish between two strongly connected networks that
operate as core oscillators under different cellular conditions. In other words, the Inherent
dynamics pipeline may not return the same network structures if data are collected under dif-
ferent experimental conditions.

Careful consideration of the formulation and parameterizations of the ODE models that
produced the time traces in Fig 3 suggests why D is a core node required for sustained oscilla-
tions in Fig 3B, but serves a diminished role in the other two parameterizations. Briefly, in the
parameterization that produced Fig 3B the regulation from node D to C strongly outweighs
the input from nodes A and E to node C, and this distribution of relative strength of regulation
does not occur to the same degree in the parameterizations for Fig 3C or 3D. See the discussion
in Methods Section 4.4.1 for more detail.

Global dynamic behaviors can improve core variable inferences. Our primary goal is to
use the Inherent dynamics pipeline in an experiment-simulation-experiment loop that ulti-
mately guides the discovery of core oscillator genes in non-model organisms. It is easier to per-
turb the expression of a gene, thereby impacting all regulatory interactions associated to the
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gene, than it is to disrupt a single regulatory interaction. For this reason, we prioritize GRN
nodes rather than edges as experimental targets by comparing the local and global node rank-
ings from Table 1. This comparison yields a prioritized list of potential experimental interven-
tions based on node participation in networks that robustly support the observed dynamic
behavior.

The node participation scores for the local versus the global node rankings are seen in Fig 5.
Points above the diagonal indicate nodes that are upranked in the global node ranking, while
those below the diagonal are downranked. Points in the lower left corner of the diagonal are
highly ranked by both LEM and DSGRN, and those in the upper right are poorly ranked by
both methods.

In terms of experimental prioritization, nodes at the lower left of the diagonal should be
viewed as having the greatest confidence in their participation in a core oscillator, since they
rank highly at both the local and the global level. Next to be prioritized are those highest above
the diagonal; i.e. those that are upranked consistently in the global node ranking. We suggest
that downranked nodes be disregarded. The downranked nodes may contain false negatives;
however, we observe that the true negative G is correctly identified and that the area above the
diagonal is enriched with true positives, making it a more promising area of investigation. We
remark that node D is not downranked on average in Fig 5C despite our finding that node D is
not necessary for oscillatory behavior in the parameterized Hill model in Fig 3D and 3H. How-
ever, the wide standard deviation shows that D is downranked in some of the computational
trials and, in addition, node D is upranked for the simulation in Fig 3B where we know it to be
very important. In Fig 5, the most highly prioritized nodes for experimental investigation are
B, E for Fig 3B; C, E for Fig 3C; and C, B, A for Fig 3D.

2.2.2 8. cerevisiae cell cycle. To further validate the inference pipeline, and examine its
utility in the context of real data, we applied the Inherent dynamics pipeline to transcript
expression time series collected from a S. cerevisiae population that was synchronized in the
cell cycle. Evidence suggests that the control of periodic cell cycle transcription is largely con-
trolled by a core GRN [33-39], and although the cell cycle of the yeast S. cerevisiae is very well
studied, the exact topology of the core transcriptional oscillator controlling the large transcrip-
tional program during cell division is still under investigation. However, there are experimen-
tally substantiated interactions between known cell-cycle genes. We chose nine genes that have
strong experimental evidence implicating them in the yeast cell-cycle transcriptional control,
along with 24 regulatory interactions gleaned from YEASTRACT, a database that compiles
experimental evidence for regulatory interactions in the yeast genome [7], along with three
more edges from the cell cycle network model in [34]. See Methods Section 4.4.3 for the lists of
genes and interactions. We will refer to these as substantiated nodes and edges. All other
nodes and edges will be referred to as unsubstantiated.

In the yeast cell cycle, and even more so for non-model organisms, the collection of core
oscillator genes is uncertain, and many non-core genes exhibit oscillatory transcriptional
dynamics. To assess the performance of the Inherent dynamics pipeline, we included two
“true negative” or unsubstantiated gene products, RIF1 and EDS1, that are highly oscillatory
according to DLxJTK [25], but do not participate in any regulatory interaction with substanti-
ated nodes according to YEASTRACT.

Prior biological knowledge, e.g. the identity of a core regulator, or the functional activity of
aregulator as only a repressor or only an activator, could be used in principle to make a priori
hypothesis reductions. The Inherent dynamics pipeline incorporates this information using
gene annotations that record whether a given gene product acts as an activator, a repressor, or
only as a target. The least constraining choice is to allow a gene product to take any of these
roles. If a gene is marked as not a target, then its corresponding node in a regulatory network
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will have no in-edges. Likewise, if a gene product may be neither an activator nor a repressor,
then it will have no out-edges. The most interesting case is when a gene is both a regulator and
a target, but is allowed to be only an activator or only a repressor. This allows the gene to be
evaluated as a potential member of the core oscillator, but restricts the type of interactions that
LEM will model. We call such a restriction a nontrivial annotation; see Methods Section 4.4.3
for the nontrivial annotations of the substantiated nodes.

