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Abstract

Some studies of stars’ multielement abundance distributions suggest at least 5–7 significant dimensions, but others
show that many elemental abundances can be predicted to high accuracy from [Fe/H] and [Mg/Fe] (or [Fe/H] and
age) alone. We show that both propositions can be, and are, simultaneously true. We adopt a machine-learning
technique known as normalizing flow to reconstruct the probability distribution of Milky Way disk stars in the
space of 15 elemental abundances measured by APOGEE. Conditioning on Teff and glog minimizes the
differential systematics. After further conditioning on [Fe/H] and [Mg/Fe], the residual scatter for most
abundances is σ[X/H] 0.02 dex, consistent with APOGEE’s reported statistical uncertainties of ∼0.01–0.015 dex
and intrinsic scatter of 0.01–0.02 dex. Despite the small scatter, residual abundances display clear correlations
between elements, which we show are too large to be explained by measurement uncertainties or by the finite
sampling noise. We must condition on at least seven elements to reduce the correlations to a level consistent with
the observational uncertainties. Our results demonstrate that cross-element correlations are a much more sensitive
probe of a hidden structure than dispersion, and they can be measured precisely in a large sample even if the star-
by-star measurement noise is comparable to the intrinsic scatter. We conclude that many elements have an
independent story to tell, even for the mundane disk stars and elements produced by the core-collapse and Type Ia
supernovae. The only way to learn these lessons is to measure the abundances directly, and not merely infer them.

Unified Astronomy Thesaurus concepts: Spectroscopy (1558); Galaxy chemical evolution (580); Stellar
abundances (1577); Neural networks (1933); Astrostatistics (1882); Sky surveys (1464); Astrostatistics techniques
(1886); Galaxy abundances (574); Core-collapse supernovae (304); Type Ia supernovae (1728)

1. Introduction

Ambitious Galactic spectroscopic surveys such as Gaia-ESO
(Gilmore et al. 2012), APOGEE (Majewski et al. 2017), and
GALAH (Buder et al. 2021) have obtained high-resolution,
high signal-to-noise ratio (S/N) spectra of hundreds of
thousands of stars, spanning large swaths of the Milky Way
disk, bulge, and halo and some nearby satellites such as the Sgr
dwarf and the Magellanic Clouds. Other surveys including
SEGUE (Yanny et al. 2009), RAVE (Steinmetz et al. 2006),
and LAMOST (Luo et al. 2015) have obtained lower-resolution
spectra of even larger stellar samples. The high-resolution
surveys provide detailed chemical fingerprints for each
program star, typically measuring 15–30 elements per star.
This is further complemented by the lower-resolution surveys
that measure bulk metallicity and other abundance ratios (Ting
et al. 2017b; Xiang et al. 2019; Wheeler et al. 2020). In concert
with the precise distances and proper motions from Gaia (Gaia
Collaboration et al. 2018), and with the asteroseismic
calibration of stellar ages (Pinsonneault et al. 2018; Miglio
et al. 2021), these surveys afford an increasingly detailed
picture of the Milky Way’s stellar populations and dynamics,
far beyond that available as recently as a decade ago.

It has long been recognized that the ratio of α-elements
(produced mainly by core-collapse supernovae) to iron-peak
elements (which are additionally produced by SNe Ia on a longer
timescale) is an important dimension of stellar abundance
variation in addition to overall metallicity characterized by
[Fe/H] (e.g., Wallerstein 1962; Tinsley 1979; Fuhrmann 1998;
Bensby et al. 2003; Hayden et al. 2015). However, the evidence
on variations beyond [Fe/H] and [α/Fe] is mixed. On the one
hand, Ness et al. (2019) found that a combination of [Fe/H] and
stellar age is sufficient to predict the value of other APOGEE
[X/Fe] abundance ratios with precision comparable to the
measurement uncertainties. In a related vein, Weinberg et al.
(2019) and Griffith et al. (2021) found that an empirical “two-
process” model fit to median abundance trends can predict the
APOGEE [X/Mg] ratios for most disk and bulge stars with
surprisingly high precision from [Mg/H] and [Mg/Fe] alone. On
the other hand, by applying principal component analysis (PCA)
to a much smaller, pre-APOGEE data set, Ting et al. (2012) found
that five to seven components were needed to describe the
multielement abundances of solar neighborhood stars. Andrews
et al. (2017) reached compatible conclusions with a different
abundance sample. Working directly with spectra, Price-Jones &
Bovy (2018) found that 10 components are needed to explain the
diversity of APOGEE H-band spectra.
One goal of this paper is to reconcile these seemingly

disparate conclusions and demonstrate that most elements
contain critical information that cannot be simply inferred from
the metallicity and α-enhancement alone. Our approach is
based on a powerful machine-learning technique called
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normalizing flow, which we use to create an accurate model of
the probability distribution function (PDF) of 15 abundances
measured in APOGEE disk stars, along with the stellar
parameters Teff and glog . In particular, we can condition on
the values of Teff, glog , and a subset of elements, then evaluate
the joint distribution of the remaining elements. The residual
abundances—star-by-star deviations from the conditional mean
—display significant cross-element correlations, revealing
underlying structures. Residual correlations only approach
what we would expect from the observational uncertainties
after conditioning on seven elements, signaling that most
elements carry independent information.

Drawing on these results, we address the related question: is it
still worth measuring many elemental abundances for large
samples, even if [Fe/H] and [α/Fe] can already predict these
abundances with ∼0.02 dex rms dispersion? Our answer is an
emphatic yes. Correlations can be measured at a high significance
in large samples even when the observational uncertainties are
comparable to, or larger than, the star-to-star intrinsic dispersion of
individual elements. This residual correlation structure from the
multielement abundance trends may then provide critical
diagnostics about myriad astrophysical processes, including stellar
yields, interstellar medium (ISM) mixing, and merger history.

Conditioning the abundance distribution on Mg and Fe has
some similarities to fitting a two-process model like that of
Weinberg et al. (2019). Weinberg et al. (2021; completed after the
original version of this paper) generalized this model-fitting
approach and examine star-by-star correlated deviations from two-
process predictions. While there is some overlap between these
two papers, the two approaches have different underlying
principles and complementary practical advantages. The normal-
izing flow method used here opens a novel route to minimizing
observational systematics by conditioning on Teff and glog . It is
conceptually and practically straightforward to condition on
additional elements and thereby assess the independent informa-
tion encoded in their abundances. Weinberg et al. (2021) aim to
provide more physical insights about the emergence of these
correlated deviations and their degree of correlation with Galactic
location, stellar kinematics, and stellar age.

In this paper’s next section, we discuss why statistical
correlations can reveal hidden degrees of freedom that might be
buried in the dispersion about the conditional mean predictions.
Section 3 introduces the normalizing flow technique for
describing arbitrary high-dimensional distributions. In Section 4,
we apply this technique to a sample of disk red giants from
APOGEE Data Release 16 (DR16; Ahumada et al. 2020; Jönsson
et al. 2020). In Section 5, we discuss the implications of our
methodology and results for the dimensionality of the stellar
abundance distribution, for the methods of abundance determina-
tion, for the chemical tagging of co-natal stellar populations, and
for the design of stellar spectroscopic surveys. In Section 6, we
summarize our findings and identify avenues for further
application of these techniques.

2. Variance, Correlation, and Dimensionality

As noted above, previous studies have shown that by
conditioning on two elements representing core-collapse
supernovae and SNe Ia, such as Mg and Fe, one can predict
other elemental abundances with impressive accuracy. This
does not necessarily imply that other elemental abundances are
redundant. For example, if there are other residual correlations
among groups of elements, it would mean that the elemental

abundance space contains information beyond the amplitude of
these two processes. These correlations, even if small, would
imply that there are other hidden degrees of freedom (or
dimensions) in the Milky Way’s chemical evolution. In this
section, we lay out the key ideas related to the measurement of
such correlations before turning to the specifics of our method
in Sections 3 and 4.
Consider N random variables, X1,L, X N, that represent

N elemental abundances, and let the correlation of any of the
two variables be ρjk. By definition, the covariances of these
N variables are

r s s= ( )C , 1jk jk j k

where σk is the standard deviation of the k-th variable. Suppose
these N variables represent elemental abundances after subtracting
the mean abundances conditioned on Fe and Mg. For simplicity,
we assume that these N variables approach a multivariate
Gaussian distribution. We would like to know if there are
correlations among these residual abundances, indicating under-
lying physical structures in the abundance distribution.
One way to search for residual correlation is by investigating

the change in variance,7 after conditioning on an additional
variable. However, this method proves to be rather insensitive
in practice. To understand this, we start with the simpler
illustration shown in Figure 1. In the middle panels, we show
two bivariate Gaussians with moderate strength correlations,
ρ= 0.4 and 0.2. In the right panel, we compare the variance of
the second variable evaluated from the marginal distribution
with the variance after conditioning on the first variable.
Intuitively, if two variables are correlated, one would expect
conditioning on the first to reduce the variance of the second,
by taking advantage of the information provided by the first
variable. However, Figure 1 shows that a correlation that is
easily detected visually in the middle panels is barely
discernible when looking at the change of the variance as
shown in the right panels.
This intuition can be formulated more rigorously. Assume X1 to

be the variable that we condition on. For a multivariate Gaussian,
the new covariance matrix after conditioning on X1 can be
analytically calculated to be

¢ = - - ( )[ ] [ ] [ ] [ ] [ ] [ ]C C C C C . 2N N N N N N2, , 2, 2, , 2, 1, 2, 11
1

2, ,1

Each of the covariance C terms represents individual submatrices of
the original covariance matrix Cjk, and we use the subscript [2, N]
to represent the (N− 1)× (N− 1)matrix for the second to the N-th
variable. The diagonal entries of the new matrix ¢[ ] [ ]C N N2, , 2, are the
variances upon the conditioning. By evaluating Equation (2), one
can obtain an analytic expression for these new dispersion terms.
The variance of the k-th variable can be written as

s s r¢ = -( ) ( )1 . 3k k k
2 2

1
2

This implies that the fractional change of the dispersion is

s
s

r-
¢
= - - ( )1 1 1 . 4k

k
k1
2

For r  1k1
2 , the fractional change becomes r 2k1

2 .
The upper left panel of Figure 1 illustrates this relation. For the

specific correlation values of 0.2 and 0.4, the fractional changes of

7 In this study, we will use the word dispersion to refer to the standard
deviation of a variable, equal to the square root of its variance.
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the dispersion are 2% and 8%, respectively. For an abundance
intrinsic dispersion of 0.01 dex, typical of what we find for well
measured APOGEE elements (see Section 4), one would be
looking for changes in the dispersion of ∼0.0008 dex or less.

2.1. Revealing Abundance Dimensionality through Dispersion
Is Challenging

Although a reduction of 0.0008 dex might seem impossible to
measure, we emphasize that, in principle, the residual variance of
elemental abundances can be measured precisely in a large sample
even if the observational uncertainties for individual stars are
comparable to the intrinsic dispersion of the abundances. The
variance of the variance is not the variance itself.Mathematically,
suppose that we estimate the total variance for a given elemental
abundance as

å= -
=

( ¯ ) ( )s
N

X X
1

, 5j
i

N

j i j
2

sample 1
,

2
sample

where X̄j is the conditional mean abundance.8 The mean-squared
uncertainty of this estimate—the variance of the variance—can be
calculated as follows.

For a Gaussian random variable, s-( )n s1 j j
2

,tot
2 follows a

chi-squared distribution with (n− 1) degrees of freedom, hence

s
c

-
= -

( )
( )

n s
Var

1
Var 6

j

j
n

2

,tot
2 1

2

s
-

= -⟹ ( ) ( ) ( )n
s n

1
Var 2 1 . 7

j
j

2

,tot
4

2

Here we have used the fact that the variance of c = -- ( )n2 1n 1
2 .

We use the symbols j,tot
2 to represent the true total variance, and sj

2

to represent the estimate of the total variance. For the
n=Nsample? 1, the rms fractional uncertainty in the variance is

s

s

á - ñ
= ⎜ ⎟
⎛

⎝

⎞

⎠

( )
( )

s

N

2
. 8

j j

j

2
,tot
2 2 1 2

,tot
2

sample

1 2

The equation shows that the variance of the variance can be
small even if the variance itself is large.
In this study, we will mostly focus on the total measured

variance without distinguishing its sources, but we note that the
total variance of an elemental abundance is the sum of the
intrinsic variance and the observational uncertainty:

s s s= + ( ). 9j j j,tot
2

,int
2

,obs
2

Since the variance can be measured with a small fractional
uncertainty in a large sample, as a corollary, the value of the
intrinsic variance can be determined even if the observational
uncertainty dominates the star-to-star dispersion.9

Figure 1. Measuring abundance correlation structure is more powerful than measuring the dispersion about the conditional mean. Left: fractional reduction in the
dispersion of a random variable after conditioning the value of a correlated variable, as a function of the correlation coefficient (Equation (4)). Middle: density plot of
random draws from a bivariate Gaussian distribution with dispersion of 0.01 dex for each variable (a typical intrinsic dispersion for APOGEE elemental abundances)
and correlation coefficients ρ = 0.2 (top) and 0.4 (bottom). Right: distribution of variable 2 before (blue) and after (orange) conditioning on the value of variable 1.
The changes of dispersion for these two values of ρ are 2% and 8%, respectively, or less than 0.0008 dex. Correlations that are readily visible in the 2D distributions of
the middle panels are barely discernible in the change of dispersion.

8 We are taking Nsample large enough to ignore the slight bias caused by using
the sample mean instead of the true mean.

9 Deriving the intrinsic dispersion does require accurate knowledge of the
observational dispersion, and systematic uncertainties in the magnitude of this
observational dispersion may dominate over statistical uncertainties. For
example, if σj,int = σj,obs, then a systematic uncertainty of 2 in the value of
σj,obs would be enough to explain all of the observed variance as a consequence
of measurement dispersion.
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While we can in principle detect the reduction of variance
from conditioning on a correlated variable with a large enough
sample, it remains challenging in practice. For the examples in
Figure 1, with ρ= 0.2 and 0.4, the reductions in variance are
4% and 16% (twice the fractional reductions in the dispersion),
and detecting them with 2σ statistical significance requires
Nsample; 5000 and Nsample; 300, respectively. Although these
numbers might appear within reach of large surveys, one must
account for the fact that the effective number of stars after
conditioning at a point in the elemental abundance space is
much smaller than the total size of the sample, a point we return
to in Section 4 below. Because of that, as we will see, such a
signal is often not statistically significant with the current data.

More generally, for ρ2= 1, the fractional reduction of the
variance is ρ2, and from Equation (8), detecting this reduction
at a significance of νσ requires

n
r

( )N
2

. 10sample

2

4


2.2. Detecting Nonzero Correlations Directly Is Easier Than
Detecting Reductions in Dispersions

While measuring the reduction of a variance can be
challenging, measuring nonzero correlations is much easier.
For a multivariate Gaussian distribution, the correlation
estimate’s uncertainty due to finite sampling has a neat analytic
approximation, known as the Fisher transformation. In
particular, let the correlation be ρ and its estimate be r, and
let = - ( )z rtanhfisher

1 . It can be shown that (Fisher 1921), with a
sample size Nsample, the variable zfisher is normally distributed
with the mean equal to r r+ -[( ) ( )]ln 1 11

2
and the standard

deviation of -N1 3sample . In the null hypothesis with
correlation ρ= 0; r, we have zfisher; r, and the mean of
the distribution approaches 0, and the standard deviation
 N1 sample .

This result echoes Equation (8), where the fractional
uncertainty of the variance is N3 sample . Detecting a nonzero
correlation ρ at significance of νσ requires

n
r

( )N . 11sample

2

2


Comparing Equations (11) and (10), in addition to a factor of
two gain, the key difference is that the denominator is ρ2

instead of ρ4. Therefore, for ρ2= 1, it is far easier to detect a
correlation of elements directly than to detect it through a
reduction of the variance. For example, to detect a signal from
ρ= 0.4 at 2σ significance only requires an effective sample of
25 stars, and for ρ= 0.2, 100 stars. We will see an empirical
demonstration of this point in our APOGEE analysis.

