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ABSTRACT
Managing datacenters to maximize efficiency and sustain-
ability is a complex and challenging problem. In this work,
we explore the use of deep reinforcement learning (RL) to
manage “green” datacenters, bringing a robust approach for
designing efficient management systems that account for
specific workload, datacenter, and environmental charac-
teristics. We design and evaluate GreenDRL, a system that
combines a deep RL agent with simple heuristics to manage
workload, energy consumption, and cooling in the presence
of onsite generation of renewable energy to minimize brown
energy consumption and cost. Our design addresses several
important challenges, including adaptability, robustness, and
effective learning in an environment comprising an enor-
mous state/action space and multiple stochastic processes.
Evaluation results (using simulation) show that GreenDRL
is able to learn important principles such as delaying de-
ferrable jobs to leverage variable generation of renewable
(solar) energy, and avoiding the use of power-intensive cool-
ing settings even at the expense of leaving some renewable
energy unused. In an environment where a fraction of the
workload is deferrable by up to 12 hours, GreenDRL can
reduce grid electricity consumption for days with differ-
ent solar energy generation and temperature characteristics
by 32–54% compared to a FIFO baseline approach. Green-
DRL also matches or outperforms a management approach
that uses linear programming together with oracular future
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knowledge to manage workload and server energy consump-
tion, but leaves the management of the cooling system to
a separate (and independent) controller. Overall, our work
shows that deep RL is a promising technique for building
efficient management systems for green datacenters.
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1 INTRODUCTION
Datacenters (DCs) account for roughly 1% of total worldwide
electricity use in 2018 [30]. This large electricity consump-
tion leads to both high financial costs and carbon emission
since a significant fraction of electricity is produced by burn-
ing fossil fuels; e.g., in 2021, ∼60% of electricity in the US was
produced using natural gas and coal [3]. Fortunately, many
recent advances have increased the sustainability of DCs,
slowing the growth of grid electricity consumption despite
continued rapid growth in computing demand [30].
One set of advances has been encapsulated in the design

and construction of “green” DCs with onsite generation of re-
newable energy and efficient cooling systems, e.g., [6, 14, 23].
However, while studies have shown that green DCs are ef-
fective at reducing “brown” electricity usage, runtime man-
agement to maximize benefits is complex. For example, ag-
gressive scheduling of jobs to run at peak generation of solar
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energy may be beneficial on cooler days, but may trigger ex-
pensive cooling states on hot days. A number of works have
explored management of green DCs, e.g., [14–16, 25], but
most of them depend on predictions of stochastic processes
(with different robustness to prediction inaccuracies), make
significant simplifying assumptions, and/or only consider
independent management of different aspects of a green DC,
which can lead to inefficiencies. Further, tuning the manage-
ment system to optimize performance for specific character-
istics of the workload, DC, and environmental conditions
can often be an arduous task.

In this paper, we propose, design and evaluate a manage-
ment system called GreenDRL that uses deep reinforcement
learning (RL) to jointly manage several controllable aspects
of a green DC. GreenDRL does not rely on predictions of the
future, and can be systematically tuned to optimize perfor-
mance via training. We design and evaluate GreenDRL in
the specific context of Parasol [14], a DC with onsite genera-
tion of solar energy, a hybrid cooling system that combines
power-efficient “free-cooling” and compressive cooling, and
a workload where a fraction of the jobs may be deferred to
provide some scheduling flexibility. We focus on this partic-
ular setup because we have detailed measurements collected
from Parasol over an extended time period for training and
evaluation. When presenting evaluation results, we discuss
evidence showing that GreenDRL was able to learn principles
that would allow the approach to generalize to wider classes
of green and more conventional DCs.
We argue that the use of deep RL brings a robust sys-

tematic approach to building efficient management systems
optimized for specific workload and datacenter characteris-
tics, avoiding the need for human effort-intensive heuristic
design and performance tuning. At the same time, four sig-
nificant challenges must be addressed in order to apply deep
RL to the domain of datacenter management.

First, the deep RL agent must learn an efficient parameter-
ized policy in a large parameter space (assuming the use of
policy-based RL). Second, the learning challenge is exacer-
bated by the need to learn in a highly stochastic environment
(e.g., job arrival, outside temperature, and renewable energy
generation) with an unbounded horizon. These stochastic
processes significantly increase the difficulty of training due
to the variance added to the reward signal and the large
state/action space to explore. Third, the deep RL agent should
be scalable to manage large DCs, and easily adaptable as a
DC builds out or changes (e.g., adapting via re-training the
deep RL agent without requiring significant changes to its
structure). Fourth, the management system must be robust
to short-term dynamic changes in the DC, including server
outages because of failures or maintenance.
We address the first and fourth challenges by partition-

ing GreenDRL into two components, a control agent (CA)

that uses a neural network and inputs describing the state
of the DC to make overall decisions for cooling, workload
scheduling, and server power consumption, and a control
module (CM) that implements software control of DC sys-
tems and a simple heuristic-based algorithm for short-term
job dispatching and placement. More specifically, time is
divided into a sequence of time slots, and the CA decides
what operational state the cooling system should be set to,
the maximum number of deferrable jobs that may be dis-
patched, and the number of servers that should be active
at the beginning of each time slot. The CM then actuates
the control of the cooling system, set servers’ power states
(inactive servers are put into a low power state to reduce
energy consumption), and dispatch jobs on active servers.

The CA learns an effective management policy by training
its neural network using simulation of the DC. Our hybrid
design avoids the need for the CA to learn to control all
aspects of the DC, e.g., job dispatch and placement, thereby
reducing the complexity of the policy that must be learned
and the corresponding parameters space defining the learn-
ing problem. The CM implements some simple heuristics
that are known to work well, and the CA accounts for the
workings of those heuristics when seeking to optimize its
learned policy during training. Note that the CM can also im-
plement more sophisticated policies such as gang scheduling
that are important in some environments but are difficult to
encode in a deep RL agent. We leave the exploration of the
interaction between the CA and more sophisticated CMs for
future work.