We explored four scenarios representing four levels of prior biological knowledge using the
Inherent dynamics pipeline, S*A™, S*TA™, STA", and S"A", see the table in Fig 6. S* stands for
perfect knowledge of the substantiated nodes, with S indicating that the unsubstantiated
nodes EDS1 and RIF1 are assessed for participation in the core network along with the sub-
stantiated nodes. Similarly, A" indicates the presence of nontrivial annotations and A indi-
cates their absence. Taken together, S"A™ indicates the most a priori knowledge and S”TA™
indicates the least. We ran the Inherent dynamics pipeline five times for each scenario under
the hyperparameters given in Methods Section 4.4.3, with two replicate microarray datasets of
S. cerevisiae wild-type transcriptomics of the yeast cell cycle [38]. Mean outcomes plus/minus
one standard deviation for the five runs are shown in S6 and S7 Tables. Similar to the synthetic
data case study, we see that LEM exhibits enrichment of its top ranks with substantiated edges
and that generally more than half of the sampled networks are consistent with the data (57
Table).

The scoring criteria that we use to assess top network performance is different than for the
synthetic network, because a biological core oscillator does not necessarily oscillate robustly
across parameter space. The cell cycle exhibits controllability in that transcriptional oscillations
can be shut off at various checkpoints [33]. These non-oscillatory states of the network are
present for different choices of parameters, and therefore oscillations cannot occupy the entire
parameter space. For this reason, we opted for an oscillation score of 10% to 40%, with the
remaining percentage of dynamical behaviors ideally including stable fixed points, imitating
checkpoint behavior. We also require very robust pattern matching via a pattern match score
of 100% and a requirement that both replicates must exhibit pattern matches. We emphasize
that this is a user-defined choice that is based on a biological phenotype.

Global dynamic behaviors most improve local inference when the least prior informa-
tion is available. Nontrivial annotations and high confidence core oscillator node identifica-
tion are possible with model organisms, but are limited or absent for non-model organisms.
We examined the performance of the Inherent dynamics pipeline with and without these two
pieces of information to model several levels of prior knowledge about a core oscillator. The
goal was to examine how global dynamic information affected the ranking of edges from the
local inference.

We compared the performance of local and global edge rankings in Fig 6 on the subset of
substantiated edges with a nonzero prevalence score for each scenario. For each simulation,
the median rank of all substantiated edges that participated in at least one top-ranked DSGRN
network is computed for both the local and global edge rankings. This is a measure of rank
change provided that the substantiated edge was deemed important according to global
dynamical behavior. Lower medians indicate upranking, or a better result. The global edge
ranking upranks substantiated edges in the scenarios that include unsubstantiated nodes,
enriching the top of the global edge ranking with substantiated edges. This is particularly true
when we have the least information (non-trivial annotations or high confidence nodes), the
STA” scenario, making this technique especially applicable to novel organisms or novel core
oscillators. Moreover, we show that a top network in the S"TA™ scenario found by Inherent
dynamics pipeline is capable of reproducing the data using a standard Hill model of gene inter-
actions (S1 File), indicating that the dynamically coarse approach taken by DSGRN informs
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the parameterization of more traditional models that might provide insight into unknown cel-
lular processes.

Global dynamics can identify unsubstantiated nodes. Ideally, nodes identified as promis-
ing experimental targets do not include false positives, as experimental interrogation of false
positives is time-consuming and costly. We show in Fig 7 that unsubstantiated or “true nega-
tive” nodes are downranked, indicating that the Inherent dynamics pipeline does not identify
them as potential core oscillator nodes. In scenarios S"A" and S"A™, the unsubstantiated nodes
EDS1 and RIF1 are present. They are downranked in the global node ranking except for RIF1
in STA", which is poorly ranked by both LEM and DSGRN. This finding is an indication that
the network finding step improved upon the edge finding step by depressing the ranks of
nodes that are unimportant to the core oscillator. Note the impact that losing nontrivial anno-
tations can have in producing false negatives. In particular, YOXI is downranked substantially
by the global node participation score in the STA™ scenario, but upranked in S"A™.

Global dynamics can provide hypotheses for the functional roles of substantiated
nodes. An interesting observation from Fig 7 is that the node CLN3 is downranked in the
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Fig 7. Local versus global node participation scores for the yeast cell cycle network. Mean + standard deviation node participation scores for the four
scenarios S'A*, S*A7, S"A", and S"A™. Each scenario was run through the edge and network finding steps five times. The mean (blue dots) and
standard deviation (blue bars) of the local node participation scores across the five runs is plotted against the mean and standard deviation of the global
node participation scores. The node participation score for each simulation is computed only over the edges in the intersection of the top-ranked LEM
edges of all five simulations. This excludes edges that do not have sufficiently high local edge ranks in all five simulations. Nodes located above the red
diagonal line indicate an improved global node participation score versus their local node participation score.

https://doi.org/10.1371/journal.pcbi.1010145.9007

global node ranking in all four scenarios, usually strongly, and sometimes is also poorly ranked
in the local node ranking. We remark that CLN3 is the only substantiated node that is not a
transcription factor. CLN3 is a cyclin that activates cyclin-dependent kinase (CDK), which in
turn regulates the activity or stability of other proteins via phosphorylation.
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There are two potential explanations for the strong down ranking of CLN3. One is that
CLN3 does not play a very important role in the core oscillator. Consistent with this possibil-
ity, CLN3 is dispensable for cell-cycle progression and transcriptional oscillations [40, 41] as
dilution of Whi5 by cell growth is sufficient for activating the transcriptional wave at START
[42]. The other explanation is that DSGRN is most effective for transcriptional regulation
rather than protein activity regulation. The work to extend DSGRN to model various types of
post-transcriptional regulation such as phosphorylation is underway [43].

