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ABSTRACT

We present LyMAS?2, an improved version of the ‘Lyman-o Mass Association Scheme’ aiming at predicting the large-scale 3D
clustering statistics of the Lyman-« forest (Ly «) from moderate-resolution simulations of the dark matter (DM) distribution, with
prior calibrations from high-resolution hydrodynamical simulations of smaller volumes. In this study, calibrations are derived
from the HORIZON-AGN suite simulations, (100 Mpc 4)~® comoving volume, using Wiener filtering, combining information
from DM density and velocity fields (i.e. velocity dispersion, vorticity, line-of-sight 1D-divergence and 3D-divergence). All new
predictions have been done at z = 2.5 in redshift space, while considering the spectral resolution of the SDSS-IIT BOSS Survey
and different DM smoothing (0.3, 0.5, and 1.0 Mpc h~' comoving). We have tried different combinations of DM fields and
found that LyMAS2, applied to the HORIZON-NOAGN DM fields, significantly improves the predictions of the Ly « 3D clustering
statistics, especially when the DM overdensity is associated with the velocity dispersion or the vorticity fields. Compared to
the hydrodynamical simulation trends, the two-point correlation functions of pseudo-spectra generated with LyMAS2 can be
recovered with relative differences of ~5 per cent even for high angles, the flux 1D power spectrum (along the light of sight)
with ~2 per cent and the flux 1D probability distribution function exactly. Finally, we have produced several large mock BOSS

spectra (1.0 and 1.5 Gpc h~') expected to lead to much more reliable and accurate theoretical predictions.

Key words: methods: numerical —dark matter.

1 INTRODUCTION

Distant quasars emit light that crosses a large part of the Universe
before being observed with instruments on Earth. In particular,
the spectrum of each quasar presents fluctuating absorption that
corresponds to the Lyman-« forest (Ly «; Lynds 1971; Sargent et al.
1980). The study of the Ly « forest has become a major focus of
modern cosmology, as it is supposed to trace the neutral hydrogen
density that fills most of the Universe in a way that approximately
corresponds to the underlying dark matter (DM) density (Croft et al.
1999; Peeples et al. 2010). Since a single background source only
provides 1D information along the corresponding line of sight (LOS,
or ‘skewer’), characterizing the 3D density of the high-redshift
Universe with the Ly« forest requires large samples of quasar
spectra. Successful surveys such as the (extended) Baryon Oscillation
Spectroscopic Survey (BOSS/eBOSS; Dawson et al. 2013, 2016), of
the Sloan Digital Sky Survey (SDSS-III and SDSS-IV; Blanton et al.
2017), Eisenstein et al. (2011) have measured the Ly « forest spectra
of 160000 quasars at redshifts 2.2 < z < 3. Thanks to this large
sample, the study of the Ly « forest has proved to be a complementary
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probe to low-redshift galaxy surveys. For instance, the large sample
of quasar spectra have permitted accurate measurements of 3D flux
autocorrelation functions (Slosar et al. 2011) as well as the cross-
correlation between the Ly« Forest and specific tracers, namely
damped-Ly « systems (DLAs) and quasars (Font-Ribera et al. 2012,
2013, 2014). Such 3D measurements also enable measurements of
the distance-redshift relation and the Hubble expansion via baryon
accoustic oscillations (BAO; Busca et al. 2013; Slosar et al. 2013;
Delubac et al. 2015; Bautista et al. 2017; du Mas des Bourboux et al.
2020). Moreover, BOSS spectra also permit accurate measurements
of the LOS power spectrum (Palanque-Delabrouille et al. 2013) and
flux probability distribution function (PDF; Lee et al. 2015). In the
near future, the Dark Energy Spectroscopic Instrument (DESI; DESI
Collaboration et al. 2016), the William Herschel Telescope Enhanced
Area Velocity Explorer (WEAVE-QSO; Dalton et al. 2016, 2020;
Pieri et al. 2016), and the Subaru Prime Focus Spectrograph (PFS;
Takada et al. 2014) will go well beyond the present surveys and
will open new perspectives on the high redshift intergalactic medium
probed by the Ly « forest.

In parallel to the development of these large quasar surveys,
theoretical modelling needs to reach the high level of complexity and
accuracy to interpret the observational data. Nowadays, hydrodynam-
ical cosmological simulations represent an ideal tool as they manage
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to model the intergalactic medium with a high degree of realism
with appropriate resolution (e.g. Dubois et al. 2014; Vogelsberger
et al. 2014; Schaye et al. 2015; Bolton et al. 2017). However, to
properly model the 3D correlations of the Ly « forest, one needs
to resolve the pressure-support scale (Jeans scale) of the diffuse
intergalactic medium (IGM), which is typically ~0.25 Mpc /i~
comoving for matter overdensity of ~10 (Peeples et al. 2010), while
considering ~Gpc® simulation volumes to exploit the statistical
precision achieved by the different observational surveys while
avoiding box size effects. Combining such resolution and simulation
volume is currently not feasible mainly because of computational
limits. To tackle such an issue, several methods exist in the literature.
One of the most popular is to use the so-called ‘Fluctuating Gunn—
Peterson Approximation’ (FGPA; Weinberg et al. 1997; Croft et al.
1998) that links the Ly « optical depth to the local DM density. This
approach is relatively straightforward as it assumes a deterministic
relation and only information on the density field (extracted from N-
body simulations or lognormal density fields) is required. However,
the FGPA approach is expected to be accurate enough only on very
large scales, e.g. those of the BAO features (~ 100 Mpch~!; e.g.
fig. 5 of Sinigaglia et al. 2022). But 3D Ly « forest surveys also
enable precise measurements of flux correlations at much smaller
scales where the FGPA might not be adequate.

Another approach is to apply relevant calibrations, derived first
from small hydrodynamical simulations, to large-scale DM distribu-
tions extracted from pure DM simulations, which are much cheaper
to perform. In particular, Peirani et al. (2014, hereafter P14) have
developed the Lyman-o Mass Association Scheme (LyMAS) that
follows such a philosophy. The main idea is that flux correlations
on small and large scales are mainly driven by the correlations of
the DM density field. More specifically, the flux statistics can be
estimated by combining the DM density field with the conditional
probability distribution P(F|p) of the transmitted flux F' on the DM
density contrast p. In its most sophisticated form, LyMAS creates
ensemble of coherent pseudo-spectra at the BOSS resolution using
the Gaussianized percentile distribution of the conditional flux, while
re-scaling the LOS power spectrum and PDF at the last step. One
of the main results of LyMAS is to improve the predictions of flux
3D correlations especially with respect to deterministic mapping
(e.g. FGPA) that tends to significantly overestimate them especially
when the DM density is smoothed at scale greater than 0.3 Mpc 2~
Similarly, Sorini et al. (2016) have developed ‘Iterative Matched
Statistics’ (IMS) in which the PDF and the power spectrum of
the real-space Ly « flux are derived from small hydrodynamical
simulations. Then, these two statistics are 1D (1D-IMS) or 3D
(3D-IMS) iteratively mapped on to a pseudo-flux field of an N-
body simulation from which the matter density is first Gaussian
smoothed. In 3D-IMS, smoothing is followed by matching the 3D
power spectrum and PDF of the flux in real space to the reference
hydrodynamic simulation. With 1D-IMS, the 1D power spectrum
and PDF of the flux are additionally matched. Both methods have
proved to be again more accurate than the FGPA approach (which
strongly relies on the DM smoothing scale) when reproducing LOS
observables, such as the PDF and power spectrum as well as the
3D flux power spectrum (5-20 per cent). Finally, machine-learning-
based methods start to be considered and lead to promising results
(Chopitan, Lavaux & Peirani, in preparation; Harrington et al. 2022;
Sinigaglia et al. 2022).

Although the LyMAS full scheme is able to model the BOSS
3D clustering quite accurately and has been already used in different
analysis related to the quasar-Ly « forest cross-correlation (Lochhaas
et al. 2016), the three-point correlation functions (Tie et al. 2019)
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and the correlations between the Ly « transmitted flux and the mass
overdensity (Cai et al. 2016), we aim at investigating whether other
sets of calibrations could still improve the theoretical predictions. To
this regard, we consider a new approach based on Wiener Filtering,
which has been used for 3D map reconstruction from an ensemble of
1D LOS (e.g. Pichon et al. 2001; Caucci et al. 2008; Ozbek, Croft &
Khandai 2016; Lee et al. 2018; Japelj et al. 2019; Ravoux et al. 2020).
The underlying philosophy in LyMAS?2 remains unchanged. We still
find that the flux correlations are driven mainly by the correlations
of the DM density field, but with potential refinements from the
correlations of the DM velocity field.

This paper is organized as follows. In Section 3, we describe the
Wiener equations as multivariate normal conditional probabilities,
and we explain their application to hydrodynamical simulations.
Section 4 briefly describes how we extract the flux and all relevant
DM fields from the HORIZON-NOAGN simulation. We also present
the potential correlations that arise between these different fields.
Then, in Section 5, we present the statistics in the LOS power
spectrum, the PDF and the two-point correlation function of pseudo-
spectra produced when LyMAS? is applied to different associations
of DM fields of HORIZON-NOAGN. Such trends are compared to the
flux statistics from the hydrodynamical simulation (‘hydro flux’).
In Section 6, we apply LyMAS2 to N-body simulations of 1.0
and 1.5 Gpch™' comoving volumes. We summarize our results
and conclusions in Section 7. We also add three appendices. In
Appendix A, we compute the mean two point correlations functions
from five different hydrodynamical simulations of lower resolution
to check the robustness of the results presented in Section 5.
Appendix B presents the performance of specific deterministic
samplings. Appendix C provides details on how estimates of density
and velocities are performed on the DM particle distribution, relying
on adaptive softening.

2 LYMAS VERSUS LYMAS2

We briefly describe the fundamental differences between the first
version of LyMAS, detailed in P14 and the new scheme, LyMAS2,
presented in this work. The two versions basically share the same
philosophy: specific calibrations are first derived from hydrodynam-
ical simulations of small volume and then applied to large DM
simulations, assuming that the correlations of the Ly « at small and
large scales are mainly driven by the correlations of the underlying
DM density and (eventually) velocity fields. The main differences
essentially lie in (1) the derivation and characterization of the cross-
correlation between the different fields (namely the hydro spectra
and the DM fields) and (2) the way we apply such calibrations to the
DM distributions.

More specifically, in the first version a hydrodynamical simulation
was used to calibrate the conditional probability distribution P(F|p)
to have a transmitted flux value F, given the value of the DM
density contrast o at the same location. In its simplest form,
LyMAS randomly and independently draws transmitted flux values
according to P(F|p) and the value of p at each pixel of a regular
grid used to sample the DM overdensity field. Although the 3D
clustering statistics of the pseudo-spectra generated by this approach
is quite close to that of the hydro flux, the main drawback of this
procedure is to create very noisy spectra as any coherence along
each LOS is lost. To solve this issue and make the pseudo-spectra
more realistic, the most sophisticated form of LyMAS uses the fact
that neighbouring pixels along a given LOS are supposed to have
close probability distribution P(F|p). Hence, one can introduce a
coherence by defining percentile spectra, i.e. the fractional position
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of the flux value in the cumulative distribution of P(F|p). Then
these percentile spectra derived from every LOS of the grid can be
Gaussianized and one can derive a characteristic power spectrum
from these 1D Gaussian fields. Thus, from this new input parameter,
LyMAS generates firsta 1D Gaussian field, de-Gaussiannizes it to get
a realization of a percentile spectrum, and finally derives a coherent
spectrum using the different values of the DM density contrast p
and the percentile value in P(F|p) along the considered LOS. Here
again, the predictions of the 3D clustering from such coherent spectra
is proved be very accurate.