A second advantage of focusing on cross-element correla-
tions is that observational uncertainty is unlikely to produce
artificial correlations at a significant level. We discuss this point
further for the specific case of APOGEE abundance measure-
ments in Section 4.4.1 below, and we add a significant caveat
in Section 4.4.3. Nonetheless, the measurement and interpreta-
tion of the correlations is not immune to observational
uncertainty. The generalization of Equation (9) is

= + ( )C C C . 12jk jk jk,tot ,int ,obs

If the observational covariance is diagonal—i.e., if the
observational uncertainties are uncorrelated from one element
to another—then off-diagonal elements of the total covariance
are just Cjk,tot= Cjk,int= ρjk,intσj,intσk,int. For j≠ k, therefore, the
relation between the total and intrinsic correlations is

r
s s

= ( )
C

13jk
jk

j k
,tot

,tot

,tot ,tot

r
s s
s s

= ( )14jk
j k

j k
,int

,int ,int

,tot ,tot

r
s

s
s
s

= + +
- -

⎜ ⎟
⎛

⎝
⎜

⎞

⎠
⎟

⎛

⎝

⎞

⎠
( )151 1 .jk

j

j

k

k
, int

,obs
2

,int
2

1 2
,obs
2

,int
2

1 2

Thus, the measured correlations are always smaller in
magnitude than the intrinsic correlations, by a factor that
depends on the ratio of observational variance to intrinsic
variance; for σj,obs; σj,int the reduction is about a factor of two.
This reduction makes it more difficult to detect a given level of
intrinsic correlation, especially correlations involving elements
with large observational dispersions. In short, the measured
correlation is a conservative limit, and if the measured
correlation is significant, then the detection is significant.10

The third advantage of measuring cross-element correlations
is that their information content is richer than that of an excess
variance alone, with informative clues to the physical origin of
the residual abundance variations. Even if the magnitude of the
intrinsic correlation coefficients is uncertain, the nonzero
values of these coefficients are the unambiguous evidence of
the remaining structure in the element distribution. Thus, the
focus of our observational investigation will be to ask how
many conditioning elements must be considered in the PDF
before the residual correlations of the remaining elements are
consistent with the observational uncertainties. For the
purposes of this paper, we take this number of conditioning
elements to be our operative definition of the dimensionality of
the disk stellar population in the space of APOGEE elemental
abundances.

2.3. Observational Uncertainties in Abundance Measurements

The abundances of elements in the atmosphere of a star are
estimated by fitting a model to the observed spectrum in which
the value of the abundance is a free parameter. The modeling is
complex, as it must include corrections for instrumental effects
and telluric lines, a model of the stellar atmosphere, and a
calculation of a synthetic spectrum from that atmosphere,
which in turn depends on an adopted list of wavelengths and
oscillator strengths for lines of different elements. Analyses of
small sets of high-resolution spectra may be done by hand, but
large surveys typically rely on codes that do automated spectral
fitting and parameter optimization. For the giant stars in
APOGEE DR16 that we will adopt in this study (see Jönsson
et al. 2020), the APOGEE Stellar Parameters and Chemical
Abundances Pipeline (ASPCAP; Holtzman et al. 2015; García

10 Similar to the variance, systematic uncertainties in the magnitude of σj,obs
may limit our ability to infer the true values of the intrinsic correlations.
However, these systematic uncertainties cannot make a nonzero measured
correlation consistent with a zero intrinsic correlation.
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Pérez et al. 2016) assumes MARCS model atmospheres
(Gustafsson et al. 2008; Jönsson et al. 2020) and first fits a
seven-parameter model11 to the continuum-normalized H-band
spectrum, then infers the abundances of other elements by
varying [M/H] and fitting the spectrum in wavelength
windows in which lines of that element dominate, with all
the other parameters held fixed.

There are two main sources of uncertainty in such estimates.
The first is the statistical uncertainty arising from the photon
noise. The second is the systematic uncertainty arising because
the models and calibrations used to infer abundances are
imperfect. These systematic effects can include departures from
LTE or plane-parallel geometry, incomplete or inaccurate line
lists, and data-related effects such as inaccurate line-spread
functions or incomplete removal of telluric contamination. In
an absolute sense—in the difference between a star’s estimated
and true abundances—the systematic uncertainties are often
larger than the statistical uncertainties in a high-S/N spectro-
scopic survey. For this reason, the high statistical precision of
the abundance uncertainties derived from high-S/N spectra is
often dismissed as unrealistic. However, to the extent that the
systematic uncertainties are the same for all the sample stars,
they do not add dispersion to the measured abundances.
Observational contributions to element dispersion arise from
the photon noise, and they can also arise from the differential
systematic uncertainties within the sample.

The latter contribution can be minimized by examining stars
within a narrow range of parameters such as Teff, glog , and
[Fe/H], or, with the method implemented in this paper, by
examining distributions conditioned on these parameters. One
of our study’s innovations is the ability to minimize the
systematic uncertainties through flexible modeling of the
elemental abundance space, conditioned on variables that
contribute to the systematic uncertainties. This innovation
allows the observational dispersion to approach the photon
noise limit, enabling a statistically significant detection of the
residual abundance correlations.

Accurate characterization of statistical abundance uncertain-
ties due to the photon noise is therefore important even if the
absolute abundance uncertainty is dominated by systematic
uncertainties. The impact of photon noise on abundance
measurements is primarily diagonal, i.e., adding observational
uncertainties that are statistically independent for different
elements. However, photon noise uncertainties are not entirely
diagonal because uncertainties in some parameters (especially
Teff, glog , and overall metallicity) affect the models used to
infer all the abundances, and additionally because some
abundances may be measured from blended spectral features
or from molecular lines that involve two elements. We estimate
these off-diagonal uncertainties for APOGEE abundances in
Section 4.4.1 below.

APOGEE reports statistical uncertainties based on repeat
observations of a subset of stars, which are used to derive an
empirical formula relating the standard deviation of repeat
observations to a star’s Teff and [M/H] and the S/N of its
spectrum (Jönsson et al. 2020). These uncertainties are usually
larger than those derived from the χ2-fitting of the spectrum,
which implies that variations of observing conditions are

contributing to the observational uncertainties in addition to
Poisson fluctuations in the number of photons per pixel.
Nonetheless, we will generally refer to these statistical
measurement uncertainties with the shorthand phrase photon
noise.

3. Describing Distributions with Normalizing Flows

Elemental-abundance-space correlations can reveal many
subtle properties about stellar yield processes and ISM mixing.
In particular, if we can recover the multidimensional distribu-
tion p([X/H]) spanned by the elemental abundances of stars,
we can then calculate moments of the distribution and
correlations between elemental abundances. In practice, the
data that we collect (e.g., from APOGEE) is only an ensemble
of realizations drawn from the PDF, {[X/H]i}, where each
realization i consists of the measured abundances of an
individual star. Therefore, the first step to study the elemental
abundance space requires tools that can faithfully recover the
PDF p([X/H]) from the ensemble of realizations {[X/H]i},
which we will elaborate on in this section.
One way of recovering a distribution from an ensemble of

realizations is to conjecture a functional form for the
distribution and then maximize the likelihood of the para-
meters. Mathematically, let x be an N-dimensional random
variable, and let {xi} be the ensemble of the realizations. If we
assume fθ(x) to be the functional form of the normalized PDF,
characterized by θ, finding that distribution that best describes
the data translates into a simple question of finding the θ

*

that
optimizes the likelihood:

åq = q q
⎡
⎣⎢

⎤
⎦⎥

( ) ( )xfarg max ln . 16
i

i*

However, for an arbitrary distribution, our human heuristic on
the functional form fθ can be quite limiting (see Figure 2). For a
high-dimensional and irregular distribution like that of stars in
elemental abundance space, any ad hoc functional form might
not fully capture all the distribution details. This is where the
idea of normalizing flow, a machine-learning tool that is
rapidly growing in applications, can play an important role.
The basic idea of normalizing flow is to use neural networks,

characterized by the neural network coefficients ψ, as a change
of variables. More specifically, the goal is to transform the
multidimensional random variable x to a new random variable
z= fψ(x) of the same dimension, such that p(z) is a much
simpler and more recognizable distribution than p(x). We call
the distribution p(z) the base distribution. In this study, the base
distribution is chosen to be a unit-multivariate Gaussian
distribution with a zero mean and an identity covariance
matrix.
For a change of random variables, one needs to take into

account the change of measure ¢
y ( )xf , known as the Jacobian.

More precisely,

= ¢y y( ) ( ( ))∣ ( )∣ ( )z z x x xp p f fd d . 17

Therefore, in order to evaluate the likelihood in the z space, we
need to ensure that the neural networks’ Jacobian ¢

y∣ ( )∣xf is
easily and analytically calculable. With that premise, we can
then optimize for the neural network coefficients ψ, such that
the neural network transforms the original ensemble {xi} to {zi}

11 The parameters are Teff, glog , the microturbulence vmicro, and the
abundance ratios [M/H], [α/M], [N/M], and [C/M], where M is an overall
metallicity scaling all elements together and [α/M] scales the α-elements O,
Ne, Mg, Si, S, Ar, Ca, and Ti.
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and that the ensemble of {zi} approaches a multivariate Gaussian
distribution. Mathematically, we optimize for the neural network
coefficients ψ through the standard back-propagation technique
with a rectified ADAM optimizer (Liu et al. 2019), and find ψ

*

such that

åy = y y y
* ¢⎡

⎣⎢
⎤
⎦⎥

( ( ))∣ ( )∣ ( )x xmax P f farg ln . 18z
i

i i

In other words, we maximize the likelihood such that the
ensemble of z approaches a unit-Gaussian distribution. We
emphasize that the condition that the Jacobian of the neural
networks be analytically calculable is crucial, since it would be
otherwise prohibitively expensive to perform the optimization.

Besides the Jacobian criterion, another criterion is equally
important. Note that fψ transforms the random variable from x
to z, with which we calculate the likelihood. Yet, the
multivariate Gaussian distribution p(z) is the one from which
we can easily sample. Therefore, if we want to sample p(x)
effectively, the neural network fψ has to be analytically
invertible so that we can first sample z from p(z), then evaluate

y
- ( )zf 1 to attain an ensemble of x.
In short, to use neural networks as a flexible change of

random variables, the networks need to satisfy two criteria:
namely (a) the Jacobian of the network is analytic and (b) the
neural network is analytically invertible. The subset of neural
networks that satisfy these two criteria are known as normal-
izing flows. They can transform any random variable from a
complex distribution into a unit-Gaussian (normal) distribution
(see Figure 3).

The idea of normalizing flow has inspired the machine-
learning community since its inception (e.g., Jimenez Rezende
& Mohamed 2015). The ability to describe high-dimensional
PDFs given any ensemble also makes it one of the most flexible
machine-learning tools to apply to the physical sciences.
However, normalizing flow has had a slow start in astronomy,
with only a handful of applications to date. For example,
Cranmer et al. (2019) applied normalizing flow to describe the
color–magnitude diagram of the Gaia data, and Reiman et al.
(2020) used normalizing flow to model quasar continua. More
recently, Green & Ting (2020) adopted normalizing flows to
describe phase-space distributions and solve for Galactic
dynamics.

In this study, we will adopt normalizing flows to describe the
elemental abundance distribution of stars. We assume a similar

normalizing flow to that adopted by Green & Ting (2020).
More specifically, we adopt eight units of “Neural Spline
Flow” coupled with the “Conv1x1” operation (or “GLOW” in
the machine-learning lingo). Each neural spline flow unit
consists of three layers of densely connected networks with 16
neurons. We refer interested readers to the original articles
(Kingma & Dhariwal 2018; Durkan et al. 2019). Here we give
a brief overview.
Roughly, a neural spline flow performs an invertible spline

transformation whose Jacobian is analytically calculable. The
Conv1x1 operation, on the other hand, performs a linear
transformation of the variables. Like most normalizing flows,
the trick to ensure an analytic Jacobian is through the idea of
coupling, i.e., performing a change of variable for a subset of
variables at each transformation unit. By only changing a
subset of the variables each time, we can ensure that the ¢

yf
matrix is triangular, which allows for a more straightforward
calculation of the Jacobian (the determinant of ¢

yf ). When many
transformation units (eight in total, in our study) are applied
together, and each unit transforms a subset of variables in a
tractable way, we can change the complex, multivariate random
variables gradually to become a simpler Gaussian distribution
(see Figure 3).
We chose to use eight units of normalizing flows as this

architecture is sufficient to capture the distribution of the
elemental abundance space. Using more units could, in
principle, describe the distribution better but with a higher
computational training cost. From our bootstrapping experi-
ments (see Section 4.4.2), we found that any systematics
incurred by our architecture are subdominant compared to the
finite sampling noise. We will come back to this point in
Section 5.5.
Since the idea of normalizing flow is rather new, well-tested

public codes are limited. Through our own extensive explora-
tion, we found that most public packages do not seem to
perform as well as hand-crafted codes. We therefore use our
own codes adapted from the Github repository KARPATHY/
PYTORCH-NORMALIZING-FLOWS. A similar code was also
used in Green & Ting (2020) and is publicly available on
Github.12

To demonstrate the power of normalizing flow, in Figure 2,
we present a case study with a simple double moon-shaped
distribution. We chose this toy example as it loosely resembles

Figure 2. Normalizing flow can faithfully describe challenging distributions. As an illustration, we generate a 2D moon-shaped PDF and plot its density distribution
(via a sample of 106 random draws), as shown in the left panel. The two middle panels show the recovery of the distribution assuming 4-component and 10-component
Gaussian mixture models. These fail to describe the distribution, even in 2D. On the right, we demonstrate a much better recovery with a normalizing flow, as
illustrated further in Figure 3.

12 https://github.com/tingyuansen/deep-potential
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the elemental-abundance-space distribution of the high-α
population versus the low-α population. The left panel shows
the ensemble of 106 realizations drawn from the moon-shaped
distribution. The two middle panels illustrate the cases where
we attempt to describe the distribution with Gaussian mixture
models, with four and ten components, respectively. Even in
this simple example of 2D variables, Gaussian mixture models
fail to represent the actual distribution faithfully. The right
panel shows the results fitted with a normalizing flow, which
clearly outperforms the Gaussian mixture models in depicting
the double moon-shaped distribution.

We further demonstrate how normalizing flow works in
Figure 3. From left to right, and from top to bottom, Figure 3
shows how normalizing flow gradually transforms the
complicated double moon-shaped distribution to the simple
base distribution (a 2D Gaussian) through a series of
operations. The alternate panels show the neural spline flow
operation and the Conv1x1 operation. For each step, the top
panel shows the transformation, and the bottom shows the
result of the transformation. For the Conv1x1 transformation,
in this 2D case, the operation essentially redefines the axes by
rotating the axes. On the top panels, the black points show a
regular grid in the original dimensions, and the blue points
show the transformed locations after the rotation. We connect
the blue and black points to visualize the rotation. As for the

neural spline flow operation, it performs a 2D invertible spline.
To visualize this transformation, the lines in different colors on
the top panels are initiated from different original x values
(from purple to yellow, the x value ranges from −1 to 1, with a
spacing of 0.5), and the panels show the transformed y values
as a function of the original y values after the spline operation.
At its core, the ability to invert a neural network stems from the

fact that we can design a network fψ(x)= f (s(x)), where s is a
neural network, such that the inverse of fψ(x)

−1= g(s(x)) can be
written as a function of s as well. In this way, we can explicitly
invert the fψ(x) without retraining any network.13 With this in
mind, depicting a conditional distribution p(x|y) with a

Figure 3. Structure of the normalizing flow used in Figure 2 and this study. Normalizing flows adapt neural networks as a change variable. The goal is to transform the
distribution from a complicated distribution (top left) to a simple base distribution (bottom right) through a series of gradual transformations. Here we assume a unit-
multivariate Gaussian as the base distribution. This study adopts a normalizing flow that comprises eight units of Conv1x1 and Neural Spline Flow coupling. The
Conv1x1, as illustrated in the even columns, performs linear transformations on the variables, while Neural Spline Flow, as shown in the odd columns, transforms the
variables through spline interpolations parameterized by neural networks. The odd rows demonstrate the transformations, and the even rows show the results of these
gradual transformations (see text for details).