3 Discussion

When inferring GRNs from data, the space of potential core nodes, core interactions, and core
networks is too large to exhaustively explore, even computationally, much less through experi-
mentation. We demonstrate that high-throughput experimental data can be leveraged by
using the software tool Inherent dynamics pipeline [24] to iteratively reduce these spaces and
provide experimental guidance. We show the efficacy of this method on a synthetic network
designed to exhibit robust oscillations and on yeast cell cycle data that displays controllable
oscillations and a large body of experimental evidence for a particular network topology.

The Inherent dynamics pipeline network discovery tool consists of a node finding step
implemented with DLxJTK [25], an edge finding step implemented with the Local Edge
Machine (LEM) [11], and a network finding step dependent on the Python package Dynamic
Signatures Generated by Regulatory Networks (DSGRN) [44]. The software is an iterative
hypothesis reduction machine to identify core oscillators driving large scale oscillations in
gene expression. The performance of the node finding step is well-documented in [25]; in this
manuscript, we a priori identify groups of high confidence vs low confidence nodes in order to
examine the performance of the combination of edge and network finding steps of the Inher-
ent dynamics pipeline.

A notable feature of the Inherent dynamics pipeline is the synergism between the local edge
finding and global network finding steps. Inference based on pairwise interactions provides an
essential step to begin the search of networks by positioning the network sampler in a region
of network space where networks tend to robustly reproduce the observed data. However pair-
wise interactions alone are insufficient to identify the dynamic function of the core regulatory
network. The network finding step applies a corrective factor to the output of the edge finding
step by successfully identifying false positive nodes and edges that do not participate in the
core oscillator (Figs 5 and 7).

For the synthetic data, top-ranked networks were required to have an oscillation score of
100% to represent robustness, while for the yeast data, the oscillation score was limited to the
range 10-40% to account for phenotypic plasticity of the cell cycle network. The fact that in
addition to oscillatory behavior the network exhibits steady state behavior in the conditions
that trigger one of its checkpoints highlights a difficulty in optimization of any kind for discov-
ering networks. The mixture of cell plasticity in phenotype versus robust expression of a
behavior is unknown, and therefore the classification of networks as “top performers” is uncer-
tain. Moreover, evolution dictates that a cell only requires a sufficiently good solution, not the
best solution, that is achievable under unknown developmental constraints. These constraints
impact the collection of networks over which evolutionary optimization can occur, which will
be highly limited with respect to all of network space. These uncertainties speak to the neces-
sity of incorporating as much biological knowledge as possible in addition to time series data
in order to increase the chances of discovering the true molecular interaction network.

The fact that the greatest gains in edge ranking by the Inherent dynamics pipeline come in
situations where annotation information is the most sparse (Fig 6) suggest that the Inherent
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dynamics pipeline is especially applicable to non-model organisms. However, without annota-
tions errors may be introduced in the node finding step that will be propagated through the
rest of the pipeline. Thus, improving the accuracy of the node-finding step will be a focus of
future research. It has been shown that identifying core regulators can be greatly improved if
genes are accurately identified as transcription factors or not [25], so improvements to compu-
tational methods, including machine learning models, for inferring gene function from readily
avaijlable data (e.g., protein sequence) are desirable.

The Inherent dynamics pipeline is not proposed as a method to correctly infer as many
known regulatory relationships as possible, which is the goal of many DREAM challenges [17],
and the goal of many inference methods [14-16]. Rather, the approach presented here aims to
identify the ostensibly small collection of core regulatory elements driving the dynamics of the
much larger program. Moreover, we do not view the top ranked network or networks as the ulti-
mate outcome of our software because of the identifiability problem wherein many models are
capable of producing the same results under different parameterizations; experimental evidence
is required to distinguish between the possibilities. We suggest that statistics of the top ranked
networks be used to provide a prioritization of experimental interventions at the node level by
re-ranking nodes according to their prevalence in dynamical network models consistent with
experimental data. We demonstrate that the Inherent dynamics pipeline downranks true nega-
tive and unsubstantiated nodes in synthetic data and yeast cell-cycle data, respectively. Thus the
Inherent dynamics pipeline is an appropriate tool for identifying promising experimental targets
for elucidating the gene regulatory networks behind clock-like cellular phenotypes.

Inferring causation requires perturbation experiments and thus the Inherent dynamics pipe-
line can be utilized iteratively with experimentation. The identifiability problem means that it is
hard to predict the outcome of a perturbation experiment, given that there are many network/
parameter combinations that would reproduce the data. Importantly, the Inherent dynamics
pipeline can be iteratively deployed after the next round of experiments; i.e. edges that are
known to exist can be enforced, new annotations can be added, and different behaviors under
distinct experimental conditions can be used to further constrain the dynamic phenotype.

4 Methods
4.1 Parameters

There are several levels of parameterizations that occur in the Inherent dynamics pipeline. At
one level, there is the traditional parameterization of ordinary differential equation (ODE)
models with real values. The parameters for these ODE models will simply be referred to as
“parameters.” The parameter space for a switching system ODE is decomposed by DSGRN
into a finite number of regions [44] and DSGRN computations are performed over these
regions rather than over individual real values. Each such region is called a DSGRN parameter
in previous publications, but we will use the term “DSGRN parameter region” in this work for
clarity. Lastly, there are user choices for controlling the behavior of the numerical methods
DLxJTK, LEM, and DSGRN pattern matching in the Inherent dynamics pipeline. These will
be referred to as “hyperparameters.”