LyMAS?2 does not derive and consider P(F|p) as well as percentile
spectra. Instead, as we explain in detail in Section 3, LyMAS2 makes
good use of Wiener Filtering to characterize the correlations between
the transmitted flux and the DM density contrast. The statistics are
directly made LOS by LOS, which naturally introduces a coherence
in the pseudo-spectra. Furthermore, this approach has the advantage
to naturally take into account not only the DM density field (like in
LyMAS) but other fields such as specific DM velocity fields (e.g.
velocity dispersion, vorticity, divergence) that potentially bring new
information to improve the predictions.

In the very last step, both LyMAS and LyMAS?2 end similarly by
rescaling the flux LOS power spectrum and PDF. These transforma-
tions are useful to slightly correct the LOS 1D power spectrum and
PDF of pseudo-spectra to make them identical or quasi identical to
those of the hydro spectra. This step, however, does not significantly
modify the 3D clustering statistics.

In the beginning of Section 5, we summarize all the steps of
LyMAS and LyMAS?2 to create a pseudo-spectrum.

3 WIENER EQUATIONS

3.1 Multivariate conditional probabilities

Let us assume a complex Gaussian random (vector) variable x that
can be separated into two sub-vectors x = (x, x;), whose mean and
covariance can be written as

o= (i1, 12),
5 - (211 212)

8 En)’
where the H superscript denotes the Hermitian conjugate. By using
formulas for block inverses, it is possible to derive from the joint
distribution of x| and x, the formula for the conditional distribution

of x 1, given x,. As expected, it is a Gaussian multivariate distribution,
of mean and covariance:

Byo=p + 25 (0 —p1y), (1
S —1sH
T=%,-X,%,%8. )

Now, consider the joint Gaussian distribution of the (complex)
spatial Fourier modes (fi, 8k, 0, i), where, by definition for field a,
we have a; = [a(x)e * *dx. We assume they are centred fields (zero
mean), and of covariance (we drop the subscript & for visibility):

Prp Prs  Prg  Pro

Pss Py Psy :<211 212)
Py, P Pw Po ’
Pi Pf, Puw

Sw

where, by definition, P,;(k) = (a; by) is the cross-spectrum of fields
a and b at wavenumber k, and we have partitioned the fields according
to x; = fi and x, = (8, Ok, i)’ . Applying the equations (1) and
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(2), we obtain the conditional mean and variance of the field f;, given
(s O @)

I
Je = (Prs,Pro,Pro) -0 - | 0k | 3)
Wi
P}‘S
2 =Py — (Pps.Pro.Pro) 23 - | Pfo | - “)
P*
Fo

Computing the inverse X3, using the cofactor matrix formula, we
obtain

A Ap A
o = 15l Ay Ay An |,
21U\ A3 A Asz

with

A1l = Py Py — Pgwpg*w, Ap = —P(;;wa + P{;;)Pgw s
Az =PyP) — Pg Py, Ax=—PsyPuy+ Pso Py, .
Ay = PssPyy — Pso Py,  Axz = —Pss Py, + Py Py, ,
Asi = PsgPopoy — Poo Psey, Az = —Pss Pyoy + Py Psey

Azy = Pss Pyg — Psg Py
and

|X22| = Pss(Pop Pow — PowPy,,) + (Pso Py, Py, + c.C.)
—Pyy Ps, Py, — Po Psg Py

where ‘c.c’ denotes the conjugate complex.

Note that we limit our study to a maximum of three different input
fields (i.e. 8, 6, and w) to construct the field f. But obviously, this
formalism can be extended to a higher number of fields, leading to
more and more complex analytical solution. However, we will see
that the statistical trends derived when considering two and three
input fields are quite similar (when judiciously chosen), suggesting
that adding more than two fields will not noticeably improve the
results anymore.

3.2 Application to hydro simulations

Let us call F, p, vy, and v,, respectively, the local Ly o« transmitted
flux, the local DM density, velocity divergence, and vorticity am-
plitude, extracted from a given hydrodynamical simulation. Let us
call now G the cumulative distribution of a standard normal N(0; 1)
distribution (G[x] = [* exp(—u?/2)/+/2mdu), and

G, = [ PDF(p")dp’, 5
G, = [ PDF@)dv, (6)
Gr = [} PDF(F)dF', (7

the cumulative distributions of the measured DM density and velocity
fields (in the hydrodynamical simulation), and G the cumulative
distribution of the measured flux, F. We can then define new fields,
namely

f =G (Gp(F),8 = GG ,(p)), ®)

0 =G (G, (1), » =G (G, (). )

which should be normally distributed by construction (or ‘gaus-
sianized’). Let us compute these different fields from the hydro
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simulations and extract from them the relevant cross-spectra, using
Fourier space:

Prr=(fi fi)s
Py, = ((I)Za)k>,
Psy = (8;0k),

Pss = (8;8k),  Pog = (6, 6k),
Prs = (f8),  Pro = (f{6k),
Pgm = (Q,fa)k), etc.

which are going to depend typically on a transverse and a longitudinal
separation radius. If we assume that the fields £, §, 6, and w are
Gaussian random fields (GRFs, not just its one point statistics is now
required to be normal), then for a given measured set of p, v;, and
v, (correspondingly a set of §;, 6y, and wy) ,say along a set of LOS,
one can estimate the most likely field 7 following equations (3):

fi=T - & +T -6+ Ts-y, (10)

where T, T, and T3 are functions of the cross-spectrum P (k).
This approach can be done along a given LOS or in volume.
However, in this study we will only analyse LOS individually and
independently, ignoring transverse correlations between different
LOS for now. This allows us to use 1D fast Fourier transforms
(FFT), and assuming stationarity along the LOS, the multiplication
is simply done frequency by frequency since in Fourier space the
covariance sub-blocks P, are diagonal. To illustrate, if only one
field is considered (i.e. the DM overdensity field in our study), we
simply obtain

fi=Pps- Pyl 8. (11)

If we add additional information from a specific velocity field (e.g.
velocity dispersion), the expression of f becomes

= Pys(Pgo — Psp) . Pyo(Pss — Pgy) .

i = — &+ ”
Pss Pog — Psg Py Pss Pyg — Psg Pgy

O . (12)

Adding a second velocity field leads to a more complex expression
of f.

We can then draw samples as f; = f; + A fi, where Af; obeys a
GRF of mean zero and variance as equation (4):

Afi ~ GO0, Pyp — Prs - P - Pfy).,

when only the DM density is considered and

- _(Prs T. Pss Psg 71. (P}k5>
A g (0’ Fur <Pf9) {P;; PHJ Pfe '
in the case of two DM fields. After computing the inverse Fourier
transform of f; to obtain f, the corresponding flux obeys F =
G/lG( /)1. By construction the one point statistics of f will be
random normal, so that the one-point PDF of its de-Gaussianized
transform will be that of the original field. The power spectrum Py

of f will be the same as that of f. Indeed, let us consider the case
with only one input file for simplicity. We have

2

Pii = (fi+ AR = <

1
—Prsdi| +IA[IP),
Pss
because the expectation and the fluctuations are uncorrelated. There-
fore
P2 P2
fo f8
Pij = 27 (I8°) + Prr — ——= = Pyy,
P Pss
since (|84)?) = Pss.
Recall that all equations above are valid independently for each
Fourier mode k, and for each mode, all P, terms are scalars for a
given pair of fields (a, b).
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4 FLUX AND DM FIELDS

Throughout the present analysis, we have used the HORIZON-
NOAGN simulation (Peirani et al. 2017) to characterize any relevant
cross-correlations between the transmitted flux and the different
DM fields. HORIZON-NOAGN is a hydrodynamical simulation of
100 4 ~'Mpc comoving boxside run with the RAMSES code (Teyssier
2002). It evolves 1024 DM particles with a mass resolution of
8.27x10” Mg, while the initially uniform grid is refined in an
adaptive way down to Ax = 1 proper kpc at all times. The simulation
adopts a standard ACDM cosmology compatible with WMAP-7 re-
sults (Komatsu etal. 2011), namely a total matter density 2, =0.272,
a dark energy density 2, = 0.728, an amplitude of the matter power
spectrum o'y = 0.81, a baryon density €2, = 0.045, a Hubble constant
Hy =70.4kms~' Mpc~!, and ny = 0.967. HORIZON-NOAGN is the
twin simulation of HORIZON-AGN (Dubois et al. 2014). It contains
all relevant physical processes such as metal-dependent cooling,
photoionization, and heating from a UV background, supernova
feedback, and metal enrichment, but does not include black hole
growth and therefore AGN feedback.

The choice of using HORIZON-NOAGN instead of HORIZON-
AGN was mainly motivated by the fact that we have performed five
additional but slightly lower resolution hydrodynamical simulations
to estimate the accuracy and robustness of the LyMAS?2 predictions.
Thus, turning out the AGN feedback processes in the simulations
has permitted us to limit the computational time. These results
are presented in Appendix A. Furthermore, we have tuned in this
study the UV background intensity in the process of generating
the ‘noAGN’ flux grid (see below) in order to get the same mean
transmitted Ly o forest flux F derived from HORIZON-AGN. By
doing this, the flux statistical predictions from the two simulations
in the 3D Ly« clustering tend to be almost the same. This has
been already noticed in Lochhaas et al. (2016) when studying the
cross-correlations between DM haloes and transmitted flux in the
Ly o forest. Note, however, that AGN feedback is expected to have
non-negligible effect on the Ly o 3D clustering such as, for instance,
the 1D power spectrum of the Ly « forest (e.g. Viel, Schaye & Booth
2013; Chabanier et al. 2020).

In the following, we describe briefly how we derived the hydro
spectra field and the different DM density and velocity fields from
the HORIZON-NOAGN simulation. Similarly to P14, we analyse the
simulation outputs at redshift 2.5. Each field is sampled in a regular
grid of 1024° pixels and the size of a single pixel is therefore ~0.1
comoving Mpc 2~! or 0.04 physical Mpc.

4.1 Transmitted flux

From the HORIZON-NOAGN, we follow the method to generate the
hydro spectra that is fully described in P14. The optical depth of Ly o
absorption is calculated based on the neutral hydrogen density along
each LOS. Basically, the opacity at observer-frame frequency v is
T(Vobs) = Y _cells”H10 (Vobs)dl, where the sum extends over all cells
traversed by the LOS, ny;, is the numerical density of neutral H atoms
in each cell, o (vops) is the cross-section of Hydrogen to Ly « photons,
and d/is the physical size of the cell. Then each spectrum is smoothed
with a 1D Gaussian of dispersion 0.696 h~! Mpc, equivalent to BOSS
spectral resolution at z & 2.5. The optical depth along each spectrum
is converted to Ly « forest flux by F = e~ . Following common
practice in Ly o forest modelling, the UV background intensity is
chosen to give a mean transmitted Ly « forest flux F = (e %) =
0.795, matching the metal-corrected z = 2.5 value measured from
high-resolution spectra by Faucher-Giguére et al. (2008).
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4.2 Density, velocity, and mean square velocity

DM skewers that correspond to the ‘hydro’ spectra are also extracted
from the hydrodynamical simulation. We use the same three-step
algorithm introduced in P14 to derive both the overdensity, the
velocity field and the velocity dispersion fields:

(i) adaptive interpolation of the DM particle distribution on a
regular grid (Colombi, Chodorowski & Teyssier 2007), as detailed
in Appendix C;

(i1) smoothing with a Gaussian window in Fourier space;

(iii) extraction of the skewers from a grid of LOS aligned along
the z-axis.

In step (ii), DM field is 3D smoothed using different choices
of smoothing scales. In P14, we found that a smoothing scale of
0.3 Mpc =" has proved to be optimal leading to the most accurate
predictions. However, we prefer a value of 0.5 Mpc 2~ in this study
since the predictions are very similar to those obtained with 0.3
Mpc h~! (see Appendix A). Furthermore, we anticipate with the fact
thatitis computationally much easier to smooth a DM field to 0.5 than
0.3 Mpc 2~ when considering large volumes namely with boxsides
at least greater or equal to 1 Gpc h~'.