The partitioning of GreenDRL also allows the CA to ignore
temporary dynamics of the system such as server failures.
The CM is responsible for choosing the specific servers that
should be active, and can implement appropriate policies for
handling server crashes, failures, etc. If system throughput
temporarily degrades because of such dynamics, e.g., it takes
some time for the CM to detect a server failure and compen-
sate by activating another server, the queues of waiting jobs
will build up, signaling to the CA the need to increase the
number of active servers until the backlog has been cleared.
Retraining of the CA allows GreenDRL to adapt to long-

term changes in the workload and DC (the third challenge).
In addition, we use a (continuous) multivariate normal dis-
tribution (MND) to describe the CA’s probabilistic action
policy rather than a discrete probability distribution used in
previous related works [4, 27, 28, 35, 46]. Specifically, the CA
uses a three-variable MND, with one corresponding to the
number of active servers, the second the dispatch limit for
deferrable jobs, and the third the cooling setting. This MND
is completely describable with 12 parameters corresponding
to means and variances of each variable, and the covariances.
The CA’s neural network structure is thus independent of
many characteristics of the DC such as the number of servers
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and the exact control of the cooling system, so that it can be
retrained without structural changes as the DC evolves.

Finally, we address the second challenge by modifying the
state-of-art training algorithm Proximal Policy Optimization
(PPO) [39]. Specifically, we adopt variance reduction tech-
niques [28, 29] to handle the high stochasticity in the CA’s
environment, thus making the training stable.
We evaluate GreenDRL using a simulator that models

Parasol and workloads derived from industry traces. Sim-
ulation allows us to easily study GreenDRL’s performance
under a variety of different environmental conditions. We
plan to complement this simulation-based study by imple-
menting and experimentally evaluating a prototype of Green-
DRL using Parasol in the future. We also study GreenDRL’s
sensitivity to parameter settings and preliminarily explore
GreenDRL’s scalability by scaling the simulated DC using
simple assumptions.

Our evaluation results show that GreenDRL can learn im-
portant principles, including the need to jointly manage the
multiple control decisions it is responsible for. For example,
GreenDRL successfully learns to delay deferrable jobs to
increase green energy and decrease brown energy consump-
tion. GreenDRL also successfully learns to forgo the use of
some solar energy if expensive cooling is required on a hot
day, and that total server and cooling energy consumption
should not exceed available green energy when possible.
Under a variety of environmental conditions, GreenDRL

reduces consumption of brown grid electricity by 32–54%
compared to a baseline FIFO workload scheduling algorithm
coupled with independent reactive cooling control when run-
ning a workload deriving from a Google trace [36]. Green-
DRL also matches or outperforms a policy (up to 24% re-
duction) that uses linear programming and oracular future
knowledge of the workload and environmental conditions
for workload scheduling while relying on an independent op-
timized reactive cooling control. In these cases, GreenDRL’s
improved performance arises from its joint management of
server and cooling energy consumption. Over an entire year,
GreenDRL reduces brown grid electricity consumption by
18% compared to FIFO.

Overall, evaluation results show that deep RL is a promis-
ing technique for building efficient management systems for
green DCs, and likely for other types of DCs as well.

2 RELATEDWORK
Green DCs. Many previous works have explored efficient

management of green DCs [14–16, 18, 21, 23, 34, 42]. Manag-
ing renewable energy and cooling are two important aspects.
Most existing works address them separately. GreenSwitch
[14] and GreenHadoop [16] shift the workload and turn off
unnecessarymachines tomatch the renewable energy supply.
However, they do not manage cooling.

CoolAir [15] manages server power consumption, work-
load, and cooling to control temperature, temperature varia-
tions, and humidity in a DC. CoolAir can reduce cooling cost
while tightly controlling temperature and reduce tempera-
ture varation. El-Sayed et al. [12] investigate how temper-
ature impacts hardware reliability and server performance
and energy consumption. Their results suggest possibilities
for saving energy while limiting the negative effects of in-
creasing temperature. Desu et al. [11] propose to dynamically
concentrate workload on a minimal set of servers and pro-
vide adequate cooling to save energy. They use long-term
prediction to decide the active server set, and short-term
prediction to manage a pool of standby servers for rapid
workload fluctuations. Moore et al.’s work [32] controls the
heat generation by temperature-aware workload placement,
which is orthogonal to our work. None of them considers
onsite generation of renewable energy.

Perhaps the most related work is [25], which also studies
the problem of integrating green energy supply and multiple
cooling techniques. The authors propose a convex optimiza-
tion based workload management scheme. Our approach
differs in many ways. First, like most model-based meth-
ods, their solution relies on accurate prediction of future
information. Accurate predictions may be possible in some
environments but more challenging in others. Second, it re-
quires access to the system dynamics/models and depends
on some special structure or assumptions (e.g. convex) of
the models. Further, the models usually need to be simple
enough to get the solution. As an early-step work, our solu-
tion also relies on some accurate models in the simulator for
training our agent. However, we don’t need any assumptions
about the models.

RL for workload scheduling and DC management. Several
related works use a monolithic RL agent to make all control
or scheduling decisions [4, 27, 46]. As already mentioned,
the partitioning of GreenDRL into two components allows
us to adjust the complexity of the CA’s learning problem
and avoid embedding certain attributes of the DC into the
structure of the neural network.

Decima [28] combines a graph neural network to process
job and cluster information, and an RL agent to learn sched-
uling algorithms for jobs with directed acyclic graph (DAG)
sub-task structures. It focuses on workload scheduling, espe-
cially challenges introduced by continuous arrival of DAG
jobs. In contrast, we study simpler jobs but a more complex
problem involving many aspects of green DCs. We do use a
variance-reducing technique similar to that in Decima.

Lazic et al.’s work uses a model-based RL approach to reg-
ulate temperatures and airflow inside large DCs [22]. They
model a DC’s thermal dynamics as a linear auto-regressive
model and use model-predictive control (MPC) to solve the
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problem. It is difficult to extend their method to problems that
have long scheduling horizons like our. The work [46] trains
a deep Q-network [31] to learn a discrete policy for allocating
CPU-intensive jobs to servers in a DC. Liu et al. [24] propose
a two-level hierarchical framework to handle resource allo-
cation and server power management. DeepEE [35] jointly
manages cooling and workload scheduling in a conventional
DC, where cooling has a continuous action space and work-
load scheduling has a discrete action space. To tackle the
challenge of hybrid action space, the authors propose a pa-
rameterized action space based Deep Q-Network algorithm,
which combines the ideas of DQN and actor-critic policy.
However, they do not consider renewable energy and free
cooling. Further, some aspects of their design may introduce
concern for a real DC, e.g., dispatching one task at one time
and a neural network with an output for each server.

