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A B S T R A C T 

We present LyMAS2, an impro v ed v ersion of the ‘Lyman- α Mass Association Scheme’ aiming at predicting the large-scale 3D 

clustering statistics of the L yman- α forest (L y α) from moderate-resolution simulations of the dark matter (DM) distribution, with 

prior calibrations from high-resolution hydrodynamical simulations of smaller volumes. In this study, calibrations are derived 

from the HORIZON-AGN suite simulations, (100 Mpc h ) −3 comoving volume, using Wiener filtering, combining information 

from DM density and velocity fields (i.e. velocity dispersion, vorticity, line-of-sight 1D-divergence and 3D-divergence). All new 

predictions have been done at z = 2.5 in redshift space, while considering the spectral resolution of the SDSS-III BOSS Survey 

and different DM smoothing (0.3, 0.5, and 1.0 Mpc h −1 comoving). We have tried different combinations of DM fields and 

found that LyMAS2, applied to the HORIZON-NOAGN DM fields, significantly impro v es the predictions of the Ly α 3D clustering 

statistics, especially when the DM o v erdensity is associated with the velocity dispersion or the vorticity fields. Compared to 

the hydrodynamical simulation trends, the two-point correlation functions of pseudo-spectra generated with LyMAS2 can be 
reco v ered with relativ e dif ferences of ∼5 per cent e ven for high angles, the flux 1D power spectrum (along the light of sight) 
with ∼2 per cent and the flux 1D probability distribution function exactly . Finally , we have produced several large mock BOSS 

spectra (1.0 and 1.5 Gpc h −1 ) expected to lead to much more reliable and accurate theoretical predictions. 

Key words: methods: numerical – dark matter. 
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 INTRODUCTION  

istant quasars emit light that crosses a large part of the Universe
efore being observed with instruments on Earth. In particular,
he spectrum of each quasar presents fluctuating absorption that
orresponds to the Lyman- α forest (Ly α; Lynds 1971 ; Sargent et al.
980 ). The study of the Ly α forest has become a major focus of
odern cosmology, as it is supposed to trace the neutral hydrogen

ensity that fills most of the Universe in a way that approximately
orresponds to the underlying dark matter (DM) density (Croft et al.
999 ; Peeples et al. 2010 ). Since a single background source only
rovides 1D information along the corresponding line of sight (LOS,
r ‘skewer’), characterizing the 3D density of the high-redshift
niverse with the Ly α forest requires large samples of quasar

pectra. Successful surv e ys such as the (e xtended) Baryon Oscillation
pectroscopic Surv e y (BOSS/eBOSS; Da wson et al. 2013 , 2016 ), of

he Sloan Digital Sk y Surv e y (SDSS-III and SDSS-IV; Blanton et al.
017 ), Eisenstein et al. ( 2011 ) have measured the Ly α forest spectra
f 160 000 quasars at redshifts 2.2 < z < 3. Thanks to this large
ample, the study of the Ly α forest has pro v ed to be a complementary
 E-mail: sebastien.peirani@oca.eu 
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robe to low-redshift galaxy surv e ys. F or instance, the large sample
f quasar spectra have permitted accurate measurements of 3D flux
utocorrelation functions (Slosar et al. 2011 ) as well as the cross-
orrelation between the Ly α Forest and specific tracers, namely
amped-Ly α systems (DLAs) and quasars (Font-Ribera et al. 2012 ,
013 , 2014 ). Such 3D measurements also enable measurements of
he distance–redshift relation and the Hubble expansion via baryon
ccoustic oscillations (BAO; Busca et al. 2013 ; Slosar et al. 2013 ;
elubac et al. 2015 ; Bautista et al. 2017 ; du Mas des Bourboux et al.
020 ). Moreo v er, BOSS spectra also permit accurate measurements
f the LOS power spectrum (Palanque-Delabrouille et al. 2013 ) and
ux probability distribution function (PDF; Lee et al. 2015 ). In the
ear future, the Dark Energy Spectroscopic Instrument (DESI; DESI
ollaboration et al. 2016 ), the William Herschel Telescope Enhanced
rea Velocity Explorer (WEAVE-QSO; Dalton et al. 2016 , 2020 ;
ieri et al. 2016 ), and the Subaru Prime Focus Spectrograph (PFS;
akada et al. 2014 ) will go well beyond the present surv e ys and
ill open new perspectives on the high redshift intergalactic medium
robed by the Ly α forest. 
In parallel to the development of these large quasar surv e ys,

heoretical modelling needs to reach the high level of complexity and
ccuracy to interpret the observ ational data. No wadays, hydrodynam-
cal cosmological simulations represent an ideal tool as they manage
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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o model the intergalactic medium with a high degree of realism 

ith appropriate resolution (e.g. Dubois et al. 2014 ; Vogelsberger 
t al. 2014 ; Schaye et al. 2015 ; Bolton et al. 2017 ). Ho we ver, to
roperly model the 3D correlations of the Ly α forest, one needs 
o resolve the pressure-support scale (Jeans scale) of the diffuse 
ntergalactic medium (IGM), which is typically ∼0.25 Mpc h −1 

omoving for matter overdensity of ∼10 (Peeples et al. 2010 ), while
onsidering ∼Gpc 3 simulation volumes to exploit the statistical 
recision achieved by the different observational surv e ys while 
 v oiding box size effects. Combining such resolution and simulation 
olume is currently not feasible mainly because of computational 
imits. To tackle such an issue, several methods exist in the literature.
ne of the most popular is to use the so-called ‘Fluctuating Gunn–
eterson Approximation’ (FGPA; Weinberg et al. 1997 ; Croft et al. 
998 ) that links the Ly α optical depth to the local DM density. This
pproach is relatively straightforward as it assumes a deterministic 
elation and only information on the density field (extracted from N-
ody simulations or lognormal density fields) is required. Ho we ver, 
he FGPA approach is expected to be accurate enough only on very
arge scales, e.g. those of the BAO features ( ∼ 100 Mpc h −1 ; e.g.
g. 5 of Sinigaglia et al. 2022 ). But 3D Ly α forest surv e ys also
nable precise measurements of flux correlations at much smaller 
cales where the FGPA might not be adequate. 

Another approach is to apply rele v ant calibrations, deri ved first
rom small hydrodynamical simulations, to large-scale DM distribu- 
ions extracted from pure DM simulations, which are much cheaper 
o perform. In particular, Peirani et al. ( 2014 , hereafter P14 ) have
eveloped the Lyman- α Mass Association Scheme (LyMAS) that 
ollows such a philosophy. The main idea is that flux correlations 
n small and large scales are mainly driven by the correlations of
he DM density field. More specifically, the flux statistics can be 
stimated by combining the DM density field with the conditional 
robability distribution P ( F | ρ) of the transmitted flux F on the DM
ensity contrast ρ. In its most sophisticated form, LyMAS creates 
nsemble of coherent pseudo-spectra at the BOSS resolution using 
he Gaussianized percentile distribution of the conditional flux, while 
e-scaling the LOS power spectrum and PDF at the last step. One
f the main results of LyMAS is to impro v e the predictions of flux
D correlations especially with respect to deterministic mapping 
e.g. FGPA) that tends to significantly o v erestimate them especially 
hen the DM density is smoothed at scale greater than 0.3 Mpc h −1 .
imilarly, Sorini et al. ( 2016 ) hav e dev eloped ‘ Iter ative Matc hed
tatistics ’ (IMS) in which the PDF and the power spectrum of
he real-space Ly α flux are derived from small hydrodynamical 
imulations. Then, these two statistics are 1D (1D-IMS) or 3D 

3D-IMS) iteratively mapped on to a pseudo-flux field of an N-
ody simulation from which the matter density is first Gaussian 
moothed. In 3D-IMS, smoothing is followed by matching the 3D 

ower spectrum and PDF of the flux in real space to the reference
ydrodynamic simulation. With 1D-IMS, the 1D power spectrum 

nd PDF of the flux are additionally matched. Both methods have 
ro v ed to be again more accurate than the FGPA approach (which
trongly relies on the DM smoothing scale) when reproducing LOS 

bservables, such as the PDF and power spectrum as well as the
D flux power spectrum (5–20 per cent). Finally, machine-learning- 
ased methods start to be considered and lead to promising results
Chopitan, Lavaux & Peirani, in preparation; Harrington et al. 2022 ; 
inigaglia et al. 2022 ). 
Although the LyMAS full scheme is able to model the BOSS

D clustering quite accurately and has been already used in different 
nalysis related to the quasar-Ly α forest cross-correlation (Lochhaas 
t al. 2016 ), the three-point correlation functions (Tie et al. 2019 )
nd the correlations between the Ly α transmitted flux and the mass
 v erdensity (Cai et al. 2016 ), we aim at investigating whether other
ets of calibrations could still impro v e the theoretical predictions. To
his regard, we consider a new approach based on Wiener Filtering,
hich has been used for 3D map reconstruction from an ensemble of
D LOS (e.g. Pichon et al. 2001 ; Caucci et al. 2008 ; Ozbek, Croft &
handai 2016 ; Lee et al. 2018 ; Japelj et al. 2019 ; Ra v oux et al. 2020 ).
he underlying philosophy in LyMAS2 remains unchanged. We still 
nd that the flux correlations are driven mainly by the correlations
f the DM density field, but with potential refinements from the
orrelations of the DM velocity field. 

This paper is organized as follows. In Section 3 , we describe the
iener equations as multi v ariate normal conditional probabilities, 

nd we explain their application to hydrodynamical simulations. 
ection 4 briefly describes how we extract the flux and all relevant
M fields from the HORIZON-NOAGN simulation. We also present 

he potential correlations that arise between these different fields. 
hen, in Section 5 , we present the statistics in the LOS power
pectrum, the PDF and the two-point correlation function of pseudo- 
pectra produced when LyMAS2 is applied to different associations 
f DM fields of HORIZON-NOAGN . Such trends are compared to the
ux statistics from the hydrodynamical simulation (‘hydro flux’). 
n Section 6 , we apply LyMAS2 to N -body simulations of 1.0
nd 1.5 Gpc h −1 comoving volumes. We summarize our results 
nd conclusions in Section 7 . We also add three appendices. In
ppendix A , we compute the mean two point correlations functions

rom five different hydrodynamical simulations of lower resolution 
o check the robustness of the results presented in Section 5 .
ppendix B presents the performance of specific deterministic 

amplings. Appendix C provides details on how estimates of density 
nd velocities are performed on the DM particle distribution, relying 
n adaptive softening. 

 LYMAS  VERSUS  LYMAS2  

e briefly describe the fundamental differences between the first 
ersion of LyMAS, detailed in P14 and the new scheme, LyMAS2,
resented in this work. The two versions basically share the same
hilosophy: specific calibrations are first derived from hydrodynam- 
cal simulations of small volume and then applied to large DM
imulations, assuming that the correlations of the Ly α at small and
arge scales are mainly driven by the correlations of the underlying
M density and (eventually) velocity fields. The main differences 

ssentially lie in (1) the deri v ation and characterization of the cross-
orrelation between the different fields (namely the hydro spectra 
nd the DM fields) and (2) the way we apply such calibrations to the
M distributions. 
More specifically, in the first version a hydrodynamical simulation 

as used to calibrate the conditional probability distribution P ( F | ρ)
o have a transmitted flux value F , given the value of the DM
ensity contrast ρ at the same location. In its simplest form, 
yMAS randomly and independently draws transmitted flux values 
ccording to P ( F | ρ) and the value of ρ at each pixel of a regular
rid used to sample the DM o v erdensity field. Although the 3D
lustering statistics of the pseudo-spectra generated by this approach 
s quite close to that of the hydro flux, the main drawback of this
rocedure is to create very noisy spectra as any coherence along
ach LOS is lost. To solve this issue and make the pseudo-spectra
ore realistic, the most sophisticated form of LyMAS uses the fact

hat neighbouring pixels along a given LOS are supposed to have
lose probability distribution P ( F | ρ). Hence, one can introduce a
oherence by defining percentile spectra, i.e. the fractional position 
MNRAS 514, 3222–3245 (2022) 
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f the flux value in the cumulative distribution of P ( F | ρ). Then
hese percentile spectra derived from every LOS of the grid can be
aussianized and one can derive a characteristic power spectrum

rom these 1D Gaussian fields. Thus, from this new input parameter,
yMAS generates first a 1D Gaussian field, de-Gaussiannizes it to get
 realization of a percentile spectrum, and finally derives a coherent
pectrum using the different values of the DM density contrast ρ
nd the percentile value in P ( F | ρ) along the considered LOS. Here
gain, the predictions of the 3D clustering from such coherent spectra
s pro v ed be v ery accurate. 