4.3 DM vorticity

The velocity field is projected (using Cloud-in-Cell interpolations)
on a regular grid of resolution 1024 and smoothed over 0.5 Mpc /™!
with a Gaussian filter. The vorticity 2 is then computed as being
the curl of the velocity field using FFT. Slightly smoothing the input
velocity field allows us to avoid Gibbs artefacts.

4.4 DM velocity divergence

We have considered both the 3D velocity divergence and the 1D
velocity divergence along the LOS direction.

For the 3D case, we employed two different methods to see
whether this could affect our results and trends. The first one is based
on a centred finite-difference approximation, namely the divergence
Vis at a pixel i is given by

vty v

N Vzi+l —Vzi_l
2h 2h

2h ’ 13

where V|, V!, and V/ are the velocity components at pixel i and / the
size of a pixel (i.e. 100/1024 Mpc 4~! here). The second method uses
the exact expression of the divergence in Fourier space. However, we
found that the two methods lead to very similar results so we will
only show results from the Fourier space method for the 3D case.

For the 1D case, we simply use the finite-difference approach and
the divergence Vi, at a pixel i becomes

(14)

since we define the z-axis as the direction of the LOS.

‘We summarize in Table 1 the different DM fields used in this study.
It is worth mentioning that we changed some of the notations that
can be found in P14. We first replaced the definition of the smoothed
flux at the BOSS resolution F in P14 to F here. We also changed the
definition of the 3D smoothed DM overdensity, p = 1 + § instead of
Ay =1+ 85 inPl4.

In Fig. 1, we show a slice of the hydro flux (smoothed at
BOSS resolution) and the corresponding DM density and velocity
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Table 1. Summary of fields and corresponding notation used in the text.

Hydro spectra

Flux (smoothed at BOSS res.) F

Optical depth T=—InF
Dark matter fields

Smoothed density Ps
Overdensity p=14+8 =ps/ips)
Vorticity Q

Velocity dispersion o

1D vel. divergence Vip

3D vel. divergence Vip

DM overdensity

z — ]
0.0 0.2 04 0.6

Figure 1. Slices through the flux (1D smoothed at the BOSS resolution) as
well as corresponding DM overdensity and velocity fields (3D smoothed at
0.5 Mpc 2~ 1) in redshift space (horizontal direction). Each field has been
extracted from the HORIZON-NOAGN simulation at z = 2.5 and has been
normalized to help the visual comparison. The dashed lines correspond to the
same LOS (see Fig. 2).

fields (smoothed at 0.5 Mpch™!) extracted from the HORIZON-
NOAGN simulation at redshift 2.5. As expected, clear correlations are
noticeable between the transmitted flux and the different DM fields.
This trend can also be seen when studying the evolution of each
field along the same LOS, and a typical example is given in Fig. 2.
We note that high absorptions in the flux correspond to high-density
regions or high values in the vorticity or the velocity dispersion. But
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Figure 2. An example showing clear correlations (or anticorrelations)
between the evolution of the hydro flux (green line) and DM density and
velocity fields (blue and red lines) along the same skewer extracted from the
HORIZON-NOAGN at z = 2.5. These skewers are extracted from the slices
studied in Fig. 1.

the relative amplitudes of peaks in the density contrast may differ
from those of the the velocity dispersion/vorticity. Indeed, the density
contrast and the velocity dispersion/vorticity do not necessary put the
emphasis of the same structures (e.g. walls, filaments) as suggested
by Fig. 1 or, for instance, by fig. 2 of Buehlmann & Hahn (2019). In
contrast, these high absorptions rather coincide with high negative
values in the 3D or 1D velocity divergence. This is consistent since
high-density regions are associated with DM haloes in which matter
tends to sink toward the centre of the objects. Note also that the
variations of the modulus of the vorticity and velocity dispersion are
very similar.

4.5 Field cross correlations

In order to characterize the correlations that emerge from Figs 1
and 2, we first plot in Fig. 3 some relevant scatter plots between
the optical depth 7 and the DM overdensity and velocity fields. The
correlations between the optical depth in the hydro spectra and the
smoothed DM overdensity (1 + &) is quite similar to the trend found
in P14 using the 50 2~! Mpc ‘Horizon MareNostrum’ simulation. In
Fig. 4, we additionally show the correlations between the different
DM fields. As noticed in Fig. 2, the velocity dispersion and vorticity
field are highly correlated. We do not show the correlations using the
1D velocity divergence as there are quite similar with trends found
using the 3D velocity divergence.

All these plots suggest that there are more or less pronounced cor-
relations between the different input DM fields. It is however tricky
to anticipate which combinations of fields through the LyMAS2
scheme would lead to the most accurate theoretical predictions. As
specified in Section 3, we consider combinations with up to three
different DM fields, which offers 85 different possibilities (5, 20,
and 60, respectively, for one, two, and three input fields). However,
as the main philosophy of LyMAS is to trace the Ly « flux from
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Figure 3. Correlations between the optical depth t = —InF in the hydro

spectra (smoothed at the BOSS resolution) and DM quantities smoothed at
0.5 Mpc A~ namely the overdensity (1 + &), the vorticity (), the velocity
dispersion (o), the 3D-velocity divergence, and the 1D-velocity divergence
(along the LOS) at z = 2.5. Colours show the density of pixel using normalized
values and contour line mark areas enclosing 68.27 and 95.45 per cent. Hydro
spectra and DM fields have been computed in redshift space and extracted
from the HORIZON-NOAGN simulation.

the underlying DM distribution with potential corrections from the
DM veloctiy field, we will always consider the DM overdensity
field in each combination reducing this number to 17. Moreover,
since the velocity dispersion and the vorticity fields are highly
correlated, we will also always use the velocity dispersion in
the 3D case. Consequently, we limit our study to eight different
combinations presented in Table 2. Nevertheless, we have checked
that combinations using only DM velocity fields do not lead to
satisfactory theoretical predictions.

From each specific association of DM fields, and each Fourier
mode k along an LOS, we have estimated the relevant cross-spectra
P, defined in Section 3.1, where a and b refer either to the transmitted
flux, the DM overdensity or a specific DM scalar field derived from
the DM velocity field. For each mode k, the covariance matrix P,
is Hermitian, and its linear dimension is equal to the total number
of fields considered. Examples of cross-power spectra are shown in
Fig. 5. We also derived the relevant 1D power spectrum Py required
to computed the covariance Af; defined in equation (4). An example
of Py is shown in Fig. 16.

5 CREATING PSEUDO-SPECTRA WITH LYMAS
AND LYMAS2

In this section, we apply the LyMAS2 scheme to the DM fields
extracted from the HORIZON-NOAGN simulation to generate grids
of pseudo-spectra at BOSS resolution. The objective is to recover
the 3D Ly « clustering statistics of the ‘true’ hydro spectra. For
a given skewer, we summarize the main steps to follow to pro-
duce a corresponding pseudo-spectrum using either LyMAS or
LyMAS2:
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Figure 4. Some correlations between different DM quantities from the
Horizon-noAGN simulation at z = 2.5. All field have been smoothed to
0.5 Mpc 72~ ! and have been computed in redshift space. Colours show again
the density of pixel using normalized values and contour line mark areas
enclosing 68.27 and 95.45 per cent.

Table 2. Summary of the different DM field combinations considered in the
LyMAS?2 scheme.

Name Field 1 Field 2 Field 3
LyMAS2(p) Overdens.

LyMAS2(p, o) Overdens. Vel. disp.

LyMAS2(p, Q) Overdens. Vorticity

LyMAS2(p, Vip) Overdens. 1D div.

LyMAS2(p, V3p) Overdens. 3D div.

LyMAS2(p, o, 2) Overdens. Vel. disp. Vorticity
LyMAS2(p, o, Vip) Overdens. Vel. disp. 1D div.
LyMAS2(p, o, Vap) Overdens. Vel. disp. 3D div.

The LyMAS scheme:

(1) Extract the smoothed overdensity field p for a specific skewer.

(2) Create a realization Gpe(x) of a 1D Gaussian random field
from the 1D power spectrum of the Gaussianized percentile spectra
derived from the hydro simulation.

(3) De-Gaussianize gper(x) = G*I(Gper) to get a realization of a
percentile spectrum.

(4) Create a pseudo-spectrum by drawing the flux at each pixel
from the location in P(F|p), implied by the value of gu..(x) (see
equation 6 in P14).

MNRAS 514, 3222-3245 (2022)

_I T I T T I LI I I T T I LI II i
10+4 :_ _:
10+2 :_ _:

= F 3
Q:-Qu 10+0 :_ Pcc P69 _:
-2 -
107" £ = hydro flux .

— & =DM overdensity
10_4 - o =DM vel. dispersion

-I L1l I L L I Ll I I L L I L1l

0.050.1 0.2 0.5 1.0 2.
k (h Mpc™)

5. 10.0

Figure 5. Examples of cross-spectrum P,;(k) = (a;bi), where a and b
refer either to the hydro flux or a DM field, derived from the HORIZON-
NOAGN simulation at z = 2.5. The flux field is 1D smoothed at the BOSS
resolution while the DM field are smoothed at 0.5 Mpc h~".

(5) One full iteration. We first measure the 1D flux power spectrum
Py(k) of the pseudo-spectra created in this way. Then we Fourier
transform each pseudo-spectrum and multiply each of its Fourier
component by the ratio [Pg(k)/Pp,(k)] 12 ‘inverse transform to get the
same 1D flux power spectrum than of the true hydro spectra Pr(k)
(Weinberg & Cole 1992). The second step of the full iteration is to
compute the PDF of the pseudo-spectra after the 1D-P; re-scaling
and then monotonically map the flux value to match the PDF of the
true hydro spectra. This full iteration can be repeated several times.
However, as we will see, one or two full iterations are enough to
get excellent agreement with the 1D power spectrum up to quite
high k.

The LyMAS2 scheme:

(1) Extract and Gaussianize the smoothed overdensity field p and
eventually one or two additional DM velocity fields (e.g. o) for a
specific skewer.

(2) Compute the FFT of each Gaussianized field. This gives new
(complex) fields, py, oy, etc.

(3) Compute (in Fourier space) the most probable flux f; = Tj -
pr + T> - o + ..., by applying the relevant filters 7, 7>, ... (see e.g.
equation 12 for the two-fields case).

(4) Generate a 1D Gaussian field of mean 0 and variance defined
in equation (4) to get the covariance Af;.

(5) After computing the inverse Fourier transform of f; 4+ A f; to
get f, de-Gaussianize to get the pseudo-spectrum: F = G~ (f).

(6) One full iteration. Same procedure as (4) in the LyMAS
scheme.

In Fig. 6, we compare the same slice through the hydro flux and
through different realizations of LyMAS?2 using different combina-
tions of DM fields. The clustering of each pseudo-spectrum is in
fair agreement with the clustering of the hydro spectra. Comparing
pseudo-spectra and hydro flux along a specific skewer, also shown
in Fig. 6, confirms that LyMAS2 correctly models low and high
absorptions at good locations, though amplitudes may differ. The
second line of Fig. 6 compares three pseudo-spectra generated with
LyMAS? using three different field combinations but using the same
seed for the random process to get the variance Af;. It’s interesting
to see that these different pseudo-spectra look also the same, which
explains why the slices presented in Fig. 6 are very similar. On the
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Figure 6. First line: comparison between corresponding slices through the
hydro flux (top left-hand panel), 1D smoothed at the BOSS resolution, and
through pseudo-spectra generated with LyMAS?2 and different associations
of DM fields (3D smoothed at 0.5 Mpc h~1). The direction of redshift
distortion is horizontal. Flux and DM fields have been extracted from the
HORIZON-NOAGN simulation at z = 2.5. Visual inspection suggests a very
good agreement between the clustering of the hydro flux and those of pseudo-
spectra. The two bottom panels show the evolution through a specific LOS
(located by the dashed line in the different slices) of the hydro flux (green
dotted line) and pseudo-spectra generated with LyMAS?2. In the top panel,
we use the same seed to randomly generate the covariance from equation (4)
for each LyMAS?2 realization. We then note that the difference between the
different pseudo-spectra is quite weak. In the bottom panel, we consider
LyMAS2(p, o) to produce different realizations of pseudo-spectra using this
time different seeds to get the covariance. In this case, the difference between
pseudo-spectra can be much more pronounced.

contrary, the third line of Fig. 6 shows four different realizations
of pseudo-spectrum from LyMAS?2 using the DM overdensity and
velocity dispersion fields and different seeds to get the covariance
Afy. In this case, the amplitude of absorptions can be quite different.