3 GREENDRL DESIGN
3.1 Problem Statement

Workload. There are two categories of jobs: nondeferrable
jobs that should be dispatched as soon as possible and de-
ferrable jobs that may be delayed but should be dispatched
within a threshold time period after arrival (e.g., 12 hours).
In this work, we only consider CPU-intensive jobs that do
not include latency sensitive online request processing. Each
job specifies the number of CPU cores that it needs.

Power/Energy. The DC has onsite sources of renewable
energy, and can draw power from the electricity grid as
needed. In this work, we only consider solar energy. The
DC operator pays a constant price for grid electricity, while
renewable energy is “free.”

Servers. TheDC hosts a set of servers, each of which can be
turned on (active) or suspended (typically set to a low-power
state such as ACPI S3) for power management.

Cooling. The DC’s cooling system is used to keep the inter-
nal temperature below a threshold (e.g., 30℃). In this work,
we consider a hybrid cooling system that includes a low-
power “free-cooling” mode and a more power-intensive com-
pressive cooling mode.

Objectives. Objectives for the DC manager include:
• keep the internal temperature below the threshold;
• minimize waiting times for nondeferrable jobs;
• minimize delaying deferrable jobs for longer than the
threshold delay time period (called the “dispatch dead-
line”); and,
• minimize energy cost.

The management system activates/suspends servers, con-
trols the cooling system, and schedules jobs on active servers.
While trade-offs between the objectives are required, they
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Figure 1: GreenDRL overview

are listed above in order of most to least important. For exam-
ple, it is highly undesirable to reduce energy cost by allowing
the inside temperature to rise above the threshold.

3.2 Design Overview
As alreadymentioned and shown in Figure 1, GreenDRL com-
prises two components: a Control Agent (CA) and a Control
Module (CM). The CA implements a learned policy that is
defined by a parameterized neural network and interacts
with its environment in a sequential manner. Time is divided
into discrete slots, and at the beginning of each time slot,
the CA observes the current state of the DC, and encodes it
into an input vector for the neural network. Then the CA
chooses a set of actions based on the outputs of the neural
network. Once the actions have been carried out, the DC will
transition into another state, and the CA receives a scalar
reward at the end of the time slot based on the outcomes
of the actions. The objective of the CA is to maximize the
expected cumulative award over a time window.

We use a multivariate normal distribution (MND) to model
the CA’s multidimensional probabilistic actions. In partic-
ular, when given an input vector, the CA’s neural network
outputs the parameters of an MND. The CA then chooses a
specific set of actions by sampling the MND. GreenDRL uses
a three-dimensional MND for controlling the cooling system,
determining the number of active servers, and limiting the
number of deferrable jobs that may be dispatched.

The CA communicates its decisions to the CM, which then
actuates the control actions. Throughout the time slot, the
CM heuristically dispatches jobs to active servers as new
jobs arrive and resources are freed by completed jobs.
The reward given for each time slot represents a metric

that reflects howwell the CA is achieving the objectives spec-
ified in Section 3.1. We use the reward function, historical
data, and a simulator of the DC to train the CA offline.
The CA’s neural network is not specific to the experi-

mental setting of our work. However, the number of hidden
layers and the number of neurons in each layer may need
to be adjusted depending on the complexity of the systems
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being managed/controlled; e.g., a DC with many inside tem-
perature inputs, inside and outside humidity readings, and a
more complex cooling system may require changes in the
neural network to capture an efficient management policy.
The CM’s heuristics for job dispatching and placement

are general. The sub-component that actuates the control
actions are necessarily specific to a DC.

3.3 Control Agent (CA)
The CA contains a parameterized feedforward neural net-
work [37] that approximates a parameterized conditional
probability distribution for selecting actions given an input
system state.

State. The state of the DC at the beginning of a time slot 𝑡
is captured in the features of an input vector s𝑡 . GreenDRL
currently uses:

• current hour of the day (0 - 23),
• amount of solar energy generated in the previous slot,
• exponential moving average of solar energy generated,
• lengths of the deferrable and nondeferrable job queues,
• wait time of the “oldest” waiting nondeferrable job,
• total number of CPU cores required by waiting nonde-
ferrable jobs,
• earliest deadline of queued deferrable jobs,
• number of deferrable jobs delayed past their deadlines
and their total required number of CPU cores.
• number of deferrable jobs that will be delayed past
their deadlines if not dispatched in this slot and their
total required number of CPU cores,
• inside temperature and outside temperature at the end
of each of the previous two slots,
• free cooling fan speed and AC operation status in the
previous slot,
• exponential moving average of inside and outside tem-
perature change from slot to slot, and
• number of active CPUs (no. active server × no. CPU
cores per server) and how many are currently idle.

As shall be seen below, GreenDRL performs well with
these input features. We plan to further explore feature selec-
tion and the corresponding impact on GreenDRL’s training
and performance in the future.

Neural Network. The CA’s design is based on policy-based
RL methods [39, 41]. In policy-based RL, an agent’s action is
determined by a parameterized policy 𝜋𝜃 (s𝑡 , a𝑡 ) = 𝑃𝜃 (a𝑡 |s𝑡 ),
i.e., the probability of taking action a𝑡 at state s𝑡 given the
policy parameter 𝜃 . The agent chooses a specific action by
sampling the policy distribution. The policy 𝜋𝜃 (s𝑡 , a𝑡 ) can
be approximated in many ways, as long as 𝜋𝜃 (s𝑡 , a𝑡 ) is differ-
entiable and represents a probability distribution. We define

the CA’s policy as a parameterized MND and use a neural
network (often called a policy network) to approximate it.

Our policy network is a fully-connected feedforward neu-
ral network with three hidden layers. Each hidden layer con-
tains 24 neuron units. We choose three hidden layers and 24
neurons in each layer by using grid search hyper-parameter
optimization. As suggested by [5], we use the same size for
all hidden layers. The policy network uses exponential linear
units (Elu) as its activation function, which can alleviate the
dead neurons problem [8]. The output of the neural network
defines an MND for a given input vector s𝑡 , where 𝜃 are
the weights inside the policy network. The MND has three
dimensions that correspond to a cooling sub-action, a server
allocation sub-action, and a job dispatching sub-action:

©­«
𝑋cooling
𝑋alloc
𝑋cap

ª®¬ ∼ N ©­«©­«
𝜇𝜃1
𝜇𝜃2
𝜇𝜃3

ª®¬ , ©­«
𝜎11 0 0
0 𝜎22 0
0 0 𝜎33

ª®¬ª®¬ (1)

We use the neural network to approximate the mean, and
treat the variances as hyper-parameters which are indepen-
dent of the input state. Following [38], we set the covariances
of the MND to be zero instead of learnable parameters to
reduce the learning parameter space size.