13 To demonstrate how this can be done, we will explain with one of the
simplest forms of normalizing flows—RealNVP (Dinh et al. 2016). In
RealNVP, the normalizing flow transformation can be written as y1:d = x1:d and

= ++ + ( ( )) ( )y x x xs sexpd D d D d d1: 1: 1 1: 2 1: , where the subscript denotes the
subdimension, s1 and s2 are two trainable networks, and e is the element-wise
product. It is easy to verify that the inverse of this operation, as well as the
Jacobian, can be explicitly written as a function of s1(y) and s2(y). Therefore,
once we find the best s1 and s2 through the forward network, the inverse
network is automatically defined. The trick here depends on what is known as
coupling, i.e., holding some of the dimensions invariant (in the notation above,
the first d dimensions). Although for individual units, some dimensions are not
transformed; by having more than one unit in the normalizing flow, and
holding different dimensions invariant for the different units, one can achieve
transformation for all the dimensions while ensuring invertibility. For interested
readers, we recommend Weng (2018) for an introductory text on how to design
other multidimensional neural networks that can be explicitly inverted.
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normalizing flow only requires a minor modification of what
we have discussed thus far. Instead of the usual change of
variable, characterized by a neural network fψ, it suffices to
ensure that the neural network coefficients also depend
(continuously) on the conditioning variable y. In other words,
instead of fψ, we have fψ(y). Operatively, for any function h(x)
in a neural spline flow, where h: k k  is a function that
transforms some part of the random variables with the
k dimension, to build in the dependency on the m-dimensional
variable y, we consider h(x, y)= h1(x)h2(y), where h : k

1 
k is the mapping that does the original transformation, and

h : m k
2   is an additional function that governs how the

mapping h1 should be modified with different y. Both h1 and h2
are each represented by a densely connected network with three
hidden layers and 16 neurons each. To put it simply, for
different conditioning variables y, the neural network depicts a
different change of variable fψ(y) that maps the variables x (with
the same y) to variables z that form a unit-Gaussian distribution.
In principle we could compute a conditional PDF by
numerically integrating the joint PDF, but training a new
normalizing flow by this modified technique is a more efficient
way to attain an accurate conditional PDF and to evaluate the
conditional likelihood.

In this study, we will adopt the conditional normalizing flow
to model the distribution of the APOGEE elemental abun-
dances. As discussed earlier, the conditioning variables y
include T g, logeff of the stars, as well as a subset of elemental
abundances (such as Fe and Mg). The independent variable x is
comprised of other elemental abundances that we do not
condition on. When we condition on a new set of variables, we
retrain the normalizing flow each time.14 Recall that the
normalizing flow allows us to sample p(x|y) through the
inverse mapping fψ(y): (z, y)→ x. Therefore, for any specific
reference value of the conditioning variable y, we can evaluate
the correlation of the independent elemental abundances x by
drawing samples from p(x|y). As we will see in the next
section, the ability to draw samples and evaluate the correlation
matrix at any values for the conditioning variables will come in
handy for several aspects of this study.

4. How Many Elements Matter?

4.1. Data Sample

We select Milky Way disk stars from APOGEE DR16 with
the following selection criteria:

1. Galactocentric radius, 3 kpc� R� 13 kpc.
2. Midplane distance, |Z|� 2 kpc.
3. <g1 log 2.5 .
4. 4100 K� Teff< 4600 K.
5. −0.75� [Mg/H]< 0.45.
6. S/N> 200 for [Mg/H]�−0.5; S/N> 100 for [Mg/H]<

−0.5.

We eliminate stars with STAR_BAD, EXTRATARG, or NO_ASP-
CAP_RESULT flags set, or with flagged values of [Fe/H] or
[Mg/Fe]. Our geometric cuts are based on distances from
ASTRONN (Leung & Bovy 2019a, 2019b), which are publicly
available as a value-added catalog for APOGEE DR16.

The glog range selects luminous giants, allowing us to sample
the full range of Galactocentric radii. The lower Teff cut eliminates
cool stars for which ASPCAP abundances may be less reliable.
Further, many stars with<4100 K in the parent sample have
flagged values of Mn and Cu. The upper Teff cut eliminates red
clump stars (see Figure 3 of Pinsonneault et al. 2018; Vincenzo
et al. 2021), which should have reliable abundances but could be
offset from giant branch stars (see Figure 13 of Jönsson et al.
2020). More generally, our use of restricted glog and Teff ranges
is intended to reduce the impact of differential systematic
uncertainties (see Section 4.2); we further mitigate the differential
systematics by conditioning on Teff and glog when training the
normalizing flows. Our high-S/N threshold is intended to select
stars with the most reliable abundances. We relax this threshold at
low [Mg/H] to maintain an adequate sample size in this range
when studying the lower-metallicity populations. If we maintain
the S/N> 200 cut for the low-metallicity population, we will be
left with 329 stars. Relaxing the S/N criterion to S/N> 100
increases the sample size to 536 stars. As we will see in
Section 5.5, the sampling noise can be the limiting factor to probe
correlations; this prompted us to favor a more lenient cut in S/N
for the low-metallicity stars, even with the expense of a higher
photon noise. We verified that our more lenient S/N cut does not
incur much additional photon noise (because the measurements
are still systematic dominated; see Section 5.3). For the low-
metallicity sample, a S/N> 200 criterion leads to a median
σ[Fe/H]= 0.010 and σ[Mg/H]= 0.014, whereas a S/N> 200
criterion leads to a median σ[Fe/H]= 0.011 and σ[Mg/H]= 0.015.
Nonetheless, since our study mostly focuses on the solar
metallicity stellar populations, this choice is not critical. However,
for the more abundant solar metallicity stars, sampling the noise is
a minor problem. Therefore, we chose to refine our correlation
measurements by limiting ourselves to the high-S/N sample.
Our criteria are similar to those used by Weinberg et al. (2019),

but here we use DR16 instead of DR14. Also, they used a
somewhat narrower glog range ( = –glog 1 2) and had no
separate Teff cut. The number of stars passing our cuts is 20,367.
The 15 elements that we use in this study are the α-elements Mg,
O, Si, S, and Ca; the light odd-Z elements Na, Al, and K; the iron-
peak elements V, Cr, Mn, Fe, Co, and Ni; and the “iron-cliff”
element Cu.15 Although APOGEE measures C and N, we do
not use them here because their atmospheric abundances in the
giant branch stars are affected by internal mixing and do not
reflect the stars’ birth abundances. At least for our well-curated
APOGEE sample, we checked that there is no apparent bias in
[X/Fe] for all the elemental abundance ratios adopted in this
study for stars with different C and N values. We define [X/H]
abundances from the reported APOGEE measurements as
[X/H]= [X/Fe]+ [Fe/H]. Some stars that pass our global flag
cuts have flagged values of [X/Fe] for individual elements. To
keep our analysis straightforward, we further restrict the sample
to stars with unflagged values for all 15 abundances and
−1.5< [X/H]< 1.5 for all elements, reducing it to 20,111 stars.
In Figure 4, we illustrate the abundance distribution of our

APOGEE training set in the [X/Fe] and [Fe/H] plane. All
elemental abundances show a well-defined locus. There is a
larger dispersion for Na and V, and to some extent K and Cu,

14 Training a normalizing flow with ∼20,000 data entries in this study takes
about an hour on a single CPU core. In this study with 17 dimensions (15
elemental abundances, Teff, and glog ), any improvement from the GPU
acceleration appears to be minimal.

15 We adopt stellar parameters and elemental abundances from the “named
tags” attributes from the DR16 catalog (i.e., fits.TEFF, fits.LOGG, fits.
MG_FE). This further leads to a more restricted and cleaner sample as some
combinations are Teff and metallicities are automatically excluded (private
communication, H. Jönsson).
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but the more considerable dispersion is not surprising as these
elements only have weak or singular features in the APOGEE
H-band spectra. The statistical uncertainties reported for these
elements are also larger than for other elements.

To demonstrate the ability of the normalizing flow to emulate
this distribution, we first train a normalizing flow with this training
set and fit for the joint distribution of all 15 elemental abundances,
p([X/H]). We then sample from this 15D joint distribution. The
density contours in Figure 5 demonstrate the sample of 106 drawn
from the fitted normalizing flow. Comparing Figure 4 and
Figure 5 showcases the remarkable ability of the normalizing flow
to represent the APOGEE abundance distribution. From here
onward, unless stated otherwise, we will focus on the conditional
distribution, i.e., the joint distribution of some elements condi-
tioned on the values of T g, logeff , and two or more elements.

4.2. The Baseline: Conditioning on Fe and Mg

We will first describe the abundance distribution of 13
elements, training a normalizing flow to describe ([ ] ∣p X H
[ ] [ ] )T gFe H , Mg Fe , , logeff .16 We include Teff and glog as
conditioning variables because a star’s elemental spectral
features depend on these atmospheric parameters as well as

on the abundances themselves. Due to the spectral models’
imperfection, this often translates into different measurement
systematics for different stars. Conditioning on them allows us
to study the abundances differentially, pushing the measure-
ment uncertainties to approach those due only to photon noise.
Our normalizing flow models also allow us to choose different
reference points in Teff and glog to evaluate the dispersions and
the correlation matrices. Comparing results at different
reference points allows us to test whether they are affected
by systematic uncertainties within the range of our sample.
Small differences could arise in principle because stars of
different glog and Teff have different luminosity, can have
different S/N (hence photon noises), and sample the disk
differently. However, the fact that the median abundance trends
are nearly independent of location within the disk or bulge
(Weinberg et al. 2019; Griffith et al. 2021) suggests that any
genuine trends with disk sampling would be small.
As a baseline model, we also condition on Fe and Mg, which

serve as the representative elements for two critical enrichment
processes, core-collapse supernovae and Type Ia supernovae.
These two elements provide informative diagnostics for the
contribution of these two processes to a star’s abundances because
(a) they are well measured by APOGEE, (b) Mg is expected to
come almost exclusively from core-collapse supernovae, and (c)
Fe has a large additional contribution from SNe Ia. By
conditioning on these two elements, we remove two dimensions

Figure 4. Abundance distribution in [X/Fe] vs. [Fe/H] of the APOGEE training set. We adopt the training set to measure the conditional PDF and pairwise
correlations of the 15 elemental abundances. The training set comprises 20,111 APOGEE disk stars with stellar parameters 4100 K < Teff < 4600 K and
< <g1 log 2.5. We restrict the parameter range of our training set to minimize differential uncertainties in the abundances, and we also restrict the sample to

S/N > 200 for [Mg/H] � −0.5; S/N > 100 for [Mg/H] < −0.5 to ensure that the abundance measurements are robust.

16 Conditioning on [Fe/H] and [Mg/Fe] is equivalent to conditioning on
[Fe/H] and [Mg/H], since the value of [Mg/Fe] at fixed [Fe/H] and [Mg/H] is
just [Mg/Fe] = [Mg/H] − [Fe/H].
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that are known to be important in the Milky Way abundances,
allowing us to study the residuals in finer detail.

Before studying the residual correlations, we first examine the
diagonal entries of the covariance matrix. Recall that normalizing
flows allow us to draw samples from the conditional distribution

([ ]∣ [ ] [ ])p X T gH , log , Fe H , Mg Feeff , with which we can
evaluate the dispersion by drawing samples (105 in our case) from
the conditional distribution. In Figure 6, we show the dispersion of
the conditional PDF, conditioning only on these two elements.
The figure illustrates, given a star’s [Fe/H], [Mg/Fe], Teff, and

glog measurements in APOGEE, how well the conditional mean
abundance predicts the other elemental abundances. The blue,
orange, and green lines show the results for the different reference
values of the conditioning variables. We estimate the finite
sampling uncertainty in the dispersion by constructing 640
bootstrap realizations of our 20,111 APOGEE stars and repeating
our entire procedure, training the normalizing flow for the
conditional PDF on each bootstrap realization of the data. Unless
stated otherwise all the results in this study adopt 640 bootstrap
realizations to calculate the finite sampling uncertainty. Further-
more, since the normalizing flow training itself can be noisy, we
train 60 normalizing flows without bootstrapping and take the
median of the covariances of these realizations as our best
estimates.

On the left, we illustrate the dispersion for stars with different
Teff and glog , assuming solar metallicity (by which we mean both
[Fe/H]= 0 and [Mg/Fe]= 0). We evaluate the dispersion of a
given element about the conditional mean, denoted σ[X/H], as half

the difference between the sixteenth and eighty-fourth percentile
values in the marginal PDF. Elements are listed by increasing order
of this dispersion (blue line) for the Teff= 4500K, =glog 2.1
conditional PDF. The dashed line shows the mean value of the
reported ASPCAP [X/Fe] uncertainty for all the stars in our sample.
The total dispersion is a nearly monotonic function of this estimated
photon noise, but it is consistently higher, implying, if the ASPCAP
noise estimates are accurate, that there is residual intrinsic
dispersion in the abundances. If we estimate this intrinsic dispersion
as the quadrature difference between the total dispersion and the
photon noise, we find values of 0.01–0.02 dex for most elements
(0.007 dex for O and Co). The inferred intrinsic dispersion is larger
(0.035–0.05 dex) for K, V, and Na. While these elements could
truly have a larger intrinsic dispersion, they are also three of the
elements that are the most difficult to measure with APOGEE
spectra, so we suspect that this difference is a consequence of the
observational dispersion in excess of the estimated noise.
If we define σ[X/H] as the rms deviation about the conditional

mean instead of using the difference of the percentile values,
we get dispersions (not shown) that are slightly higher (5%–

10%) for the best measured elements on the left side of the plot,
but 25%–70% higher for the elements with the largest
dispersion (Cr, Cu, K, V, Na). The larger rms values for these

Figure 5. Distributions of [X/Fe] vs. [Fe/H] from a sample of 106 “stars” drawn from the joint PDF constructed by applying normalizing flow to the APOGEE
training set shown in Figure 4. Comparison with Figure 4 demonstrates that the normalizing flow describes the APOGEE abundance PDF faithfully. The distributions
in this figure are smoother because of the much larger number of drawn samples.
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elements are driven by the outliers on the tails of the PDF.17

These outlier values could be real and might be astrophyically
interesting, but we suspect that they are primarily non-Gaussian
observational errors because they occur for the abundances that
are most difficult to measure in the first place. If we used the
rms deviation to infer the intrinsic dispersion, we would get
larger values (0.03–0.08 dex) for these elements.

Green and orange lines show the dispersion at two other
choices of Teff and glog , corresponding to successively cooler
and more luminous stars. The residual dispersion is similar to
that found for our fiducial Teff and glog point, demonstrating the
robustness of our results, irrespective of the chosen stellar
parameters. There are minor differences, but those could be due
to the different photon noise at the different reference points. We
find that residual dispersions at fixed Fe and Mg are only slightly
larger even if we do not condition on Teff and glog , which
indicates that our parameter range is already narrow enough to
limit the contribution of differential systematics. We nonetheless
retain Teff, glog conditioning for our default analysis, since (as
argued in Section 2) these parameters could be correlated with
abundances, which complicates the interpretation of the
correlations, even if conditioning on them makes only a tiny
difference to the residual dispersion.