In the next sections, we study in more detail the clustering statistics
of each catalogue of pseudo-spectra produced with LyMAS2. We
aim at recovering three observationally relevant statistics of the
transmitted flux: the probability density function (PDF), the LOS
power spectrum and the 3D clustering (through the two-point
correlation function). As we will see, both LyMAS and LyMAS?2
reproduce the PDF of the hydro simulations by construction and
nearly reproduce the hydro simulations LOS power spectrum by
construction (step 6 above). The power of LyMAS is to produce
accurate large-scale 3D clustering while also reproducing these LOS
statistics.

5.1 3D-clustering

In order to compare the 3D clustering between the hydro and pseudo-
spectra, we rely on the two-point correlation function &(r) defined
by
(F(xX)F(x 4+ 1))

ry=-——"———"" 1, 15
£(r) T (15)
as a function of the separation r. To study the effect of redshift
distortions, we also consider the two-point correlation function
averaged over bin of angle p defined for a pair of pixels (i, j) by

LyMAS reloaded 3229
10_1_|||||| I T IIIIIII I:
= HnoAGN
1072 =
— 19°E Hydro Flux (BOSS)
o -
4— smoothing=0.5 Mpc/h
197°E Lymas (o)
C LyMAS2 (p,o)
10751 =
-_IIIIIII I 1 IIIIIII I_
05 10 2 5. 100 =20.
r (Mpc/h)
VO T T T T T T T T I T T T I T T T T T T Iy
= LyMAS (p) LyMAS2 (p) :
0.8~ LyMAS2 (p.0)  LyMAS2 (p,0)
T 06F
= - LyMAS2 (p,6,0) —
T 0.4f LYMAS2 (p,0,V1d)
& [ LyMAS2 (poVsd) --
= 02f

) TN NN
0 5 10 15 20 25

r (Mpc/h)

Figure 7. Top panel: the correlation function £ as a function of the separation
r. We present results from the true hydro spectra (green line) and results
from the LyMAS (red line) and the new version LyMAS?2 considering the
DM overdensity and the velocity dispersion fields. The predictions from
FGPA (cyan line) are also shown. DM fields are all smoothed at the scale
0.5 Mpch~'. Bottom panel: the relative difference as respect to the true
hydro spectra (i.e. &(r)/énydro(r) — 1) are shown for different combinations
of choices in the Wiener filtering. Here all DM fields have been smoothed
to 0.5 Mpc h~!. Compared to the traditional LyMAS scheme (red lines), the
new version significantly improves the predictions. In particular, the DM
overdensity field associated with the DM velocity dispersion (blue line) or
the vorticity (green line) leads to relative difference lower than 10 per cent
and close to 5 per cent in most of the range we are interested in. In contrast,
using the velocity divergence (cyan lines) does not seem to improve much
the results.

(rj — rj)/r, where r = |r; — rj| and (r; — r;); the component along
the LOS.

The top panel of Fig. 7 shows the full two-point correlation
functions derived from pseudo-spectra using either the first version of
LyMAS (red line) or LyMAS?2 using the DM overdensity and velocity
dispersion field (blue line). Compared to the results of the hydro flux
(green line), one can see that LyMAS? is significantly improving the
predictions that are remarkably close to the hydro spectra results.
In order to estimate the precision of these reconstructions, we plot
in the bottom panel of Fig. 7 the relative difference, i.e. &/&nyaro
— 1 for different combinations of DM fields. It appears clearly
that LyMAS?2 leads in general to much more accurate predictions
than LyMAS. Indeed, when considering the DM overdensity field
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Figure 8. Same as Fig. 7 but with a dependency to range of angles 1, as defined in the text. These plots confirm that the association of the DM overdensity
and the velocity dispersion (or vorticity) lead to very accurate predictions (see blue or green lines). The corresponding relative differences shown in the bottom
panel are generally within 10 and 5 per cent over a wide range of r. It is also clear that the new LyMAS?2 scheme is much more accurate for large angles where
the traditional LyMAS leads to errors that grow quickly with the distance r (red lines). DM fields are again smoothed at 0.5 Mpc h~!.

only, LyMAS2(p) give slightly better results (magenta line) but the
addition of the velocity dispersion lead to errors that are generally
lower than 10 percent and close to 5 percent (e.g. blue or black
lines). Also, similar trends are obtained when the vorticity is taken
into account (bottom panel, green line), which is not surprising as
these two fields are highly correlated. In contrast, the 1D and 3D
velocity divergence, when associated with the DM overdensity only
(cyan lines), do not seem to improve much the predictions as respect
to the first version of LyMAS. Note that in linear theory, the 3D
velocity divergence is fully correlated with the density field and
therefore adds no additional information. On the other hand, the
vorticity and/or velocity dispersion are sourced by the non-linear
evolution of the matter fields and therefore add complementary
information on small scales. Finally, we also note that errors are
close to 20 percent at r ~1-2 Mpch~! probably due to effect of
smoothing.

We now investigate how the predictions of the two-point cor-
relation functions vary when considering an angle n. The trends
are presented in Fig. 8 for three ranges of values (0.1 < p < 0.5,
0.5 < u < 0.8, and 0.8 < p) following P14. The results confirm that
LyMAS?2 significantly improve the predictions of the Ly o clustering.
In particular, some combinations such as (p, o) still lead to errors
generally lower than 10 percent and most of the time close to
5 percent. We also note that LyMAS?2 is particularly efficient for
reproducing the correlations along transverse separations or high
angles (i.e. © > 0.8) in which the error is most of the time lower
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than 5 per cent. The top panels of Fig. 8 indicate again a remarkably
good agreement between the two-point correlation functions of the
hydro flux and those derived from pseudo-spectra produced from
LyMAS2(p, o) even for high angles © > 0.8) where the previous
version of LyMAS is quite inaccurate. For the two largest p bins,
the correlation functions eventually drop rapidly to zero at large r. In
this regime, the fractional error in £ are inevitably large, even though
the absolute errors are small. It is evident that LyMAS?2 captures the
scale of these zero-crossing more accurately than LyMAS.

As a first conclusion, the LyMAS2 scheme is significantly improv-
ing the predictions of the Ly « 3D clustering especially when the DM
overdensity field is associated with the velocity dispersion or the
vorticity field. For the sake of comparison with results presented
in the literature, we also compare the 3D power spectrum and
corresponding quadropole to monopole ratios in Fig. 9 derived
from both the hydro spectra and the pseudo-spectra generated with
LyMAS2(p, o). The (monopole) power spectrum is defined in
the usual way as (F(k)F(k')) = (21)* P(k)8p(k + k'), with F(k) =
J dxF(x)e~"** Defined this way, we have the following expression
of the variance, o2 = fooo k3 P(k)dlogk /(27?). From Fig. 9, the 3D
power spectrum of the hydro spectra can be faithfully recovered
from the LyMAS?2 simulated spectra up to modes ~2 4 Mpc~'. More
specifically, the reconstructed Ly « forest power spectrum presents
average deviations of <5 percentupto k ~0.3 A Mpc~!, <10 per cent
up to k ~0.4 hMpc~', and <20 per cent for modes between 0.4 and
2 hMpc™'.
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Figure 9. Top panel: the 3D power spectrum derived from the (BOSS) hydro
flux (green line) and pseudo-spectra generated with LyMAS2(p, o). All DM
fields are smoothed at 0.5 Mpch~!. The black dashed line represents the
cross-spectrum. Bottom panel: the corresponding quadrupole to monopole
ratios (same colour code).

For larger modes, however, the predictions are becoming less
accurate as separations get lower than the considered smoothing
scale (0.5 Mpch~! here). Indeed, we observe a lack of power at
small scales (2 < k < 10~hMpc™!) in the 3D power spectrum of
LyMAS?2 simulated spectra, compared to the hydro power spectrum,
which is mainly explained by the fact that the transverse correlations
are not accounted for in the Wiener filtering scheme, and in particular
transverse fluctuations at small scales are not generated in the present
scheme. On the other hand, the absence of correlation, between
the stochastic realizations at small scales for each LOS, induces an
artificial flattening of the reconstructed power spectrum for modes
k> 5hMpc~'. The ratio of the quadrupole to monopole power is an
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even stricter test as it traces the anisotropic structure of power in the
field, and one can see differences in such a ratio already for modes
k > 2hMpc~!. This test would clearly benefit from accounting for
transverse correlations.

It would be interesting to correct this in a forthcoming work
though this point is not critical. Indeed the transverse separa-
tions of spectra from existing surveys are generally much larger
than 1 Mpch~!, and on these scales the transverse modes are
properly reconstructed. Taking into account transverse correlations
is straightforward however, and will be worthwhile to general-
ize this method to emission spectra, for which all transverse
scales are important. We will therefore include them in future
works.

5.2 1D flux power spectrum along LOS

We also aim at producing catalogues of pseudo-spectra that look
like spectra measured by a specific instrument i.e. BOSS in this
study. Therefore, the 1D flux power spectrum of each LyMAS mock
should be as close as possible to the hydro spectra 1D-Py. In the
following, we only present the results derived from LyMAS2(p, o)
as same trends are obtained when considering any other combination
of DM fields. Here, the 1D power spectrum is formally defined as
(F()F(K")) = 2m)Pip(k)dp(k + k'), where F(k) = [ dx F(x)e~ '
is the 1D Fourier Transform along the LOS.! When estimating it,
we take FFTs along each LOS and average the result. The ex-
pression of the variance is then o> = fooo k Pyy(k)dlog(k)/mt. Fig. 10
shows the dimensionless 1D power spectrum before power spectrum
transformation (red line) and after applying the power spectrum and
PDF transformation described in the text (black line). We first note
that LyMAS2 without iteration reproduces the 1D power spectrum
more accurately than original LyMAS (see fig. 13 of P14). Then as
expected, the 1D-P;, transformation leads to same power spectrum
as the hydro simulation (blue line), by construction. The second step
of the iteration is to re-scale the flux PDF, and this transformation
slightly alters the 1D power spectrum. However, as illustrated in the
bottom part of Fig. 10, the relative difference is close to 2 per cent up
to high values of k (i.e. k ~2 hMpc~"). If one repeats a full iteration
a second time, the same accuracy is reached for even higher k values
(~4 hMpc™).

5.3 One-point PDF of the flux

Since the LyMAS scheme ends after a flux PDF re-scaling (second
step of a full iteration), this ensures that the one-point PDF of the
hydro flux and the pseudo-spectra match exactly. To illustrate, we
presentin Fig. 11 the results obtained with LyMAS2(p, o) before (red
line) and after (blue line) a full iteration (1D-P; and PDF re-scaling).
Without transformation, the PDF of the pseudo-spectra is already
close to the PDF of the hydro spectra (green line). But fractional
errors on the PDF can be quite large for low or high values of F.
After the 1D-Pk re-scaling, the PDF of the pseudo-spectra has slightly
changed and has some non-physical values (F < 0 and F' > 1). But
the second step of the iteration corrects the PDF (e.g. transforms
these unphysical values into physical ones), to exactly match that of
the hydro spectra.