LyMAS2 does not derive and consider P ( F | ρ) as well as percentile
pectra. Instead, as we explain in detail in Section 3 , LyMAS2 makes
ood use of Wiener Filtering to characterize the correlations between
he transmitted flux and the DM density contrast. The statistics are
irectly made LOS by LOS, which naturally introduces a coherence
n the pseudo-spectra. Furthermore, this approach has the advantage
o naturally take into account not only the DM density field (like in
yMAS) but other fields such as specific DM velocity fields (e.g.
 elocity dispersion, vorticity, div ergence) that potentially bring new
nformation to impro v e the predictions. 

In the very last step, both LyMAS and LyMAS2 end similarly by
escaling the flux LOS power spectrum and PDF. These transforma-
ions are useful to slightly correct the LOS 1D power spectrum and
DF of pseudo-spectra to make them identical or quasi identical to

hose of the hydro spectra. This step, ho we ver, does not significantly
odify the 3D clustering statistics. 
In the beginning of Section 5 , we summarize all the steps of

yMAS and LyMAS2 to create a pseudo-spectrum. 

 WIENER  EQUATIONS  

.1 Multi v ariate conditional probabilities 

et us assume a complex Gaussian random (vector) variable x that
an be separated into two sub-vectors x = ( x 1 , x 2 ), whose mean and
ovariance can be written as 

μ = ( μ1 , μ2 ) , 

 = 

(
� 11 � 12 

� 
H 

12 � 22 

)
, 

here the H superscript denotes the Hermitian conjugate. By using
ormulas for block inverses, it is possible to derive from the joint
istribution of x 1 and x 2 the formula for the conditional distribution
f x 1 , given x 2 . As expected, it is a Gaussian multi v ariate distribution,
f mean and covariance: 

¯ 1 = μ1 + � 12 � 
−1 
22 ( x 2 − μ2 ) , (1) 

¯
 = � 11 − � 12 � 

−1 
22 � 

H 

12 . (2) 

Now, consider the joint Gaussian distribution of the (complex)
patial Fourier modes ( f k , δk , θ k , ω k ), where, by definition for field a ,
e have a k = 

∫ 
a ( x )e −ik · x d 3 x . We assume they are centred fields (zero

ean), and of covariance (we drop the subscript k for visibility): 

 = 

⎛ 

⎜ ⎜ ⎝ 

P ff P f δ P f θ P f ω 

P 
∗
f δ P δδ P δθ P δω 

P 
∗
f θ P 

∗
δθ P θθ P θω 

P 
∗
f ω P 

∗
δω P 

∗
θω P ωω 

⎞ 

⎟ ⎟ ⎠ 
= 

(
� 11 � 12 

� 
H 

12 � 22 

)
, 

here, by definition, P ab ( k) ≡ 〈 a ∗k b k 〉 is the cross-spectrum of fields
 and b at wavenumber k , and we have partitioned the fields according
o x 1 ≡ f k and x 2 ≡ ( δk , θk , ω k ) T . Applying the equations ( 1 ) and
NRAS 514, 3222–3245 (2022) 
 2 ), we obtain the conditional mean and variance of the field f k , given
 δk , θ k , ω k ): 

 ̄k = 

(
P f δ, P f θ , P f ω 

) · � 
−1 
22 ·

⎛ 

⎝ 

δk 

θk 

ω k 

⎞ 

⎠ , (3) 

¯
 = P ff −

(
P f δ, P f θ , P f ω 

) · � 
−1 
22 ·

⎛ 

⎝ 

P 
∗
f δ

P 
∗
f θ

P 
∗
f ω 

⎞ 

⎠ . (4) 

omputing the inverse � 
−1 
22 using the cofactor matrix formula, we

btain 

 
−1 
22 = 

1 

| � 22 | 

⎛ 

⎝ 

A 11 A 12 A 13 

A 21 A 22 A 23 

A 31 A 32 A 33 

⎞ 

⎠ , 

ith 

A 11 = P θθP ωω − P θω P 
∗
θω , A 12 = −P 

∗
δθP ωω + P 

∗
δω P θω , 

A 13 = P 
∗
δθP 

∗
θω − P 

∗
δω P θθ , A 21 = −P δθP ωω + P δω P 

∗
θω , 

A 22 = P δδP ωω − P δω P 
∗
δω , A 23 = −P δδP 

∗
θω + P δθP 

∗
δω , 

A 31 = P δθP θω − P θθP δω , A 32 = −P δδP θω + P 
∗
δθP δω , 

A 33 = P δδP θθ − P δθP 
∗
δθ , 

nd 

 � 22 | = P δδ( P θθP ωω − P θω P 
∗
θω ) + ( P δθP θω P 

∗
δω + c . c . ) 

−P θθP δω P 
∗
δω − P ωω P δθP 

∗
δθ , 

here ‘c.c’ denotes the conjugate complex. 
Note that we limit our study to a maximum of three different input

elds (i.e. δ, θ , and ω) to construct the field f . But obviously, this
ormalism can be extended to a higher number of fields, leading to
ore and more complex analytical solution. Ho we ver, we will see

hat the statistical trends derived when considering two and three
nput fields are quite similar (when judiciously chosen), suggesting
hat adding more than two fields will not noticeably impro v e the
esults anymore. 

.2 Application to hydro simulations 

et us call F , ρ, v 1 , and v 2 , respectively, the local Ly α transmitted
ux, the local DM density, v elocity div ergence, and vorticity am-
litude, extracted from a given hydrodynamical simulation. Let us
all now G the cumulative distribution of a standard normal N (0; 1)
istribution ( G [ x] = 

∫ x exp ( −u 
2 / 2) / 

√ 

2 πd u ), and 

 ρ = 

∫ ρ
−∞ 

PDF ( ρ ′ )d ρ ′ , (5) 

 v i = 

∫ v i 
−∞ 

PDF ( v ′ ) dv ′ , (6) 

 F = 

∫ F 
0 PDF ( F 

′ )d F 
′ , (7) 

he cumulative distributions of the measured DM density and velocity
elds (in the hydrodynamical simulation), and G f the cumulative
istribution of the measured flux, F . We can then define new fields,
amely 

 = G 
−1 ( G F ( F ) , δ = G 

−1 ( G ρ( ρ)) , (8) 

= G 
−1 ( G v 1 ( v 1 )) , ω = G 

−1 ( G v 2 ( v 2 )) . (9) 

hich should be normally distributed by construction (or ‘gaus-
ianized’). Let us compute these different fields from the hydro



LyMAS reloaded 3225 

s  

F

w
s  

G  

r  

v  

o

f

w  

T  

H  

i
L  

(
i
c
fi  

s

f

v

f

A
o

 

G

	

w

	

i  

t
G  

r
t
o  

w

P

b
f

P

s
 

F  

g

4

T
N  

c
D
1  

2  

8  

a  

a  

s  

a  

s  

H  

t  

a
p
f
g

A  

a
t
T
h
a  

s
t  

t
d
i  

b  

c
L  

n  

t  

2
 

s  

t
s  

g  

c

4

F  

h
a
e  

τ  

t  

i  

a  

w  

s  

i  

p
c  

0
h

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/514/3/3222/6587067 by O
hio State U

niversity user on 02 N
ovem

ber 2022
imulations and extract from them the rele v ant cross-spectra, using
ourier space: 

P ff = 〈 f ∗k f k 〉 , P δδ = 〈 δ∗
k δk 〉 , P θθ = 〈 θ∗

k θk 〉 , 
P ωω = 〈 ω 

∗
k ω k 〉 , P f δ = 〈 f ∗k δk 〉 , P f θ = 〈 f ∗k θk 〉 , 

P δθ = 〈 δ∗
k θk 〉 , P θω = 〈 θ∗

k ω k 〉 , etc . 

hich are going to depend typically on a transverse and a longitudinal 
eparation radius. If we assume that the fields f , δ, θ , and ω are
aussian random fields (GRFs, not just its one point statistics is now

equired to be normal), then for a given measured set of ρ, v 1 , and
 2 (correspondingly a set of δk , θ k , and ω k ) ,say along a set of LOS,
ne can estimate the most likely field f̄ following equations ( 3 ): 

 ̄k = T 1 · δk + T 2 · θk + T 3 · ω k , (10) 

here T 1 , T 2 , and T 3 are functions of the cross-spectrum P ab ( k ).
his approach can be done along a given LOS or in volume.
o we ver, in this study we will only analyse LOS individually and

ndependently, ignoring transverse correlations between different 
OS for now. This allows us to use 1D fast Fourier transforms

FFT), and assuming stationarity along the LOS, the multiplication 
s simply done frequency by frequency since in Fourier space the 
ovariance sub-blocks P ab are diagonal. To illustrate, if only one 
eld is considered (i.e. the DM o v erdensity field in our study), we
imply obtain 

 ̄k = P f δ · P 
−1 
δδ · δk . (11) 

If we add additional information from a specific velocity field (e.g. 
elocity dispersion), the expression of f̄ becomes 

 ̄k = 

P f δ( P θθ − P δθ ) 

P δδP θθ − P δθP 
∗
δθ

· δk + 

P f θ ( P δδ − P 
∗
δθ ) 

P δδP θθ − P δθP 
∗
δθ

· θk . (12) 

dding a second velocity field leads to a more complex expression 
f f̄ k . 
We can then draw samples as ˜ f k ≡ f̄ k + 	f k , where 	 f k obeys a

RF of mean zero and variance as equation ( 4 ): 

f k ∼ G(0 , P ff − P f δ · P 
−1 
δδ · P 

∗
f δ) , 

hen only the DM density is considered and 

f k ∼ G 

( 

0 , P ff −
(

P f δ

P f θ

)T 

·
[
P δδ P δθ

P 
∗
δθ P θθ

]−1 

·
(

P 
∗
f δ

P 
∗
f θ

)) 

, 

n the case of two DM fields. After computing the inverse Fourier
ransform of ˜ f k to obtain ˜ f , the corresponding flux obeys ˜ F = 

 f [ G 
−1 ( ˜ f )]. By construction the one point statistics of ˜ f will be

andom normal, so that the one-point PDF of its de-Gaussianized 
ransform will be that of the original field. The power spectrum P ff 

f ˜ f will be the same as that of f . Indeed, let us consider the case
ith only one input file for simplicity. We have 

 ̃  f k ̃ f k 
≡ 〈| f̄ k + 	f k | 2 〉 = 

〈 ∣∣∣∣ 1 

P δδ

P f δδk 

∣∣∣∣
2 

+ | 	f k | 2 
〉

, 

ecause the expectation and the fluctuations are uncorrelated. There- 
ore 

 ̃  f k ̃ f k 
= 

P 
2 
f δ

P 
2 
δδ

〈| δk | 2 
〉 + P ff −

P 
2 
f δ

P δδ

= P ff , 

ince 〈| δk | 2 〉 ≡ P δδ . 
Recall that all equations abo v e are valid independently for each

ourier mode k , and for each mode, all P ab terms are scalars for a
iven pair of fields ( a , b ). 
 FLUX  AND  DM  FIELDS  

hroughout the present analysis, we have used the HORIZON- 
OAGN simulation (Peirani et al. 2017 ) to characterize any rele v ant
ross-correlations between the transmitted flux and the different 
M fields. HORIZON-NOAGN is a hydrodynamical simulation of 
00 h −1 Mpc comoving boxside run with the RAMSES code (Teyssier
002 ). It evolves 1024 3 DM particles with a mass resolution of
.27 ×10 7 M 
, while the initially uniform grid is refined in an
dapti ve way do wn to 	 x = 1 proper kpc at all times. The simulation
dopts a standard 
 CDM cosmology compatible with WMAP -7 re-
ults (Komatsu et al. 2011 ), namely a total matter density �m = 0.272,
 dark energy density �
 = 0.728, an amplitude of the matter power
pectrum σ 8 = 0.81, a baryon density �b = 0.045, a Hubble constant
 0 = 70 . 4 km s −1 Mpc −1 , and n s = 0.967. HORIZON-NOAGN is the

win simulation of HORIZON-AGN (Dubois et al. 2014 ). It contains
ll rele v ant physical processes such as metal-dependent cooling, 
hotoionization, and heating from a UV background, supernova 
eedback, and metal enrichment, but does not include black hole 
rowth and therefore AGN feedback. 
The choice of using HORIZON-NOAGN instead of HORIZON- 

GN was mainly moti v ated by the fact that we have performed five
dditional but slightly lower resolution hydrodynamical simulations 
o estimate the accuracy and robustness of the LyMAS2 predictions. 
hus, turning out the AGN feedback processes in the simulations 
as permitted us to limit the computational time. These results 
re presented in Appendix A . Furthermore, we have tuned in this
tudy the UV background intensity in the process of generating 
he ‘noAGN’ flux grid (see below) in order to get the same mean
ransmitted Ly α forest flux F derived from HORIZON-AGN . By 
oing this, the flux statistical predictions from the two simulations 
n the 3D Ly α clustering tend to be almost the same. This has
een already noticed in Lochhaas et al. ( 2016 ) when studying the
ross-correlations between DM haloes and transmitted flux in the 
y α forest. Note, ho we ver , that A GN feedback is expected to have
on-negligible effect on the Ly α 3D clustering such as, for instance,
he 1D power spectrum of the Ly α forest (e.g. Viel, Schaye & Booth
013 ; Chabanier et al. 2020 ). 
In the following, we describe briefly how we derived the hydro

pectra field and the different DM density and velocity fields from
he HORIZON-NOAGN simulation. Similarly to P14 , we analyse the 
imulation outputs at redshift 2.5. Each field is sampled in a regular
rid of 1024 3 pixels and the size of a single pixel is therefore ∼0.1
omoving Mpc h −1 or 0.04 physical Mpc. 