Action Mapping. The CA selects an action a𝑡 by drawing
a sample, (𝑥cooling, 𝑥alloc, 𝑥cap), from the learned MND cor-
responding to system state s𝑡 . The sample value of each
sub-action (𝑥cooling, 𝑥alloc, 𝑥cap) is in the range (−∞,∞). It is
necessary to map the three values to specific DC control
operations. The mapping rules can be problem-specific, with
the only requirement being that the rules should be consis-
tent across training and deployment time. In our problem,
𝑥cooling will be mapped to a specific cooling scheme, 𝑥alloc will
be mapped to the number of servers that should be active
during a slot, and 𝑥cap will be mapped to the maximum num-
ber of deferrable jobs to dispatch during a slot. We illustrate
the mapping rules for our problem in Section 4.1.

Benefits of Using MNDs. Modeling the CA’s action using
an MND helps to make the CA adaptable and scalable. It en-
ables the decoupling of the policy network structure and the
problem size (e.g., the number of cooling control options and
number of servers). The CA can output the policy distribu-
tion with at most 12 parameters. If we model the actions with
a discrete distribution such as a categorical distribution with
𝑘 events, the output layer of the CA’s policy network would
contain at least 𝑘 units to specify the distribution. There-
fore, unlike previous work [4, 27], our CA’s policy network
structure is independent of the problem size.

Reward Function. The reward function must be carefully
designed to reflect the management objectives. In this work,
we define the reward function as a negative weighted sum of
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a temperature violation penalty, penalties for delaying jobs,
and electricity cost:

𝑟𝑡 = −
(
𝜆1𝑝

temp
𝑡 + 𝜆2𝑝defer𝑡 + 𝜆3𝑝nondefer𝑡 + 𝜆4𝑐𝑡

)
(2)

The temperature violation penalty 𝑝
temp
𝑡 is a piece-wise

linear function that returns 0 for inlet temperatures below
the desired threshold, and linearly increasing values as the
inlet temperature rises above the threshold. 𝑝defer𝑡 is a linear
function of the total delayed time of deferrable jobs deferred
past their deadlines. 𝑝nondefer𝑡 is a linear function of the total
waiting time of nondeferrable jobs still queued or were dis-
patched in time slot 𝑡 . 𝑐𝑡 is the electricity cost during time
slot 𝑡 . In this work, we assume a constant electricity price
and so 𝑐𝑡 is directly proportional to the energy consumed in
the slot.

The weights in the reward function should reflect the rela-
tive importance of each management objective. For example,
in our evaluation, we set a higher penalty weight for tem-
perature violations because it is undesirable save energy
cost while allowing the DC to overheat. We use common
hyper-parameter tuning approaches to search for “reason-
able” weights in the reward function.

3.4 Training the CA’s Neural Network
As previously mentioned, we modify an off-the-shelf policy
gradient based RL training algorithm to train the CA. In
this subsection, we introduce the basics of policy gradient
based training methods and then present the adaptations
that we have made to meet the needs of our application. We
summarize our training algorithm in Algorithm 1.

Policy Gradient Methods (PMGs). Along with the CA’s de-
cision making process under a policy 𝜋𝜃 , a trajectory, {s0,
a0, 𝑟0, ..., s𝑡 , a𝑡 , 𝑟𝑡 , ..., s𝑇 , a𝑇 , 𝑟𝑇 }, is generated under the pol-
icy. The objective of learning is to maximize the start value
𝑉

𝜋𝜃
𝑠0 = 𝐸𝜋𝜃

[∑𝑇
𝑡=0 𝑟𝑡

]
, i.e., the expected cumulative reward

from time step 0 to 𝑇 . Intuitively, the CA seeks to learn a
policy (during training), following which it can earn the
maximum expected cumulative reward.
PGMs learn the policy parameters 𝜃 by using gradient-

ascent [17] to solve an optimization problem [39, 41] that
maximizes the learning objective function 𝑉

𝜋𝜃
𝑠0 . PGMs es-

timate the gradients based on generated training data, i.e.,
𝑚 𝑇 -length trajectories in each training iteration. Once the
agent collects𝑚 trajectories, it can estimate the gradient and
update policy parameter 𝜃 via gradient ascent: 𝜃 ← 𝜃 + 𝛼 ·
1
𝑚

∑𝑚
𝑖=1

∑𝑇
𝑡=0𝐺

(𝑖 )
𝑡 ∇𝜃 log𝜋𝜃 (s

(𝑖 )
𝑡 , a(𝑖 )𝑡 ) where 𝐺

(𝑖 )
𝑡 =

∑𝑇
𝑡 ′=𝑡 𝑟𝑡 ′

is the return that represents the accumulated reward from
time step 𝑡 for trajectory 𝑖 , 𝛼 is the learning rate. The gradient
estimate is unbiased, but can experience large variances [40].
One way to reduce the variance is subtracting a baseline,

Algorithm 1 GreenDRL training algorithm
1: Initialize policy parameter 𝜃 , variance ®𝜎 = [𝜎11, 𝜎22, 𝜎33 ], and parame-

ters 𝜖1, 𝜖2, 𝜏mean
2: for iteration = 1, 2, ... do
3: Sample training trajectory length𝑇 ∼ Exponential(𝜏mean)
4: Clip length𝑇 with a lower-bound and upper-bound
5: Sample𝑇0 and get a trace 𝐻 starting from𝑇0 to𝑇0 +𝑇
6: for 𝑖 = 1, ..,𝑚 do
7: Execute the current policy on trace 𝐻 to collect a trajectory of

length𝑇 starting from𝑇0: T𝑖 = {s(𝑖 )0 , a(𝑖 )0 , 𝑟
(𝑖 )
0 , ..., s(𝑖 )

𝑇
, a(𝑖 )

𝑇
, 𝑟
(𝑖 )
𝑇
}

8: end for
9: for 𝑡 = 0, ...,𝑇 do
10: Compute the baseline: 𝑏𝑡 = 1

𝑚

∑𝑚
𝑖=1

∑𝑇
𝑘=𝑡

𝑟
(𝑖 )
𝑘

11: end for
12: for all time slot 𝑡 = 0, ...,𝑇 in each trajectory T𝑖 do
13: Compute return:𝐺 (𝑖 )𝑡 =