'Note that the normalization is reduced by a factor of 4, as compared to
the definition used in P14, which relied on a Fourier series in trigonometric
functions.
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Figure 10. Top panel: the dimensionless 1D power spectrum of the true
spectra from the Horizon-noAGN simulation (green line) at z = 2.5 and from
coherent pseudo-spectra using LyMAS?2 considering the DM overdensity and
velocity dispersion fields. We show results before (red line) and after (blue
and black lines) 1D power spectrum and PDF transformations (described in
the text). Bottom panel: the relative difference as respect to the hydro results
(i.e. Pr/Py nydro — 1). A full iteration (flux 1D-Py and PDF re-scaling) permits
to recover the hydro power spectrum with an error of ~ 2 per cent over a wide
range of k. The light and dark grey shaded areas indicate regions where the
error is less than 5 and 2 per cent, respectively.

5.4 Comparison with the FGPA

The FGPA essentially converts DM density into optical depth using a
physical model motivated by photoionization equilibrium, assuming
that all gas contributing to the Ly « lies on a temperature—density
relation 7' o (p,/p5)” ~'. The predicted flux is

—0.7(y—1)

F = Ae—0s/P) i (16)

where 2 — 0.7(y — 1) = 0.6 for the values of y expected well after
reionization (Croft et al. 1998; Weinberg, Katz & Hernquist 1998;
McQuinn 2009; Peeples et al. 2010). This relation is reasonable
for modelling high-resolution spectra. However, due to existing
non-linear relation between flux and optical depth, it does not
automatically apply at low resolution (though it omits some physical
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Figure 11. Top panel: the PDF of the true spectra from the HORIZON-NOAGN
simulation at z = 2.5 (green line) and coherent pseudo-spectra using LyMAS2
considering the DM density and velocity dispersion fields. We show results
before (red line) and after (blue and black lines) 1D power spectrum and
PDF transformations (described in the text). The 1D-Pj re-scaling can lead
to non-physical Flux values (i.e. F < 0 or F > 1). Bottom panel: the relative
difference with respect to the hydro results (i.e. PDF/PDFyydro — 1). The full
scheme permits to recover the hydro flux PDF exactly. The light and dark grey
shaded areas indicate regions where the error is less than 10 and 5 per cent,
respectively.

effects in the high-resolution case). From the HORIZON-NOAGN DM
overdensity grid smoothed at 0.5 Mpc 2~!, we have first generated
1024 x 1024 pseudo-spectra using equation (16) by estimating A so
that (F) = 0.795. Then, we 1D smoothed each pseudo-spectrum
to BOSS resolution. Similarly to the LyMAS scheme, we end
the process by rescaling the flux 1D-P; and PDF. The correlation
function is shown in the top panel of Fig. 7 and is considerably
overestimated as respect to the hydro flux with a relative error
greater than 50 percent (omitted in the bottom panel for the sake
of clarity). Such a trend is consistent with the results of Sorini
et al. (2016), who found that typical relative errors in the 3D power
spectrum are ~80 percent when a DM smoothing scale of 0.4
Mpc h~! is considered. In Appendix B, we will investigate other
deterministic mapping than the FGPA. But will we see that the main
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Figure 12. Same as Figs 3 and 4 but using HORIZON-AGN for the calibration.
Here we compare the correlations between the optical depth t = —InF in the
hydro spectra (smoothed at the BOSS resolution) and DM quantities smoothed
at 0.5 Mpc h~!, namely the overdensity (1 + 8) and the velocity dispersion
(o) at z = 2.5. We also show in the lower right-hand panel, some relevant
transfer functions (i.e. cross-spectrum) similarly to Fig. 5. In all panels, the
dotted lines correspond to results from the HORIZON-NOAGN simulation.
Very similar trends are then obtained when AGN are included or not.

conclusion remains unchanged: deterministic sampling generally
tends to significantly overestimate the flux 3D-correlation especially
when the DM density is smoothed to scales greater than 0.3 Mpc 7~
Note that a similar trend is obtained when studying the correlation
between the Ly « transmitted flux and the mass overdensity (see fig. 1
of Cai et al. 2016).

5.5 HORIZON-AGN versus HORIZON-NOAGN

In this work, we used the HORIZON-NOAGN simulation for the
calibration of LyMAS2, mainly to minimize the computational cost
as we derived five additional but lower hydrodynamical simulations
to study both the robustness of the results (see Appendix A) as
well as the effect of cosmic variance (see Section 6.2.1). However,
since AGN feedback may induce subtle modifications in the spatial
distribution and in the clustering of the Ly « forest, it is important to
check if eventual noticeable differences can be seen in the statistics
we present so far. For this reason, we have repeated to same and
whole analysis but considering this time HORIZON-AGN for the
calibration. For instance, we plot in Fig. 12 some relevant scatter
plots showing the correlations between the optical depth, the DM
overdensity and the DM velocity dispersion, similarly to Figs 3 and
4. We also show some transfer functions (i.e. cross-spectrum) that we
compare to results from Fig. 5. In all cases, the statistics have been
derived using a DM smoothing of 0.5 Mpc 2~!. Compared to results
from HORIZON-NOAGN, we found very similar trends when AGN
are included. The comparison of the two-point correlation function
of the hydro flux and LyMAS2(p, o) pseudo-spectra in Fig. 13
confirms this by suggesting predictions with a very similar accuracy
when AGN is included or not. In conclusion, the inclusion of galactic
winds does not seem to affect significantly the clustering statistics of
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Figure 13. The correlation function & as a function of the separation r.
We present results from the HORIZON-AGN true hydro spectra (green line)
and results from LyMAS?2 considering the DM overdensity and the velocity
dispersion fields (blue dashed line). DM fields are all smoothed at the scale
0.5 Mpch~!. The central small panel indicates the relative difference as
respect to the true hydro spectra (i.e. & (r)/éhydro(r) — 1). The blue dashed line
represents here the result from the HORIZON-NOAGN simulation.

the Ly o Forest, given our smoothing scales and targeted accuracy,
consistent with results of Bertone & White (2006). Recall that we
tuned the UV background in the process of producing the HORIZON-
NOAGN hydro flux grid, to get the same mean of the Flux. Thus, this
conclusion is not surprising and is in agreement with previous finding
(Lochhaas et al. 2016). Above all, this means that the predictions of
the 3D clustering from the LyMAS2 scheme keep the same accuracy,
AGN feedback included or not in the calibration.

5.6 Influence of redshift distortions?

Our results indicate that the inclusion of a DM velocity field in
LyMAS?2, especially the velocity dispersion of the vorticity, clearly
improves the predictions of the 3D clustering of the pseudo-spectra.
This fact might be understood by the existing correlations between
the DM overdensity and the velocity fields (see Fig. 4) and adding
a velocity term in the scheme may bring additional information.
However, since we also model redshift distortions, this may also
introduce or enhance existing correlations between the different
considered fields. To estimate the importance of the inclusion
of redshift distortion in the process, using HORIZON-NOAGN, we
have repeated the same analysis in real-space i.e. both hydro flux
and DM fields have been generated without redshift distortions.
Again, we plot in Fig. 14 some relevant scatter plots showing the
correlation between the optical depth, the DM overdensity and the
DM velocity dispersion. We also show some transfer functions (i.e.
cross-spectrum). In all cases, the statistics have been still derived
using a DM smoothing of 0.5 Mpc 4~!. Compared to results from
HORIZON-NOAGN including redshift distortion, the new scatter plots
and transfer functions show significant differences, especially when
a DM velocity field is considered. The comparison of the two-
points correlation function of the hydro flux and LyMAS2(p, o)
pseudo-spectra in Fig. 15 suggests however that errors are still quite
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Figure 14. Same as Figs 3 and 4 but using HORIZON-NOAGN without
modelling redshift distortions in the LyMAS2 scheme. Here we compare
the correlations between the optical depth r = —InF in the hydro spectra
(smoothed at the BOSS resolution) and DM quantities smoothed at 0.5
Mpch~!, namely the overdensity (1 + &) and the velocity dispersion (o)
at z =2.5. We also show in the lower right-hand panel, some relevant transfer
functions (i.e. cross-spectrum) similarly to Fig. 5. In all panels, the dotted lines
correspond to results from the HORIZON-NOAGN simulation with redshift
distortions.

low, but a bit higher compared to the relative errors obtained when
including redshift distortion. Then, it appears that the inclusion of
redshift distortion seems to slightly improve the predictions of the
Ly « clustering statistics.

6 APPLICATION TO LARGE COSMOLOGICAL
DM SIMULATIONS

6.1 Simulations of 1.0 and 1.5 Gpc k™! boxside

In this section we apply our LyMAS2 scheme to large cosmological
DM simulations to produce ensembles of BOSS pseudo-spectra.
We first ran five cosmological N-body simulations using GADGET2
(Springel 2005), with a box length of 1.0 Gpc 4! with random initial
conditions and using the same cosmological parameters as HORIZON-
NOAGN. We additionally run one simulation with a higher volume,
namely (1.5 Gpc )~3. As we discuss in detail in Section 6.2.2, these
latter two values have been chosen to estimate the performances of
LyMAS when using DM smoothing scales of 0.5 (fiducial) and 1.0
Mpc h~!, respectively. In each simulation, the adopted value of the
Plummer-equivalent force softening is 5 per cent of the mean inter-
particle distance (24.4 and 36.6 kpc 2! for the 1.0 and 1.5 Gpc h™!
boxside, respectively) and kept constant in comoving units.

From each cosmological simulation, the corresponding DM den-
sity and velocity dispersion fields are computed and sampled on
grids of 4096° pixels. This allows us to smooth each 1.0 Gpc i~
field to 0.5 Mpc k™' and each 1.5 Gpch~' one to 1.0 Mpch~'.
According to Section 4 and Appendix A, the combination of the DM
overdensity and velocity dispersion fields leads to accurate and robust
Ly « clustering predictions. We therefore produce our fiducial large
BOSS pseudo-spectra with LyMAS2(p, o). Note that we choose the
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Figure 15. The correlation function & as a function of the separation r.
‘We present results from the HORIZON-NOAGN (NO redshift distortions) true
hydro spectra (green line) and results from LyMAS?2 considering the DM
overdensity and the velocity dispersion fields (blue dashed line). DM fields
are all smoothed at the scale 0.5 Mpc h~! and are generated in real space. The
central small panel indicates the relative difference with respect to the true
hydro spectra (i.e. & (r)/éhydro(r) — 1). The blue dashed line represents here the
result from the HORIZON-NOAGN simulation including redshift distortions.

velocity dispersion field instead of the vorticity mainly for practical
reasons, as the computational and memory costs to compute the latter
on a large regular grid is much higher.

Once the different DM fields are extracted and smoothed to the
appropriate scales, the last inputs we need are the relevant transfer
functions 7 defined in equation (10) whose detailed expressions
can be found in equations (11) and (12) for the 1D or 2D case,
respectively. We also need the corresponding 1D power spectrum
Py to generate the covariance Af; at the considered boxside. Since
the calibrations are derived from the HORIZON-NOAGN simulation,
one potential issue arises from the hydrodynamical box being much
smaller than the large DM simulations, so that lower modes are
not represented. For the missing modes (k < 27/100), we have
extrapolated the values of T, 75, and Py, while in the common k
range, we have proceeded with interpolations. As an illustration,
Fig. 16 shows the 1D power spectrum required to compute the
covariance Af; when considering the DM density and velocity fields
extracted from the 100 Mpc 2~! hydrodynamical simulation as well
as the resulting 1D power spectra when considering a 1.0 or 1.5
Gpc h~! boxside.