.1 Transmitted flux 

rom the HORIZON-NOAGN , we follow the method to generate the
ydro spectra that is fully described in P14 . The optical depth of Ly α
bsorption is calculated based on the neutral hydrogen density along 
ach LOS. Basically, the opacity at observ er-frame frequenc y νobs is
( νobs ) = 

∑ 

cells n H I σ ( νobs )d l , where the sum extends over all cells
raversed by the LOS, n H I is the numerical density of neutral H atoms
n each cell, σ ( νobs ) is the cross-section of Hydrogen to Ly α photons,
nd d l is the physical size of the cell. Then each spectrum is smoothed
ith a 1D Gaussian of dispersion 0.696 h −1 Mpc, equi v alent to BOSS

pectral resolution at z ≈ 2.5. The optical depth along each spectrum
s converted to Ly α forest flux by F = e −τ . Following common
ractice in Ly α forest modelling, the UV background intensity is 
hosen to give a mean transmitted Ly α forest flux F = 〈 e −τ 〉 =
.795, matching the metal-corrected z = 2.5 value measured from 

igh-resolution spectra by Faucher-Gigu ̀ere et al. ( 2008 ). 
MNRAS 514, 3222–3245 (2022) 
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Table 1. Summary of fields and corresponding notation used in the text. 

Hydro spectra 

Flux (smoothed at BOSS res.) F 
Optical depth τ = −ln F 

Dark matter fields 

Smoothed density ρs 

Overdensity ρ = 1 + δ = ρs / 〈 ρs 〉 
Vorticity �

Velocity dispersion σ

1D vel. divergence ∇ 1D 

3D vel. divergence ∇ 3D 

Figure 1. Slices through the flux (1D smoothed at the BOSS resolution) as 
well as corresponding DM o v erdensity and v elocity fields (3D smoothed at 
0.5 Mpc h −1 ) in redshift space (horizontal direction). Each field has been 
extracted from the HORIZON-NOAGN simulation at z = 2.5 and has been 
normalized to help the visual comparison. The dashed lines correspond to the 
same LOS (see Fig. 2 ). 
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.2 Density , velocity , and mean square velocity 

M skewers that correspond to the ‘hydro’ spectra are also extracted
rom the hydrodynamical simulation. We use the same three-step
lgorithm introduced in P14 to derive both the o v erdensity, the
elocity field and the velocity dispersion fields: 

(i) adaptive interpolation of the DM particle distribution on a
egular grid (Colombi, Chodorowski & Teyssier 2007 ), as detailed
n Appendix C ; 

(ii) smoothing with a Gaussian window in Fourier space; 
(iii) extraction of the skewers from a grid of LOS aligned along

he z-axis. 

In step (ii), DM field is 3D smoothed using different choices
f smoothing scales. In P14 , we found that a smoothing scale of
.3 Mpc h −1 has pro v ed to be optimal leading to the most accurate
redictions. Ho we ver, we prefer a value of 0.5 Mpc h −1 in this study
ince the predictions are very similar to those obtained with 0.3

pc h −1 (see Appendix A ). Furthermore, we anticipate with the fact
hat it is computationally much easier to smooth a DM field to 0.5 than
.3 Mpc h −1 when considering large volumes namely with boxsides
t least greater or equal to 1 Gpc h −1 . 

.3 DM vorticity 

he velocity field is projected (using Cloud-in-Cell interpolations)
n a regular grid of resolution 1024 and smoothed over 0.5 Mpc h −1 

ith a Gaussian filter. The vorticity � is then computed as being
he curl of the velocity field using FFT. Slightly smoothing the input
elocity field allows us to a v oid Gibbs artefacts. 

.4 DM velocity divergence 

e have considered both the 3D v elocity div ergence and the 1D
 elocity div ergence along the LOS direction. 
For the 3D case, we employed two different methods to see

hether this could affect our results and trends. The first one is based
n a centred finite-difference approximation, namely the divergence
 
i 
3D at a pixel i is given by 

 
i 
3D 
 

V 
i+ 1 
x −V 

i−1 
x 

2 h 

+ 

V 
i+ 1 
y −V 

i−1 
y 

2 h 

+ 

V 
i+ 1 
z −V 

i−1 
z 

2 h 

, (13) 

here V 
i 
x , V 

i 
y , and V 

i 
z are the velocity components at pixel i and h the

ize of a pixel (i.e. 100/1024 Mpc h −1 here). The second method uses
he e xact e xpression of the div ergence in F ourier space. Ho we ver, we
ound that the two methods lead to very similar results so we will
nly show results from the Fourier space method for the 3D case. 
For the 1D case, we simply use the finite-difference approach and

he divergence ∇ 
i 
1D at a pixel i becomes 

 
i 
1D 
 

V 
i+ 1 
z − V 

i−1 
z 

2 h 

, (14) 

ince we define the z-axis as the direction of the LOS. 
We summarize in Table 1 the different DM fields used in this study.

t is worth mentioning that we changed some of the notations that
an be found in P14 . We first replaced the definition of the smoothed
ux at the BOSS resolution F s in P14 to F here. We also changed the
efinition of the 3D smoothed DM o v erdensity, ρ = 1 + δ instead of
 s = 1 + δs in P14 . 
In Fig. 1 , we show a slice of the hydro flux (smoothed at

OSS resolution) and the corresponding DM density and velocity
NRAS 514, 3222–3245 (2022) 
elds (smoothed at 0.5 Mpc h −1 ) extracted from the HORIZON-
OAGN simulation at redshift 2.5. As expected, clear correlations are
oticeable between the transmitted flux and the different DM fields.
his trend can also be seen when studying the evolution of each
eld along the same LOS, and a typical example is given in Fig. 2 .
e note that high absorptions in the flux correspond to high-density

egions or high values in the vorticity or the velocity dispersion. But
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between the evolution of the hydro flux (green line) and DM density and 
velocity fields (blue and red lines) along the same skewer extracted from the 
HORIZON-NOAGN at z = 2.5. These skewers are extracted from the slices 
studied in Fig. 1 . 
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he relative amplitudes of peaks in the density contrast may differ
rom those of the the velocity dispersion/vorticity. Indeed, the density 
ontrast and the velocity dispersion/vorticity do not necessary put the 
mphasis of the same structures (e.g. walls, filaments) as suggested 
y Fig. 1 or, for instance, by fig. 2 of Buehlmann & Hahn ( 2019 ). In
ontrast, these high absorptions rather coincide with high ne gativ e 
alues in the 3D or 1D v elocity div ergence. This is consistent since
igh-density regions are associated with DM haloes in which matter 
ends to sink toward the centre of the objects. Note also that the
ariations of the modulus of the vorticity and velocity dispersion are 
ery similar. 

.5 Field cross correlations 

n order to characterize the correlations that emerge from Figs 1 
nd 2 , we first plot in Fig. 3 some rele v ant scatter plots between
he optical depth τ and the DM o v erdensity and v elocity fields. The
orrelations between the optical depth in the hydro spectra and the 
moothed DM o v erdensity (1 + δ) is quite similar to the trend found
n P14 using the 50 h 

−1 Mpc ‘Horizon MareNostrum’ simulation. In
ig. 4 , we additionally show the correlations between the different 
M fields. As noticed in Fig. 2 , the velocity dispersion and vorticity
eld are highly correlated. We do not show the correlations using the
D v elocity div ergence as there are quite similar with trends found
sing the 3D velocity divergence. 
All these plots suggest that there are more or less pronounced cor-

elations between the different input DM fields. It is ho we v er trick y
o anticipate which combinations of fields through the LyMAS2 
cheme would lead to the most accurate theoretical predictions. As 
pecified in Section 3 , we consider combinations with up to three
ifferent DM fields, which offers 85 different possibilities (5, 20, 
nd 60, respectively, for one, two, and three input fields). Ho we ver,
s the main philosophy of LyMAS is to trace the Ly α flux from
he underlying DM distribution with potential corrections from the 
M veloctiy field, we will al w ays consider the DM o v erdensity
eld in each combination reducing this number to 17. Moreo v er,
ince the velocity dispersion and the vorticity fields are highly 
orrelated, we will also al w ays use the velocity dispersion in
he 3D case. Consequently, we limit our study to eight different
ombinations presented in Table 2 . Nevertheless, we have checked 
hat combinations using only DM velocity fields do not lead to
atisfactory theoretical predictions. 

From each specific association of DM fields, and each Fourier 
ode k along an LOS, we have estimated the rele v ant cross-spectra
 ab defined in Section 3.1 , where a and b refer either to the transmitted
ux, the DM o v erdensity or a specific DM scalar field deriv ed from

he DM v elocity field. F or each mode k , the co variance matrix P ab 

s Hermitian, and its linear dimension is equal to the total number
f fields considered. Examples of cross-power spectra are shown in 
ig. 5 . We also derived the relevant 1D power spectrum P k required

o computed the covariance 	 f k defined in equation ( 4 ). An example
f P k is shown in Fig. 16 . 

 CREATING  PSEUDO-SPECTRA  WITH  LYMAS  

ND  LYMAS2  

n this section, we apply the LyMAS2 scheme to the DM fields
xtracted from the HORIZON-NOAGN simulation to generate grids 
f pseudo-spectra at BOSS resolution. The objective is to reco v er
he 3D Ly α clustering statistics of the ‘true’ hydro spectra. For
 given skewer, we summarize the main steps to follow to pro-
uce a corresponding pseudo-spectrum using either LyMAS or 
yMAS2: 
MNRAS 514, 3222–3245 (2022) 
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0.5 Mpc h −1 and have been computed in redshift space. Colours show again 
the density of pixel using normalized values and contour line mark areas 
enclosing 68.27 and 95.45 per cent. 

Table 2. Summary of the different DM field combinations considered in the 
LyMAS2 scheme. 

Name Field 1 Field 2 Field 3 

LyMAS2( ρ) Overdens. 
LyMAS2( ρ, σ ) Overdens. Vel. disp. 
LyMAS2( ρ, �) Overdens. Vorticity 
LyMAS2( ρ, ∇ 1D ) Overdens. 1D div. 
LyMAS2( ρ, ∇ 3D ) Overdens. 3D div. 
LyMAS2( ρ, σ , �) Overdens. Vel. disp. Vorticity 
LyMAS2( ρ, σ , ∇ 1D ) Overdens. Vel. disp. 1D div. 
LyMAS2( ρ, σ , ∇ 3D ) Overdens. Vel. disp. 3D div. 
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Figure 5. Examples of cross-spectrum P ab ( k) = 〈 a ∗k b k 〉 , where a and b 
refer either to the hydro flux or a DM field, derived from the HORIZON- 
NOAGN simulation at z = 2.5. The flux field is 1D smoothed at the BOSS 
resolution while the DM field are smoothed at 0.5 Mpc h −1 . 
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The LyMAS scheme: 
(1) Extract the smoothed o v erdensity field ρ for a specific skewer.
(2) Create a realization G per ( x ) of a 1D Gaussian random field

rom the 1D power spectrum of the Gaussianized percentile spectra
erived from the hydro simulation. 
(3) De-Gaussianize g per ( x ) = G 

−1 ( G per ) to get a realization of a
ercentile spectrum. 
(4) Create a pseudo-spectrum by drawing the flux at each pixel

rom the location in P ( F | ρ), implied by the value of g per ( x ) (see
quation 6 in P14 ). 
NRAS 514, 3222–3245 (2022) 
(5) One full iteration. We first measure the 1D flux power spectrum
 ps ( k ) of the pseudo-spectra created in this way. Then we Fourier

ransform each pseudo-spectrum and multiply each of its Fourier
omponent by the ratio [ P F ( k )/ P ps ( k )] 1/2 , inverse transform to get the
ame 1D flux power spectrum than of the true hydro spectra P F ( k )
Weinberg & Cole 1992 ). The second step of the full iteration is to
ompute the PDF of the pseudo-spectra after the 1D- P k re-scaling
nd then monotonically map the flux value to match the PDF of the
rue hydro spectra. This full iteration can be repeated several times.
o we ver, as we will see, one or two full iterations are enough to
et excellent agreement with the 1D power spectrum up to quite
igh k . 
The LyMAS2 scheme: 
(1) Extract and Gaussianize the smoothed o v erdensity field ρ and

ventually one or two additional DM velocity fields (e.g. σ ) for a
pecific skewer. 