The right panel shows the residual dispersion for the different
metallicity and α-enhancement. We investigate three different
reference points, representing the solar metallicity population
and the low-α and high-α branches at low metallicity ([Fe/H]=
−0.5 with [α/Fe]= 0.05, 0.25). The current APOGEE disk star
sample has too few low-metallicity stars to reliably investigate
the abundance PDF below [Fe/H]=−0.5. Figure 6 demonstrates
that the dispersion about the conditional mean is qualitatively
similar for these different populations. Some elements show a larger

dispersion at a low metallicity, but these are mostly elements
with weak spectral features in the APOGEE H-band, so the larger
dispersion could be a consequence of larger observational
uncertainties at low metallicity.
Strictly speaking, our use of the percentile range rather than

the rms deviation to define σ[X/H] means that the s[ ]X H
2 are

technically not the diagonal elements of the abundance
covariance matrix. However, culling the outliers with the
percentile range probably constitutes a better comparison with
the reported photon noise uncertainty from ASPCAP. We will
ignore this terminological distinction below and use the terms
diagonal covariance and dispersion to refer to the dispersion
estimated by this percentile method, which responds to the core
of the distribution rather than the tails.

4.3. Dispersion Alone Cannot (Yet) Detect Independent
Elements

Figure 7 shows the residual dispersion of the abundances after
conditioning on two elements (the baseline case discussed
previously), three elements (Fe, Mg, and O), or four elements
(Fe, Mg, O, and Ni). We adopt the reference point Teff= 4500 K
and =glog 2.1 throughout. The left panel shows the solar
metallicity stars and the right panel shows the lower metallicity,
α-enhanced stars. Uncertainties in the residual dispersions are
estimated from bootstrap resampling as before.
No reduction in dispersion is detectable at a statistically

significant level. This result is unsurprising in light of our
discussion in Section 2.1. Even if an element has correlations with
other elements as strong as ρ= 0.4, conditioning on that element
only reduces the dispersion by∼8% on average, which requires
an effective sample of ~ ( )– ( )100 1000  for a 2σ detection,
within the finite sampling fluctuations. While the high-quality
APOGEE sample adopted here has 20,000 stars, the effective
sample at a reference [Fe/H], [Mg/Fe], and stellar parameters
is500 (see the discussion on the effective sample size in
Section 4.4.2). Stacking the signals at multiple reference points

Figure 6. Dispersion of APOGEE elemental abundances about the conditional mean predicted at fixed stellar parameters, [Fe/H], and [Mg/Fe], computed from the
conditional PDF of our normalizing flow model trained on the APOGEE disk star sample. We define the dispersion σ[X/H] to be half the difference between the
sixteenth and eighty-fourth percentile abundance values in the marginal PDF for each element. In the left panel, blue, green, and orange lines show the dispersion at
three different reference points of Teff and glog as labeled, all for [Fe/H] = [Mg/Fe] = 0, and bands indicate the finite sampling uncertainty inferred from bootstrap
realizations. The dashed line shows the mean photon noise uncertainty reported by ASPCAP for each element. In the right panel, green and orange lines show the
dispersion at two other reference points of [Fe/H] and [Mg/Fe] as labeled, all for Teff = 4500 K, =glog 2.1.

17 Although not shown, we found that performing a 3σ clipping on the sample
drawn from the conditional normalizing flows does not qualitatively alter the
results of the correlation matrices presented in this study. Thus, our primary
results are not noticeably affected by the outliers.
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only moderately reduces the sampling noise, unless one takes such
a large range of [Fe/H] and [Mg/Fe] that the results become more
difficult to interpret. Using a large sample of lower-S/N spectra
would not improve the signal either; in this case, the correlations
become weaker due to the larger observation dispersions
(Equation (15)), which in turn would require an even larger
effective sample (Equation (10)) to measure the reduction of the
dispersion at high significance. Thus, from Figure 7 alone, we
might erroneously conclude that Fe and Mg contain all of the
information concealed in APOGEE abundances.

As we will show in the following section, the elemental
abundance space has many more hidden dimensions that manifest
themselves through the correlations, but these dimensions are
simply not visible in dispersion with the current limited sample size
of APOGEE. With larger samples in the near future (e.g., with
SDSS-V, 4MOST, and Weave), measuring other independent
dimensions through the reduction in dispersion should become
possible, though it remains highly inefficient compared to
measuring correlations directly. Such results would validate the
theoretical arguments as laid out in Section 2. Finally, although not
shown, we also tested that conditioning on any other combination
of elements, instead of O and Ni, does not change the results.

4.4. APOGEE Data Demonstrate Residual Correlation
Structure between Elemental Abundances

Besides dispersion, the sample drawn from the conditional
distribution ([ ]∣ [ ] [ ])p X T gH , log , Fe H , Mg Feeff also allows

us to estimate the off-diagonal entries of the covariance matrix, and
hence the correlation among the elemental abundances. The
correlation matrix of the APOGEE data (assuming solar metallicity,
Teff= 4500 K, and =glog 2.1) is shown in the left panel of
Figure 8. The figure shows that, even after removing the mean
abundance trends predicted by Fe and Mg, a nontrivial correlation
between elements remains, implying higher dimensionality of the
abundance distribution that would be missed if we considered only
the residual dispersion. The right panel of Figure 8 shows the trivial
correlation matrix that we would obtain if other elemental
abundances were perfectly determined by the observed Fe and
Mg, leading to an identity correlation matrix. Comparing the two
panels of Figure 8 makes the obvious point that inferring elemental
abundances from Fe and Mg (right) is not the same as measuring
them (left), even if they are statistically indistinguishable in terms of
their dispersions (Figure 7). In Appendix A, we further demonstrate
that such correlation structure also shows up across different
choices of Teff and glog , and is largely independent of the choice
of stellar parameters.
However, a critical question remains: do the measured

correlations reflect astrophysics, or could they be artificially
induced by observational uncertainties? Three potential uncertain-
ties could generate artificial correlations among elemental
abundances; we will estimate each of these in turn and show
that they are too small to explain the APOGEE signal. Figure 9
summarizes this comparison.

Figure 7. Dispersion of abundances about the conditional mean after conditioning on two, three, or four elements (in addition to Teff = 4500 K and =glog 2.1). Left
and right panels show two different conditional locations in metallicity and α-enhancement, as labeled. Lower panels show the change in dispersion in units of the
finite sampling uncertainty inferred from the standard deviation of bootstrap samples of the data set. The reduction of dispersion from adding conditional elements
beyond Fe and Mg is statistically insignificant in this data sample, but the reductions in residual correlations are much more detectable as shown below in Figure 10
(see also theoretical arguments in Section 2 for better intuition).
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4.4.1. Statistical Covariances from the ASPCAP Measurements

The first potential source of uncertainty is the correlated
measurement uncertainty from ASPCAP. For individual element
abundances, ASPCAP reports statistical uncertainties, but it does
not report the covariance of these uncertainties. Therefore, in
the following, we provide our own estimate of the ASPCAP
correlation.

If we condition on Teff, glog , [Fe/H], and [Mg/H], we
expect to remove most differential systematic uncertainties as a
source of dispersion or artificial correlations, and measurement
uncertainties should approach the photon noise limit, as borne
out in Figure 6. In this case, probing the ASPCAP measurement
covariance reduces to the question of understanding the Fisher
matrix. For simplicity, we make the approximation that all the
pixels in the APOGEE spectrum have the same noise, and that
the noise in different pixels is uncorrelated. We refer interested
readers to Ting et al. (2017a) for details behind the calculations
presented here. With these assumptions, it can be shown that
the statistical covariance due to the photon noise (or what is
known as the Cramer–Rao bound) is proportional to

-( · )G GT 1, where G is an Nlabels× Npixel matrix that collects
all the gradient spectra. Each row in G measures how an
APOGEE spectrum would vary as we vary the individual
stellar labels (stellar parameters and elemental abundances).

To evaluate the gradient spectra, we adopt the Kurucz
spectral models (Kurucz 1993, 2005, 2013) through ATLAS12/
SYNTHE synthesizer. Since ASPCAP measures abundances with
spectral windows, we adopt the spectral windows from García
Pérez et al. (2016) as well as additional spectral windows in
DR16 for Cr, Co, and Cu (J. Holtzman 2022, private
communication) and zero-out the gradient for any pixels that
are not in the ASPCAP window for the corresponding element.

When calculating the statistical covariance matrix, besides the
elemental abundances in this study, we also include gradient
spectra from T g v, log ,eff micro, [C/H], and [N/H].18 These are
stellar labels that ASPCAP also derived, and their measurement
uncertainties could indirectly create artificial correlations
among the elemental abundance uncertainties.
For ease of comparison, the top left panel of Figure 9 repeats

the measured APOGEE correlations shown previously in
Figure 8. The top right panel shows the expected correlations
from the photon noise uncertainties, adopting the same reference
point of Teff= 4500 K, =glog 2.1, and solar metallicity. The
covariance of the photon noise abundance uncertainties for an
individual star would be the product of these correlations with the
individual element dispersions, and it would scale with the S/N of
the spectrum. However, the correlation coefficients themselves are
independent of the S/N. The figure shows that the correlations
among the elemental abundances expected from photon noise are
minimal, with typical pairwise values ρ; 0.01, much weaker than
the empirical signals; the APOGEE correlation signals are of the
order of ρ= 0.2–0.4. Our results echo those in Figure 17 of Ting
et al. (2017a), who studied the correlations of abundance
measurements at various resolutions and found that for the
APOGEE resolution and wavelength coverage, most abundance
measurements are uncorrelated even when blended features are
included. Since ASPCAP chose only to measure the individual
abundances through spectral windows without blended features,
the correlations between abundance measurements are even
further reduced.
For completeness, we note that there are a few approxima-

tions that we have made for this calculation. For example, we
adopt the Kurucz models instead of the MARCS/TURBOSPEC-
TRUM models adopted in ASPCAP, as we do not have easy

Figure 8. Left: correlation matrix of 13 elemental abundances evaluated from the normalizing flow PDF conditioned on Teff = 4500 K, =glog 2.1, and solar [Fe/H]
and [Mg/Fe]. Symbol areas are proportional to the magnitude of correlations, blue filled circles for positively correlated element pairs, and red open circles for
negatively correlated pairs. Diagonal entries of the correlation matrix have a value of 1.0 by definition. Even after removing the mean trends tracked by Fe and Mg, the
APOGEE elemental abundance space has many hidden dimensions that only manifest themselves through statistical correlations of abundances. Right: the trivial
correlation matrix expected if we infer the 13 elemental abundances from the observed Fe and Mg abundances. Inferring abundances is not the same as measuring the
abundances; only the latter reveals the information concealed in the subtle correlations, which we can now measure at high statistical significance from the extensive
APOGEE data.

18 If we were to include also vmacro in the fit, it would have increased the
median artificial correlation to ρ ; 0.03, instead of ρ ; 0.01, but the effect
would still be negligible for this study.
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access to the latter. The difference in atomic data is likely to
modify the derived element values slightly but have minimal
influence on the correlations due to the photon noise. Similarly,
we expect the assumption of uncorrelated pixels and homo-
geneous pixel noise might change the absolute scale of the
covariance, but not change the correlation by much. As we
discuss in the following, the other two sources of correlated
uncertainties are more important, and any artificial correlations
due to the ASPCAP measurements can be neglected for our
purposes.

Another caveat is that the empirical uncertainties from repeat
spectra exceed those from χ2

fitting (see Section 2.3 and
Jönsson et al. 2020), which implies that some variation in

observational conditions (e.g., small changes in the spectral
line-spread function) contributes to statistical measurement
uncertainties in addition to pure photon noise. Data reduction
errors such as an imperfect telluric subtraction or continuum
determination could also produce correlated errors in principle,
but in practice this is unlikely because abundances are
determined from localized spectral features in wavelength
regions that are largely disjointed for different elements. We
have done some simple experiments with idealized examples of
such data reduction errors and find that they produce negligible
correlations. We henceforth assume any correlations arising
from these additional random errors can be neglected. This
assumption could be tested empirically in the future by

Figure 9. Comparison of the measured APOGEE correlations conditioned on Mg and Fe (the upper left panel), repeated from Figure 8, to three sources of
observational uncertainty discussed in Sections 4.4.1–4.4.3. The upper right panel shows the correlations expected from the impact of correlations due to the ASPCAP
measurements, which are not perfectly diagonal because values of some stellar parameters and blended features affect the inference of multiple elements. Off-diagonal
entries in the bottom left panel show the magnitude of random uncertainties in correlation coefficients expected from finite sampling, estimated by bootstrap
resampling of our APOGEE data set. Signs of these coefficients have been randomly chosen to emphasize that sampling uncertainty can be positive or negative. The
bottom right panel shows the correlations expected from “measurement aberration” induced by conditioning on a star’s measured values of [Fe/H] and [Mg/H]
instead of the unknown true values. None of these sources of uncertainty is large enough to explain the correlation signals measured in APOGEE, indicating that the
detection of the residual correlation structure in the data is statistically significant and astrophysically relevant.
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computing observational error covariances (and not just rms
errors) using repeat spectra as in Jönsson et al. (2020), but this
approach requires significant changes in APOGEE data
analysis procedures.

4.4.2. Correlation Estimation Uncertainty from Finite Sampling

Another source of uncertainty that could generate artificial
correlations is finite sampling. In the ideal scenario where we
have infinite realizations drawn from the PDF, we should
recover the PDF exactly. However, the finite sampling implies
that the estimation of the conditional PDF itself, and
subsequently the correlations, must be noisy to some extent.
As derived in Section 2.2, the uncertainty of correlation due to
finite sampling is  N1 sample . Quantitatively, we have the
standard deviation of the correlation due to sampling
uncertainty as 0.1 for a sample size of 100 and 0.01 for a
sample size of 104.

Although we adopt a training set of 20,111 stars in this
study, not all the stars contribute to any single reference point.
Since we study the smooth variation of the conditional
distribution and its correlation, it can be challenging to estimate
the effective Nsample contributing to a given reference point. To
do so, we repeat our entire analysis procedure for 640 bootstrap
resamplings of the full 20,111 star data set and take the
standard deviation of the derived correlation coefficients. The
bottom left panel of Figure 9 shows these sampling
uncertainties, assuming the reference point at Teff= 4500 K,

=glog 2.1, and solar metallicity. The sign (positive or
negative) of the fluctuation is randomly assigned to highlight
that the sampling uncertainties can perturb the correlation
estimates in either direction. The panel shows that the finite
sampling uncertainties are typically ρ; 0.045, small compared
to many of the nonzero correlations that we measure from
APOGEE. As a result, the measured APOGEE correlations
cannot be entirely caused by the random fluctuations due to the
finite size of the stellar sample.

Recalling that the statistical uncertainty is  N1 sample for
large N and weak correlations, we infer that the effective
sample size at our chosen fiducial reference point is
Nsample; 500. In principle, we could stack the correlation
signals at different reference points to increase the effective
sample. However, through numerical experiments, we found
that stacking the signals over different Teff– glog of our training
sample (Teff= 4100–4600 K) only reduces the sampling
uncertainty slightly (from ρ= 0.045–0.041). The effective
sample is much smaller than the parent sample due to the
conditioning on [Fe/H] and [Mg/Fe], not Teff and glog . As we
will see in Section 4.5, the stellar populations with different
metallicities and α-enhancements exhibit subtle differences in
the correlations. Therefore, although stacking the signals along
[Fe/H] and [Mg/Fe] could in principle reduce the sampling
uncertainty, it will come at the cost of interpretability.
Moreover, at least for the case of conditioning on two
elements, there is a larger source of uncertainty that we will
discuss below. This uncertainty cannot be reduced with the
effective sample size but rather depends on the abundances’
measurement precision. Therefore, for simplicity and for
keeping any residual systematic uncertainties under better
control, we choose not to stack the results from different
reference points.