∑𝑇
𝑡 ′=𝑡 𝑟

(𝑖 )
𝑡 ′

14: end for
15: Update policy parameters:

𝜃𝑘+1 ← PPOupdate(𝐺 (𝑖 )𝑡 , 𝑏𝑡 , 𝜃𝑘 ;𝑇,𝑚)
16: Decay the variance of the MND policy: ®𝜎 ← ®𝜎 · 𝜖1
17: Increase the mean of trajectory length: 𝜏mean ← 𝜏mean · 𝜖2
18: end for

𝑏𝑡 , from each 𝐺
(𝑖 )
𝑡 [19, 40, 45]. With a baseline, the policy

update formula becomes:

𝜃 ← 𝜃 + 𝛼 · 1
𝑚

𝑚∑︁
𝑖=1

𝑇∑︁
𝑡=0
(𝐺 (𝑖 )𝑡 − 𝑏𝑡 )∇𝜃 log𝜋𝜃 (s

(𝑖 )
𝑡 , a(𝑖 )𝑡 ) (3)

The intuition of the policy update is that 𝐺 (𝑖 )𝑡 − 𝑏𝑡 esti-
mates how much better (or worse) the return 𝐺

(𝑖 )
𝑡 is than

some average case 𝑏𝑡 under the current policy. Each training
update will modify the policy to increase (or decrease) the
probability of a trajectory if its return𝐺𝑡 is better (or worse)
than the baseline 𝑏𝑡 .

Proximal Policy Optimization (PPO). A bad gradient update
is damaging in RL training. To make each update “safe,” PPO
has been developed based on PGMs [39]. Intuitively, PPO
updates the policy while satisfying a constraint on how far
apart the new and old policies are allowed to be. We adopt
PPO in our training algorithm (line 15 in Algorithm 1).

Baseline selection. It is worth noting that𝐺 (𝑖 )𝑡 is time depen-
dent. So we also use a time dependent baseline, which is the
cumulative reward from slot 𝑡 to the end, then average over
the𝑚 trajectories generated for a particular training itera-
tion (line 10 in Algorithm 1). This baseline has been shown
effective for RL training in an environment with external
stochastic processes [28, 29].

Additional details. We set the variances of the MND policy
to relatively large values at the beginning of the training and
gradually decay them (line 16 in Algorithm 1). The training
algorithm samples the start time of the trajectories from the
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training trace randomly to help the CA explore different DC
environment patterns. Similar to the approach in work [28],
our training algorithm samples the trajectory length from
an exponential distribution whose mean grows gradually. By
increasing the trajectory length over time, we encourage the
agent to learn a basic policy quickly at the beginning of the
training and then improve the policy gradually. We clip the
trajectory length by two thresholds (line 4 in Algorithm 1)
becausewewant the training trajectory to be reasonably long
for the agent to observe the long-term effect of its actions
but not so long that training becomes overly expensive.

3.5 Control Module (CM)
The CM actuates control actions for server power manage-
ment and cooling control according to the CA’s instructions.
It is also responsible for scheduling jobs on servers, and
handling server failures.

Server power management. At the beginning of each time
slot, the CM receives the number of CPU cores that should be
active from the CA. The CM will then: (1) wake up servers if
the total number of CPU cores in the currently active servers
is less than the CA’s decision, or (2) put some servers into a
low-power sleep state (e.g., ACPI S3) if the number of active
CPU cores exceeds the CA’s decision.
An active server selected for suspension will be marked

as unschedulable, and the CM will stop dispatching jobs to it.
The CM puts such an unschedulable server into a sleep state
immediately if all leftover running jobs on this server finish
before the next slot, otherwise the CM marks the server as
active again at the beginning of the next slot. When multiple
candidates are available, the CM prefers to select an active
server with fewer running jobs to suspend. A sleeping server
takes some time to wake up and re-join the active cluster.

Cooling control. The CM controls the cooling system ac-
cording to the CA’s cooling sub-action. Control actions in-
clude setting the free cooling fan speed, activating the AC
(compressive cooling), or turning off both cooling units.

Job dispatch and placement. The CM dispatches jobs to
active servers using simple, well-known heuristics. It moni-
tors all scheduling events such as job arrival, job completion,
and servers entering the active state. It maintains a queue
of nondeferrable jobs in order of arrival, and a queue of de-
ferrable jobs in order of dispatch deadlines. It attempts to
dispatch jobs to available resources at the occurrence of any
scheduling event.

The CM respects the job dispatch sub-action and uses the
following heuristics: (1) always try to dispatch nondeferrable
jobs before dispatching any deferrable jobs, (2) dispatch jobs
according to the ordering of the queues, (3) place each job
on the server with the fewest unallocated CPU cores yet can

meet the job’s requested number of cores, and (4) skip a job if
it cannot fit on any active server (because of fragmentation)
to avoid head-of-queue blocking. However, if a job has been
skipped over more than a threshold number of times, then
the CM will stop dispatching jobs until the blocked job can
be dispatched. This strategy has been shown effective to
alleviate the head-of-queue blocking problem [10].

Server failures. The CM monitors server failures. When
an active server crashes, the CM tags the jobs running on
that server as failed and attempts to restart the server. If
the server cannot be restarted, or has failed more than a
threshold number of times within a time period, then the
CM removes the server from service. If there are suspended
servers, the CM wakes one up as a replacement.

Temperature emergencies. The CM also monitors the DC
inlet air temperature and will set the cooling system to the
maximum setting if the temperature rises above a redline
threshold. If the temperature emergency persists, then it will
turn all servers off.

4 EVALUATION METHODOLOGY
As mentioned above, we evaluate GreenDRL using simula-
tion. In this section, we first describe Parasol [14] and the
models that we have constructed for our simulator using
data collected from the DC. We then describe two alternative
management approaches that we will compare to GreenDRL,
and our evaluation methodology.

4.1 Parasol and Simulation Models
Parasol. Parasol comprises a 7’×12’ container, a set of 16

polycrystalline solar panels, a grid-tie, a Dantherm Flexibox
450 air-side economizer (“free-cooling”), and a Dantherm
iA/C 19000 direct-expansion air conditioner (AC). Parasol
can host two 42U racks of IT equipment. It draws additional
power from the electricity grid when there is insufficient
solar energy.
Parasol’s cooling is controlled by a TKS 3000 controller.