(2) Compute the FFT of each Gaussianized field. This gives new
complex) fields, ρk , σ k , etc. 

(3) Compute (in Fourier space) the most probable flux f̄ k = T 1 ·
k + T 2 · σk + ... , by applying the rele v ant filters T 1 , T 2 , ... (see e.g.
quation 12 for the two-fields case). 

(4) Generate a 1D Gaussian field of mean 0 and variance defined
n equation ( 4 ) to get the covariance 	 f k . 

(5) After computing the inverse Fourier transform of f̄ k + 	f k to
et f , de-Gaussianize to get the pseudo-spectrum: F = G 

−1 ( f ). 
(6) One full iteration. Same procedure as (4) in the LyMAS

cheme. 
In Fig. 6 , we compare the same slice through the hydro flux and

hrough different realizations of LyMAS2 using different combina-
ions of DM fields. The clustering of each pseudo-spectrum is in
air agreement with the clustering of the hydro spectra. Comparing
seudo-spectra and hydro flux along a specific skewer, also shown
n Fig. 6 , confirms that LyMAS2 correctly models low and high
bsorptions at good locations, though amplitudes may differ. The
econd line of Fig. 6 compares three pseudo-spectra generated with
yMAS2 using three different field combinations but using the same
eed for the random process to get the variance 	 f k . It’s interesting
o see that these different pseudo-spectra look also the same, which
xplains why the slices presented in Fig. 6 are very similar. On the
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ontrary, the third line of Fig. 6 shows four different realizations 
f pseudo-spectrum from LyMAS2 using the DM o v erdensity and 
elocity dispersion fields and different seeds to get the covariance 
 f k . In this case, the amplitude of absorptions can be quite different.
In the next sections, we study in more detail the clustering statistics

f each catalogue of pseudo-spectra produced with LyMAS2. We 
im at reco v ering three observ ationally rele v ant statistics of the
ransmitted flux: the probability density function (PDF), the LOS 

ower spectrum and the 3D clustering (through the two-point 
orrelation function). As we will see, both LyMAS and LyMAS2 
eproduce the PDF of the hydro simulations by construction and 
early reproduce the hydro simulations LOS power spectrum by 
onstruction (step 6 abo v e). The power of LyMAS is to produce
ccurate large-scale 3D clustering while also reproducing these LOS 

tatistics. 

.1 3D-clustering 

n order to compare the 3D clustering between the hydro and pseudo-
pectra, we rely on the two-point correlation function ξ ( r ) defined
y 

( r) = 

〈 F ( x) F ( x + r) 〉 
〈 F 〉 2 − 1 , (15) 

s a function of the separation r . To study the effect of redshift
istortions, we also consider the two-point correlation function 
v eraged o v er bin of angle μ defined for a pair of pix els ( i , j ) by
 r i − r j ) � / r , where r = | r i − r j | and ( r i − r j ) � the component along
he LOS. 

The top panel of Fig. 7 shows the full two-point correlation
unctions derived from pseudo-spectra using either the first version of 
yMAS (red line) or LyMAS2 using the DM o v erdensity and velocity
ispersion field (blue line). Compared to the results of the hydro flux
green line), one can see that LyMAS2 is significantly improving the
redictions that are remarkably close to the hydro spectra results. 
n order to estimate the precision of these reconstructions, we plot
n the bottom panel of Fig. 7 the relati ve dif ference, i.e. ξ / ξ hydro 

1 for different combinations of DM fields. It appears clearly 
hat LyMAS2 leads in general to much more accurate predictions 
han LyMAS. Indeed, when considering the DM o v erdensity field
MNRAS 514, 3222–3245 (2022) 
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Figure 8. Same as Fig. 7 but with a dependency to range of angles μ, as defined in the text. These plots confirm that the association of the DM o v erdensity 
and the velocity dispersion (or vorticity) lead to very accurate predictions (see blue or green lines). The corresponding relative differences shown in the bottom 

panel are generally within 10 and 5 per cent o v er a wide range of r . It is also clear that the new LyMAS2 scheme is much more accurate for large angles where 
the traditional LyMAS leads to errors that grow quickly with the distance r (red lines). DM fields are again smoothed at 0.5 Mpc h −1 . 
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nly, LyMAS2( ρ) give slightly better results (magenta line) but the
ddition of the velocity dispersion lead to errors that are generally
ower than 10 per cent and close to 5 per cent (e.g. blue or black
ines). Also, similar trends are obtained when the vorticity is taken
nto account (bottom panel, green line), which is not surprising as
hese two fields are highly correlated. In contrast, the 1D and 3D
 elocity div ergence, when associated with the DM o v erdensity only
cyan lines), do not seem to improve much the predictions as respect
o the first version of LyMAS. Note that in linear theory, the 3D
 elocity div ergence is fully correlated with the density field and
herefore adds no additional information. On the other hand, the
orticity and/or velocity dispersion are sourced by the non-linear
volution of the matter fields and therefore add complementary
nformation on small scales. Finally, we also note that errors are
lose to 20 per cent at r ∼1–2 Mpc h −1 probably due to effect of
moothing. 

We now investigate how the predictions of the two-point cor-
elation functions vary when considering an angle μ. The trends
re presented in Fig. 8 for three ranges of values (0.1 < μ < 0.5,
.5 < μ < 0.8, and 0.8 < μ) following P14 . The results confirm that
yMAS2 significantly impro v e the predictions of the Ly α clustering.
n particular, some combinations such as ( ρ, σ ) still lead to errors
enerally lower than 10 per cent and most of the time close to
 per cent. We also note that LyMAS2 is particularly efficient for
eproducing the correlations along transverse separations or high
ngles (i.e. μ > 0.8) in which the error is most of the time lower
NRAS 514, 3222–3245 (2022) 
han 5 per cent. The top panels of Fig. 8 indicate again a remarkably
ood agreement between the two-point correlation functions of the
ydro flux and those derived from pseudo-spectra produced from
yMAS2( ρ, σ ) even for high angles μ > 0.8) where the previous
ersion of LyMAS is quite inaccurate. For the two largest μ bins,
he correlation functions eventually drop rapidly to zero at large r . In
his regime, the fractional error in ξ are inevitably large, even though
he absolute errors are small. It is evident that LyMAS2 captures the
cale of these zero-crossing more accurately than LyMAS. 

As a first conclusion, the LyMAS2 scheme is significantly improv-
ng the predictions of the Ly α 3D clustering especially when the DM
 v erdensity field is associated with the velocity dispersion or the
orticity field. For the sake of comparison with results presented
n the literature, we also compare the 3D power spectrum and
orresponding quadropole to monopole ratios in Fig. 9 derived
rom both the hydro spectra and the pseudo-spectra generated with
yMAS2( ρ, σ ). The (monopole) power spectrum is defined in

he usual way as 〈 ̃  F ( k ) ̃  F ( k ′ ) 〉 = (2 π) 3 P ( k) δD ( k + k ′ ), with ˜ F ( k ) =
 

d 3 xF ( x )e −i k.x . Defined this way, we have the following expression
f the variance, σ 2 = 

∫ ∞ 

0 k 3 P ( k ) dlog k / (2 π2 ). From Fig. 9 , the 3D
ower spectrum of the hydro spectra can be faithfully reco v ered
rom the LyMAS2 simulated spectra up to modes ∼2 h Mpc −1 . More
pecifically, the reconstructed Ly α forest power spectrum presents
verage deviations of � 5 per cent up to k ∼0.3 h Mpc −1 , � 10 per cent
p to k ∼0.4 h Mpc −1 , and � 20 per cent for modes between 0.4 and
 h Mpc −1 . 
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Figure 9. Top panel: the 3D power spectrum derived from the (BOSS) hydro 
flux (green line) and pseudo-spectra generated with LyMAS2( ρ, σ ). All DM 

fields are smoothed at 0.5 Mpc h −1 . The black dashed line represents the 
cross-spectrum. Bottom panel: the corresponding quadrupole to monopole 
ratios (same colour code). 
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For larger modes, ho we ver, the predictions are becoming less
ccurate as separations get lower than the considered smoothing 
cale (0.5 Mpc h −1 here). Indeed, we observe a lack of power at
mall scales (2 ≤ k ≤ 10 h Mpc −1 ) in the 3D power spectrum of
yMAS2 simulated spectra, compared to the hydro power spectrum, 
hich is mainly explained by the fact that the transverse correlations 

re not accounted for in the Wiener filtering scheme, and in particular
ransverse fluctuations at small scales are not generated in the present 
cheme. On the other hand, the absence of correlation, between 
he stochastic realizations at small scales for each LOS, induces an 
rtificial flattening of the reconstructed power spectrum for modes 
 ≥ 5 h Mpc −1 . The ratio of the quadrupole to monopole power is an
ven stricter test as it traces the anisotropic structure of power in the
eld, and one can see differences in such a ratio already for modes
 ≥ 2 h Mpc −1 . This test would clearly benefit from accounting for
ransverse correlations. 

It would be interesting to correct this in a forthcoming work
hough this point is not critical. Indeed the transverse separa- 
ions of spectra from existing surveys are generally much larger 
han 1 Mpc h −1 , and on these scales the transverse modes are
roperly reconstructed. Taking into account transverse correlations 
s straightforward ho we ver, and will be worthwhile to general-
ze this method to emission spectra, for which all transverse 
cales are important. We will therefore include them in future 
orks. 

.2 1D flux power spectrum along LOS 

e also aim at producing catalogues of pseudo-spectra that look 
ike spectra measured by a specific instrument i.e. BOSS in this
tudy. Therefore, the 1D flux power spectrum of each LyMAS mock
hould be as close as possible to the hydro spectra 1D- P k . In the
ollowing, we only present the results derived from LyMAS2( ρ, σ )
s same trends are obtained when considering any other combination 
f DM fields. Here, the 1D power spectrum is formally defined as
 ̂
 F ( k) ̂  F ( k ′ ) 〉 = (2 π) P 1D ( k) δD ( k + k ′ ), where ˆ F ( k) = 

∫ 
d x F ( x )e −ikx 

s the 1D Fourier Transform along the LOS. 1 When estimating it,
e take FFTs along each LOS and average the result. The ex-
ression of the variance is then σ 2 = 

∫ ∞ 

0 k P 1d ( k ) dlog ( k ) / π. Fig. 10
hows the dimensionless 1D power spectrum before power spectrum 

ransformation (red line) and after applying the power spectrum and 
DF transformation described in the text (black line). We first note

hat LyMAS2 without iteration reproduces the 1D power spectrum 

ore accurately than original LyMAS (see fig. 13 of P14 ). Then as
xpected, the 1D- P k transformation leads to same power spectrum 

s the hydro simulation (blue line), by construction. The second step
f the iteration is to re-scale the flux PDF, and this transformation
lightly alters the 1D power spectrum. However, as illustrated in the
ottom part of Fig. 10 , the relati ve dif ference is close to 2 per cent up
o high values of k (i.e. k ∼2 h Mpc −1 ). If one repeats a full iteration
 second time, the same accuracy is reached for even higher k values
 ∼4 h Mpc −1 ). 

.3 One-point PDF of the flux 

ince the LyMAS scheme ends after a flux PDF re-scaling (second
tep of a full iteration), this ensures that the one-point PDF of the
ydro flux and the pseudo-spectra match exactly. To illustrate, we 
resent in Fig. 11 the results obtained with LyMAS2( ρ, σ ) before (red
ine) and after (blue line) a full iteration (1D- P k and PDF re-scaling).

ithout transformation, the PDF of the pseudo-spectra is already 
lose to the PDF of the hydro spectra (green line). But fractional
rrors on the PDF can be quite large for low or high values of F .
fter the 1D-Pk re-scaling, the PDF of the pseudo-spectra has slightly

hanged and has some non-physical values ( F < 0 and F > 1). But
he second step of the iteration corrects the PDF (e.g. transforms
hese unphysical values into physical ones), to exactly match that of
he hydro spectra. 
MNRAS 514, 3222–3245 (2022) 
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Figure 10. Top panel: the dimensionless 1D power spectrum of the true 
spectra from the Horizon-noAGN simulation (green line) at z = 2.5 and from 

coherent pseudo-spectra using LyMAS2 considering the DM o v erdensity and 
velocity dispersion fields. We show results before (red line) and after (blue 
and black lines) 1D power spectrum and PDF transformations (described in 
the text). Bottom panel: the relative difference as respect to the hydro results 
(i.e. P k / P k , hydro − 1). A full iteration (flux 1D- P k and PDF re-scaling) permits 
to reco v er the hydro power spectrum with an error of ∼ 2 per cent o v er a wide 
range of k . The light and dark grey shaded areas indicate regions where the 
error is less than 5 and 2 per cent, respectively. 