4.4.3. Abundance Measurement Aberration

The origin of the third source of uncertainties is more subtle,
but it is the dominant source of artificial correlation for this
study. Recall that, in the baseline model, we condition on Fe
and Mg and study the residual covariances. However, even
without any astrophysical correlation, the residual covariance
will only approach the ASPCAP measurement uncertainty plus
sampling uncertainty if we condition on the true abundance
values of Fe and Mg. When we train the conditional
normalizing flow, we can only condition on the measured
values from APOGEE, not the true values; this limitation itself
can generate some artificial correlations. For example, if we
consider a set of elements that are strongly correlated with Fe,
then in a star whose measured Fe abundance fluctuates low
because of uncertainty, all of those elements will tend to appear
high, in a correlated way, relative to the conditional mean. We
refer to this effect as measurement aberration, by loose
analogy to the phenomenon of aberration of starlight. It is an
uncertainty that arises because we are “standing in the wrong
place,” predicting a star’s conditional mean abundances based
on its measured abundances of Fe and Mg instead of their true
values.19

We estimate this effect through numerical experiments. In
particular, we adopt the empirical conditional distribution

([ ] ∣ [ ] [ ])p X T gH , log , Fe H , Mg Feeff and its corresponding
covariance matrix as shown in Figure 8. We then draw a mock
sample that has the same T g, logeff , [Fe/H], and [Mg/Fe]
values as the stars in our APOGEE training set. Instead of
drawing [X/H] from the joint distribution, we draw each element
independently from its own marginal distribution, generating a
test sample that follows the same empirical dispersion as the
APOGEE data but without the correlation. The elemental
abundance space spanned by the mock data is strictly 2D by
construction, as Fe and Mg determine all abundances without
any residual correlation. To study the aberration effect, we then
add the observational uncertainty to [Fe/H] and [Mg/H],
assuming the mean ASPCAP reported uncertainties for our
sample, Δ[Fe/H]= 0.008 dex and Δ[Mg/H]= 0.011 dex.
Since we draw the other 13 elemental abundances from their
own marginal distributions, their observational dispersions as
shown in Figure 6 are already automatically included. We refit a
new conditional normalizing flow and study the correlation of
this mock sample. To minimize the sampling uncertainty in this
aberration estimate (because we have to draw the conditioning
variables from the APOGEE data set, which is finite), we run the
experiment 60 times, each time drawing new randomly
perturbed values of the conditioning variables from the
APOGEE data. For individual correlation coefficients, we take
the median of these 60 realizations as our best estimates.
The bottom right panel of Figure 9 shows the artificial

correlations due to this effect. As we will elaborate more later
with Figure 11, this source of artificial correlations is not
negligible. Even though the artificial correlations peak at
ρ= 0.05, they have a long tail extending to ρ= 0.1–0.2.
Nevertheless, this effect is not sufficient to explain the strongest
APOGEE correlations (ρ= 0.2–0.4). Furthermore, the correla-
tions induced by measurement aberration can be straightfor-
wardly predicted by the numerical experiment conducted here
under the null hypothesis that all abundances are determined by
Fe and Mg. Deviations from this predicted structure are

19 For analytic discussion, see Section 8.2 of Weinberg et al. (2021).
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therefore evidence against the null hypothesis. As we condition
on more elements (Section 4.5), the aberration effect changes
and diminishes because the random uncertainty in any one
abundance matters less, so we redo the aberration prediction for
each new null hypothesis (see Figure 11 below).

The main uncertainty in predicting the aberration effect is
that we rely on the ASPCAP value of the photon noise
uncertainty. In Appendix B, we show that generating artificial
correlations as strong as ρ= 0.2–0.4, the largest values we find
for the APOGEE data, would require that ASPCAP has
underestimated the statistical uncertainties for Fe and Mg by
a factor of ∼2, with Δ[Fe/H]=Δ[Mg/H]= 0.02 dex.
However, in this case, the structure of the correlations would
be radically different, with all the elements positively
correlated. This also goes against the fact that the observed
total dispersions (including intrinsic dispersions) for some
elements with even less spectral information in APOGEE, such
as O and Si, are close to 0.01 dex (Figure 6 and Figure 7). This
contradiction is itself indirect evidence that ASPCAP is indeed
achieving differential metallicity precision at the 0.01 dex level
for Mg and Fe (as well as O and Si), consistent with the
reported photon noise uncertainties. The realization of such
exquisite precision in a large survey with mass production
pipeline abundances is a remarkable achievement. While
absolute or differential systematic uncertainties are a limiting
factor for some investigations, the high numerical precision
attained by APOGEE can be harnessed for many applications
with proper statistical modeling.

To sum up, through an exhaustive search for false positive
signals, we conclude that the observed APOGEE correlations
are real and statistically significant. They cannot be explained
away by measurement uncertainties.

4.5. Many APOGEE Elemental Abundances Contain
Independent Information

After demonstrating that the APOGEE residual correlation
structure is statistically significant, we turn to the question that
we are the most interested in: how many APOGEE elements
carry independent information? In other words, starting from the
baseline model conditioned on Fe and Mg, which other elements
should we condition to reduce the residual correlations to a level
consistent with the observational uncertainties? Because of the
measurement uncertainties and finite sample size, our results will
be a lower limit to the number of elements with intrinsically
significant information content. Furthermore, observational
uncertainty suppresses correlations (Equation (15)), so our
ability to detect correlations is reduced for the elements with
the largest uncertainties.

Figure 10 presents an overview of our principal results,
which we will elaborate more quantitatively in Figure 11.
Successive panels show the residual correlations after con-
ditioning on two-, three-, four-, five-, six-, or seven-elemental
abundances, always at the reference point Teff= 4500 K,

=glog 2.1, [Fe/H]= [X/Fe]= 0. The elements are sorted by
their commonly associated yield channels—the α-elements
(O, Si, S, and Ca, in addition to Mg), the light odd-Z elements
(Na, Al, and K), and the iron-peak elements (Cr, Ni, V, Mn,
Co, and Cu, in addition to Fe). Shaded blocks highlight groups
of elements within a yield channel that show strong internal
correlations, and each new conditioning element is chosen to
target one of these blocks. The strong correlations among O, Si,
and S in the top left panel are reduced by conditioning on O.

Further conditioning on Ni reduces the correlations among
the iron-peak elements that remain after conditioning on Fe,
Mg, and O. Conditioning on Si reduces several remaining
correlations among the α-elements and the light odd-Z
elements Na and Al. Significant correlation remains among
Ca, and Al, which is reduced by conditioning on Ca. Finally,
although it is hard to see from Figure 10, there is a statistically
significant (Figure 11) anticorrelation between S and Al, which
is reduced by conditioning on Al. We note that the shaded
blocks are only meant to guide the eyes. Even if a single-yield
channel is responsible for producing all the elements within the
same group, we might not expect to see strong internal
correlations because of two confounding factors: (a) elements
with large uncertainties (e.g., V) will show weaker observed
correlations (see Section 2.2), and (b) there are inter-group
correlations that make disentangling the correlations nontrivial.
We discuss interpretation of these correlations in Section 5.2.
Figure 11 shows the statistical significance of these

correlations. In the top panel, the light blue histogram shows
the distribution of the magnitudes of the correlation coefficients
after conditioning on Fe and Mg, i.e., of the off-diagonal
elements of the matrix in the top left of Figure 10. The dark
blue histogram shows the correlation coefficients involving O,
which includes several of the largest values in the distribution.
In the inset panel, the band shows the O correlations element
by element, with the finite sampling uncertainties computed
from the 68, 95, and 99 percentile range of the 640 bootstrap
resamplings of the data set (Section 4.4.2). The green dotted–
dashed line shows our estimate of the correlations from the
photon noise in the ASPCAP abundance measurements
(Section 4.4.1), which are small enough that we can neglect
them relative to other sources of correlation. The black dashed
line shows the correlations expected from the measurement
aberration (bottom right panel of Figure 9), computed as
described in Section 4.4.3. This line represents the prediction of
the null hypothesis, computed from 60 realizations in which we
add random uncertainty to [Fe/H] and [Mg/H] values in a
model that determines all the abundances from Fe and Mg by
construction (Section 4.4.3). The O–Si correlation is highly
inconsistent with this null hypothesis, and the O–S, O–Ca, and
O–Cr correlations are all inconsistent at well over the 99
percentile range. Although not shown, we also tested that even
if we were to include the uncertainty range from the estimate of
the aberration (from the 60 independent numerical experi-
ments), instead of just taking the median prediction for our null
hypothesis, the detection signals are still over the 99 percentile
range.
Returning to the main panel, the green dotted–dashed and

red dashed curves show the distribution of the correlation
coefficients from ASPCAP uncertainties (Figure 9, top right) and
finite sampling (Figure 9, bottom left), respectively. The black
dashed curve shows the distribution of the correlations induced
by measurement aberration. The solid black curve shows the
combined effect of the measurement aberration and sampling
uncertainty, obtained by adding random draws from the
sampling uncertainty distribution for a given coefficient to
the median measurement aberration for the same coefficient.
Many of the correlations measured from the APOGEE data are
well beyond the tail of the distribution expected from the
measurement aberration and sampling uncertainty alone.
The second row shows the same quantities after conditioning

on Fe, Mg, and O. Now the inset panel shows correlation
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coefficients for Ni, which has several of the largest values. Both
Ni–Co deviate from the measurement aberration prediction
over the 99 percentile range, and Ni–Mn, Ni–Ca are at the
95–99 percentile level. We emphasize that the sampling
uncertainty and measurement aberration must be recomputed
each time a new conditioning element is added. The
measurement aberration effect gets gradually smaller as more
conditioning elements are included because the random
uncertainty in any one abundance measurement has less impact
and is less likely to generate correlated aberration. The
sampling uncertainty distribution changes slightly because the
uncertainty for individual coefficients depends on the strength
of the correlation. The ASPCAP uncertainty matrix does not
need to be recomputed as more conditioning elements are
included, but the rows or columns including those elements are
omitted.

After adding Ni as a conditioning element, the Si–Al, Si–Na, and
Si–Co correlations show the most significant deviations from the
measurement aberration prediction (fourth row). The first Si–Al
correlation is over the 99 percentile range, and Si–Na and Si–Co are
at the 95–99 percentile range. After adding Si as well, the most
significant deviations are Ca–Al and Ca–Mn (fifth row), both 99
percentile range. In this five-element case, the overall distribution of
|ρ| is consistent with the combination of the measurement
aberration and sampling uncertainty (main panel), but the specific
Ca–Al and Ca–Mn correlations are not (inset) because the

measurement aberration value for the Ca–Al coefficient is small,
and the value for Ca–Mn is opposite in sign from the observed
correlation. Finally, in the six-element case, the Al–S (95–99
percentile) and Al–Co (99 percentile) correlations remain sig-
nificant, which we further reduce by conditioning on Al.
We emphasize, even when only conditioning two elements,

we are left with 13× 12/2= 78 pairs of elemental abundances,
and we typically expect 78× 1%< 1 pair to show correlations
beyond 99 percentile. Therefore, any pair showing 99 percentile
correlation is statistically significant by itself. More importantly,
for most elements, we have multiple pairs that show significant
correlations, which makes the combination of all these
correlations appearing by chance highly unlikely. Nonetheless,
since individual correlation signals are still at the∼2.5σ–3σ
level, a larger spectroscopic sample in the future will be critical
to confirm and further validate these results, beyond what we can
achieve with the current APOGEE sample.
After adding Al as a seventh conditioning element, the

largest residual correlations are all consistent with the
measurement aberration + sampling uncertainty at the 95
percentile level (seventh row). We therefore do not claim
convincing evidence of residual correlations beyond seven
elements.
There is some judgment involved in deciding the order in

which to add the conditioning elements. Here we have made
these choices based on both the magnitude of the residual

Figure 10. Correlation of residual abundances after conditioning on two, three, four, five, six, or seven elements as labeled. Shaded regions show blocks of
correlations to guide the eye. Correlations within these blocks are reduced after conditioning on one of their constituent elements. All correlations are evaluated at
Teff = 4500 K, =glog 2.1, and [Fe/H] = [X/Fe] = 0. The strong correlations present after conditioning on Fe and Mg alone (top left) are reduced to a level
consistent with observational uncertainties by conditioning on Fe, Mg, O, Ni, Si, Ca, and Al (bottom center). See Figure 11 for a more quantitative assessment.
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correlations and the statistical and systematic uncertainties in
the abundance measurements, skipping over some elements for
which APOGEE measurements are less robust (e.g., Na). We
have checked that alternative orderings lead to the same

conclusion about the number of elements required to reduce the
residual correlations to a level consistent with the observational
uncertainty, though the choice and order of which seven
elements to condition on is not unique. The elements that most

Figure 11. Statistical significance of residual correlations after conditioning on two to seven elements (top to bottom). In each panel, light blue histograms show the
distribution of |ρ|, the magnitudes of off-diagonal correlations in the corresponding panel of Figure 10. Green, red, and dashed black curves show the distribution of
correlations expected from correlated observational uncertainties, finite sampling uncertainty, and measurement aberration, respectively. Solid black curves show the
combined effect of sampling uncertainty and aberration. Inset panels show the correlation coefficients for the indicated element, with 68, 95, 99 percentile ranges
estimated from the percentiles of 640 bootstrap resamplings of the APOGEE data set. For the first four panels, band colors are those of the corresponding element
blocks in Figure 10, and these correlations are highlighted in the main panel histogram. Green dotted–dashed and black dashed lines in the insets show the correlations
predicted from statistical uncertainties and measurement aberration, respectively. Conditioning on seven elements is required to reduce the measured correlations to
values that are all individually consistent at 95 percentile with the null hypothesis of no further residual correlations.
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clearly demonstrate residual correlations are also the seven with
among the smallest ASPCAP measurement uncertainties and the
smallest total dispersion (see Figure 6). We suspect that
improving the photon noise uncertainty of the abundance
measurements would show that even more elements contain
significant independent information.

Finally, stars with different [Fe/H] and [Mg/Fe] sample
stellar populations that have experienced different enrichment
histories and potentially different degrees of stochasticity in their
chemical evolution. Figure 12 compares the residual correlations
for the solar metallicity stars (left) to those for [Fe/H]=−0.5
and [Mg/Fe]= 0.05 (middle) or 0.25 (right), always with
Teff= 4500 K and =glog 2.1. The residual correlations for the
metal-poor stars are comparable in magnitude and similar in
pattern to those for the solar metallicity stars, but with some
differences. Most noticeably, correlations involving Ca are
stronger and consistently positive for the metal-poor stars. For
the α-enhanced stars, the correlations among the α-elements are
somewhat stronger, and those among the iron-peak elements are
somewhat weaker. These differences are not surprising given the
greater relative contribution of core-collapse supernova enrich-
ment to the high-α population, though we caution that the
residual correlations after conditioning on Fe and Mg need not
follow the average contribution of individual enrichment
processes in a simple way (see Section 5.1). Importantly, as
for the solar metallicity stars, the residual correlations reveal
structure in the abundance distributions that would be buried if

we were to study only the dispersion (Figure 7). The bottom
panels show that conditioning on seven elements again removes
most of the large correlations, though we have not investigated
the significance of correlations as exhaustively for these low-
metallicity populations.

5. Discussion

The analysis in Section 4.5 shows that one must consider at
least seven elements (Fe, Mg, O, Si, Ca, Ni, and Al) to remove
the residual correlations in the conditional PDF of APOGEE
abundances. These elements are also among the most precisely
measured in APOGEE data, and they display the smallest total
dispersion after conditioning on Fe and Mg (all but Al have
dispersions <0.02 dex, and Al has a dispersion of 0.027 dex;
see Figure 6). With numerical experiments, we found that if we
were to add 0.03 dex of noise, most measured correlations as
shown in Figure 11 would be consistent with just the photon
noise and the measurement aberration prediction. When adding
0.04 dex of noise, most correlations are dominated by
aberration. Therefore, the dimensionality is most likely limited
by how many elemental abundances we can measure at the
level of 0.02–0.03 dex, and we suspect that most or all of the
elemental abundances would show significant residual correla-
tion structures in data with still higher measurement precision.
Crucially, these correlations can only be discovered if the
abundances are measured individually, not inferred based on
the abundance of other elements.