Fig. 17 illustrates a reconstruction of pseudo-spectra from a given
slice of 4096 x 4096 pixels through a 1 Gpc 2~! box simulation. It
appears clearly that the 2D clustering of the pseudo-spectra agrees
very well with the clustering of the DM overdensity field. Another
visual inspection of an individual skewer also shows that peaks of
density match with high absorption. Itis also interesting to see that the
specific skewer shown in Fig. 17 has in its centre a large absorption
that corresponds to a large- and high-density region. Note that the
study of groups of so-called ‘Coherently Strong Ly o Absorption’
(CoSLA) systems imprinted in the absorption spectra of a number
of quasars (from e.g. BOSS) is of particular interest, as they can
potentially detect and trace high redshift proto-clusters (see e.g.
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Figure 16. An example of dimensionless 1D-Py required to compute the co-
variance Afj (see equation 4), derived from the HORIZON-NOAGN simulation
at z = 2.5 and considering the overdensity and velocity dispersion in the
Wiener filtering (green dashed line). The resolution of the flux and DM
grids are 1024°. The red and blue lines are interpolations and extrapolation
of the green line to construct the corresponding 1D-Py for larger 1.0 and
1.5 Gpe h~! boxes (using grids of resolution 4096°). The grey shaded area
indicates the common k range between the 100 Mpc/i~' and 1 Gpch~!
boxes.

Francis & Hewett 1993; Cai et al. 2016; Lee et al. 2018; Shi et al.
2021).

Fig. 18 shows the dimensionless 1D power spectrum of the pseudo-
spectra from a 1 Gpc 2~ simulation before and after iterations. First,
in the common k-range area between the hydro and the pseudo-
spectra, we find similar trends to those obtained when applying
LyMAS2 to the HORIZON-NOAGN simulation (see Fig. 10). For
instance, after two full iterations, the relative difference is close to
2 per cent even for high values of k (~4 hMpc™"), and similar results
are obtained for the 1.5 Gpc h~! pseudo-spectra. For lower values
of k (k < 2m/100 ~ 0.0628 hMpc~!), the power spectrum seems
to have a natural and consistent extension from the hydro spectra
power spectrum. Note also that the highest values of k for the 1.0 and
1.5 Gpc h~! boxside simulations and grid of resolution 4096° are,
respectively, 12.87 and 8.58 Mpc~!, lower than (27t/100) x 512 ~
32.17 hMpc~! for the hydro box. But the power at these high values
is negligible, and missing them in the calculations will not have a
noticeable impact on spectra. Also, since a full iteration ends with
a flux PDF re-scaling, this ensures exactly match to the PDF of the
hydro flux.

Fig. 19 shows the two-point correlation functions derived from
several large-scale pseudo-spectra. In particular, we show the predic-
tions from the first version of LyMAS (red lines) and those obtained
from LyMAS?2 using the DM density field only (black lines) and
with additional velocity dispersion field (blue lines). We also add
the predictions derived from the 1.5 Gpch~' simulation (magenta
lines), using again LyMAS2(p, o). These plots confirm first that the
traditional LyMAS (red lines) tends to overestimate the correlations
and this trend is more pronounced when considering high angles (u >
0.8), as already noted in Section 4. The result is quite similar with
the LyMAS?2 scheme when considering the DM overdensity only.

LyMAS reloaded 3235

However, the difference from LyMAS is more and more noticeable
as u increases. These results are again consistent with those presented
in Section 4. The difference becomes even stronger when adding the
DM velocity dispersion field. In this case, LyMAS2(p, o) tends to
significantly reduce the correlations and most probably lead to more
reliable predictions. In the range 2 < r < 10 Mpc k="', the correlations
are very close to those of the hydro simulation. It is also impressive
that the 1.5 Gpc2~! mock generated with LyMAS2(p, o) leads to
very similar trends (for separations r > 2 Mpc h~!), though the DM
fields are now smoothed to 1.0 Mpc 4~'. This success is consistent
with the results presented in the Appendix A, where we compare
the performance of LyMAS?2 using different DM smoothing scales.
This robustness is one of the key improvements accomplished with
LyMAS2.

Finally, we show in Fig. 20 the two-point correlation function
averaged from five different realizations of 1 Gpc h~! Ly & pseudo-
spectra obtained by applying LyMAS2(p, o) to different DM
cosmological simulations, at z = 2.5. The plots show clear features
of BAO at r ~105 Mpc 4~! and variations with respect to the angle 1,
consistent with observational trends (see e.g. du Mas des Bourboux
et al. 2020) This illustrates the ability of LyMAS to properly describe
redshift distortions and to model realistic large BOSS Ly « forest
spectra catalogues.

6.2 Potential limitations of the method

6.2.1 Effect of cosmic variance?

One potential limitation in the LyMAS scheme is to use an unique
hydro simulation to generate the calibration. In other words, we
assume this hydro simulation to be fairly representative of the
underlying statistics of many simulations that have >1000 times
larger volumes. This makes the resulting large mocks potentially
affected by the cosmic variance. In order to estimate this, we have
considered our five lower resolution hydro simulations presented in
Appendix A, originally produced to estimated the robustness of the
LyMAS?2 predictions. Here we make good use to estimate the effect
of cosmic variance by applying each of the five calibration sets to
the (1.5 Gpc 2~')* DM overdensity and velocity grids (of dimension
4096° each) that we used in Section 6.1. In particular, we have
computed the two-point correlation function averaged from these
five realizations and shown in Fig. 21. We note that the dispersion
tends to be higher for separations between 25 and 100 Mpc /!,
which makes sense as this corresponds to the scales probed by the
reference hydro simulation of boxside 100 Mpc/~!. We also note
that this dispersion tends to be higher for increasing values of the
angle w.

6.2.2 Computational limitations

As most of the methods presented in the literature to produce large
Ly o mock catalogues, the LyMAS2 scheme can be divided into
two main operations. One the one hand, one needs to generate at a
considered smoothing scales, a DM overdensity field and eventually
associated velocity fields. This task is generally done using N-
body simulations or lognormal density fields created from Gaussian
initial conditions (e.g. Gnedin & Hui 1996; Bi & Davidsen 1997).
On the other hand, one has to ‘paint’ the Ly « absorptions from
any los using relevant calibrations or recipes. This latter part is
pretty fast in LyMAS since one can treat any los individually and
therefore, the algorithm can be easily and optimally parallelized
(with openMP for instance). To give an order of magnitude, to
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Figure 17. Application of the full LyMAS2 scheme to a large DM simulation (1 Gpch~' — 20483 particles) at z = 2.5. From the DM overdensity and
velocity dispersion fields, both sampled on 4096° regular grids and smoothed at 0.5 Mpc2~!, we derive pseudo-sepctra at the BOSS resolution using the full
LyMAS?2 scheme. The left-hand part of the figure shows corresponding slices that suggest a fair agreement between the clustering of the DM density and the
pseudo-spectra. The right-hand part shows an individual skewer confirming that DM density peaks are associated with high flux absorption.

create a >1 Gpc h~! boxside Ly @ mock presented in Section 6.1,
using 32 CPU, only ~11 h are required to generate 4096 x 4096
BOSS spectra of resolution 4096 and subsequent 1D-P; and flux
PDF rescaling (namely to achieve the six steps of the LyMAS2
scheme presented in Section 5). The main limitation of LyMAS2
is however the ability to generate the DM overdensity or a velocity
field at the appropriated smoothing scales (i.e. 0.5 and 1.0 Mpc h~!
in our study). Indeed, the larger the boxside of the simulation, the
bigger the required dimension of the grid to sample the DM fields. For
instance, a simulation box of side 1.0 or 1.5 Gpc A~ can be smoothed
at the scale of 0.5 and 1.0 Mpc h~!, respectively, if a grid of 40963
pixels is considered. In these cases, the size of individual pixel is,
respectively, 0.244 and 0.366 Mpc =", which is acceptable, though
slightly borderline, to produce the smoothing operation. Moreover,
to generate one specific DM field, we used a sophisticated scheme,
SmoothDensS5, presented in the Appendix C. Although SmoothDens5
has been optimized, it needs at least 1-TB RAM and 50 h (using 64
CPU) to treat and produce a single DM field, sampled on a regular
grid of 40963, and from a DM simulation using 20483 particles.
Technically, it is then rather feasible to generate massive set of
mocks if we limit the studied boxside to 1.5 Gpc A~'. Beyond this
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value, the computational costs and memory requirement is becoming
an issue. It would be definitely worth exploring in near future
alternative methods to reduce such costs (e.g. Cell-in-Cloud,...) while
not altering the accuracy of the predictions. Moreover, although
this is a general issue for all the methods based on DM fields
described by N-body simulations, N-body simulations can also
become too computationally expensive and time-consuming. Here
also alternative methods do exist to obtain the DM fields using
cheap approximate methods (e.g. LPT, 2LPT, etc.). However, these
are typically not able to produce a very accurate velocity field
and this may alter the accuracy of the present LyMAS scheme.
Such investigations are beyond the scope of this paper and will be
considered in the next analysis.

7 CONCLUSIONS

We have introduced LyMAS?2, an improved version of the LyMAS
scheme (P14). In this new version, we have used the HORIZON-
NOAGN (Peirani et al. 2017) simulation to characterize the relevant
cross-correlations between the transmitted flux and the different DM
fields. In particular, we have considered not only the DM overdensity
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Figure 18. Top panel: the dimensionless, redshift-space, 1D power spectrum
of pseudo and true spectra from the HORIZON-NOAGN simulation (green
line) and from coherent pseudo-spectra using LyMAS?2 considering the DM
density and the velocity dispersion fields from a 1 Gpc A~! boxside N-body
simulation. Here again, we show results before (red line) and after (blue line)
one full iteration (i.e. flux 1D power spectrum and PDF transformations). We
also show the results when repeating a second iteration (black line). The grey
shape defines the common k-range between hydro spectra and pseudo-spectra.
Bottom panel: the relative difference with respect to the hydro results (i.e.
Py / P nydro — 1). The light grey and dark grey bands define regions where
the error is less than 5 and 2 per cent, respectively.

but also specific DM velocity fields (i.e. velocity dispersion, vorticity,
1D and 3D divergence) and used Wiener filtering to generate the spe-
cific calibrations. LyMAS?2 shares the same philosophy as LyMAS
that flux correlations are mainly driven by the correlations of the
underlying DM (over)density, and it uses additional information from
the DM velocity correlations to refine the theoretical predictions. In a
second step, we have applied LyMAS?2 to DM fields extracted from
the hydrodynamical or large DM-only simulations to create large
ensembles of pseudo-spectra with redshift distortions, at z = 2.5
and at the BOSS resolution. Throughout the analysis, we use a DM
smoothing of 0.5 Mpc ! to derive the main trends and results. Our
main conclusions can be summarized as follows:

(i) LyMAS2 greatly improves the predictions for flux statistics
of the 3D Ly « forest on small and large scales. More specifically,
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we found that the DM overdensity combined with the DM veloc-
ity dispersion (or the vorticity) recovers the two-point correlation
functions of the (reference) hydro flux within 10 percent and
(most of the time within 5 percent) even when high angles are
considered. This is a major improvement with respect to the original
version of LyMAS, which is rather inaccurate in predicting the
Ly « correlations for large separations and high angles. furthermore,
we found that the reconstructed Ly « forest power spectrum presents
average deviations of S5 percentup tok~0.3 A Mpc~!, <10 per cent
up to k ~0.4 hMpc~! and <20 per cent for modes between 0.4 and
2 h Mpc~!. For larger modes, however, the predictions are becoming
less accurate as separations get close or lower than the considered
smoothing scale (typically 0.5 Mpc A~").

(ii) Like LyMAS, LyMAS?2 reproduces the one-point PDF of the
flux from the calibrating hydro simulation exactly, by construction. It
also reproduces the 1D (LOS) power spectrum with en error of about
2 per cent up high k values. The LyMAS2 pseudo-spectra therefore
have realistic observable properties on small scales while also having
accurate large-scale 3D clustering when applied to a large-volume
DM-only simulation.

(iii) The trends derived from five different and slightly lower reso-
lution hydrodynamical simulations are consistent with those obtained
from the fiducial HORIZON-NOAGN simulation. This suggests that
the results presented in this study are robust. Moreover, this allows
us to estimate error bars on the two-point correlations functions,
which are generally low.

(iv) We have considered three different DM smoothing scales
(0.3, 0.5, and 1.0 Mpc h~!) and found similar trends in the flux
clustering predictions. It is encouraging that a DM smoothing of 1.0
Mpc i~ still leads to very accurate predictions, especially in the two-
point correlation functions even at high angles and large separation.
Indeed, the errors are typically lower than 5 per cent, whereas they
are generally higher than 30 percent with the original version of
LyMAS.