5

T  

p  

t  

r

F

w  

r  

M  

f  

n  

a  

Figure 11. Top panel: the PDF of the true spectra from the HORIZON-NOAGN 

simulation at z = 2.5 (green line) and coherent pseudo-spectra using LyMAS2 
considering the DM density and velocity dispersion fields. We show results 
before (red line) and after (blue and black lines) 1D power spectrum and 
PDF transformations (described in the text). The 1D- P k re-scaling can lead 
to non-physical Flux values (i.e. F < 0 or F > 1). Bottom panel: the relative 
difference with respect to the hydro results (i.e. PDF/PDF hydro − 1). The full 
scheme permits to reco v er the hydro flux PDF exactly. The light and dark grey 
shaded areas indicate regions where the error is less than 10 and 5 per cent, 
respectively. 
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.4 Comparison with the FGPA 

he FGPA essentially converts DM density into optical depth using a
hysical model moti v ated by photoionization equilibrium, assuming
hat all gas contributing to the Ly α lies on a temperature–density
elation T ∝ ( ρs / ρs ) γ−1 . The predicted flux is 

 = Ae −( ρs / ρs ) 2 −0 . 7( γ−1) 
, (16) 

here 2 − 0.7( γ − 1) ≈ 0.6 for the values of γ expected well after
eionization (Croft et al. 1998 ; Weinberg, Katz & Hernquist 1998 ;

cQuinn 2009 ; Peeples et al. 2010 ). This relation is reasonable
or modelling high-resolution spectra. Ho we ver, due to existing
on-linear relation between flux and optical depth, it does not
utomatically apply at low resolution (though it omits some physical
NRAS 514, 3222–3245 (2022) 
ffects in the high-resolution case). From the HORIZON-NOAGN DM
 v erdensity grid smoothed at 0.5 Mpc h −1 , we have first generated
024 × 1024 pseudo-spectra using equation ( 16 ) by estimating A so
hat 〈 F 〉 = 0.795. Then, we 1D smoothed each pseudo-spectrum
o BOSS resolution. Similarly to the LyMAS scheme, we end
he process by rescaling the flux 1D- P k and PDF. The correlation
unction is shown in the top panel of Fig. 7 and is considerably
 v erestimated as respect to the hydro flux with a relative error
reater than 50 per cent (omitted in the bottom panel for the sake
f clarity). Such a trend is consistent with the results of Sorini
t al. ( 2016 ), who found that typical relative errors in the 3D power
pectrum are ∼80 per cent when a DM smoothing scale of 0.4

pc h −1 is considered. In Appendix B , we will investigate other
eterministic mapping than the FGPA. But will we see that the main
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Figure 12. Same as Figs 3 and 4 but using HORIZON-AGN for the calibration. 
Here we compare the correlations between the optical depth τ = −ln F in the 
hydro spectra (smoothed at the BOSS resolution) and DM quantities smoothed 
at 0.5 Mpc h −1 , namely the o v erdensity (1 + δ) and the velocity dispersion 
( σ ) at z = 2.5. We also show in the lower right-hand panel, some relevant 
transfer functions (i.e. cross-spectrum) similarly to Fig. 5 . In all panels, the 
dotted lines correspond to results from the HORIZON-NOAGN simulation. 
Very similar trends are then obtained when AGN are included or not. 
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Figure 13. The correlation function ξ as a function of the separation r . 
We present results from the HORIZON-AGN true hydro spectra (green line) 
and results from LyMAS2 considering the DM o v erdensity and the velocity 
dispersion fields (blue dashed line). DM fields are all smoothed at the scale 
0.5 Mpc h −1 . The central small panel indicates the relati ve dif ference as 
respect to the true hydro spectra (i.e. ξ ( r )/ ξhydro ( r ) − 1). The blue dashed line 
represents here the result from the HORIZON-NOAGN simulation. 
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onclusion remains unchanged: deterministic sampling generally 
ends to significantly o v erestimate the flux 3D-correlation especially 
hen the DM density is smoothed to scales greater than 0.3 Mpc h −1 .
ote that a similar trend is obtained when studying the correlation 
etween the Ly α transmitted flux and the mass o v erdensity (see fig. 1
f Cai et al. 2016 ). 

.5 HORIZON-AGN versus HORIZON-NOAGN 

n this work, we used the HORIZON-NOAGN simulation for the 
alibration of LyMAS2, mainly to minimize the computational cost 
s we derived five additional but lower hydrodynamical simulations 
o study both the robustness of the results (see Appendix A ) as
ell as the effect of cosmic variance (see Section 6.2.1 ). However,

ince AGN feedback may induce subtle modifications in the spatial 
istribution and in the clustering of the Ly α forest, it is important to
heck if eventual noticeable differences can be seen in the statistics
e present so far. For this reason, we have repeated to same and
hole analysis but considering this time HORIZON-AGN for the 

alibration. For instance, we plot in Fig. 12 some rele v ant scatter
lots showing the correlations between the optical depth, the DM 

 v erdensity and the DM velocity dispersion, similarly to Figs 3 and
 . We also show some transfer functions (i.e. cross-spectrum) that we
ompare to results from Fig. 5 . In all cases, the statistics have been
erived using a DM smoothing of 0.5 Mpc h −1 . Compared to results
rom HORIZON-NOAGN , we found very similar trends when AGN 

re included. The comparison of the two-point correlation function 
f the hydro flux and LyMAS2( ρ, σ ) pseudo-spectra in Fig. 13
onfirms this by suggesting predictions with a very similar accuracy 
hen AGN is included or not. In conclusion, the inclusion of galactic
inds does not seem to affect significantly the clustering statistics of
he Ly α F orest, giv en our smoothing scales and targeted accuracy,
onsistent with results of Bertone & White ( 2006 ). Recall that we
uned the UV background in the process of producing the HORIZON-
OAGN hydro flux grid, to get the same mean of the Flux. Thus, this
onclusion is not surprising and is in agreement with previous finding
Lochhaas et al. 2016 ). Abo v e all, this means that the predictions of
he 3D clustering from the LyMAS2 scheme keep the same accuracy, 
GN feedback included or not in the calibration. 

.6 Influence of redshift distortions? 

ur results indicate that the inclusion of a DM velocity field in
yMAS2, especially the velocity dispersion of the vorticity, clearly 

mpro v es the predictions of the 3D clustering of the pseudo-spectra.
his fact might be understood by the existing correlations between 

he DM o v erdensity and the velocity fields (see Fig. 4 ) and adding
 velocity term in the scheme may bring additional information. 
o we ver, since we also model redshift distortions, this may also

ntroduce or enhance existing correlations between the different 
onsidered fields. To estimate the importance of the inclusion 
f redshift distortion in the process, using HORIZON-NOAGN , we 
ave repeated the same analysis in real-space i.e. both hydro flux
nd DM fields have been generated without redshift distortions. 
gain, we plot in Fig. 14 some rele v ant scatter plots showing the

orrelation between the optical depth, the DM o v erdensity and the
M velocity dispersion. We also show some transfer functions (i.e. 

ross-spectrum). In all cases, the statistics have been still derived 
sing a DM smoothing of 0.5 Mpc h −1 . Compared to results from
ORIZON-NOAGN including redshift distortion, the new scatter plots 

nd transfer functions show significant differences, especially when 
 DM velocity field is considered. The comparison of the two-
oints correlation function of the hydro flux and LyMAS2( ρ, σ )
seudo-spectra in Fig. 15 suggests ho we ver that errors are still quite
MNRAS 514, 3222–3245 (2022) 
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Figure 14. Same as Figs 3 and 4 but using HORIZON-NOAGN without 
modelling redshift distortions in the LyMAS2 scheme. Here we compare 
the correlations between the optical depth τ = −ln F in the hydro spectra 
(smoothed at the BOSS resolution) and DM quantities smoothed at 0.5 
Mpc h −1 , namely the o v erdensity (1 + δ) and the velocity dispersion ( σ ) 
at z = 2.5. We also show in the lower right-hand panel, some rele v ant transfer 
functions (i.e. cross-spectrum) similarly to Fig. 5 . In all panels, the dotted lines 
correspond to results from the HORIZON-NOAGN simulation with redshift 
distortions. 

l  

i  

r  

L

6
D

6

I  

D  

W  

(  

c  

N  

n  

l  

L  

M  

P  

p
b

 

s  

g
fi  

A  

o  

L  

B  

Figure 15. The correlation function ξ as a function of the separation r . 
We present results from the HORIZON-NOAGN (NO redshift distortions) true 
hydro spectra (green line) and results from LyMAS2 considering the DM 

o v erdensity and the velocity dispersion fields (blue dashed line). DM fields 
are all smoothed at the scale 0.5 Mpc h −1 and are generated in real space. The 
central small panel indicates the relative difference with respect to the true 
hydro spectra (i.e. ξ ( r )/ ξhydro ( r ) − 1). The blue dashed line represents here the 
result from the HORIZON-NOAGN simulation including redshift distortions. 
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ow, but a bit higher compared to the relative errors obtained when
ncluding redshift distortion. Then, it appears that the inclusion of
edshift distortion seems to slightly impro v e the predictions of the
y α clustering statistics. 

 APPLICATION  TO  LARGE  COSMOLOGICAL  

M  SIMULATIONS  

.1 Simulations of 1.0 and 1.5 Gpc h −1 boxside 

n this section we apply our LyMAS2 scheme to large cosmological
M simulations to produce ensembles of BOSS pseudo-spectra.
e first ran five cosmological N- body simulations using GADGET2

Springel 2005 ), with a box length of 1.0 Gpc h −1 with random initial
onditions and using the same cosmological parameters as HORIZON-
OAGN . We additionally run one simulation with a higher volume,
amely (1.5 Gpc h ) −3 . As we discuss in detail in Section 6.2.2 , these
atter two values have been chosen to estimate the performances of
yMAS when using DM smoothing scales of 0.5 (fiducial) and 1.0
pc h −1 , respectively. In each simulation, the adopted value of the

lummer-equi v alent force softening is 5 per cent of the mean inter-
article distance (24.4 and 36.6 kpc h −1 for the 1.0 and 1.5 Gpc h −1 

oxside, respectively) and kept constant in comoving units. 
From each cosmological simulation, the corresponding DM den-

ity and velocity dispersion fields are computed and sampled on
rids of 4096 3 pixels. This allows us to smooth each 1.0 Gpc h −1 

eld to 0.5 Mpc h −1 and each 1.5 Gpc h −1 one to 1.0 Mpc h −1 .
ccording to Section 4 and Appendix A , the combination of the DM
 v erdensity and v elocity dispersion fields leads to accurate and robust
y α clustering predictions. We therefore produce our fiducial large
OSS pseudo-spectra with LyMAS2( ρ, σ ). Note that we choose the
NRAS 514, 3222–3245 (2022) 
elocity dispersion field instead of the vorticity mainly for practical
easons, as the computational and memory costs to compute the latter
n a large regular grid is much higher. 
Once the different DM fields are extracted and smoothed to the

ppropriate scales, the last inputs we need are the rele v ant transfer
unctions T defined in equation ( 10 ) whose detailed expressions
an be found in equations ( 11 ) and ( 12 ) for the 1D or 2D case,
espectively. We also need the corresponding 1D power spectrum
 k to generate the covariance 	 f k at the considered boxside. Since

he calibrations are derived from the HORIZON-NOAGN simulation,
ne potential issue arises from the hydrodynamical box being much
maller than the large DM simulations, so that lower modes are
ot represented. For the missing modes ( k ≤ 2 π /100), we have
xtrapolated the values of T 1 , T 2 , and P k , while in the common k
ange, we have proceeded with interpolations. As an illustration,
ig. 16 shows the 1D power spectrum required to compute the
ovariance 	 f k when considering the DM density and velocity fields
xtracted from the 100 Mpc h −1 hydrodynamical simulation as well
s the resulting 1D power spectra when considering a 1.0 or 1.5
pc h −1 boxside. 
Fig. 17 illustrates a reconstruction of pseudo-spectra from a given

lice of 4096 × 4096 pixels through a 1 Gpc h −1 box simulation. It
ppears clearly that the 2D clustering of the pseudo-spectra agrees
ery well with the clustering of the DM overdensity field. Another
isual inspection of an individual skewer also shows that peaks of
ensity match with high absorption. It is also interesting to see that the
pecific skewer shown in Fig. 17 has in its centre a large absorption
hat corresponds to a large- and high-density region. Note that the
tudy of groups of so-called ‘Coherently Strong Ly α Absorption’
CoSLA) systems imprinted in the absorption spectra of a number
f quasars (from e.g. BOSS) is of particular interest, as they can
otentially detect and trace high redshift proto-clusters (see e.g.
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Figure 16. An example of dimensionless 1D- P k required to compute the co- 
variance 	 f k (see equation 4 ), derived from the HORIZON-NOAGN simulation 
at z = 2.5 and considering the o v erdensity and velocity dispersion in the 
Wiener filtering (green dashed line). The resolution of the flux and DM 

grids are 1024 3 . The red and blue lines are interpolations and extrapolation 
of the green line to construct the corresponding 1D- P k for larger 1.0 and 
1.5 Gpc h −1 boxes (using grids of resolution 4096 3 ). The grey shaded area 
indicates the common k range between the 100 Mpc h −1 and 1 Gpc h −1 

boxes. 
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rancis & Hewett 1993 ; Cai et al. 2016 ; Lee et al. 2018 ; Shi et al.
021 ). 
Fig. 18 shows the dimensionless 1D power spectrum of the pseudo- 

pectra from a 1 Gpc h −1 simulation before and after iterations. First,
n the common k -range area between the hydro and the pseudo-
pectra, we find similar trends to those obtained when applying 
yMAS2 to the HORIZON-NOAGN simulation (see Fig. 10 ). For 

nstance, after two full iterations, the relative difference is close to 
 per cent even for high values of k ( ∼4 h Mpc −1 ), and similar results
re obtained for the 1.5 Gpc h −1 pseudo-spectra. For lower values 
f k ( k ≤ 2 π/ 100 ∼ 0 . 0628 h Mpc −1 ), the power spectrum seems
o have a natural and consistent extension from the hydro spectra 
ower spectrum. Note also that the highest values of k for the 1.0 and
.5 Gpc h −1 boxside simulations and grid of resolution 4096 3 are, 
espectively, 12.87 and 8.58 Mpc −1 , lower than (2 π/ 100) × 512 ∼
2 . 17 h Mpc −1 for the hydro box. But the power at these high values
s negligible, and missing them in the calculations will not have a
oticeable impact on spectra. Also, since a full iteration ends with 
 flux PDF re-scaling, this ensures exactly match to the PDF of the
ydro flux. 