Figure 12. Correlation matrices for solar metallicity stars (left) compared to those of [Fe/H] = −0.5 stars with [Mg/Fe] = 0.05 (middle) or [Mg/Fe] = 0.25 (right).
Top and bottom rows show conditioning on two and seven elements, respectively. Residual correlation patterns in the top row are similar but not identical for different
populations, and they are reduced to a similar level by seven-element conditioning as shown in the bottom panels.
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Our correlation measurements are made possible by a new
statistical technique, powered by the latest technology in
machine learning, to model the high-dimensional and irregular
distribution of stars in elemental abundance space. The
technique allows us to mitigate systematic uncertainties by
conditioning on stellar parameters (Teff, glog ) that affect
abundance measurements. Further conditioning on Fe and Mg
reduces the residual dispersion about the conditional mean to
0.01–0.04 dex for most elements, and it reveals the sub-0.02
dex intrinsic dispersion after subtracting the reported ASPCAP
statistical uncertainties in quadrature. Our discussion in
Section 2 explains why detecting the hidden dimensions
through the reduction of residual dispersion is statistically
difficult, and our analysis in Section 4 bears out this
expectation in practice.

Instead, these complex but critical signatures of chemical
enrichment processes can be revealed by directly measuring the
cross-element correlations in conditional PDFs. Conditioning
on Fe and Mg alone leaves residual correlations that clearly
exceed the levels expected from correlated measurement
uncertainties, from statistical fluctuations due to finite sample
size, or from the measurement aberration caused by random
uncertainties in the conditioning abundances. We need to
condition on Fe, Mg, O, Ni, Si, Ca, and Al to reduce the
residual correlations for the solar metallicity stars to a level that
is arguably consistent with the observational uncertainties.

In this section, we discuss the implications of our results for
the dimensionality of the stellar distribution in elemental
abundance space, for the characterization of observational
uncertainties in abundance measurements, for the chemical
tagging, and for the design of Galactic spectroscopic surveys.

5.1. Characterizing Dimensionality and the Stochastic
Chemical Evolution of the Milky Way

Our findings help to resolve the tension identified in
Section 1 between studies showing that disk star abundances
can be accurately predicted from [Fe/H] and age (Ness et al.
2019) or from [Mg/H] and [Mg/Fe] (Weinberg et al. 2019)
and PCA analyses showing that 5–10 principal components are
required to explain the diversity of stellar abundance patterns
(Andrews et al. 2012; Ting et al. 2012) or APOGEE spectra
(Price-Jones & Bovy 2018). Conditioning on Fe and Mg does
indeed reduce the residual dispersion to a level that only
moderately exceeds that expected from the photon noise.
However, the cross-element correlations clearly demonstrate
the presence of an underlying residual structure in the
abundance patterns beyond the star-by-star dispersion.

The question of how many elements are needed to remove
residual correlations is closely connected to the more general
question of the dimensionality of the stellar distribution in
elemental abundance space. If we have measurements of M
abundances for every star, then these measurements define an
M-dimensional space, but the stars may lie along a 1D curve, a
2D surface, a 3D hypersurface, etc. We expect the number of
dimensions to be connected to the number of distinct
astrophysical processes that contribute to the elements being
considered. However, the connection is indirect. For example,
in a one-zone model with a fully mixed ISM, stellar
abundances depend on a single parameter (time), even if the
star formation history is complex and there are many processes
contributing to the elements (core-collapse supernovae, Type Ia
supernovae, asymptotic giant branch (AGB) stars, neutron star

mergers, etc.). While the relative contribution of these
processes changes with time, all the stars of the same age
have the same integrated contributions.
Adding dimensionality to the abundance distribution thus

requires mixing stellar populations that have experienced
different enrichment histories. Radial migration of stars is
one such mixing mechanism: star formation, accretion, and
outflow histories within the Galactic disk change systematically
with the radius, and the stars present at a given radius today
were born in a range of annuli with a variety of chemical
evolution tracks (e.g., Schönrich & Binney 2009; Minchev
et al. 2013; Frankel et al. 2020). Incomplete mixing of the ISM,
in azimuth at a given radius or even within a single star-
forming complex, allows stars to be born with a variety of
abundance patterns at nearly the same location and time
(Krumholz & Ting 2018). Bursts of star formation produce
sharp excursions of [α/Fe] ratios and complex evolutionary
tracks for elements produced by AGB stars on a timescale
separate from that of core-collapse supernovae or Type Ia
supernovae (e.g., Johnson & Weinberg 2020). Mergers are
another mechanism for mixing stellar populations with
different histories, though the thinness of the Galactic disk
implies that the fraction of disk stars that originated in a distinct
satellite should be small (e.g., Toth & Ostriker 1992; Ting &
Rix 2019).
Our analysis here implies a lower limit of seven for the

effective dimensionality of the APOGEE disk abundance
distribution. We note that this number is clearly a conservative
limit. The elements studied in this paper are expected to come
predominantly from core-collapse and Type Ia supernovae
(see Andrews et al. 2017; Rybizki et al. 2017; Weinberg et al.
2019). But even within the most boring elements of disk stars
at solar metallicity, our study reveals a plethora of abundance
structures. An analysis including the elements produced by
other processes (e.g., optical surveys like GALAH or Gaia-
ESO) will undoubtedly exhibit an even richer structure.

5.2. Nucleosynthesis Implications

Unfortunately, interpreting the residual correlations of
Figures 10 and 11 in terms of the stellar enrichment sources
remains challenging for several reasons. First, while many of
the correlation coefficients are convincingly larger than
expected from the measurement aberration and statistical
uncertainties, they are not so much larger as to provide precise
measurements of their values. Second, the most obvious
statistical tool to apply to multielement abundance correlations,
PCA (Andrews et al. 2012, 2017; Ting et al. 2012), implicitly
assumes that the latent factors governing these correlations are
orthogonal. There is no reason for the physical variations in
stellar yield contributions to be statistically orthogonal, so the
components recovered from PCA are often combinations of
different stellar yields (as demonstrated by Ting et al. 2012).
Third, as already discussed in Section 5.1, the residuals and
their correlations depend on both the variations in stellar yield
inputs and the processes that mix these variable yields in the
ISM and that mix stellar populations within the disk. Reliable
interpretation of these correlation measurements will therefore
require an ambitious forward modeling program that incorpo-
rates these physical processes and accounts for the impact of
measurement uncertainties, perhaps using improved measure-
ments from larger future data samples.
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Here we offer some general interpretive comments, and we
refer the reader to Weinberg et al. (Weinberg et al. 2021;
especially their Section 8) for a more extensive discussion.
Instead of conditioning on Mg and Fe, Weinberg et al. (2021)
fit each star’s abundances with an empirical two-process model
intended to capture core-collapse- and Type-Ia-supernova
contributions, but because Mg and Fe provide precisely
measured abundances that can distinguish these contributions,
the approaches are fairly similar in practice. Despite the many
differences of detail, including the use of APOGEE DR17
abundances rather than DR16, the correlations of abundance
residuals found by Weinberg et al. (Weinberg et al. 2021; see
their Figure 16) are qualitatively similar to those shown here in
Figure 10. In particular, both analyses find strong residual
correlations among the α-elements O, Si, and S; among the
iron-peak elements Ni, V, Mn, and Co; and among the
intermediate mass elements Ca, Na, and Al.20

It is natural to associate the first of these correlated residual
groups with variations in the core-collapse-supernova enrich-
ment. Stochastic sampling of the progenitor mass distribution
might be sufficient to produce such variations depending on
how efficiently the ejecta are mixed within the ISM; this is a
quantitative question that merits theoretical investigation. Core-
collapse supernovae and Type Ia supernovae both contribute to
the iron-peak elements, so variable enrichment from either
population could drive correlated deviations in the second
element group. Type Ia supernovae may represent a hetero-
geneous population, e.g., with sub-Chandrasekhar and Chan-
drasekhar-mass progenitors, with single-degenerate and
double-degenerate progenitors, with progenitors of a different
chemical composition, or with different explosion physics.
Variations in the relative contributions of populations with
distinctive yields could produce variations among the iron-peak
abundance ratios like those found here.

There is no obvious link among the elements in the
intermediate group. Theoretical models predict that core-
collapse supernovae dominate the production of Na (Andrews
et al. 2017; Rybizki et al. 2017), but GALAH and APOGEE
data show a substantial offset of [Na/Mg] between low-α and
high-α stars implying a large contribution from a time-delayed
enrichment mechanism (Griffith et al. 2019; Weinberg et al.
2019, 2021). Possibly this source also contributes to Ca and Al,
and variations in its amplitude lead to correlated deviations in
these abundances at fixed Mg and Fe. Weinberg et al. (2021)
find a strong correlation between the residual abundances of Na
and of Ce, which is an s-process element expected to have a
large contribution from AGB stars. However, Al is expected to
arise predominantly from core-collapse supernovae (Andrews
et al. 2017; Rybizki et al. 2017), and in contrast to Na, it does
not show distinct [X/Mg] ratios between low-α and high-α
stars, which implies that its production mechanism is prompt
like that of Mg.

These examples, especially the third, highlight the need for
chemical evolution models that can make meaningful quanti-
tative predictions for correlated abundance residuals at fixed
Mg and Fe, and for the desirability of improved survey and
analysis strategies (see Section 5.5) that can measure these
correlations unambiguously and precisely. It is only the size,

homogeneity, and abundance precision of APOGEE that
enables an empirical analysis like the one developed here,
and the theoretical methods for exploiting such an analysis
have yet to catch up.

5.3. Characterizing Observational Uncertainties

In Section 2.3, we emphasized the distinction between the
absolute abundance uncertainties that are the same for all the
stars in a sample, the differential systematic uncertainties that
depend on stellar parameters such as Teff and glog that vary
across the sample, and the statistical abundance uncertainties
from photon noise. The first may dominate the difference
between stars’ measured and true abundances, but it does not
contribute dispersion to abundances. Differential systematics
can contribute dispersion, but they can be mitigated by
conditioning on stellar parameters, a powerful feature of the
normalizing flow method.
By mitigating any differential systematics, we demonstrated

that (Figure 6) the small statistical uncertainties reported by the
ASPCAP pipeline are an accurate representation of photon noise,
with total dispersion including an intrinsic contribution of
0.01–0.02 dex for well-measured elements. We have also seen
that even photon noise that is uncorrelated from pixel to pixel
can cause correlated abundance errors because the abundances
of multiple elements may be affected by the same uncertain
stellar parameter, and because some abundances are estimated
from blended features or molecular lines.21 We have estimated
these correlated measurement uncertainties for ASPCAP in
Section 4.4.1 and find that they are small compared to the
statistical uncertainties in correlation coefficients from finite
sampling (Section 4.4.2). The largest source of artificial
correlations is the measurement aberration, arising because
we can only condition on measured values of abundances
rather than true values (Section 4.4.3).
Although the photon noise alone might have limited impact

on our ability to detect correlations at high significance,
characterizing it is still enormously important. Fundamentally,
we do not have direct access to the intrinsic variance and
correlations, only to the measured values that include
observational contributions. Interpreting these measurements
and tracing them back to astrophysical phenomena
(Section 5.1) requires a robust characterization of the intrinsic
correlations, and hence an accurate determination of the
observational uncertainties. While smaller statistical uncertain-
ties are preferable, the most important thing is to understand
them well enough so that their effects (including that of
measurement aberration) can be removed.
This challenging goal is within reach as we approach a more

ab initio way to perform full-spectral modeling. Full-spectral
fitting is sometimes presented as a way to extract more
information from blended features. Such an argument can be
misleading because for high-resolution spectra this gain is
minimal, as the information per spectral feature only adds in
quadrature (Ting et al. 2017a; Sandford et al. 2020). However,
in terms of extracting an intrinsic covariance, performing full-
spectral fitting with all the stellar labels simultaneously (e.g.,
with THE PAYNE, Ting et al. 2019; or with CYCLE-STARNET,

20 Weinberg et al. (2021) do not include Cu, which is not provided in the
DR17 ASPCAP abundances, though they do include Ce (not available in
DR16) and the element combination C + N. They find that the correlations of
Ca, Na, and Al extend to K and Cr, which is less obvious in our analysis.

21 Another source of correlation comes from the fact that some elements (e.g.,
essential electron donors) can substantially alter the stellar atmosphere. As a
result, it would modify other elements’ spectral features, even those spectral
features not associated with the elements in question (see the appendix in Ting
et al. 2016a).
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O’Briain et al. 2021) may be advantageous compared to a
multistep approach like ASPCAPʼs; the statistical covariance
matrix from χ2-minimization from full-spectral fitting repre-
sents the full correlated uncertainties from photon noise. In the
same vein, classical fitting techniques have advantages
compared to deep learning inferences like ASTRONN (Leung
& Bovy 2019a) or STARNET (Fabbro et al. 2018), as the latter
does not have easy access to evaluate the observational
covariance from first principles.

Alternatively, the repeated spectrum technique already used
to infer ASPCAPʼs statistical uncertainties (Section 5.4 of
Jönsson et al. 2020) could be extended with larger repeat
samples to estimate abundance uncertainty correlations and to
better capture effects that lead to non-Gaussian deviations. Our
study highlights the importance of collecting repeated spectra
to characterize the photon noise uncertainty. We caution that
while the dispersion of abundances in star clusters is sometimes
used as an empirical estimate of observational uncertainties,
such an estimate is inadequate for modeling the photon noise
uncertainty. The dispersion from open clusters includes both
the photon noise uncertainties and differential systematics, and
for some elements, the photon noise uncertainty could be
further inflated by the dispersion of intrinsic abundances within
the cluster.

One of the important outcomes of large multielement data
sets has been the emergence of data-driven abundance pipelines
such as THE CANNON (Ness et al. 2015), ASTRONN (Leung &
Bovy 2019a), and STARNET (Fabbro et al. 2018), which use
labels determined from a subset of spectra to train a model that
infers these labels from other spectra. This approach is
especially powerful for cross-calibrating surveys with different
wavelength ranges or spectral resolution (Ness et al. 2015;
Nandakumar et al. 2020), and it may achieve smaller statistical
uncertainties than a strictly forward modeling approach.
However, a data-driven method carries the risk of “learning”
the astrophysical correlations of abundances in stars, so that the
abundance of an element is to some degree inferred from the
abundances of other elements rather than from true spectral
features of that element (see, e.g., Figure 19 in Wheeler et al.
2020; and Figure 3 in Ting et al. 2017b). Under ideal
conditions (e.g., noiseless labels), a generative machine-
learning model with the correct capacity will not be biased
by correlations in the data, in contrast to a discriminative
machine-learning model (like ASTRONN). However, practical
data samples do not fully satisfy these ideal conditions. Various
approaches have been attempted to mitigate the effect of
“learned correlations” with L1 regularization (Casey et al.
2016), censoring pixels, or imposing theoretical priors (Ting
et al. 2017b; Xiang et al. 2019), but these mitigations are not
perfect.

For the problem of measuring residual abundance correla-
tions, the focus of this paper, a data-driven pipeline may be less
well suited than a traditional forward modeling pipeline. If
abundance values are partly inferred through astrophysical
correlations with conditioning elements, residual correlations
with these elements will be suppressed (see Figure 8), and
correlations among nonconditioning elements could be artifi-
cially enhanced. We investigate this issue in Figure 13. We
crossmatch our training set with the APOGEE DR14 CANNON
catalog (APOGEE does not have an official DR16 CANNON
catalog). This cross-matching leaves us with 13,207 stars as the
training set. As a comparison, we also run the same analysis

using THE PAYNE. Since the DR14 PAYNE catalog (Ting et al.
2019) did not measure a few elements compared to ASPCAP,
we rerun THE PAYNE on DR16 using an improved set of
Kurucz models (Kurucz 1993, 2005, 2013), which are
autocalibrated with a machine-learning technique known as
domain adaptation in CYCLE-STARNET (O’Briain et al. 2021).
In order to have a more robust comparison, we train conditional
normalizing flows for the ASPCAP, CANNON, and PAYNE/
CYCLE-STARNET abundances with this common subset of
13,207 stars.
Figure 13 compares the results. Since THE CANNON did not

measure Cu, and THE PAYNE/CYCLE-STARNET cannot provide
robust measurement for K, we omit these two elements in this
comparison. The figure shows that ab initio fitting techniques
(ASPCAP and THE PAYNE) give qualitatively similar correlation
structures and strong correlations (ρ= 0.4–0.5), though there
are a few notable differences. For example, THE PAYNE
abundances seem to show smaller residual correlations
associated with O and stronger correlations associated with
V. Some differences are not unexpected due to the different
spectral models adopted.22

THE CANNON abundances, by contrast, show visibly weaker
residual correlations, with some qualitatively different correla-
tion structures, despite the fact that THE CANNON was trained
on a higher-quality subset of ASPCAP abundances and therefore
should have inherited the same model systematics. The
differences are particularly prominent for entries that are far
from the diagonal. These differences tentatively suggest that
THE CANNON is artificially damping some residual correlations,
because its abundance values are affected by learned correla-
tions with the conditioning elements Fe and Mg. More
generally, the impact of the correlated measurement uncertain-
ties on the observed correlation patterns may be more difficult
to evaluate for a data-driven pipeline than for an ab initio
forward modeling pipeline. We plan to investigate this issue
more fully in a forthcoming paper.