Free cooling is used whenever the outside temperature is
lower than a programmable threshold, with the TKS con-
troller modulating the fan speed according to a temperature
sensor inside the container and the threshold. The minimum
fan speed is 15%. The free cooling unit consumes between
8W and 425W depending on fan speed. When the outside
temperature exceeds the threshold, the controller switches
from free cooling (turning the unit off) to the AC. The AC
controls its own cooling cycles according to an internal tem-
perature sensor and threshold settings, consuming about
2.3kW when the compressor is on. Parasol is partitioned into
a hot and cold aisle for cooling efficiency.
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Parasol hosts several server configurations. We are only
simulating one: Supermicro SYS-5019S-M2 with Intel Xeon
E-1275v6 (4C/8T), 64G DDR4 RAM, and a 960 GB SSD.
We use 7 months of data collected from Parasol to build

and parameterize the models described below. We validated
our simulator by comparing detailed simulation results, e.g.,
inside temperatures vs. time, against recorded historical data
for days with different environmental and operational char-
acteristics.

Server power model. We use a linear power model to esti-
mate server power consumption [13, 20]:

𝑃server(𝑢) = 𝑃idle + (𝑃peak − 𝑃idle)𝑢 (4)

where 𝑢 is the CPU utilization of an active server, and 𝑃idle
and 𝑃peak represent the idle (𝑢 = 0%) and peak power (𝑢 =

100%) draws, respectively. It has been shown that the above
model is reasonably accurate, especially when estimating
the total power consumption of a server cluster [13].

Cooling thermal and power models. Simulation time is di-
vided into discrete time slots. We developed models that
calculate: (1) the inlet air temperature at the beginning of
the next time slot, and (2) the average power consumption
during a time slot. For free cooling, the models are:

𝑇 in
𝑡+1 = (1 − 𝑒𝑐1𝐹𝑡 ) ∗ (𝑇 out

𝑡 −𝑇 in
𝑡 ) + 𝑐2𝑃𝑖𝑡𝑡 +𝑇 in

𝑡 (5)

𝑃
fc
𝑡 = 𝛼𝐹 2𝑡 + 𝛽𝐹𝑡 + 𝛾, (6)

where 𝑡 is the time slot, 𝑇 in
𝑡 is the inlet air temperature (at

time 𝑡 ), 𝑇 out
𝑡 is the outside temperature, 𝐹𝑡 is the fan speed,

𝑃 it
𝑡 is the average IT power, 𝑃 fc

𝑡 is the average power draw
of the free cooling unit, and 𝑐1, 𝑐2, 𝛼, 𝛽 , and 𝛾 are constants.
𝑃
fc
𝑡 = 0 when free-cooling is turned off during a time slot.
The thermal model for the AC unit is:

𝑇 𝑖𝑛
𝑡+1 = 𝑑1𝑇

𝑖𝑛
𝑡 + 𝑑2𝑇𝑜𝑢𝑡

𝑡 + 𝑑3𝑃𝑖𝑡𝑡 + 𝑑4, (7)

The AC unit has its own internal cycle, with varying power
consumption. However, its average power consumption is
stable. Thus, we model the power consumption of the AC as
a constant when the unit is on, and 0 when it is off [15].

4.2 Baseline Management Policies
We compare GreenDRL’s performance to two baseline poli-
cies. As is typical of state-of-the-art management systems,
each of the baseline policies manages the number of active
servers and schedules the workload while leaving control of
the cooling system to a different controller. Neither policies
are derived from existing RL-based work (e.g., [28, 35, 46])
because they do not handle important aspects of our problem
such as leveraging onsite renewable energy, controlling the

free cooling system, and workload constraints. Adapting the
approaches would have required deep structural changes.

FIFO. FIFO does not work based on time slots. At any time,
FIFO keeps as many active servers as needed to dispatch all
jobs, and suspends servers that have been idle for a threshold
period (15 seconds in our experiments, which is equal to
the server wake up duration). FIFO queues jobs only when
there is not enough available resource even if all servers are
turned on. It places jobs on servers using the same heuristic
as described in GreenDRL’s CM (Section 3.5). FIFO relies on
a simulated TKS controller for its cooling control.

LP. LP adapts GreenSwitch [14], a state-of-the-art green
DC management framework, to our environment. Green-
Switch formulates a Mixed Integer Linear Programming
(MILP) problem to minimize the overall electricity cost, sub-
ject to some workload and battery operational constraints,
by managing workloads and energy sources in green DCs.

LP adapts GreenSwitch’s MILP formulation to account for
different assumptions, the most important of which is our
assumption that each deferrable job has its own deadline
based on its arrival time. LP is similar to GreenSwitch in
that it solves for the the number of active servers required
to meet the power demand of jobs while ignoring possible
fragmentation due to placement.
The actual dispatching and placement of jobs on active

servers are done by a heuristic-based component. In our ex-
periments, we use GreenDRL’s CM. GreenSwitch uses simple
predictions of the future, and resolves the optimization for-
mulation at the beginning of every time slot to account for
inaccuracies in its predictions. LP’s formulation is more ex-
pensive to solve, so we make the simplifying assumption
that LP has oracular knowledge of future job arrivals, so-
lar energy generation, and outside temperatures. LP’s MILP
formulation is presented in Appendix A.
Overall, LP works as follows. At the beginning of an ex-

periment, it solves the MILP formulation for the number of
servers that should be active at the beginning of each time
slot for the entire experiment time horizon. Then, the CM
handles server activation and suspension according to the
solution, and dispatches and places jobs on active servers.
Because we solve LP’s formulation only once at the be-

ginning of each experiment, the queue of deferrable jobs
may build up due to fragmentation: servers cannot be fully
utilized as assumed in LP’s formulation. We use a simple
heuristic to address this issue. Specifically, at the beginning
of a time slot, the CM will allocate additional servers (up
to the maximum number of servers) in order to dispatch all
jobs that have reached their dispatch deadline.
LP (like GreenSwitch) does not control cooling. LP is an

MILP optimization problem that cannot be solved in a rea-
sonable amount of time if control of the cooling system is
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added. Rather, it depends on a cooling optimizer used in
CoolAir [15] to keep the inlet temperature within the appro-
priate operational range. Specifically, the cooling optimizer
enumerates all possible cooling control decisions that will
not incur temperature violation in the next time slot and
selects the one with the least cooling energy cost. Note that
the cooling optimizer needs the information of average IT
power consumption over the coming slot. This information
can be derived from the MILP solution.