Fig. 19 shows the two-point correlation functions derived from 

everal large-scale pseudo-spectra. In particular, we show the predic- 
ions from the first version of LyMAS (red lines) and those obtained
rom LyMAS2 using the DM density field only (black lines) and 
ith additional velocity dispersion field (blue lines). We also add 

he predictions derived from the 1.5 Gpc h −1 simulation (magenta 
ines), using again LyMAS2( ρ, σ ). These plots confirm first that the
raditional LyMAS (red lines) tends to o v erestimate the correlations 
nd this trend is more pronounced when considering high angles ( μ> 

.8), as already noted in Section 4 . The result is quite similar with
he LyMAS2 scheme when considering the DM o v erdensity only. 
o we ver, the dif ference from LyMAS is more and more noticeable
s μ increases. These results are again consistent with those presented 
n Section 4 . The difference becomes even stronger when adding the
M velocity dispersion field. In this case, LyMAS2( ρ, σ ) tends to

ignificantly reduce the correlations and most probably lead to more 
eliable predictions. In the range 2 ≤ r ≤ 10 Mpc h −1 , the correlations
re very close to those of the hydro simulation. It is also impressive
hat the 1.5 Gpc h −1 mock generated with LyMAS2( ρ, σ ) leads to
ery similar trends (for separations r ≥ 2 Mpc h −1 ), though the DM
elds are now smoothed to 1.0 Mpc h −1 . This success is consistent
ith the results presented in the Appendix A , where we compare

he performance of LyMAS2 using different DM smoothing scales. 
his robustness is one of the key improvements accomplished with 
yMAS2. 
Finally, we show in Fig. 20 the two-point correlation function 

veraged from five different realizations of 1 Gpc h −1 Ly α pseudo-
pectra obtained by applying LyMAS2( ρ, σ ) to different DM 

osmological simulations, at z = 2.5. The plots show clear features
f BAO at r ∼105 Mpc h −1 and variations with respect to the angle μ,
onsistent with observational trends (see e.g. du Mas des Bourboux 
t al. 2020 ) This illustrates the ability of LyMAS to properly describe
edshift distortions and to model realistic large BOSS Ly α forest 
pectra catalogues. 

.2 Potential limitations of the method 

.2.1 Effect of cosmic variance? 

ne potential limitation in the LyMAS scheme is to use an unique
ydro simulation to generate the calibration. In other words, we 
ssume this hydro simulation to be fairly representative of the 
nderlying statistics of many simulations that have ≥1000 times 
arger volumes. This makes the resulting large mocks potentially 
ffected by the cosmic variance. In order to estimate this, we have
onsidered our five lower resolution hydro simulations presented in 
ppendix A , originally produced to estimated the robustness of the
yMAS2 predictions. Here we make good use to estimate the effect
f cosmic variance by applying each of the five calibration sets to
he (1.5 Gpc h −1 ) 3 DM o v erdensity and v elocity grids (of dimension
096 3 each) that we used in Section 6.1 . In particular, we have
omputed the two-point correlation function averaged from these 
ve realizations and shown in Fig. 21 . We note that the dispersion

ends to be higher for separations between 25 and 100 Mpc h −1 ,
hich makes sense as this corresponds to the scales probed by the

eference hydro simulation of boxside 100 Mpc h −1 . We also note
hat this dispersion tends to be higher for increasing values of the
ngle μ. 

.2.2 Computational limitations 

s most of the methods presented in the literature to produce large
y α mock catalogues, the LyMAS2 scheme can be divided into 

wo main operations. One the one hand, one needs to generate at a
onsidered smoothing scales, a DM o v erdensity field and eventually
ssociated velocity fields. This task is generally done using N- 
ody simulations or lognormal density fields created from Gaussian 
nitial conditions (e.g. Gnedin & Hui 1996 ; Bi & Davidsen 1997 ).
n the other hand, one has to ‘paint’ the Ly α absorptions from

ny los using rele v ant calibrations or recipes. This latter part is
retty fast in LyMAS since one can treat any los individually and
herefore, the algorithm can be easily and optimally parallelized 
with openMP for instance). To give an order of magnitude, to
MNRAS 514, 3222–3245 (2022) 
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Figure 17. Application of the full LyMAS2 scheme to a large DM simulation (1 Gpc h −1 – 2048 3 particles) at z = 2.5. From the DM o v erdensity and 
velocity dispersion fields, both sampled on 4096 3 regular grids and smoothed at 0.5 Mpc h −1 , we derive pseudo-sepctra at the BOSS resolution using the full 
LyMAS2 scheme. The left-hand part of the figure shows corresponding slices that suggest a fair agreement between the clustering of the DM density and the 
pseudo-spectra. The right-hand part shows an individual skewer confirming that DM density peaks are associated with high flux absorption. 
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reate a ≥1 Gpc h −1 boxside Ly α mock presented in Section 6.1 ,
sing 32 CPU, only ∼11 h are required to generate 4096 × 4096
OSS spectra of resolution 4096 and subsequent 1D- P k and flux
DF rescaling (namely to achieve the six steps of the LyMAS2
cheme presented in Section 5 ). The main limitation of LyMAS2
s ho we v er the ability to generate the DM o v erdensity or a v elocity
eld at the appropriated smoothing scales (i.e. 0.5 and 1.0 Mpc h −1 

n our study). Indeed, the larger the boxside of the simulation, the
igger the required dimension of the grid to sample the DM fields. For
nstance, a simulation box of side 1.0 or 1.5 Gpc h −1 can be smoothed
t the scale of 0.5 and 1.0 Mpc h −1 , respectively, if a grid of 4096 3 

ixels is considered. In these cases, the size of individual pixel is,
espectively, 0.244 and 0.366 Mpc h −1 , which is acceptable, though
lightly borderline, to produce the smoothing operation. Moreo v er,
o generate one specific DM field, we used a sophisticated scheme,
moothDens5, presented in the Appendix C . Although SmoothDens5
as been optimized, it needs at least 1-TB RAM and 50 h (using 64
PU) to treat and produce a single DM field, sampled on a regular
rid of 4096 3 , and from a DM simulation using 2048 3 particles. 
Technically, it is then rather feasible to generate massive set of
ocks if we limit the studied boxside to 1.5 Gpc h −1 . Beyond this
NRAS 514, 3222–3245 (2022) 
alue, the computational costs and memory requirement is becoming
n issue. It would be definitely worth exploring in near future
lternative methods to reduce such costs (e.g. Cell-in-Cloud,...) while
ot altering the accuracy of the predictions. Moreover, although
his is a general issue for all the methods based on DM fields
escribed by N -body simulations, N- body simulations can also
ecome too computationally e xpensiv e and time-consuming. Here
lso alternative methods do exist to obtain the DM fields using
heap approximate methods (e.g. LPT, 2LPT, etc.). Ho we ver, these
re typically not able to produce a very accurate velocity field
nd this may alter the accuracy of the present LyMAS scheme.
uch investigations are beyond the scope of this paper and will be
onsidered in the next analysis. 

 CONCLUSIONS  

e have introduced LyMAS2, an improved version of the LyMAS
cheme ( P14 ). In this new version, we have used the HORIZON-
OAGN (Peirani et al. 2017 ) simulation to characterize the rele v ant
ross-correlations between the transmitted flux and the different DM
elds. In particular, we have considered not only the DM o v erdensity
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Figure 18. Top panel: the dimensionless, redshift-space, 1D power spectrum 

of pseudo and true spectra from the HORIZON-NOAGN simulation (green 
line) and from coherent pseudo-spectra using LyMAS2 considering the DM 

density and the velocity dispersion fields from a 1 Gpc h −1 boxside N- body 
simulation. Here again, we show results before (red line) and after (blue line) 
one full iteration (i.e. flux 1D power spectrum and PDF transformations). We 
also show the results when repeating a second iteration (black line). The grey 
shape defines the common k -range between hydro spectra and pseudo-spectra. 
Bottom panel: the relati ve dif ference with respect to the hydro results (i.e. 
P k /P k, hydro − 1). The light grey and dark grey bands define regions where 
the error is less than 5 and 2 per cent, respectively. 
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ut also specific DM velocity fields (i.e. velocity dispersion, vorticity, 
D and 3D divergence) and used Wiener filtering to generate the spe-
ific calibrations. LyMAS2 shares the same philosophy as LyMAS 

hat flux correlations are mainly driven by the correlations of the 
nderlying DM (o v er)density, and it uses additional information from 

he DM velocity correlations to refine the theoretical predictions. In a 
econd step, we have applied LyMAS2 to DM fields extracted from
he hydrodynamical or large DM-only simulations to create large 
nsembles of pseudo-spectra with redshift distortions, at z = 2.5 
nd at the BOSS resolution. Throughout the analysis, we use a DM
moothing of 0.5 Mpc h −1 to derive the main trends and results. Our
ain conclusions can be summarized as follows: 
(i) LyMAS2 greatly impro v es the predictions for flux statistics

f the 3D Ly α forest on small and large scales. More specifically,
e found that the DM o v erdensity combined with the DM veloc-
ty dispersion (or the vorticity) reco v ers the two-point correlation
unctions of the (reference) hydro flux within 10 per cent and
most of the time within 5 per cent) even when high angles are
onsidered. This is a major impro v ement with respect to the original
ersion of LyMAS, which is rather inaccurate in predicting the 
y α correlations for large separations and high angles. furthermore, 
e found that the reconstructed Ly α forest power spectrum presents 

verage deviations of � 5 per cent up to k ∼0.3 h Mpc −1 , � 10 per cent
p to k ∼0.4 h Mpc −1 and � 20 per cent for modes between 0.4 and
 h Mpc −1 . For larger modes, ho we ver, the predictions are becoming
ess accurate as separations get close or lower than the considered
moothing scale (typically 0.5 Mpc h −1 ). 

(ii) Like LyMAS, LyMAS2 reproduces the one-point PDF of the 
ux from the calibrating hydro simulation exactly, by construction. It 
lso reproduces the 1D (LOS) power spectrum with en error of about
 per cent up high k values. The LyMAS2 pseudo-spectra therefore
ave realistic observable properties on small scales while also having 
ccurate large-scale 3D clustering when applied to a large-volume 
M-only simulation. 
(iii) The trends derived from five different and slightly lower reso-

ution hydrodynamical simulations are consistent with those obtained 
rom the fiducial HORIZON-NOAGN simulation. This suggests that 
he results presented in this study are robust. Moreo v er, this allows
s to estimate error bars on the two-point correlations functions, 
hich are generally low. 
(iv) We have considered three different DM smoothing scales 

0.3, 0.5, and 1.0 Mpc h −1 ) and found similar trends in the flux
lustering predictions. It is encouraging that a DM smoothing of 1.0
pc h −1 still leads to very accurate predictions, especially in the two-

oint correlation functions even at high angles and large separation. 
ndeed, the errors are typically lower than 5 per cent, whereas they
re generally higher than 30 per cent with the original version of
yMAS. 
(v) LyMAS2 applied to large DM cosmological simulations of 

oxside either 1.0 or 1.5 Gpc h −1 indicates that the predicted flux
tatistics follow the same trends obtained from the (100 Mpc h −1 )
ORIZON-NOAGN DM fields. Indeed, we found again that the first 
ersion of LyMAS tends to overestimate the flux correlations at large
eparations and/or at high angles. On the contrary, LyMAS2 using 
or instance the DM o v erdensity and the velocity dispersion clearly
educes the two-point correlation functions to lead to more reliable 
nd accurate predictions. Moreo v er LyMAS2 adequately models 
arge-scale Ly α absorptions systems that correspond to massive over- 
ensity regions. It is also worth mentioning that these set of mocks
ere already used to asses the ability to reco v er the connectivity and

lustering properties of critical points of the reconstructed large-scale 
tructure from Ly α tomography in the context of a realistic quasar
urv e y configuration such as WEAVE-QSO (Kraljic et al. 2022 ). 