(v) LyMAS?2 applied to large DM cosmological simulations of
boxside either 1.0 or 1.5 Gpch~! indicates that the predicted flux
statistics follow the same trends obtained from the (100 Mpc A~ ")
HORIZON-NOAGN DM fields. Indeed, we found again that the first
version of LyMAS tends to overestimate the flux correlations at large
separations and/or at high angles. On the contrary, LyMAS?2 using
for instance the DM overdensity and the velocity dispersion clearly
reduces the two-point correlation functions to lead to more reliable
and accurate predictions. Moreover LyMAS?2 adequately models
large-scale Ly o absorptions systems that correspond to massive over-
density regions. It is also worth mentioning that these set of mocks
were already used to asses the ability to recover the connectivity and
clustering properties of critical points of the reconstructed large-scale
structure from Ly o tomography in the context of a realistic quasar
survey configuration such as WEAVE-QSO (Kraljic et al. 2022).

(vi) Deterministic mappings such as the Fluctuating Gunn-—
Peterson Approximation tend to considerably overestimate the 3D
flux correlations especially at large separation or when high angles
are considered.

LyMAS2 offers a sophisticated tool to accurately model and
predict large-scale Ly « forest 3D statistics. This opens new op-
portunities to improve diversified studies such as Ly « forest cross-
correlation (e.g. Lochhaas et al. 2016), two-point correlations or
three-point correlations analysis (e.g. Tie et al. 2019) or BAO
feature predictions. Moreover, large Ly « catalogues produced with
LyMAS?2 can be used to characterize massive overdensity regions
such as proto-clusters through groups of coherent large absorptions
analysis (Cai et al. 2016; Lee et al. 2018; Shi et al. 2021). Compared

MNRAS 514, 3222-3245 (2022)
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Figure 19. Top left-hand panel: the two-point correlation functions of the flux derived from the 100 Mpc 2~ HORIZON-NOAGN simulation (green dotted line)
and 1 Gpc h~! pseudo-spectra using the full LyMAS (red line) and LyMAS2 scheme using the DM overdensity field only (black line) or combined with the DM
velocity field (blue line). We also show the two-point correlation function derived from 1.5 Gpc h~! pseudo-spectra produced with LyMAS2(p, o) (magenta
line). In the other panels, we show the corresponding flux correlation functions averaged over bins of angle u, as labelled. LyMAS tends to overestimate
the correlation especially for large separations and high angles. LyMAS2(p, o) tends to significantly reduce such correlations, which suggests more reliable

predictions.

to previous work, we recall that the main objective of LyMAS is
to create large Ly o mocks for a specific instrument (here BOSS)
with 3D flux statistics as close as possible to those that would be
obtained from a very large volume (but computationally intractable)
hydrodynamical simulation.

The Iteratively Matched Statistics (IMS) developed by Sorini et al.
(2016) does not present such predictions and limits their analysis to
small simulation boxes (<100 Mpc 4~!). However, when comparing
the flux PDF and 1D power spectrum, LyMAS?2 and 1D-IMS (see
introduction) lead to similar performances: The 1D-IMS scheme
perfectly reproduces these statistics, while errors of ~2 per cent are
obtained with LyMAS?2 for the flux 1D-P;. Regarding the 3D-IMS
scheme, errors are much higher, of the order of 15 and 20 per cent,
respectively, for the flux PDF and 1D power spectrum. As far as
the 3D flux statistics are concerned, at a DM smoothing of 0.4
Mpc i~!, the 1D-IMS and 3D-IMS present errors of 20 per cent and
10-20 per cent (for a DM smoothing of 0.4 Mpc h~!), respectively,

MNRAS 514, 3222-3245 (2022)

regarding the reconstruction of the power spectrum. In this study,
LyMAS?2 mainly considers a DM smoothing of 0.5 Mpc 4~!, which
leads to errors generally lower than 5 percent for the two-point
correlation functions. Again, it is worth mentioning that similar
(low) errors are also obtained with LyMAS2 when considering a
DM smoothing of 1.0 Mpch~!. It would be then interesting to
compare the performance of the 1D and 3D-IMS scheme at this
specific smoothing scale in the perspective of creating large (> 1.0
Gpc h™!) Ly @ mocks.

Recently, Harrington et al. (2022) have trained a convolutional
neural network from hydrodynamical simulations of side 20 Mpc /™!
to predict both the density, the temperature and the velocity fields.
This method is quite flexible and the predictions of the flux PDF
and 1D power spectrum (i.e. within ~5 percent up to £ ~ 10
Mpc h~') are promising and more accurate than the FGPA. Note
that in a companion paper (Horowitz et al. 2021), convolutional
neural networks have also been used to synthesize hydrodynamic
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Figure 20. The two-point correlation function averaged from five differ-
ent realizations of 1 Gpch™!' Lya pseudo-spectra obtained by applying
LyMAS2(p, o) to DM cosmological simulations. Here we use the calibrations
obtained from HORIZON-NOAGN. The shaded areas represent the error on the
mean (rms).

fields conditioned on DM fields from N-body simulations, which
might be very useful for the rapid generation of mocks. Similarly,
Sinigaglia et al. (2022) has developed a new physically motivated
supervised machine learning method (HYDRO-BAM) from a ref-
erence hydrodynamical simulation of comoving side 100 Mpc 2=,
The PDF, 3D power spectrum and bi-spectra can be reconstructed
with error of a few per cent up to modes k = 0.9 Mpc ~2~!. It would
be interesting to see how this promising approach performs when
considering smoothed spectra and larger boxes.

Improvements can still be done in the LyMAS scheme. For
instance, one main assumption is to consider that the transverse
correlations are mainly driven by the effect of DM smoothing.
In this study, we stress again that all the approach is based on
creating pseudo-spectra individually and independently from each
other. Because the draws of Af; are independent on each LOS, spectra
at small but non-zero transverse separations can look quite different
on small scales. Since the predictions on the clustering of the flux
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Figure 21. The two-point correlation function averaged from five different
realizations of 1.5 Gpch~! Lya pseudo-spectra obtained by applying
LyMAS2(p, o) to DM cosmological simulations and using five different
calibrations. To this regard, we use five lower resolution hydro simulations
presented in Appendix A. The shaded areas represent the error on the mean
(rms).

are already very accurate with LyMAS2, we have not considered the
same approach in volume. This would take into account transverse
correlations between LOS that have been neglected in this work:
instead of predicting the flux from DM fields independently for
each LOS, one would predict the entire cube of flux from the DM
field cubes, using the full 3D covariance structure. One would still
use an assumption of spatial homogeneity (stationarity), so that
3D Fourier space coefficients could be computed independently,
however one would need to take care of the statistical anisotropy
in the LOS direction, therefore all statistics in Fourier space would
depend on |k, | and k. Taking into account transverse correlations
would thus further reduce the covariance of the flux conditionally
to the DM fields, in other words reduce the noise in the predicted
flux field. Among future prospects, we plan to extend this work
to predict the flux clustering for other surveys such as the Dark
Energy Spectroscopic Instrument (DESI; DESI Collaboration et al.

MNRAS 514, 3222-3245 (2022)
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2016), the William Herschel Telescope Enhanced Area Velocity
Explorer (WEAVE-QSO; Pieri et al. 2016) or Subaru Prime Focus
Spectrograph (PES; Takada et al. 2014). They will open new vistas
on the high redshift intergalactic medium probed by the Ly « forest.
It would be then interesting to estimate the level of performance
of LyMAS?2 when the transmitted flux has a higher resolution than
BOSS spectra, which might require reducing the DM smoothing.
Finally, we also intend to use Machine Learning in the process to see
whether we can still improve the predicted flux statistics (Chopitan
et al., in preparation).
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APPENDIX A: GENERAL TRENDS

In Section 5.1, we have presented the predictions regarding the two-
point correlation functions for eight different combinations of DM
fields, with calibrations derived from HORIZON-NOAGN. To check
the robustness of the results, the analysis of other similar hydrody-
namical simulations is definitely required. To limit the computational
time, we ran five additional hydrodynamical simulations with the
same boxside and same physics than HORIZON-NOAGN but with
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Figure A1. The evolution of the mean of the absolute relative difference in the two point correlation functions (1/5)] Zf:l (&i /&nydro,i — 1)| derived from five
different hydrodynamical simulations at z = 2.5. All DM fields are smoothed to 0.5 Mpc 2~!. The error bars correspond to the dispersion. Comparison with
results from Figs 7 and 8 suggest a very good agreement and therefore robust trends.

two times lower resolution (i.e. 512° DM particles instead of 10243
and a minimal cell size of Ax = 2 kpc instead of 1 kpc). The first
simulation uses degraded HORIZON-NOAGN initial conditions, while
the other ones have different initial phases. For each of the five new
simulations, we generated the corresponding grids of transmitted
flux, DM overdensity, and velocity fields and calibrations following
the same methodology presented in Section 4. We consider here
flux and DM fields sampled on grids of 512 x 512 x 1024, namely
512 x 512 spectra of resolution 1024.

In the first step, we consider all DM fields smoothed at 0.5
Mpc h~!. After checking first that the ‘high’ and ‘low’ resolution
HORIZON-NOAGN simulations give consistent trends, we took an
interest in the variations of then mean of the absolute relative
difference (1/5)] Zle(é,- /&nyaro,i — 1|, where we compare the two-
point correlation function of the hydro spectra &yyqr0, ; from a given
simulation ‘i’ to those derived from pseudo-spectra generated with
LyMAS2 &y4r0, i- In Fig. A1, we summarize the results obtained with
the original LyMAS and LyMAS?2 considering the same DM field

combinations than in Figs 7 and 8. The main conclusion is that we do
find very similar trends than those obtained with HORIZON-NOAGN,
which strongly suggest that our results are robust. In particular, the
use of the velocity dispersion (o) or the vorticity (£2) lead to relative
errors that are remarkably low, i.e. in general lower than 5 per cent
even for the different ranges of angle. The plots also confirm that the
1D and 3D velocity divergence fields do no permit to reach the same
level of accuracy.

In the next step, we present the trends obtained when the DM fields
are smoothed to 0.3 or 1.0 Mpc h~'. We only present in Fig. A2 the
results for LyMAS, LyMAS2(p, o) and LyMAS2(p, o, 2) to have
a clear overview of the general trends. In P14, we found that a DM
smoothing of 0.3 Mpc 2~! was an optimal value to reach the highest
accuracy in the predictions. This is confirmed here since we get errors
of >10 per cent compared to >20 and >30 per cent with values 0.5
and 1.0 Mpch™!, respectively. As expected, LYMAS2 permits to
reduces such errors that are in general much lower than 10 per cent
and most of the time lower than 5 per cent. It is also very promising
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Figure A2. Same as Fig. A1 but for DM smoothing of 0.3 (left-hand column) or 1.0 Mpc /=" (right-hand column). For the sake of clarity, we only show results
for the original LyMAS (red curves), LyMAS2(p, o) (blue curves), and LyMAS2(p, o, ©2) (black curves). Note that even with a DM smoothing of 1.0 Mpc h
LyMAS?2 still permits to reach a high-level accuracy, even for high angles (1 > 0.8).

that LyMAS?2 applied to DM fields smoothed at 1 Mpc 4~! gives such
accurate predictions even for high values of p. This is definitely not
the case with the original LyMAS leading to very high errors. Note
also that due the smoothing scale, the predictions are less accurate
for distance lower than 2 Mpch~! but acceptable for large-scale
analysis.