4.2 Pipeline components

The Inherent dynamics pipeline [24] is a unified collection of time-series analysis algorithms
tied together by data processing routines. The input to the Inherent dynamics pipeline is one
or more replicate time series datasets along with a hyperparameter specification file docu-
mented in the Inherent dynamics pipeline README. To maximize platform compatibility
and to ensure broad usability of the individual pieces as well as the Inherent dynamics pipeline
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as a whole, we have modified or entirely rewritten each component algorithm in the Python
programming language [45] and created a single Python module for installing and running
the pipeline components. In addition, there is an Inherent Dynamics Visualizer (IDV) [46]
that uses web-based technologies for easier interaction with Inherent dynamics pipeline out-
put. The IDV allows the user to visualize and explore the intermediate output of each of the
node, edge, and network finding steps to infer the impact of various hyperparameter choices.
This facilities the incorporation of domain-specific knowledge and permits intuitive decision-
making based on visual information.

4.2.1 DLXJTK. The DLxJTK algorithm [25] adopts the same formulation for scoring
genes as was originally defined in [27] but by combining the periodicity measure of the JTK
CYCLE algorithm [26] with the regulator measure of the de Lichtenburg algorithm defined in
[27]. In particular, for each gene expression profile, an empirical and an analytical p-value,
which respectively estimate probabilities that the observed amplitude variability and the
observed periodicity of the expression profile occurred at random, are first computed and then
combined in a manner which accentuates expression profiles that are simultaneously highly
periodic and highly variable in amplitude. Explicitly, let G € G be the gene expression profile
corresponding to gene G in the set of all measured gene expression profiles, G and let n, be a

positive integer. Then
G.n)\’ G\’
1+ preg( nr) 1+ per( )
0.001 0.001

First to each gene is associated its so-called “regulator score”, which is taken to be the standard

DL X JTK(G, 1,) := Py (G, 1,)Pyr(G) : (1)

deviation of the base 10 logarithm of the mean-normalized expression profile. In this way, the
regulator score of a gene captures the deviation of the time series about its mean with a small
value indicating little variation in expression from the mean expression over time. The empiri-
cal p-value p,eg(G, ;) is then defined to be the fraction of n, random curves whose regulator
score exceeds the regulator score of G where random curves are generated by selecting at each
time point the expression at that time of a curve selected uniformly from G.

The analytic p-value pp,;(G) is taken to be the p-value determined by the JTK-CYCLE peri-
odicity scoring algorithm [26]. First, sinusoidal template curves are generated with user-speci-
fied periods and at various phase shifts determined by the sampling times of the expression
profiles. A pattern of “ups” and “downs” is computed by comparing the expression level at each
time with all subsequent times for both the expression curve G and the equivalently sampled
sinusoidal template curves. Then the total number of agreements (concordancies) and disagree-
ments (discordancies) in the up-down pattern of G and the that of the known periodic curves
are computed, giving the Kendall rank correlation coefficient between the curves. By precom-
puting the exact null distribution of Kendalls tau correlation [47] using the Harding algorithm
[48], an exact Bonferroni-adjusted p-value is rapidly computed for each gene. For this work, an
implementation of JTK-CYCLE in Python by Alan Hutchinson [49] was modified.

422 LEM. The Local Edge Machine (LEM) algorithm [11] adopts a Bayesian framework
to perform inference of functional gene regulation. Namely, a prior distribution on the space
of single-edge regulatory models of a given gene G is updated by the conditional likelihoods
that the observed expression data of gene G was produced by functional regulation by gene H.
Thus a prior distribution is first placed on a predefined set of potential regulatory models,
where each model is of the standard form of a Hill function [50]:

%f =y — BG + F(H), (2)
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with either a model of repression of G by H,

kn
F(H)=rep(H) =0—,
(H) = rep(H) =7 —
or a model of activation of G by H
HYI
F(H)=act(H) =0a——.
() = act(H) =

The likelihood of the observed data given a model of regulation is estimated using the Laplace
approximation formula [51] to integrate a measure of model goodness-of-fit over the five-
dimensional parameter space, (¢, S, 7, k, n). The resulting formulation explicitly balances the
model error at an optimal choice of model parameters, found by a parameter optimization
procedure, against the robustness of this error to small perturbations of the model parameters.
Using Bayes formula, the likelihood of each regulatory model is used to update the prior distri-
bution and produce a posterior distribution on the space of single-edge regulatory models for
gene G. We refer to the posterior probabilities on each local model of regulation for a fixed tar-
get as the model’s pld score.

In principle, the allowable model space may be expanded to include complex regulation of
G or models with other functional forms, but the current implementation is restricted to sin-
gle-edge regulation. In the absence of any prior knowledge about gene function, the uniform
distribution should be adopted as the prior distribution. On the other hand, the prior distribu-
tion on the space of allowable regulatory models may be informed by existing evidence of reg-
ulatory interactions between gene products or by known function, e.g. if there is evidence that
a gene acts only as a repressor. Moreover, data from replicate experiments may be utilized by
iteratively updating an initial prior. In particular, data from replicate 1 of an experiment can
be used to produce a posterior distribution on model space, which is then taken to be the prior
distribution on model space for data from replicate 2. This iterative posterior calculation has
been included in a new implementation of the LEM algorithm that was written in Python to
further improve platform compatibility, algorithm extensibility and efficiency.