5.4. Chemical Outliers, Chemical Siblings, and Chemical
Doppelgangers

Describing the elemental abundances of stars with the
conditional normalizing flow and minimizing systematics
through parameter conditioning offers exciting new prospects
in stellar population and Galactic evolution studies. One such
opportunity is a more sensitive and robust approach to finding
the chemical outliers, the stars whose unusual abundances may
reveal rare astrophysical processes or Galactic events. Very
metal-poor or metal-rich stars are already rare in the local disk,
but this in itself does not imply that their abundance patterns
are unusual. The conditional PDF allows us to ask whether a
star’s abundances are unusual relative to stars of the same
overall metallicity and α-enhancement, and conditioning on
Teff and glog means that these unusual abundances are unlikely
to be caused by differential systematic uncertainties.
Several recent studies have searched for groups of chemical

outliers with similar, distinctive abundance patterns. For
example, Price-Jones et al. (2020) applied DBSCAN to the
8D elemental abundance space in APOGEE and found 21

22 As already seen in Ting et al. (2019), oxygen abundances from THE PAYNE
appear to follow an [O/Fe]–[Fe/H] trend closer to the one from the optical
surveys (see their Figure 12), in which [O/Fe] continues to increase for lower
[Fe/H], whereas the [O/Fe] from ASPCAP plateaus at low metallicity
(Figure 4).
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candidate (disrupted) clusters that have more than 15 members
with the same ages. Ting et al. (2016b) constrained the
maximum mass of Milky Way star clusters through the
nondetection of large, chemically homogeneous groups in
APOGEE DR12. Hogg et al. (2016) applied a k-means
partitioning of 15 element abundance space to APOGEE
abundances derived by THE CANNON, recovering multiple
known star clusters through a blind search of abundance space.
Ratcliffe et al. (2020) applied a hierarchical clustering
algorithm to a set of 19 abundances for red clump stars in
APOGEE DR14, finding that groups defined by abundances are
spatially separated as a function of age. However, to date most
searches have mostly found rather obvious structures, such as
globular clusters and the metal-poor high-α population (but see
Price-Jones et al. 2020), or reconstructing tidal streams of
known star clusters (e.g., Kos et al. 2018; Simpson et al. 2020).
A critical obstacle is that the sampling density of stars changes
drastically with [Fe/H] and [α/Fe], and these changes can
overwhelm more subtle signals in a clustering algorithm.
Searches in the residual abundances after conditioning on Fe
and Mg will be a more sensitive probe of disrupted structures
with distinctive abundance patterns.

The most ambitious extension of this approach to Galactic
archeology is the idea of “chemical tagging,” that we can
identify pairs or groups of stars that were born in the same
cluster because they have nearly identical abundances, even if
they are now widely separated in the phase space (Freeman &
Bland-Hawthorn 2002). Since a star’s atmospheric abundances
do not change much in its lifetime, they can serve as the DNA
fingerprints of the star’s origins. Critical to the viability of this
program is the ability to identify the chemical siblings that have
the same intrinsic abundances in the presence of the chemical
doppelgangers that are unrelated but have abundances that are
consistent within observational uncertainties. Some recent
analyses of this challenge have painted a rather bleak outlook

for the “strong chemical tagging”23 (Ting et al. 2015; Ness
et al. 2018). Our methods and findings have numerous
implications for the prospects of chemical tagging. We briefly
address several of them here, reserving a detailed discussion for
future work.
First, we note the obvious point that if all abundances were

in fact predictable from [Fe/H] and [Mg/Fe], then the task of
chemical tagging would be hopeless, as the information
encoded by elemental fingerprints would be too limited. Our
detection of numerous significant correlations at the measure-
ment precision already achieved by APOGEE is an encoura-
ging demonstration that the information content of
multielement abundances is rich. Second, our analysis shows
that APOGEE really is achieving the high precision implied by
repeat stellar observations, with uncertainty of 0.01–0.02 dex
for eight or more elements (Figure 6). Larger observational
dispersion suggested by some previous studies may be caused
by differential systematic uncertainties across the sample.
Third, the normalizing flow technique may be a powerful tool
for chemical tagging because it can mitigate differential
systematics through conditioning and because it offers a well
defined way of assessing the probability of observing a given
set of abundances for a star or pair of stars, including the non-
Gaussian features of the PDF. Finally, the correlations revealed
by our APOGEE analysis alter the efficiency of distinguishing
siblings from doppelgangers, an effect not previously
accounted for in these estimates (Ness et al. 2018).
To calculate this last effect, we start with the two-element

conditional PDF ([ ]∣ [ ] [ ])p X T gH , log , Fe H , Mg Feeff , eval-
uated at our usual reference point of solar metallicity,
Teff= 4500 K, =glog 2.1. Recall that the residual variances
and correlations are largely independent of this choice. As
discussed in Section 2.2, the total covariance matrix Cjk,tot,
which we can evaluate from the conditional normalizing flow,
is the sum of the observational dispersion Cjk,obs and the

Figure 13. Residual correlation structures derived with different spectral analysis pipelines, all evaluated at our standard reference point Teff = 4500 K, =glog 2.1,
[Fe/H] = [Mg/Fe] = 0. The left panel uses the ASPCAP abundances (this study). The middle panel uses abundances for the same data set derived by THE PAYNE with
atmospheric models improved through CYCLE-STARNET. The right panel uses the DR14 sample with abundances from THE CANNON. In all three cases, we adopt the
common subset of 13,207 stars that have THE CANNON DR14 abundances as the training set for a more robust comparison. The two ab initio modeling pipelines yield
similar though not identical correlation patterns, while correlations from THE CANNON are weaker on average and different in structure for some elements. Weaker
correlations could arise if THE CANNONʼs abundances are partly affected by the fact that data-driven models partially infer abundances through astrophysical
correlations instead of measuring them (see Figure 8).

23 Unfortunately, the term chemical tagging has been used in other contexts
nowadays and therefore can be confusing at times. For example, weak chemical
tagging often refers to inferring the stars’ birth Galactocentric radii from their
elemental abundances (and ages). Here we are referring to chemical tagging in
its original form—i.e., reconstructing disrupted star clusters.
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intrinsic covariance Cjk,int. For this calculation, we approximate
Cjk,obs as a diagonal matrix with entries given by the reported
ASPCAP photon noise (dashed line in Figure 6). The difference
of Cjk,tot and Cjk,obs gives us the intrinsic covariance Cjk,int.

Suppose that we observe a pair of stars whose intrinsic
abundances are identical. If the observed abundance vectors x1
and x2 have Gaussian observational uncertainties, then the PDF
of the abundance differences x1− x2 follows a normal
distribution ( )C0, 2 jk,obs , with a log-likelihood

= ( ) ( )Cln ln 0, 2 . 19jksame ,obs 

For a pair of unrelated stars, the PDF of x1− x2 instead follows
( )C0, 2 jk,tot . Recall that we have already conditioned on Fe

and Mg, so we are considering pairs of stars for which these
two abundances are indistinguishable. The normalizing flow
gives us the full and potentially non-Gaussian p(x1− x2), but
here we approximate the residual abundance distribution as
Gaussian to facilitate our comparisons of the alternative cases
below.

The left panel of Figure 14 plots the distribution of ln same
(Equation (19)) for pairs of stars that are co-natal and thus have
identical abundances, and for pairs of stars drawn randomly
from the conditional PDF. As expected, co-natal stars are much
more likely to have small x1− x2 and thus high ln same . For
chemical tagging, one wants to find a threshold in ln same that
selects most co-natal pairs while rejecting most random
doppelganger pairs.

Whether or not the chemical doppelgangers will overwhelm
the chemical siblings depends critically on the field-to-co-natal
ratio f, i.e., the prior knowledge of whether a pair of stars is
random as opposed to being co-natal. As discussed at length by
Ting et al. (2015), for a given star-forming event with cluster
mass Mc, this ratio can be approximated to be;M*/Mc, where
M* is the integrated star formation rate (SFR) of a certain
Galactocentric annulus that produces stars with similar Fe and
Mg to the cluster. If we further assume that the total integrated
SFR at a given Galactic annulus is about 5× 1010Me (e.g.,
Bovy & Rix 2013; Ting et al. 2015; Bland-Hawthorn &
Gerhard 2016),24 and approximate that, we can grid the Fe and
Mg abundance space to 1000 bins (assuming Fe and Mg
photon noise precision of 0.01 dex with 0.5 dex span in [Fe/H],
and 0.2 dex span in [Mg/Fe]), then f=Mc/(5× 107Me). For a
large cluster with Mc= 5× 104Me, like Westerlund 1, we will
have f; 1000, the value adopted below.

The solid black line in the right panel of Figure 14 shows the
completeness of selecting co-natal pairs as a function of the
log-likelihood threshold, i.e., if we only consider pairs with
ln same larger than the value on the x-axis. The blue dashed
line shows the contamination rate, defined as the ratio of
random field pairs above the threshold to the total number of
pairs above the threshold, assuming a field-to-co-natal ratio of
f= 1000. With the current ASPCAP photon noise illustrated in
Figure 6, which corresponds to Δ[Fe/H]; 0.01 dex and
similar or larger values for other elements, it remains
challenging to identify co-natal stars. For any threshold that
has reasonable completeness, the contamination rate is nearly
100%, i.e., doppelgangers far outnumber siblings.

However, moderate improvements in measurement precision
can dramatically change this picture. Orange and green dashed
curves show forecasts in which we reduce the observational
dispersion by a factor of two or a factor of three (equivalently,
reduce the variance by a factor of four and nine), setting
Cjk,tot= Cjk,int+ Cjk,obs/4 and Cjk,int+Cjk,obs/9. We add a
constant to the log-likelihood such that, in all three cases, the
completeness results (solid black line) coincide with each other.
With a factor of two reduction of dispersion, one can choose a
threshold that yields 80% completeness with∼ 50% contam-
ination, enough to yield strong statistical conclusions even if
any given pair has a significant chance of being random. For a
factor of three reduction of dispersion, one can choose a
threshold that yields high completeness and minimal contam-
ination. In the S/N-limited regime, these reductions would
require factors of four or nine increase of observing time per
star. More importantly, the ASPCAP photon noise estimates,
based on repeat spectra of stars, are usually larger than those
estimated from χ2-fitting (Jönsson et al. 2020) by a factor of a
few, which implies that an abundance extraction pipeline that is
corrected for additional observational effects might achieve
significantly higher abundance precision even with the existing
APOGEE spectra. Conversely, without such corrections,
simply increasing exposure times may not improve the
precision as rapidly as σ2∼ 1/S/N∼ 1/t. Achieving sub-
0.01 dex precision, even differentially, requires an even better
understanding of the abundance extraction pipeline, which is
no doubt challenging.
We also caution that our forecast has uncertainties because

our decomposition of the observed Cjk,tot into Cjk,obs and Cjk,int

can be affected by systematic uncertainties in the characteriza-
tion of Cjk,obs. A more careful investigation of the photon noise
characterization is critical (Section 5.3). Regardless, the
forecast in this study is undoubtedly a conservative estimate
—supplementing our current set of APOGEE elements with
elements expected to have a larger contribution from AGB stars
or other neutron-capture processes could substantially improve
chemical tagging by adding more chemical variations.
Chemical tagging may also be feasible in the lower-density
regions of the residual abundance space, even if doppelgangers
overwhelm siblings in the core of the distribution. Finally,
besides characterizing Cjk,obs, measuring a robust Cjk,tot as we
have done in this study is also important. These correlations
change the chemical tagging effectiveness because they tilt
Cjk,int relative to the nearly diagonal Cjk,obs. We repeated our
C 3jk,obs forecast after setting the off-diagonal elements of

Cjk,int to zero, and we found that ignoring the correlations can
artificially alter the expected contamination rate (by
10%–20%).

5.5. Implications for Survey Design

The design of a Galactic spectroscopic survey involves
trade-offs among numerous competing considerations, includ-
ing number of targets, types of targets, spatial coverage,
wavelength range, spectral resolution, and S/N. Design
decisions depend partly on the instrumentation, telescope
facilities, observing time available, synergy with other data
sets, and the prioritization of the survey’s science goals. Here
we discuss implications of our results for a survey that places a
high priority on mapping the correlations among elemental
abundances, to understand nucleosynthesis and the astrophy-
sical origin of the elements, to trace distinct stellar populations

24 Note that the integrated SFR is not exactly the current stellar mass, but this
ratio is roughly compensated if we only count stars within a certain
Galactocentric annulus like the solar neighborhood (for details, see Ting
et al. 2015).
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through space and time, and to probe complexities of Galactic
chemical evolution. The key design considerations are to
minimize systematic uncertainties in artificial correlations and
to maximize the S/N for detecting intrinsic correlations.

We first note that our analysis in Section 4.3 suggests an
intrinsic dispersion of 0.01–0.02 dex for the residual abun-
dances of many APOGEE elements after conditioning on Fe
and Mg. This is a useful reference value when thinking about
the statistical precision of abundance measurements. Recall
that, from Equation (15), the observed correlations are
suppressed relative to the intrinsic correlations by a factor that
depends on the ratio of observational variance to intrinsic
variance. Consequently, it will generally be difficult to measure
low-amplitude intrinsic correlations for elements whose photon
noise uncertainties are much larger than the intrinsic dispersion,
or 0.02 dex. The fact that six out of the seven conditioning
elements in this study have dispersions of <0.02 dex vividly
illustrates this constraint. Nonetheless, we emphasize that
measuring these correlations is still possible in a large sample if
all the sources of spurious correlations are sufficiently well
characterized.