LP is not a realistic online policy. Rather, we have designed
LP to be an optimistic (although not optimal) policy that is
generally representative of a class of policies such as [14]
and [11] to help gauge GreenDRL’s performance.

4.3 GreenDRL Prototype
We implement the CA’s policy network using Tensorflow
2.0 [1]. The implementation is used as amodule in our current
simulator; we expect that it will be reused in entirety in a
real implementation (in Parasol).
As previously mentioned, at the beginning of each time

slot, the CA outputs a sample (𝑥cooling, 𝑥alloc, 𝑥cap) drawn from
the MND. 𝑆active, the number of active server, is then set to:

𝑆active =

⌈max(1,min(𝑥alloc, 𝑀𝑆𝑚𝑎𝑥 ))
𝑀

⌉
(8)

where 𝑆𝑚𝑎𝑥 is the number of servers in the DC, and𝑀 is the
number of CPU cores in each server.
For cooling, the CM selects one of the following three

schemes depending on the value of 𝑥cooling: (1) both cooling
units turned off (recirculation) if 𝑥cooling < 15, (2) free-cooling
on at fan speed round(𝑥cooling) and AC off if 15 ≤ 𝑥cooling ≤
100, (3) free-cooling off and AC on if 𝑥cooling > 100.

The maximum number of deferrable jobs to dispatch in a
slot is 𝐶defer =𝑚𝑎𝑥 (0, round(𝑥cap))

We assume that GreenDRL can control the cooling system
directly (rather than depending on the TKS) and is able to
turn the two units on/off and set the fan speed for the free-
cooling unit.

When training the CA’s neural network, the initial mean
of the trajectory length (exponential distribution) is 24 hours,
and the maximum and minimum length of a trajectory is 96
hours and 48 hours, respectively. The CA collects 16 trajecto-
ries for computing each gradient update. The initial variances
of the MND are 102 (cooling dimension) , 152 (resource al-
location dimension), and 202 (dispatch cap dimension). The
decay rate for the variances is 0.99972. The final variances
are set to 1 for inference. The rate for increasing the mean of
trajectory lengths is 1.0001. We use the RMSProp optimizer
and its default hyper-parameters in TensorFlow for training.
The hyper-parameter 𝜖 used in PPO-Clip is 0.2. The reward
discount factor is 1.

4.4 Workloads and Environmental Traces
Workloads. We assume compute-intensive jobs, so that

each CPU core assigned to a job will be fully (100%) utilized.
Examples of such jobs include CPU-bound batch processing
jobs [9] and high-performance computing (HPC) jobs [26].
Our experiment uses two workload traces sampled from
production clusters.
Google trace [36] includes information about job submis-

sion and execution on a cluster of about 12.5k machines,
collected over 29 days. Each job is submitted with a few
parameters such as scheduling class, resource request, and
constraints. The types of jobs in this trace is diverse, includ-
ing service jobs, batch processing jobs and HPC jobs.
Similar to what has been done in [7], we eliminated all

long-lasting production service jobs because request schedul-
ing is more appropriate for such applications rather than job
scheduling. We mark a job as deferrable with a certain prob-
ability so that the ratio of deferrable workload is around 75%
in the sampled trace. We scale jobs’ resource requirements
so that each job can be run on a single simulated server. Each
deferrable job’s dispatching deadline is set to 12 hours after
arrival. We choose these values partly by using information
from [2, 43], with the 75% deferrable jobs being somewhat
higher than reported because we are only focusing on non-
service jobs. We explore the impact of different settings in a
sensitivity study discussed below.
Alibaba trace [44] was collected from an Alibaba produc-

tion cluster with 6472 GPUs (on about 1800 machines) over
a two-month period. The workloads are a mix of training
and inference jobs, which are computing-intensive on GPUs.
Each job contains a certain number of instances and gang-
scheduling requirement is prevalent. We use the job’s total
GPU requests as its resource requirement in our simulation.
In the sampled trace, we scale the job resource request so
that any job can be executed in our simulated server. Be-
fore sampling, we excluded jobs whose resource requests
are extremely large to avoid an overly skewed distribution
of resource request (i.e., the majority of the jobs have the
minimum resource request, 1 CPU). The number of jobs dis-
carded is less than 1%. The resulting trace contains about
74% deferrable jobs.

Figure 2 shows the characteristics of the sampled work-
loads. For both traces, the average load is about 50% of the
total simulated cluster capacity. We use the Google and Al-
ibaba workloads for overall comparison with FIFO and LP,
and use the Google workload with varying individual work-
load characteristics to study GreenDRL’s sensitivity.

Environmental traces. Weuse historical data collected from
Parasol’s environment for the calendar year 2013. The trace
contains solar energy generation and outside temperature for
each time slot (five minutes). Training and evaluation mostly
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Figure 2: CDFs of job duration and CPU request from
Google and Alibaba traces.

use data from May and June, with outside temperatures in
the range of 5◦C to 35◦C and free cooling and AC being used
at different times to maintain the DC inlet temperature.

DC. Our simulated DC hosts 32 servers, each with 8 CPU
cores. Time slot duration is five minutes. The server wake-up
time is 15 seconds, and the average wake-up power is the
same as the active idle power, 20W. The peak power is 130W.
The AC draws 2.3kW on average when it is on and the peak
power demand of the free-cooling unit is 425W. The treshold
inlet temperature is 30◦C.

Evaluation Experiments. We select four days with different
environmental characteristics to explore and evaluate Green-
DRL’s performance and exclude them from the training data
(Figure 3). We use each of the day as the third day in a 4-day
long trace. The first two days comprise a “warm-up” period
for deferrable jobs to be accumulated. Starting from the third
day, the results are typically stable and similar to subsequent
days. Thus, we compare performance for the third day for
GreenDRL and the two baseline policies. Finally, we add a
fourth day so that LP cannot arbitrarily delay deferrable jobs
in the last day out of the scheduling window to save cost.
The four selected days lead to four different 4-day long

traces, with one including a third day having relatively high
solar energy generation and high outside temperature (de-
noted as highS-highT), and three more with the third day
being highS-lowT, lowS-highT, lowS-lowT, respectively.
For evaluation workloads, we randomly selected a 4-day

long trace from each of the Google and Alibaba traces. The
Google and Alibaba evaluation traces start from day 2 and
and day 5, respectively.