(vi) Deterministic mappings such as the Fluctuating Gunn–
eterson Approximation tend to considerably o v erestimate the 3D 

ux correlations especially at large separation or when high angles 
re considered. 

LyMAS2 offers a sophisticated tool to accurately model and 
redict large-scale Ly α forest 3D statistics. This opens new op- 
ortunities to impro v e div ersified studies such as Ly α forest cross-
orrelation (e.g. Lochhaas et al. 2016 ), two-point correlations or 
hree-point correlations analysis (e.g. Tie et al. 2019 ) or BAO
eature predictions. Moreo v er, large Ly α catalogues produced with 
yMAS2 can be used to characterize massive overdensity regions 
uch as proto-clusters through groups of coherent large absorptions 
nalysis (Cai et al. 2016 ; Lee et al. 2018 ; Shi et al. 2021 ). Compared
MNRAS 514, 3222–3245 (2022) 
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Figure 19. Top left-hand panel: the two-point correlation functions of the flux derived from the 100 Mpc h −1 HORIZON-NOAGN simulation (green dotted line) 
and 1 Gpc h −1 pseudo-spectra using the full LyMAS (red line) and LyMAS2 scheme using the DM o v erdensity field only (black line) or combined with the DM 

velocity field (blue line). We also show the two-point correlation function derived from 1.5 Gpc h −1 pseudo-spectra produced with LyMAS2( ρ, σ ) (magenta 
line). In the other panels, we show the corresponding flux correlation functions averaged over bins of angle μ, as labelled. LyMAS tends to o v erestimate 
the correlation especially for large separations and high angles. LyMAS2( ρ, σ ) tends to significantly reduce such correlations, which suggests more reliable 
predictions. 
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o previous work, we recall that the main objective of LyMAS is
o create large Ly α mocks for a specific instrument (here BOSS)
ith 3D flux statistics as close as possible to those that would be
btained from a very large volume (but computationally intractable)
ydrodynamical simulation. 

The Iteratively Matched Statistics (IMS) developed by Sorini et al.
 2016 ) does not present such predictions and limits their analysis to
mall simulation boxes ( ≤100 Mpc h −1 ). Ho we ver, when comparing
he flux PDF and 1D power spectrum, LyMAS2 and 1D-IMS (see
ntroduction) lead to similar performances: The 1D-IMS scheme
erfectly reproduces these statistics, while errors of ∼2 per cent are
btained with LyMAS2 for the flux 1D- P k . Regarding the 3D-IMS
cheme, errors are much higher, of the order of 15 and 20 per cent,
espectively, for the flux PDF and 1D power spectrum. As far as
he 3D flux statistics are concerned, at a DM smoothing of 0.4

pc h −1 , the 1D-IMS and 3D-IMS present errors of 20 per cent and
0–20 per cent (for a DM smoothing of 0.4 Mpc h −1 ), respectively,
NRAS 514, 3222–3245 (2022) 
egarding the reconstruction of the power spectrum. In this study,
yMAS2 mainly considers a DM smoothing of 0.5 Mpc h −1 , which

eads to errors generally lower than 5 per cent for the two-point
orrelation functions. Again, it is worth mentioning that similar
low) errors are also obtained with LyMAS2 when considering a
M smoothing of 1.0 Mpc h −1 . It would be then interesting to

ompare the performance of the 1D and 3D-IMS scheme at this
pecific smoothing scale in the perspective of creating large ( ≥ 1.0
pc h −1 ) Ly α mocks. 
Recently, Harrington et al. ( 2022 ) have trained a convolutional

eural network from hydrodynamical simulations of side 20 Mpc h −1 

o predict both the density, the temperature and the velocity fields.
his method is quite flexible and the predictions of the flux PDF
nd 1D power spectrum (i.e. within ∼5 per cent up to k ∼ 10
pc h −1 ) are promising and more accurate than the FGPA. Note

hat in a companion paper (Horowitz et al. 2021 ), convolutional
eural networks have also been used to synthesize hydrodynamic
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LyMAS reloaded 3239 

Figure 20. The two-point correlation function averaged from five differ- 
ent realizations of 1 Gpc h −1 Ly α pseudo-spectra obtained by applying 
LyMAS2( ρ, σ ) to DM cosmological simulations. Here we use the calibrations 
obtained from HORIZON-NOAGN . The shaded areas represent the error on the 
mean (rms). 

fi
m
S  

s
e
T
w  

b
c

 

i
c
I  

c
o  

a
o  

Figure 21. The two-point correlation function averaged from five different 
realizations of 1.5 Gpc h −1 Ly α pseudo-spectra obtained by applying 
LyMAS2( ρ, σ ) to DM cosmological simulations and using five different 
calibrations. To this regard, we use five lower resolution hydro simulations 
presented in Appendix A . The shaded areas represent the error on the mean 
(rms). 
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elds conditioned on DM fields from N- body simulations, which 
ight be very useful for the rapid generation of mocks. Similarly, 
inigaglia et al. ( 2022 ) has developed a new physically motivated
upervised machine learning method (HYDRO-BAM) from a ref- 
rence hydrodynamical simulation of comoving side 100 Mpc h −1 . 
he PDF, 3D power spectrum and bi-spectra can be reconstructed 
ith error of a few per cent up to modes k = 0.9 Mpc h −1 . It would
e interesting to see how this promising approach performs when 
onsidering smoothed spectra and larger boxes. 

Impro v ements can still be done in the LyMAS scheme. For
nstance, one main assumption is to consider that the transverse 
orrelations are mainly driven by the effect of DM smoothing. 
n this study, we stress again that all the approach is based on
reating pseudo-spectra individually and independently from each 
ther. Because the draws of 	 f k are independent on each LOS, spectra
t small but non-zero transverse separations can look quite different 
n small scales. Since the predictions on the clustering of the flux
re already very accurate with LyMAS2, we have not considered the
ame approach in volume. This would take into account transverse 
orrelations between LOS that have been neglected in this work: 
nstead of predicting the flux from DM fields independently for 
ach LOS, one would predict the entire cube of flux from the DM
eld cubes, using the full 3D covariance structure. One would still
se an assumption of spatial homogeneity (stationarity), so that 
D Fourier space coefficients could be computed independently, 
o we ver one would need to take care of the statistical anisotropy
n the LOS direction, therefore all statistics in Fourier space would
epend on | k ⊥ | and k � . Taking into account transverse correlations
ould thus further reduce the covariance of the flux conditionally 

o the DM fields, in other words reduce the noise in the predicted
ux field. Among future prospects, we plan to extend this work

o predict the flux clustering for other surv e ys such as the Dark
nergy Spectroscopic Instrument (DESI; DESI Collaboration et al. 
MNRAS 514, 3222–3245 (2022) 
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016 ), the William Herschel Telescope Enhanced Area Velocity
xplorer (WEAVE-QSO; Pieri et al. 2016 ) or Subaru Prime Focus
pectrograph (PFS; Takada et al. 2014 ). They will open new vistas
n the high redshift intergalactic medium probed by the Ly α forest.
t would be then interesting to estimate the level of performance
f LyMAS2 when the transmitted flux has a higher resolution than
OSS spectra, which might require reducing the DM smoothing.
inally, we also intend to use Machine Learning in the process to see
hether we can still impro v e the predicted flux statistics (Chopitan

t al., in preparation). 
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Figure A1. The evolution of the mean of the absolute relati ve dif ference in the two point correlation functions (1/5) | ∑ 5 
i= 1 ( ξi /ξhydro ,i − 1) | derived from five 

different hydrodynamical simulations at z = 2.5. All DM fields are smoothed to 0.5 Mpc h −1 . The error bars correspond to the dispersion. Comparison with 
results from Figs 7 and 8 suggest a very good agreement and therefore robust trends. 
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wo times lower resolution (i.e. 512 3 DM particles instead of 1024 3 

nd a minimal cell size of 	 x = 2 kpc instead of 1 kpc). The first
imulation uses degraded HORIZON-NOAGN initial conditions, while 
he other ones have different initial phases. For each of the five new
imulations, we generated the corresponding grids of transmitted 
ux, DM o v erdensity, and v elocity fields and calibrations following

he same methodology presented in Section 4 . We consider here 
ux and DM fields sampled on grids of 512 × 512 ×1024, namely
12 × 512 spectra of resolution 1024. 
In the first step, we consider all DM fields smoothed at 0.5
pc h −1 . After checking first that the ‘high’ and ‘low’ resolution
ORIZON-NOAGN simulations give consistent trends, we took an 

nterest in the variations of then mean of the absolute relative 
ifference (1/5) | ∑ 5 

i= 1 ( ξi /ξhydro ,i − 1) | , where we compare the two-
oint correlation function of the hydro spectra ξ hydro, i from a given 
imulation ‘ i ’ to those derived from pseudo-spectra generated with 
yMAS2 ξ hydro, i . In Fig. A1 , we summarize the results obtained with

he original LyMAS and LyMAS2 considering the same DM field 
ombinations than in Figs 7 and 8 . The main conclusion is that we do
nd very similar trends than those obtained with HORIZON-NOAGN , 
hich strongly suggest that our results are robust. In particular, the
se of the velocity dispersion ( σ ) or the vorticity ( �) lead to relative
rrors that are remarkably low, i.e. in general lower than 5 per cent
ven for the different ranges of angle. The plots also confirm that the
D and 3D velocity divergence fields do no permit to reach the same
evel of accuracy. 

In the next step, we present the trends obtained when the DM fields
re smoothed to 0.3 or 1.0 Mpc h −1 . We only present in Fig. A2 the
esults for LyMAS, LyMAS2( ρ, σ ) and LyMAS2( ρ, σ , �) to have
 clear o v erview of the general trends. In P14 , we found that a DM
moothing of 0.3 Mpc h −1 was an optimal value to reach the highest
ccuracy in the predictions. This is confirmed here since we get errors
f ≥10 per cent compared to ≥20 and ≥30 per cent with values 0.5
nd 1.0 Mpc h −1 , respectively. As expected, LyMAS2 permits to
educes such errors that are in general much lower than 10 per cent
nd most of the time lower than 5 per cent. It is also very promising
MNRAS 514, 3222–3245 (2022) 
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M

Figure A2. Same as Fig. A1 but for DM smoothing of 0.3 (left-hand column) or 1.0 Mpc h −1 (right-hand column). For the sake of clarity, we only show results 
for the original L yMAS (red curves), L yMAS2( ρ, σ ) (blue curves), and LyMAS2( ρ, σ , �) (black curves). Note that even with a DM smoothing of 1.0 Mpc h −1 , 
LyMAS2 still permits to reach a high-level accuracy, even for high angles ( μ > 0.8). 
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hat LyMAS2 applied to DM fields smoothed at 1 Mpc h −1 gives such
ccurate predictions even for high values of μ. This is definitely not
he case with the original LyMAS leading to very high errors. Note
lso that due the smoothing scale, the predictions are less accurate
or distance lower than 2 Mpc h −1 but acceptable for large-scale
nalysis. 