4.2.3 DSGRN pattern matching. DSGRN (Dynamic Signatures Generated by Regulatory
Networks) [29, 30] is a software tool that, given a genetic regulatory network (GRN), creates a
database of all possible dynamical behaviors that the GRN can exhibit. A GRN is represented
by its nodes and interaction structure showing activating and repressing regulatory interac-
tions between genes and gene products. This includes algebraic expressions for combining
multiple input edges at target nodes, but it does not require explicit knowledge of real-valued
parameters such as binding strength or decay rate. Imposing such a set of real values on a net-
work can potentially induce qualitatively different types of dynamics.

The mathematical foundations for DSGRN [52-55] defines a general framework in which
the characterization of long-term dynamical behaviors that a network can exhibit is finite. The
DSGRN software identifies dynamics via these characterizations [44, 56]. DSGRN decomposes
high-dimensional parameter space into a finite number of regions, where each DSGRN param-
eter region contains meaningful dynamical information that is true for all real-valued parameter
sets inside that region. The dynamical behaviors are encoded as state transition graphs
(STGs), where the nodes of an STG are qualitative concentration levels of gene product, e.g.
low, medium, high. The edges are permitted transitions between these system states. For exam-
ple, if a repressor is currently at a high level, then its downstream target would not, unless also
impacted by an activator, be permitted to increase. An STG tracks where each gene product is
increasing or decreasing in concentration and where each gene product can achieve a (local)
maximum or minimum expression level. A consequence is that the potential for oscillatory
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behavior can be identified from the STG, as well as the stability of the oscillations and the order
of the maxima and minima of different gene product concentrations within the oscillations.

The oscillation score introduced in Table 1 quantifies the amount of stable cycling exhibited
in the STGs across all essential DSGRN parameter regions. It is possible, and indeed reason-
ably common, for a network to exhibit an oscillation score of 100%, which may appear to
imply that all parameterizations of an ODE model of the network should stably cycle. The
actual implication is more nuanced. While an oscillation score of 100% does not guarantee
that a corresponding Hill model oscillates for all parameter selections, it strongly suggests that
an ODE Hill function model with a sufficiently high Hill coefficient and initial condition in
the corresponding domain of the phase space will either oscillate or exhibit decaying oscilla-
tions. These two outcomes may be difficult to distinguish experimentally.

We propose that ordering the extrema in a time series dataset is an appropriate description
of the observed dynamical behavior, taking noise into account. This representation is coarse,
but it qualitatively captures certain characteristics, such as relative frequency and phase differ-
ences. Given any collection of gene products, we can transform the associated time series data-
set into a graph called the data graph where the nodes are the extrema of the time series and
the edges represent events that have a known order in time [32]. Not every pair of nodes repre-
senting gene products will have an edge between them. It is possible, and in fact common, that
two extrema from different time series occur close enough together that their timing is indis-
tinguishable under an assumption of small noise.

The data graph encodes information about the procession of extrema in a similar way to that
of the state transition graph. The process of attempting to match up the ordering of the extrema
in the data graph and the extrema in the state transition graph is called DSGRN pattern match-
ing [57]. If a pattern match exists, then we say the model is consistent with the data. When con-
sistency exists, then the network model that produced the STG cannot be rejected as a
hypothesis for explaining the experimental observations. The proportion of STGs for a network
that exhibit a pattern match in a stable oscillation is the pattern match score discussed in the text.

There are limitations to the networks for which DSGRN computations are possible. The
main challenge is that the combinatorial growth of the number of DSGRN parameter regions
with the number of regulators into a single node can cause computations to become prohibi-
tively expensive. To illustrate the impact of increasing network complexity, consider a simple
loop of 4 nodes, where each node has one in-edge and one out-edge. This network has 12
DSGRN parameters. Now, to one node (say A), add three in-edges, i.e., make each of the
remaining three nodes (including A) a regulator of A. This change results in nearly 3 million
DSGRN parameters. Practically speaking, some empirical exploration is needed to gauge an
acceptable level of network complexity, without exceeding about 4 or 5 regulators at a single
node. In addition, the expense of pattern matching further reduces the size of computationally
accessible networks. The user must gauge computational resources against network sample
size and choose the maximum number of allowed DSGRN parameter regions accordingly. In
addition, the DSGRN pattern matching technique is not yet available for self-repressing edges,
although this is expected to become available in the near future.

One further limitation of the network finding step is the size of network space, which pre-
cludes exhaustive evaluation and requires sparse sampling. This is because the number of
potential regulatory network structures becomes intractably large for combinations of about
three nodes or more. For example, given 10 possible gene products, there are 120 choices of
3-node combinations, and for each combination, there are over 14,000 possible network struc-
tures with different combinations of positive and negative regulatory interactions [58]. This
leads to well over a million possibilities for a 3-node core network even when the number of
possible core nodes has been dramatically reduced. To appreciate the rate of growth, consider
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that the analogous case for 4-node networks. There are 210 node combinations with over 42
million possible network structures for each combination, leading to billions of possibilities.
For this reason, any network inference technique that evaluates network behavior as a whole,
including ours, is required to sample network space, rather than using an exhaustive technique
as in node finding and edge finding.

4.3 Component integration and evaluation

The DLxJTK node ranking prioritizes gene time series for further analysis in the Inherent
dynamics pipeline. LEM ingests the top-ranked nodes and produces a ranked-ordered list of
edges called the local edge ranking that is used to initiate the network finding step. The proce-
dure for the network finding step is to pick a seed network composed of the top few LEM
edges, and then to stochastically search in a neighborhood around the seed network for
strongly connected networks that are sampled using a larger portion of the local edge ranking.
We call edges permitted in the construction of networks the top-ranked LEM edges. The
increased permissivity allows the possibility of including network edges that may have been
downranked by LEM due to either stochastic computation or experimental noise. Self-repress-
ing edges are currently removed from the top-ranked LEM edges for technical reasons, but
this functionality is expected to be added in the near future.