APPENDIX B: DETERMINISTIC MAPPING

One commonly way to produce large mocks of Ly « forest, from
Gaussian fields or DM distributions extracted from cosmological
simulations, is to use a physically motivated deterministic relation
that links the Ly « optical depth (or transmitted flux) to the DM
overdensity. This is the case with the so-called Fluctuating Gunn—
Peterson Approximation that has been extensively used in the
literature. However, the FGPA is supposed to be more suitable
for modelling high-resolution spectra and can be strongly limited
when the DM density field is smoothed to a scale greater than 0.1

MNRAS 514, 3222-3245 (2022)

Mpc h~! (see e.g. the analysis of Sorini et al. 2016) and confirmed
by our results in Section 5.4. For this reason, we have derived in P14
an ‘optimal’ deterministic relations by matching the corresponding
cumulative distributions of the smoothed transmitted Flux F, and
DM overdensity ps as

Fy 00
/ P(F)AF, = / P(o)dp,
0

ps

where P(F) and P(ps) are the one-point PDFs of the flux and
DM overdensity measure from the simulation. One advantage of
choosing such deterministic relation is to recover by construction
the PDF of the hydro flux. However, the two-point correlation
function of pseudo-spectra generated with this approach is still highly
overestimated (see e.g. figs 10 and 19 in P14).

In this section, we consider another choices of deterministic
relations. In particular, Tie et al. (2019) have used the conditional
probability P(F|1 + §) of the transmitted flux on the DM overdensity
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Figure B1. Examples of 1D and 2D deterministic relations derived from
the HORIZON-NOAGN simulation at z = 2.5. Top panel: the mean flux (F)
only depends on the DM overdensity 1 4 6. Three different DM smoothing
have been considered. For example, the mean flux has a value of 0.75 for an
overdensity of 1 (DM smoothing = 0.5 Mpc 2~ !). Bottom panel: scatter plot
showing the mean flux (F) with respect to the DM overdensity and velocity
dispersion field (o). In this case, (F) can have a wide range of values for 1 +
& =1 (see also Fig. B2).

to get the conditional mean flux:
f(l—i—é):/F.P(Fll—{—S)dF. (B1)

It can be analytically demonstrated that the two-point correlation
function of pseudo-spectra obtained from such a deterministic
mapping is the same that the one obtained with the first version
of LyMAS (Tie et al. 2019). Since this deterministic relation can be
easily extended to several DM fields, our aim is to investigate whether
the inclusion of different DM velocity fields in such deterministic
mappings may improve the trends or not. As an illustration, Fig. B1
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Figure B2. The evolution of the mean flux as respect to the velocity
dispersion (o) and for a given overdensity (i.e. 1 + 6 = 1). The DM
fields are smoothed at 0.5 Mpc ~~!. This variation is directly derived from
the 2D deterministic sampling presented in Fig. B1. Compared to the 1D
deterministic relation, a wide range of values of (F) is obtained and should
refine the predictions.

shows examples of 1D-deterministic relations constructed for differ-
ent smoothing of the DM overdensity field and and one example of
2D-deterministic relation F(1 + 8, ) using both the DM overdensity
and the velocity dispersion fields (smoothed at 0.5 Mpc/a~"). All
relations are derived from the HORIZON-NOAGN simulation at z =
2.5 (in redshift space). In principle, the 2D-deterministic relation
is supposed to refine the results as respect to the 1D deterministic
one. Indeed, let us take, for instance, a DM overdensity of 1 +
6 = 1. This leads to an unique mean flux of (F) = 0.75 from the
1D deterministic relation (using a DM smoothing of 0.5 Mpc A~").
The 2D-deterministic relation provides, however, a wide range of
possible values of (F) depending this time on the velocity dispersion
(see Fig. B2).

We have then produced grids of pseudo-spectra from DM fields
extracted from the HORIZON-NOAGN simulation (see Section 4),
smoothed at 0.5 Mpch~!' and using three different deterministic
relations. The first one considers the DM overdensity field only (one-
field), the second one both overdensity and velocity dispersion fields
(two-fields), while the last one associates the DM density field to
the velocity dispersion and vorticity fields (three-fields). To estimate
the mean value of the flux from a given value of p or a given set
of (p, o) or (p, o, 2), we use, respectively, interpolations, bilinear
interpolations, and trilinear interpolations, depending on the number
of input DM fields. First, Fig. B3 shows the 1D power spectrum and
PDF of pseudo-spectra (without iteration) for the two-fields case. We
notice that the one-point PDF is in general not well recovered. The
predictions of the 1D-P; are also not as accurate than LyMAS and
things especially for the two-fields and three-fields cases. Indeed,
the power spectra at small scales are considerably overestimated.
Although a full iteration can improved these trends, the predicted
two-point correlation functions, shown in Fig. B4, present errors that
are generally quite high especially when an angle u is considered.
For instance, the errors are much higher than 10 percent when
w > 0.8.
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Figure B3. Top panel: the 1D power spectrum of pseudo-spectra generate
from HORIZON-NOAGN DM fields (smoothed at 0.5 Mpc h=1';z=2.5)and
using deterministic relations described in the text. The discrepancies with the
hydro 1D-Py, are quite pronounced especially at small scales. Bottom panel: an
example of PDF of pseudo-spectra compare to hydro spectra, showing again
a noticeable disagreement. All results are presented without a full iteration in
the scheme (flux 1D-Py and PDF rescaling).

Also, one main drawback of this approach when creating large
mocks (>1 Gpch~') is to have enough statistics from the hydro-
dynamics simulations to cover most of the parameter space of the
large cosmological simulation. This should not be an issue for the
one-field case since simple interpolations and extrapolations can be
done (e.g. from Fig. B1, (F) ~1 and (F) ~O for 1 + § < —1.5 and
1 + 8 > 1.5, respectively). For the two-fields and three-fields cases,
efficient interpolations and extrapolations could be obviously much
more complicated to realized.
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Figure B4. The relative difference of the two-point correlation functions of
pseudo-spectra produced with deterministic sampling (and a full iteration in
the scheme). It appears clearly that the different deterministic sampling do no
reach the level of accuracy of LyMAS?2 especially for high angles where the
error are quite high (> 10 per cent). The light and dark grey shade represent
error lower that (absolute) 10 and 5 per cent, respectively.

APPENDIX C: ADAPTIVE SMOOTHING

In this section we provide some detail on how the DM density field,
velocity field, and velocity dispersion are interpolated adaptively
on a mesh from the output of a cosmological DM N-body simula-
tion, before further treatment by LyMAS?2, in particular additional
smoothing with a Gaussian window.
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Note that, while the notations below assume standard configuration
space, the calculation naturally extend to redshift space, by just
modifying particle coordinates accordingly with the local peculiar
velocity component contribution. In LyMAS?2, we use the infinitely
remote observer approximation by just accounting for redshift
distortion along the z-axis.

For a smooth phase-space distribution function f(x, v), the pro-
jected density is given by

p(x) = / & f(x.,v), )

the Eulerian mean velocity field by

o) = (V) = —— / o fx. v). )
PE(X)

and the local mean square velocity reads

(V)5(x) = ﬁ / o’ fx. v). (©3)

Obviously, the last two equations stand for points of space where
p(x) > 0. From equation (C3), we can derive the local velocity
dispersion

oo r = (Vg — Vi (C4)

We notice that the local velocity field can be considered as a statistical
average, this is why we used the (---)g notation above,

W)e() = [ &0 felr. ) ()
with the local density probability
1
felx,v) = ——f(x, ). (C6)
PE(X)

In this probabilistic approach, the mean square velocity is given by
equation (C3), since

(V)50x) = / o0’ filx, v). )

and, likewise, its local variance by equation (C4).

What we have actually access to is not a smooth distribution
function, unfortunately, but a distribution of N simulation particles
of individual masses m;, positions x; and velocities v;. This means
that the phase-space distribution function has the following form:

[, v) =" mi8p(v — v) Sp(x — xy), (€8)

where §p is the Dirac distribution function. From equation (C8), one
can compute the projected Eulerian density

pE(X) =Y mi Sp(x — x1), (€9

but the Eulerian velocity field vg(x) and mean square velocity are ill
defined.

However, the underlying distribution of true DM particles is
much smoother than its crude numerical representation in terms of
macroparticles of the N-body simulation. While, strictly speaking,
the phase-space density is still of the form (C8) at the microscopic
level, it can be considered as a smooth function at the macroscopic
level, at least in terms of probability density.

In order to recover a good approximation of the continuum,
Colombi et al. (2007) proposed a locally adaptive smoothing algo-
rithm, SmoothDens, inspired from smooth particle hydrodynamics
(hereafter SPH), using, to compute various fields, an interpolation
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window F, of which the shape parameters, in particular the typical
size £(x), depend on position x. This window function is normalized
to unity, ie. [ d®x' Fe(x') = 1.

In principle, for a given function /(x, v), the smoothed counterpart
is given by
[Fyxh](x,v) = /d3x’ Fe(x —x)h(x', v). (C10)
Setting h = pg, after simple algebraic calculations exploiting the
properties of the Dirac distribution function, we obtain the simple
expression for the adaptively smoothed density:

pr(x) =Y m; Fe(x — X)), (C11)

From there, we can formally define the analogous of equation (C6)
but with adaptive smoothing performed in the spatial position,

1
Se(x,v) = ——[F - flx,v),

Cl12
Pr(x) (12)

from which one can derive estimates in the mean field limit of velocity
related quantities:

>oimiv; Fe(x —x;)

) = S e —x) (1
o oimiv] Fe(x —x;)
(vi)g = Sy Fe(x —%0) . (C14)

In the algorithm SmoothDens, the adaptive procedure is used to
compute various fields for a particular set of positions x = x; on
a cubical grid of size ny. Function F is a compact (Monaghan &
Lattanzio 1985) spline of size £(x), with £(x) being the distance
of the N, closest simulation particle to position x. The value
of Ngpy we adopt here is Nspy = 32. As an additional recipe,
adaptive smoothing is locally replaced with nearest grid point (NGP)
interpolation (Hockney & Eastwood 1988) when £(x) is smaller or of
the order of the grid cell size L/ny, where L is the simulation box size.
Also, a local weight is given to each particle i so that at the end, its
total contribution sums up to the particle mass m;. Note that, due to
the finite extension of the spline function, some particles belonging
to dense clusters or close to dense clusters may not contribute at all.
In the latest implementation of the algorithm, SmoothDens5, which
we use in LyMAS?2, an option allows one to affect these particles to
the grid with NGP interpolation in order to conserve total mass. The
effect of not doing so is however generally small.

The outcome of SmoothDens mainly depends on two parameters,
the resolution ng of the grid and the value used for the number of
neighbours, Ngpy. Changing both these parameters can have drastic
impact on the results, especially the local velocity dispersion and
the velocity derivatives estimates. Additional Gaussian smoothing
performed in LyMAS?2 is however expected to reduce considerably
the dependence on these two parameters, provided that the smoothing
scale Rg associated with the smoothing window is large enough
compared to L/ng. Yet one has to bear in mind that the influence of
Nspy cannot be negligible in underdense regions as long as it can
influence scales larger than R, which is unfortunately very likely.
Despite these non-trivial issues, the reason why LyMAS2 still works
so accurately is that it is calibrated relying on probability distributions
mappings, which naturally corrects for intrinsic biases introduced by
local adaptive smoothing.

This paper has been typeset from a TEX/I&TEX file prepared by the author.

MNRAS 514, 3222-3245 (2022)

2202 JoqWIaA0N Z0 UO Jasn AJisIaAluN 21e1s 01O Aq £90/859/222E/E/ L G/o1oIME/SEIU/WOD dNO"DIWSPESE//:SA)Y Wol) papeojumoq



	1 INTRODUCTION
	2 LYMAS VERSUS LYMAS2
	3 WIENER EQUATIONS
	4 FLUX AND DM FIELDS
	5 CREATING PSEUDO-SPECTRA WITH LYMAS AND LYMAS2
	6 APPLICATION TO LARGE COSMOLOGICAL DM SIMULATIONS
	7 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: GENERAL TRENDS
	APPENDIX B: DETERMINISTIC MAPPING
	APPENDIX C: ADAPTIVE SMOOTHING