PPENDIX  B:  DETERMINISTIC  MAPPING  

ne commonly way to produce large mocks of Ly α forest, from
aussian fields or DM distributions extracted from cosmological

imulations, is to use a physically moti v ated deterministic relation
hat links the Ly α optical depth (or transmitted flux) to the DM
 v erdensity. This is the case with the so-called Fluctuating Gunn–
eterson Approximation that has been e xtensiv ely used in the

iterature. Ho we ver, the FGPA is supposed to be more suitable
or modelling high-resolution spectra and can be strongly limited
hen the DM density field is smoothed to a scale greater than 0.1
NRAS 514, 3222–3245 (2022) 
pc h −1 (see e.g. the analysis of Sorini et al. 2016 ) and confirmed
y our results in Section 5.4 . For this reason, we have derived in P14
n ‘optimal’ deterministic relations by matching the corresponding
umulative distributions of the smoothed transmitted Flux F s and
M o v erdensity ρs as 

∫ F s 

0 
P ( F 

′ 
s )d F 

′ 
s = 

∫ ∞ 

ρs 

P ( ρ ′ 
s )d ρ

′ 
s , 

here P ( F s ) and P ( ρs ) are the one-point PDFs of the flux and
M o v erdensity measure from the simulation. One advantage of

hoosing such deterministic relation is to reco v er by construction
he PDF of the hydro flux. Ho we ver, the two-point correlation
unction of pseudo-spectra generated with this approach is still highly
 v erestimated (see e.g. figs 10 and 19 in P14 ). 
In this section, we consider another choices of deterministic

elations. In particular, Tie et al. ( 2019 ) have used the conditional
robability P ( F | 1 + δ) of the transmitted flux on the DM o v erdensity
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Figure B1. Examples of 1D and 2D deterministic relations derived from 

the HORIZON-NOAGN simulation at z = 2.5. Top panel: the mean flux 〈 F 〉 
only depends on the DM o v erdensity 1 + δ. Three different DM smoothing 
have been considered. For example, the mean flux has a value of 0.75 for an 
o v erdensity of 1 (DM smoothing = 0.5 Mpc h −1 ). Bottom panel: scatter plot 
showing the mean flux 〈 F 〉 with respect to the DM o v erdensity and velocity 
dispersion field ( σ ). In this case, 〈 F 〉 can have a wide range of values for 1 + 

δ = 1 (see also Fig. B2 ). 

t

F

I
f
m  

o  

e
t
m  

Figure B2. The evolution of the mean flux as respect to the velocity 
dispersion ( σ ) and for a given overdensity (i.e. 1 + δ = 1). The DM 

fields are smoothed at 0.5 Mpc h −1 . This variation is directly derived from 

the 2D deterministic sampling presented in Fig. B1 . Compared to the 1D 

deterministic relation, a wide range of values of 〈 F 〉 is obtained and should 
refine the predictions. 
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o get the conditional mean flux: 

 (1 + δ) = 

∫ 
F .P ( F | 1 + δ)d F . (B1) 

t can be analytically demonstrated that the two-point correlation 
unction of pseudo-spectra obtained from such a deterministic 
apping is the same that the one obtained with the first version

f LyMAS (Tie et al. 2019 ). Since this deterministic relation can be
asily extended to several DM fields, our aim is to investigate whether 
he inclusion of different DM velocity fields in such deterministic 

appings may impro v e the trends or not. As an illustration, Fig. B1
hows examples of 1D-deterministic relations constructed for differ- 
nt smoothing of the DM o v erdensity field and and one example of
D-deterministic relation F (1 + δ, σ ) using both the DM o v erdensity
nd the velocity dispersion fields (smoothed at 0.5 Mpc h −1 ). All
elations are derived from the HORIZON-NOAGN simulation at z = 

.5 (in redshift space). In principle, the 2D-deterministic relation 
s supposed to refine the results as respect to the 1D deterministic
ne. Indeed, let us take, for instance, a DM o v erdensity of 1 +
= 1. This leads to an unique mean flux of 〈 F 〉 = 0.75 from the

D deterministic relation (using a DM smoothing of 0.5 Mpc h −1 ).
he 2D-deterministic relation provides, ho we ver, a wide range of
ossible values of 〈 F 〉 depending this time on the velocity dispersion
see Fig. B2 ). 

We have then produced grids of pseudo-spectra from DM fields 
xtracted from the HORIZON-NOAGN simulation (see Section 4 ), 
moothed at 0.5 Mpc h −1 and using three different deterministic 
elations. The first one considers the DM o v erdensity field only (one-
eld), the second one both o v erdensity and v elocity dispersion fields
two-fields), while the last one associates the DM density field to
he velocity dispersion and vorticity fields (three-fields). To estimate 
he mean value of the flux from a given value of ρ or a given set
f ( ρ, σ ) or ( ρ, σ , �), we use, respectively, interpolations, bilinear
nterpolations, and trilinear interpolations, depending on the number 
f input DM fields. First, Fig. B3 shows the 1D power spectrum and
DF of pseudo-spectra (without iteration) for the two-fields case. We 
otice that the one-point PDF is in general not well reco v ered. The
redictions of the 1D- P k are also not as accurate than LyMAS and
hings especially for the two-fields and three-fields cases. Indeed, 
he power spectra at small scales are considerably o v erestimated.
lthough a full iteration can impro v ed these trends, the predicted

wo-point correlation functions, shown in Fig. B4 , present errors that
re generally quite high especially when an angle μ is considered. 
or instance, the errors are much higher than 10 per cent when
> 0.8. 
MNRAS 514, 3222–3245 (2022) 
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Figure B3. Top panel: the 1D power spectrum of pseudo-spectra generate 
from HORIZON-NOAGN DM fields (smoothed at 0.5 Mpc h −1 ; z = 2.5) and 
using deterministic relations described in the text. The discrepancies with the 
hydro 1D- P k are quite pronounced especially at small scales. Bottom panel: an 
example of PDF of pseudo-spectra compare to hydro spectra, showing again 
a noticeable disagreement. All results are presented without a full iteration in 
the scheme (flux 1D- P k and PDF rescaling). 
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Figure B4. The relative difference of the two-point correlation functions of 
pseudo-spectra produced with deterministic sampling (and a full iteration in 
the scheme). It appears clearly that the different deterministic sampling do no 
reach the level of accuracy of LyMAS2 especially for high angles where the 
error are quite high ( > 10 per cent ). The light and dark grey shade represent 
error lower that (absolute) 10 and 5 per cent, respectively. 
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Also, one main drawback of this approach when creating large
ocks ( > 1 Gpc h −1 ) is to have enough statistics from the hydro-

ynamics simulations to co v er most of the parameter space of the
arge cosmological simulation. This should not be an issue for the
ne-field case since simple interpolations and extrapolations can be
one (e.g. from Fig. B1, 〈 F 〉 ∼1 and 〈 F 〉 ∼0 for 1 + δ < −1.5 and
 + δ > 1.5, respectiv ely). F or the two-fields and three-fields cases,
fficient interpolations and extrapolations could be obviously much
ore complicated to realized. 
NRAS 514, 3222–3245 (2022) 
PPENDIX  C:  ADAPTIVE  SMOOTHING  

n this section we provide some detail on how the DM density field,
elocity field, and velocity dispersion are interpolated adaptively
n a mesh from the output of a cosmological DM N -body simula-
ion, before further treatment by LyMAS2, in particular additional
moothing with a Gaussian window. 
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Note that, while the notations below assume standard configuration 
pace, the calculation naturally extend to redshift space, by just 
odifying particle coordinates accordingly with the local peculiar 

elocity component contribution. In LyMAS2, we use the infinitely 
emote observer approximation by just accounting for redshift 
istortion along the z-axis. 
For a smooth phase-space distribution function f ( x , v ), the pro-

ected density is given by 

E ( x ) = 

∫ 
d 3 v f ( x , v ) , (C1) 

he Eulerian mean velocity field by 

 E ( x ) = 〈 v 〉 E = 

1 

ρE ( x ) 

∫ 
d 3 v v f ( x , v ) , (C2) 

nd the local mean square velocity reads 

 v 2 〉 E ( x ) = 

1 

ρE ( x ) 

∫ 
d 3 v v 2 f ( x , v ) . (C3) 

bviously, the last two equations stand for points of space where 
( x ) > 0. From equation ( C3 ), we can derive the local velocity
ispersion 

2 
v, E ≡ 〈 v 2 〉 E − v 2 E . (C4) 

e notice that the local velocity field can be considered as a statistical 
verage, this is why we used the 〈···〉 E notation above, 

 v 〉 E ( x ) = 

∫ 
d 3 v v f E ( x , v ) , (C5) 

ith the local density probability 

 E ( x , v ) ≡ 1 

ρE ( x ) 
f ( x , v ) . (C6) 

n this probabilistic approach, the mean square velocity is given by 
quation ( C3 ), since 

 v 2 〉 E ( x ) = 

∫ 
d 3 v v 2 f E ( x , v ) . (C7) 

nd, likewise, its local variance by equation ( C4 ). 
What we have actually access to is not a smooth distribution

unction, unfortunately, b ut a distrib ution of N simulation particles 
f individual masses m i , positions x i and velocities v i . This means 
hat the phase-space distribution function has the following form: 

 ( x , v ) = 

∑ 

i 

m i δD ( v − v i ) δD ( x − x i ) , (C8) 

here δD is the Dirac distribution function. From equation ( C8 ), one
an compute the projected Eulerian density 

E ( x ) = 

∑ 

i 

m i δD ( x − x i ) , (C9) 

ut the Eulerian velocity field v E ( x ) and mean square velocity are ill
efined. 
Ho we ver, the underlying distribution of true DM particles is
uch smoother than its crude numerical representation in terms of 
acroparticles of the N -body simulation. While, strictly speaking, 

he phase-space density is still of the form ( C8 ) at the microscopic
evel, it can be considered as a smooth function at the macroscopic
evel, at least in terms of probability density. 

In order to reco v er a good approximation of the continuum,
olombi et al. ( 2007 ) proposed a locally adaptive smoothing algo-

ithm, SmoothDens, inspired from smooth particle hydrodynamics 
hereafter SPH), using, to compute various fields, an interpolation 
indow F x , of which the shape parameters, in particular the typical
ize � ( x ), depend on position x . This window function is normalized
o unity, i.e. 

∫ 
d 3 x ′ F x ( x ′ ) = 1. 

In principle, for a given function h ( x , v ), the smoothed counterpart
s given by 

 F x ×h ]( x , v ) = 

∫ 
d 3 x ′ F x ( x − x ′ ) h ( x ′ , v ) . (C10) 

etting h = ρE , after simple algebraic calculations exploiting the 
roperties of the Dirac distribution function, we obtain the simple 
xpression for the adaptively smoothed density: 

F ( x ) = 

∑ 

i 

m i F x ( x − x i ) . (C11) 

rom there, we can formally define the analogous of equation ( C6 )
ut with adaptive smoothing performed in the spatial position, 

 F ( x , v ) ≡ 1 

ρF ( x ) 
[ F x · f ]( x , v ) , (C12) 

rom which one can derive estimates in the mean field limit of velocity 
elated quantities: 

 F ( x ) = 

∑ 

i m i v i F x ( x − x i ) ∑ 

i m i F x ( x − x i ) 
, (C13) 

 v 2 〉 G = 

∑ 

i m i v 
2 
i F x ( x − x i ) ∑ 

i m i F x ( x − x i ) 
. (C14) 

n the algorithm SmoothDens, the adaptive procedure is used to 
ompute various fields for a particular set of positions x = x j on
 cubical grid of size n g . Function F is a compact (Monaghan &
attanzio 1985 ) spline of size � ( x ), with � ( x ) being the distance
f the N 

th 
SPH closest simulation particle to position x . The value

f N SPH we adopt here is N SPH = 32. As an additional recipe,
daptive smoothing is locally replaced with nearest grid point (NGP) 
nterpolation (Hockney & Eastwood 1988 ) when � ( x ) is smaller or of
he order of the grid cell size L / n g , where L is the simulation box size.
lso, a local weight is given to each particle i so that at the end, its

otal contribution sums up to the particle mass m i . Note that, due to
he finite extension of the spline function, some particles belonging 
o dense clusters or close to dense clusters may not contribute at all.
n the latest implementation of the algorithm, SmoothDens5, which 
e use in LyMAS2, an option allows one to affect these particles to

he grid with NGP interpolation in order to conserve total mass. The
ffect of not doing so is however generally small. 

The outcome of SmoothDens mainly depends on two parameters, 
he resolution n g of the grid and the value used for the number of
eighbours, N SPH . Changing both these parameters can have drastic 
mpact on the results, especially the local velocity dispersion and 
he velocity deri v ati ves estimates. Additional Gaussian smoothing 
erformed in LyMAS2 is ho we v er e xpected to reduce considerably
he dependence on these two parameters, provided that the smoothing 
cale R G associated with the smoothing window is large enough 
ompared to L / n g . Yet one has to bear in mind that the influence of
 SPH cannot be negligible in underdense regions as long as it can

nfluence scales larger than R G , which is unfortunately very likely.
espite these non-trivial issues, the reason why LyMAS2 still works 

o accurately is that it is calibrated relying on probability distributions 
appings, which naturally corrects for intrinsic biases introduced by 

ocal adaptive smoothing. 

his paper has been typeset from a T E 
X/L A T E 

X file prepared by the author. 
MNRAS 514, 3222–3245 (2022) 


	1 INTRODUCTION
	2 LYMAS VERSUS LYMAS2
	3 WIENER EQUATIONS
	4 FLUX AND DM FIELDS
	5 CREATING PSEUDO-SPECTRA WITH LYMAS AND LYMAS2
	6 APPLICATION TO LARGE COSMOLOGICAL DM SIMULATIONS
	7 CONCLUSIONS
	ACKNOWLEDGEMENTS
	DATA AVAILABILITY
	REFERENCES
	APPENDIX A: GENERAL TRENDS
	APPENDIX B: DETERMINISTIC MAPPING
	APPENDIX C: ADAPTIVE SMOOTHING