Using the top-ranked LEM edges, the network finding step produces a sample of candidate
networks in the neighborhood around the seed network. User-supplied scoring constraints are
then employed to identify a collection of top performing networks. These scoring constraints
are based on the fact that the number of DSGRN parameters is finite, which allows proportions
of DSGRN parameter space with the desired dynamical behavior to be computed. In this
work, there are two numerical scores that we use to choose top regulatory networks. The first
is the proportion of DSGRN parameters that exhibit stable oscillations (oscillation score). The
second is the proportion of stably oscillating DSGRN parameters that exhibit a pattern match
to at least one dataset within the stable oscillation (pattern match score). When we have repli-
cate experimental datasets, as we do for the S. cerevisiae data, we also require at least one pat-
tern matching success for each replicate. Candidate networks that meet the chosen criteria are
called the top-ranked DSGRN networks.

A rank-ordered list of edges called the global edge ranking is created by measuring the par-
ticipation of each edge in the top-ranked DSGRN networks. Every edge is assigned an edge
prevalence score that is the proportion of top-ranked DSGRN networks in which it appears,
ie., for the edge i — j, the edge prevalence score P, is

N,_.

Py=—, (3)
where T is the number of top networks and N;_; is the number of top networks that have the
edge i — j (or i -j for a repressing edge). P, ; is nonzero for any edge i — j that participates in
at least one network that can faithfully reproduce the observed data to the requested degree of
robustness and accuracy.

The edge prevalence score defines the global edge ranking, which is a re-ranking of the top-
ranked LEM edges according to their ability to participate in complex networks with a desired
phenotypic behavior. When ties in the edge prevalence score exist, they are broken by local
edge rank. Any edge with a zero prevalence score is given the worst possible ranking: the num-
ber of top-ranked LEM edges.

In addition to ranking edges, we can also revise the DLXJTK node ranking for experimental
prioritization. The method is the same for either the local edge ranking from LEM or the global
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edge ranking from DSGRN. We use the (local or global) node participation score, which is
computed for each node g by collecting the ranks of all edges either coming into g or emanat-
ing from g and taking the median of these ranks. The global edge and node rankings together
provide guidance to the experimentalist desiring to prioritize experiments.

4.4 Computational details

Data and scripts used to create images and generate statistics in Results Section 2 are located in
[59].

4.4.1 Synthetic network construction. We constructed a collection of six-node network
topologies that robustly exhibit oscillations across DSGRN parameter regions, and then we
chose the top ranked of these with nontrivial regulation at a node (see node C in Fig 3A). We
generated synthetic time series data from this network from three different DSGRN parameter
regions. This was accomplished by sampling the DSGRN parameter regions for explicit real-val-
ued parameters with which to simulate Hill function ODE models of the network. The simula-
tions were evaluated for robust periodicity exhibiting a minimum of a four-fold change
between peak and trough for all six synthetic genes. The three simulated datasets show distinct
patterns of maxima and minima, i.e. distinct dynamical behaviors. This is roughly analogous to
studying a regulatory network under three distinct experimental conditions, where each experi-
mental condition is viewed as a different set of parameters imposed on the ODE system for the
regulatory network in Fig 3A. The network’s oscillation score is 100% and the pattern match
scores for each time series dataset ranged from 45.8% to 51.2%.

We then added a spurious time series, “node” G, to the dataset to evaluate the performance
of the Inherent dynamics pipeline with imperfect data. The time series for G was generated by

G:2(sin (31‘) —I—l),
2n

where t is the vector of time points used to simulate the synthetic data, see Fig 8.

To generate the synthetic gene expression profiles from the network topologies given in Fig
3A and 3E, we simulated systems of ODEs with Hill function nonlinearities as specified in Eqs
4 and 5 respectively, with parameters given in Table 2.

. F"
A= —-A+T Q,, —
+ e, +82, Fr + 0;,11.
B= -B+T.,+Q ¢
- C,B C,B Cn + 023
. A" E" 0p,c
C= -C r Q. ——+7T Q. .— || T Q ——
+ < act 4.C An n 0276 + e+ EC En n 02@) ( D,C +825c C + 027C
; . (4)
) = r Q /T r,,+Q O
D= -D+ A,D + AD An T+ 0 E.D + ED n 1o
A.D E,D
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Fig 8. The true negative time series G for the synthetic network.

https://doi.org/10.1371/journal.pcbi.1010145.9008
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Note that the parameter I'p ¢ is one or two orders of magnitude smaller for Fig 3B than in
the parameter sets corresponding to Fig 3D and 3C respectively. In the translation of the
DSGRN modeling framework to Hill function ODEs (4), I'p ¢ distributes to the coefficients on
each of the nonlinearities describing activation of node C by E and activation of node C by A.
The effect is a more significant reduction in the relative maximum strength of regulation of
node C by E and A for the first parameter choice compared to the other two. In other words,
D’s maximum strength of regulation on C is made comparatively much stronger than the
other two inputs to node C in the first parameter (Fig 3B). This may partially explain the obser-
vation that node D serves an essential role in maintaining system oscillations in the parameter-
ization producing Fig 3B and 3F, but not in the other parameterizations.
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Table 2. Synthetic network ODE parameters.