We have already discussed the issue of correlated statistical
uncertainties in abundance measurements (Section 5.3). This
consideration favors higher spectral resolution to reduce the
impact of blended features that drive stronger correlations. In
principle, the correlations from statistical uncertainty can be
predicted and subtracted, but this requires accurate knowledge
of their magnitude. The larger they are, the more likely it is that
systematic uncertainty in their level will be a limiting factor.
Ideally one would like to derive the observational covariance
theoretically from the χ2

fitting and empirically from the repeat
spectra of stars, and demonstrate consistency between them. If
these estimates are inconsistent, as they currently are for
APOGEE (Jönsson et al. 2020), it means that the statistical

uncertainties are not fully understood, and it indicates that
improved data reduction and modeling might be able to extract
higher precision abundances from the existing spectra. We
emphasize yet again that it is valuable to minimize and fully
characterize the photon noise in abundance measurements even
if the absolute uncertainty is dominated by imperfections in the
atmospheric and spectral synthesis models. These modeling
systematics generally do not add dispersion or artificial
correlations to the abundances derived for stars with similar
properties. The latter can be attained by modeling the data with
normalizing flows.
Higher measurement precision is desirable both to boost the

expected correlation signal (assuming that the intrinsic
correlation ρjk,int is fixed by the underlying astrophysics) and
to reduce the artificial correlations caused by measurement
aberrations. In the top panel of Figure 15, the black solid curve
shows the distribution of the correlation coefficients produced
by the measurement aberration in our analysis, computed as
described in Section 4.4.3. This calculation assumes random
uncertainty in [Fe/H] and [Mg/H] at the level of the mean
ASPCAP uncertainties for our sample, 0.008 dex and 0.011 dex,
respectively. The red curve shows the predicted distribution if
the random uncertainties for both elements are reduced by a
factor of two, which drastically reduces the number of
aberration-induced correlations above |ρ|; 0.06. Conversely,
doubling the [Fe/H] and [Mg/H] uncertainties (blue curve)
leads to a much broader distribution of aberration correlations.
In principle, the aberration correlations are a predictable mean
signal, not an uncertainty, so one should be able to detect true
correlations even at levels within this distribution. However,
systematic uncertainty in the exact level of the photon noise
uncertainty makes the predicted aberration signal uncertain.
This systematic uncertainty in the aberration correlations is a

Figure 14. Reassessing chemical tagging and the chemical doppelganger rate. Left: the blue histogram shows the probability that a pair of co-natal stars with identical
intrinsic abundance has log-likelihood ln same (Equation (19)), assuming observational uncertainty equal to the reported ASPCAP values. The orange histogram shows
the log-likelihood distribution for pairs of stars drawn randomly from ( )C0, 2 jk,tot , i.e., from a Gaussian approximation to the residual abundance PDF conditioned
on [Fe/H] = [Mg/Fe] = 0. Right: the solid black curve shows the completeness of selecting co-natal pairs as a function of the adopted threshold in ln same . The
dashed blue curve shows the corresponding contamination by unrelated random pairs, assuming a field-to-co-natal ratio f = 1000. Orange and green dashed curves
show the contamination if the observational dispersion is reduced by a factor of two or three, respectively; in each case, we have added a constant to ln same so that
the completeness (black curve) stays the same. Chemical tagging with APOGEE abundances is difficult given current abundance precision and f ; 1000, but factors of
2–3 improvement in precision would make it possible to recover co-natal pairs with high fidelity.
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major reason that we do not push beyond seven conditioning
elements in our current analysis.

The other limiting factor in detecting weak correlations is
sampling uncertainty, which scales as -Nsample

1 2 . Although not
shown, we tested this theoretical scaling extensively with
numerical experiments. For Nsample smaller than the current
sample size, we subsampled the APOGEE sample. As for
Nsample larger than the current sample size, we draw mock
samples from the emulated APOGEE joint distribution
(Figure 5). We found that the scaling is robust for
300< Nsample< 100,000. We did not test beyond Nsample=
100,000. The exact scaling also indirectly demonstrates that our
normalizing-flow parameterization adequately describes the
distribution and only incurs negligible uncertainty. The results
from some of these numerical experiments are shown in the
bottom panel of Figure 15. The black curve shows the
distribution of sampling the uncertainty amplitudes estimated
from bootstrap resamplings of our APOGEE training sample
(Section 4.4.2). The uncertainties are typically ρ; 0.045, with
some variation depending on the element correlation in
question. Sampling uncertainty sets a statistical limit on the
detectability of low-amplitude correlations for a given sample
size. Green, orange, and blue curves show the distribution from
our numerical experiments with Nsample= 100,000, 3000, or
700, respectively.

As previously discussed, the sampling uncertainty we find
in our bootstrap analysis implies that the effective size of our
sample after conditioning on Teff, glog , [Fe/H], and [Mg/H]
is only Neff= 1/ρ2; 500, even though our full sample is
Nsample; 20,000. Because our measured correlation signal is
fairly consistent from one reference point to another (see
Appendix A), we could average the results from multiple
reference points to reduce the sampling uncertainty. We have
experimented with this approach and obtained some reduction of
the sampling uncertainty when integrating over Teff and glog .
However, since the training sample already spans a small range of

Teff– glog , we found that the reduction is minimal (from
ρ= 0.045–0.041). Expanding the sample beyond this Teff– glog
range will risk distorting or diluting the correlations due to the
differential systematics of the abundances, though this effect could
be mitigated by using the median or mean trends to calibrate the
empirical corrections as a function of or glog (e.g., Eilers et al.
2021; Ness et al. 2022; Weinberg et al. 2021).
We found that we can approach the theoretical ρ; 0.01

corresponding to Neff; 104 if we further integrate over [Fe/H]
and [Mg/H], but as demonstrated in Figure 12, the different
populations have subtle differences in the residual correlation
structures, and hence we chose not to integrate the signals. The
bottom line is that the same survey strategy as APOGEE, as
assumed in the bottom panel of Figure 15, is not the most
effective approach for this particular study. With a more careful
selection (e.g., through Gaia’s color–magnitude diagram) of
“stellar twins,” with similar [ ]T g, log , Fe H ,eff and [Mg/Fe],
at any given reference point in this 4D distribution, we could
achieve what APOGEE enabled in this study with a sample of
only ( )1000 stars.
While normalizing flows could mitigate some of these

limitations, nonetheless, collectively these considerations suggest
that an effective strategy for mapping out multielement abundance
correlations might be to target moderate-sized samples
( ( )N 10sample

4 ) of stars preselected in narrow ranges of Teff,
glog at multiple reference points in [Fe/H], and [Mg/Fe],

obtaining high S/N at high spectral resolution, analogous to the
solar twin studies (Ramírez et al. 2009; Nissen 2015; Bedell et al.
2018). Choosing narrow ranges of stellar parameters at each
reference point mitigates differential systematics as a source of
observational dispersion, and it minimizes the difference between
Nsample and Neff for setting sampling uncertainty. High S/N
mitigates the dilution of intrinsic correlations by observational
dispersion, reduces measurement aberration, and reduces any
systematic uncertainty from correlated statistical uncertainties.

Figure 15. Influence of measurement precision and sample size on ability to detect low-amplitude correlations of residual abundance variations. Top: distribution
of correlation coefficients produced by measurement aberration in our data set (black curve), with abundance uncertainty of Δ[Fe/H] = 0.008 dex and
Δ[Mg/H] = 0.011 dex, and in data sets with abundance uncertainties lower (red) or higher (blue) by a factor of two. Bottom: distribution of the finite sampling
uncertainties in correlation coefficients, as estimated from bootstrap resamplings of our APOGEE data set (black curve) and numerical experiment with samples
of 700, 3000, or 100,000 stars (blue, orange, green) from the same distribution. Although our APOGEE sample has ; 20,000 stars, the sampling uncertainty
after conditioning on Teff, glog , [Fe/H], and [Mg/H] corresponds to an effective sample size Neff = 1/ρ2 ; 500. Detecting correlations at the level of ρ ; 0.05–0.1
requires high abundance precision and samples that are either large or targeted in stellar parameters so that Neff approaches Nsample.
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Within a program such as GALAH or the SDSS-V Milky
Way Mapper (Kollmeier et al. 2017), this goal could be
achieved by targeting small subsets (e.g., ( )1 % ) of the full
(106 star) samples for repeated observations to build a high
S/N. Coverage of a wide range of elements could be achieved
by observing the stars in common in both the optical and
infrared surveys. With well-characterized correlations at
various locations in [Fe/H], and [Mg/Fe], the much larger
full samples could be used to search for outlier stars and
chemically distinct groups and to apply these correlations to
chemical tagging.

6. Conclusions

High-resolution, highly multiplexed spectroscopic surveys are
currently measuring 10–30 elemental abundances in samples of
more than 105 stars. Embedded in this multidimensional
elemental abundance space are clues to the astrophysical sources
of the elements and archeological information about the Milky
Way’s history. However, the tools that we currently have to
decipher the irregular distribution of stars in this high-
dimensional space remain rather rudimentary. In this study, we
have proposed a new method based on a machine-learning
technique known as normalizing flow to depict the distribution
of Milky Way disk stars in the abundance space spanned by 15
elements measured by the SDSS APOGEE survey. Our key
findings are summarized as follows.

1. Conditional normalizing flow allows us to minimize the
impact of the differential systematic uncertainties on the
observational dispersion in abundance measurements.
After conditioning on Teff, glog , [Fe/H], and [Mg/Fe],
the residual APOGEE abundances have a total dispersion
of 0.01–0.02 dex for O, Si, Ca, and Ni; 0.02–0.04 dex for
Mn, Al, Co, S, Cr, and Cu; and 0.04–0.06 dex for K, V,
and Na. These dispersions are typically 1.5–2 times
higher than the photon noise uncertainties reported by
ASPCAP for our S/N> 200 sample, and the difference
is plausibly explained by the intrinsic dispersion with
a typical amplitude of 0.01–0.02 dex. Differentially,
the observational dispersion of APOGEE’s [Fe/H] and
[Mg/Fe] measurements is;0.01 dex or better.

2. We have argued theoretically and demonstrated empiri-
cally that abundance correlations can be measured
robustly in a large data set even when the statistical
uncertainties of the individual abundance measurements
are comparable to the intrinsic dispersion. Studying only
the dispersions about the conditional means could miss
many hidden dimensions in the elemental abundance
space. Abundance correlations are much more effective
for measuring this subtle information.

3. Although knowledge of a star’s [Fe/H] and [Mg/Fe] is
sufficient to predict most of its APOGEE abundances at
the ∼0.02 dex level, the residual abundances show cross-
element correlations at high significance. These correla-
tions cannot be discovered if the abundances are inferred
from Fe and Mg, only if they are measured independently.

4. Even for solar metallicity disk stars and a set of elements
expected to come mainly from core-collapse and Type Ia
supernovae, we must condition on at least seven elements
(e.g., Fe, Mg, O, Ni, Si, Ca, and Al) to reduce residual
correlations to a level consistent with observational
uncertainties. Correlation patterns for [Fe/H]=−0.5

stars, with [Mg/Fe]= 0.05 or [Mg/Fe]= 0.25, are
similar to those found at solar metallicity. Our results
reconcile previous findings that [Fe/H] and [Mg/Fe]
accurately predict many other abundances with other
studies finding 5–10 significant dimensions to the stellar
distribution in the abundance space: both conclusions are
true. However, since the dispersion is much less sensitive
than the cross-correlations of elemental abundances, the
lack of reduction in the dispersion does not imply that
elemental abundances are redundant.

We have discussed the implications of our results for the
survey design and analysis in Section 5. The robust statistical
modeling of the elemental space mitigates differential systema-
tics, improves the prospects for chemical tagging of co-natal
stars, and puts the concept of chemical tagging onto a firmer
statistical footing. However, chemical tagging remains challen-
ging with the current abundance precision. For detecting and
characterizing the full network of correlations, we advocate
high-S/N observations of intermediate-sized samples (∼104

stars), concentrated in stellar parameters and at specific
locations in [Fe/H] and [Mg/Fe], measuring elements that
probe a range of astrophysical processes. These correlations
encode critical insights about nucleosynthetic sources and
subtleties of chemical evolution, and advances in theoretical
modeling are needed to exploit the novel information they can
provide. Once accurately measured, these correlations can be
applied to the larger, lower-S/N samples to map temporal and
spatial variations and select stars with common histories.
Normalizing flows is a powerful new technique for

describing complex, high-dimensional distributions. This
technique has many potential applications in Galactic arche-
ology, including the identification of outlier stars and
distinctive clusters in abundance space. In cosmology, the
advent of enormous data sets drove the development of
sophisticated statistical techniques to interpret them. As
Galactic archeology surveys grow to many elements for vast
numbers of stars, a similar revolution in the analysis techniques
is needed to exploit the rich, multifaceted constraints they
provide on stellar astrophysics, nucleosynthesis, and the history
of the Milky Way.
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Appendix A
Conditioning on Different Teff and glog

In this study, we focus on the reference point Teff= 4500 K
and =glog 2.1, but our results are not sensitive to this choice.
Figure A1 demonstrates that the residual correlation structures
are almost identical across the different reference Teff and glog
within the stellar parameters spanned by the training set.

Besides mitigating any Teff–abundance correlations, we
found that conditioning on Teff and glog is also crucial for
studying the dispersions in this study. Conditioning on Teff and

glog reduced the measured dispersions (Figure 6). Without
conditioning on Teff= 4500 K and =glog 2.1, the Mn
abundances demonstrate a 70% larger dispersion (0.037 dex
instead of 0.022 dex). The dispersions for Ca, Ni, Cr, Cu, and
K also increase by 10%–17%, indicating that, for some
elements, abundance measurements from ASPCAP have residual
differential systematics even over the restricted range of Teff in
this study.

Appendix B
Can Mischaracterization of the ASPCAP Photon Noise

Explain the Correlation Signals?

In Section 4.4, we have demonstrated that the ASPCAP
measurement correlations and finite sampling uncertainty cannot
explain the APOGEE residual correlation structures. However,
the measurement aberration effect, on the other hand, is sensitive
to the assumption on the ASPCAP photon noise. In this study, we
adopt Δ[Fe/H]= 0.008 dex and Δ[Mg/H]= 0.011 dex as
reported in ASPCAP. This is likely a robust assumption because
we have seen that even for elements with generally less spectral
information than Fe and Mg, such as O and Si, the total
dispersion (the quadrature sum of the photon noise and intrinsic
dispersion) is only ∼0.01 dex (Figure 6).
Here we further verify this assumption by estimating the

measurement aberration if ASPCAP had mischaracterized the
photon noise. We follow the same procedure as was done in
Figure 9. The top right panel of Figure B1 demonstrates the
measurement aberration effect if the photon noise is two times
smaller than what was reported, and the bottom right panel two
times larger. The top left panel illustrates the APOGEE residual
correlations as a reference, and the bottom right panel the
measurement aberration in this study. Note that, unlike the

Figure A1. The abundance correlation structures at different reference Teff, glog when conditioning on two elements (Fe and Mg). The correlation structures, as
shown in the left panel of Figure 8, are largely invariant within the stellar parameter range spanned by the APOGEE training data in this study.
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bottom right panel of Figure 9, here we plot the aberration
effect perturbed by the finite sampling uncertainty to visualize
the combined effect of the two. Recall that the ASPCAP
correlation uncertainty is minimal. Therefore, the combined
effect here serves as a conservative limit. Without the sampling
noise, the difference between the measurement aberrations and
the APOGEE correlations would be even more apparent.

The figure demonstrates that, in order to generate the strong
correlations (ρ= 0.4–0.5) as we measured from the APOGEE
data, the photon noise of ASPCAP needs to be two times larger
than what was reported, which is at odds with the total
dispersions for the other elements. But more importantly, even

in this case, as shown in the bottom right panel, the aberration
effect will become so strong that all elemental abundances will
be highly and positively correlated. As shown in the top left
panel, the APOGEE residual correlations exhibit more
structures and do not simply exhibit strong correlations among
all the elemental abundances. Our numerical experiment
suggests that the correlations that we measured in APOGEE
cannot be explained simply by the mischaracterization of the
ASPCAP photon noise. This experiment also indirectly
demonstrates that the photon noise uncertainty reported by
ASPCAP is robust. Differentially, APOGEE has indeed
measured [Fe/H] to a precision of 0.01 dex or better.

Figure B1. The measurement aberration effect, assuming different photon noise levels for ASPCAP. The top left panel shows the measured APOGEE correlations
(when conditioning with two elements—Fe and Mg) as a reference. The other panels demonstrate different degrees of spurious correlations due to measurement
aberration adopting different photon noise uncertainties for [Fe/H] and [Mg/H]. We perturb the aberration effect with the finite sampling uncertainty in the APOGEE
data to better visualize the combined effect. In this study (Figure 9), we assume the ASPCAP reported values—Δ[Fe/H] = 0.008 and Δ[Mg/H] = 0.011, and the
aberration effect is shown in the bottom left panel. The top right panel shows the aberration effect if the ASPCAP photon noise uncertainties were two times smaller
than what had been reported in DR16, and the bottom right panel two times larger. A two times larger photon noise could mimic the amplitudes of the measured
signals in terms of the residual abundance correlations. However, in this case, almost all elemental abundances will be highly and positively correlated, which is at
odds with the measured APOGEE abundance correlations.
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