DSGRN Parameter Region
Fig 3B and 3F Fig 3C and 3G Fig 3D and 3H

I'gr 0.1071294686 0.1247062357 0.1054951481
Qpr 1.1980739800 2.6962820818 2.0937997708
Op.F 0.0055430383 0.3637389501 0.5673228474
Tre 0.0175034071 0.5011731410 0.2455250910
Qrp 0.8244263241 0.1209518139 1.5683516101
Ok 1.3029576011 1.5201526697 0.8518129907
Icr 0.0011155796 0.1958127811 0.0966678191
Qcp 1.9491367094 1.5533875523 2.3227225179
Ocs 2.9810640658 3.5689954379 3.1482725035
I'ep 0.2201158863 0.2141223259 0.0529032838
Qrp 3.6625872030 2.9847903373 0.5576409019
Or.p 0.5390177462 1.0533043028 0.3727988706
T'ec 1.6499211746 0.4358121924 0.0676798151
Qp,c 0.3900059619 0.5490600005 1.7873719546
O.c 0.0088027178 1.4982296668 1.4187706085
Cac 0.1007846993 0.4132072556 0.0928646536
Quc 0.2578132626 2.2969011759 1.2197732691
Oac 0.2419230934 0.6819105357 1.7352137828
Ipe 0.0096494654 0.2810071904 0.6185173324
Qpp 0.7130182868 2.2758756351 3.7129348824
0.5 1.5106988697 0.6517967757 0.7417231063
Tap 0.0542085170 0.1210124702 0.2731054750
Qup 0.8946601377 2.0147888846 0.5576412929
Oap 0.6862437739 1.1760092769 0.4867821250
I'pe 0.0624991995 1.1124366444 0.2593204887
Qpc 1.3297386450 3.2764296326 4.0461307096
Op,c 1.0817547392 2.1191576389 0.1931413047
Tra 0.1885194202 0.0567438444 0.0398781756
Qra 1.4488910403 2.1341889294 6.1842079625
Or.a 0.7285164419 0.3815742876 1.4900313815
n 5 5 5

https://doi.org/10.1371/journal.pcbi.1010145.t1002

4.4.2 Synthetic network hyperparameters. For each target/regulator pair, denoted (A,
B), LEM first optimizes the choice of model parameters I' = (&, 3, ¥, k, n), from Methods Sec-
tion 4.2.2, applied to the right hand side of the Hill model ODE 4 = f(B; I"). The optimiza-
tion Python package, scipy.optimize.basinhopping, attempts to find the choice of I" which
globally minimizes the loss (mean square error) between the model prediction and the mea-
sured target time series. This is done by repeatedly running local optimizations (# iterations
times) at different starting locations determined by random jumps in parameter space with a
maximum displacement of size step_size and an accept/reject criterion controlled by the
“temperature” hyperparameter, T; see Table 3. The “interval” hyperparameter controls the
number of iterations between adjustments of the step size hyperparameter. Local optimiza-
tions are performed using the bounded, limited memory BroydenFletcherGoldfarbShanno
algorithm.
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Table 3. Edge finding hyperparameters for synthetic network and yeast cell cycle applications.

Loss function Local Optimizer # iterations T step_size interval
MSE “L-BFGS-B” 10 1 0.5 10

https://doi.org/10.1371/journal.pchi.1010145.t003

The local edge ranking of LEM informs the network finding step through the choice of
seed network and additional edges to be used for network sampling. A user-chosen cutoff
for the LEM score (LEM pld threshold) determines the edges in the seed network, and the
user also specifies the number of additional edges to use in network construction. The seed
edges and user-specified LEM edges together form the top-ranked LEM edges introduced in
Table 1. The network neighborhood search around the seed network is constrained by net-
work finding hyperparameter choices, the most important of which are topological con-
straints, probabilities for adding or removing nodes and edges, the range of such operations
to perform, the noise levels at which to compute the sequence of extrema in the data, and the
maximum size of the networks allowed given in terms of the number of DSGRN parameter
regions for the network. The maximum size must be limited for computational reasons; the
number of DSGRN parameter regions scales combinatorially with the number of edges in
the network. In the following, we limited ourselves to networks with at most 3000 DSGRN
parameter regions. The network in Fig 3A has 2016 DSGRN parameter regions. As men-
tioned in the Introduction, we are searching for core oscillator behavior, or strongly periodic
signals that drive large-scale downstream oscillations. A key assumption is that a core oscil-
lator is strongly connected, i.e. that there is a feedback path from every node to every other
node in the network. We only sampled networks in the network finding step with this topo-
logical property.

The remainder of the network finding hyperparameters are shown in Table 4. Regarding
noise levels, since we have reasonably smooth data we evaluated the sequence of extrema at a
0% noise level. For experimental data, this is not a reasonable choice, and a nonzero value will
be chosen in our demonstration of the yeast cell cycle. The choice of seed network, the number
of user-specified LEM edges, and the probabilities of adding and removing nodes and edges all
depend on the level of trust in LEM output. For the synthetic network, we decided to put abso-
lute trust in the very top LEM scores, but weak trust that all relevant network edges are highly
ranked. In particular, we chose a seed network composed of all LEM edges with a probability
greater than 0.98 and permitted only the addition of nodes and edges. We chose to explore a
neighborhood of the seed network that permits a range of 2-10 additions from the next 40 (of
98 total) LEM-ranked edges, excluding self-repressing edges as mentioned earlier.

In Fig 4, networks derived from the well ranked LEM edges (Fig 4A) show the oscillation
and pattern match scores for one of the five simulations for the parameterization in Fig 3B.
Networks derived from the poorly ranked LEM edges (Fig 4B) use the bottom 50 ranked edges
in the same edge finding step along with an empty seed network to repeat the network finding
step with the same hyperparameters.

Table 4. Network finding hyperparameters for synthetic network.

LEM pld threshold user-specified LEM edges number of operations noise level
0.98 40 2-10 0%
prob. add node prob. add edge prob. drop node prob. drop edge
0.1 0.9 0.0 0.0

https://doi.org/10.1371/journal.pcbi.1010145.t004
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Table 5. The list of 9 substantiated and 2 unsubstantiated yeast cell cycle genes.
Substantiated Nodes Unsubstantiated Nodes
ASH1 EDS1
CLN3 RIF1
HCM1
NDD1
NRM1
SWI4
SWI5
WHI5
YOX1

https://doi.org/10.1371/journal.pcbi.1010145.t005

4.4.3 Yeast cell cycle hyperparameters. Table 5 lists the genes that were investigated in
the yeast cell cycle study. The nine genes on the left are known to participate in the yeast cell
cycle through extensive experimentation [34, 35, 38], where we have chosen to focus on tran-
scription factors with the addition of only one protein-protein mediated regulator, CLN3. The
two genes on the right have not been implicated in the yeast cell cycle, and yet are transcription
factors that exhibit high amplitude, robust periodicity of the same period as the cell cycle
according to DLxJTK analysis [25].

To choose “true positive” regulatory edges, we use YEASTRACT, a database that compiles
experimental evidence for regulatory interactions in the yeast genome [7]. We assume that reg-
ulatory edges that have documented transcriptional evidence in YEASTRACT are “ground
truth”, or substantiated edges. When using YEASTRACT, we specified that expression level
data was required for a regulatory interaction; binding-only relationships were not used. We
augment the substantiated edges list by the three interactions WHI5 repressed by CLN3, SW14
repressed by WHI5, and SW14 repressed by NRM1 from the cell cycle network model in [35].
The full list of 24 substantiated edges is in Table 6. All other putative regulatory edges are
deemed unsubstantiated. These include all regulatory interactions between RIF1 and EDS1
with SWI4, NDD1, SWI5, HCM1, CLN3, WHI5, NRM1, YOXI, or ASH1, none of which were
found in YEASTRACT.

The time series input into the Inherent dynamics pipeline are two replicates of wild type S.
cerevisiae grown in standard media with microarray time series collected and processed in
[38]. We dropped the first time point in each of the replicate time series to remove the stress
response from the synchronization via centrifugal elutriation.

The edge finding hyperparameters are given in Table 3, and do not differ from those chosen
for the synthetic network. However, the network finding hyperparameters have substantially
changed. Referencing Table 7, the number of top-ranked LEM edges has increased from 40 up
to 75, in addition to the seed network edges. This is due to the increased number of edges ana-
lyzed, 108-242 depending on scenario, instead of 98, which is due to the increased number of
nodes and the presence or absence of nontrivial annotations. Also due to the increased number
of edges, we increased the network sample size from 2000 to 4000 and correspondingly
decreased the number of DSGRN parameter regions from 3000 to 2000 for computational rea-
sons. Another change is that nonzero probabilities for node and edge removal have been speci-
fied. This represents a decrease in the trust of top rankings in LEM, simply because the data
are noisier. For the same reason, a noise level of 5% instead of 0% was chosen for analyzing the
time series.
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Table 6. Substantiated edges used in the yeast cell cycle results as determined from YEASTRACT and [35]. Every
node acts both as a target and as a source. When annotations are specified, HCM1, NDD1, and SWI5 are activators
only and NRM1, CLN3, and WHIS5 are repressors only, as can be verified from the table. For example, HCM1 activates
NDD1, NRM1, and WHIS, but has no repressing activity. All other nodes may be either activators or repressors.

Target Regulation Source
ASH1 act by SWI5
ASH1 rep by YOX1
CLN3 act by SWI5
CLN3 rep by SWI4
CLN3 rep by YOX1
HCM1 act by SWI4
HCM1 rep by YOX1
HCM1 rep by ASH1
NDD1 act by SWI4
NDD1 act by HCM1
NRM1 act by SWI4
NRM1 act by HCM1
NRM1 rep by YOX1
SWI4 act by SWI4
SWI4 rep by WHI5
SWI4 rep by NRM1
SWI4 rep by YOX1
SWI5 act by NDD1
SWI5 rep by YOXI1
WHI5 act by HCM1
WHI5 rep by CLN3
YOX1 act by SW14
YOX1 act by YOX1
YOX1 act by ASH1

https://doi.org/10.1371/journal.pcbi.1010145.t006

Table 7. Network finding hyperparameters for yeast cell cycle.

LEM pld threshold user-specified LEM edges number of operations noise level
0.98 75 2-10 5%
prob. add node prob. add edge prob. drop node prob. drop edge
0.1 0.6 0.1 0.2

https://doi.org/10.1371/journal.pcbi.1010145.t007

Supporting information

S1 Table. Synthetic network results for edge finding.
(PDF)

$2 Table. Synthetic network results for network finding.
(PDF)

S3 Table. Median edge rankings and average edge prevalence scores over five computations
for Fig 3B.
(PDF)
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