We also evaluate GreenDRL’s performance over an entire
year. For this evaluation, we stitch together the Google trace
to get 365 days. We use environmental data collected from
Parasol for the calendar year 2013.

Training the CA. We use Parasol’s environmental data
from May and June 2013, excluding the four days selected
for evaluation, and the entire Google and Alibaba traces for
training. When training, we always train two GreenDRL
instances with the same hyper-parameters but different ran-
dom seeds for each experiment setting, and deem the training
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Figure 3: Outside temperatures and solar energy gen-
eration for four days with different characteristics.
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Figure 4: Brown energy consumption when running
the Google workload.

results valid if the final rewards of the two differ by ≤2%
when evaluating on a validation dataset. Based on our overall
experience of conducting trainings, approximately 95% of
the training results are valid. We checkpoint learned model
parameters periodically while the training converges (when
reward stops increasing or fluctuates within a small range
for a threshold number of iterations). We select the model
with the maximum validation reward from all checkpoints
as the final training result.

5 EVALUATION RESULTS
CA training and inference. All results reported before the

our sensitivity studies and for the year-long evaluation are
from experiments using a CA that was trained just once for
the Google workload and once for the Alibaba workload. We
do retrain the CA when changing important characteristics
of the workload or components of the reward function in
our sensitivity studies.

Training the CA takes ∼5-8k iterations to converge, corre-
sponding to ∼48-72 execution hours on a server with a Xeon
Silver 4110 CPU (8 cores / 16 threads) and 64GB ECC DDR4.
We do not use GPUs for training because most of the time
is spent on DC simulation instead of the training itself. On
the same machine, the CA takes ∼100ms to make a decision.
The low inference overhead makes it possible to use the CA
for shorter time slots than our current setting of 5 minutes.
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Figure 5: Solar energy generation, server energy, cooling energy and cluster-wise server peak energy per slot with
Google workload (cooling energy is added on top of server energy).

Brown energy consumption. Figure 4 plots brown energy
consumption when the Google workload runs on days with
different amounts of solar energy and outside temperatures.
As expected, these results show that both GreenDRL and LP
significantly reduce brown energy consumption compared
to FIFO, with GreenDRL reducing consumption by 32-54%.
GreenDRL also matches LP’s performance on the highS-lowT
day and reduces brown energy consumption by 14-24% on
the three other days.

Figure 5 plots energy consumed by the servers and cooling
system together with solar energy generation against time
for the highS-highT and lowS-highT days. We observe that
GreenDRL and LP outperform FIFO by delaying deferrable
jobs to run in time slots with ample solar energy. Less obvi-
ously, the total energy consumed by the activated servers are
lower under GreenDRL and LP compared to FIFO because (a)
servers are turned on/off less often, and (b) jobs are deferred
to ensure high utilization for active servers even in the ab-
sence of solar energy, reducing base energy consumption
(the energy consumed by a server even when it is idle).

More interestingly, on both days, GreenDRL activates
fewer servers compared to LP during the hottest part of the
day. GreenDRL’s decisions leave some solar energy to power
the AC and reduces heat generation leading to reduced need
for cooling. This leads GreenDRL to consume only 1.97kWh
of brown energy for cooling compared to 3.96kWh under
LP for the highS-highT day. When there is low production
of solar energy, GreenDRL also defers job execution to later
in the day, when lower temperatures require less cooling.
These results demonstrate that GreenDRL is able to learn
the importance of jointly managing server activation and
cooling, and effectively leverages this joint management to

outperform LP. The gap between brown energy consump-
tion under the two policies would be larger except for the
fact that there is more solar energy than can be consumed
by all the servers in the datacenter during periods of high
production, thus automatically leaving some solar energy
for cooling under LP.
While we do not show the detailed energy consumption

for the highS-lowT and lowS-lowT days, it is intuitive that
GreenDRL and LP perform similarly for these two days. Both
policies are able to defer jobs to consume solar energy with-
out needing to run the AC during the highS-lowT day. Green-
DRL’s joint management of cooling and server activation
does lead to minimal benefits on the lowS-lowT day.
Results for the Alibaba workload are similar, although

the differences in performance are smaller: GreenDRL saves
22-37% compared to FIFO and 5-15% compared to LP on
the highS-highT, lowS-highT, and lowS-lowT days. LP does
slightly outperform GreenDRL on the highS-lowT day; as
discussed above, we expect the policies to have comparable
performance for the highS-lowT day, and in this case, the
difference is very small. For the remainder of the discussion,
we focus on the Google workload while noting that results
for the Alibaba workload are similar.

For the Google workload, GreenDRL reduces brown elec-
tricity consumption by 18% compared to FIFO when the
policies were run over an entire year. (It was not computa-
tionally feasible to run LP for a full year.) Note that GreenDRL
achieves this performance improvement even though the CA
is trained only with summer environmental data.

Cooling control and inside temperature. FIFO (with TKS
management of cooling) always maintain the inside temper-
ature at or below 30◦C while both GreenDRL and LP (with
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greedy optimized cooling control) allowed the inside tem-
perature to exceed 30◦C by small amounts during a small
number of time slots. For example, in highS-highT day under
GreenDRL, the inside temperature rises above 30◦C at the
end of 6 slots (288 slots in 24 hours), reaching a maximum
temperature of 30.6◦C. Under LP, the inside temperature
rises above 30◦C at the end of 14 slots, reaching a maximum
temperature of 30.1◦C.

It is not surprising that GreenDRL allows some violation
of the 30◦C threshold. The CA is penalized when the in-
side temperature rises to above the threshold, but it may be
worthwhile to trade off the penalty for reduced brown energy
consumption. Further, the probabilistic nature of the CA’s
decision making may also lead to some violations. Neverthe-
less, the steep rise in penalty with increasing temperatures
discourages GreenDRL from allowing serious violations. We
can decrease the number of violations and the maximum
temperature reached by increasing the penalty. However,
reaching less than 31◦C 2% of the time seems acceptable.
Figure 6 plots the operation of the cooling system, out-

side temperature, and inside temperature against time for
24 hours. These results confirm that GreenDRL learns to
operate the cooling system to maintain safe inside tempera-
tures while minimizing brown energy consumption by using
lower power configurations when possible. Compared to LP,
GreenDRL often cools the DC more than needed (to several
degrees lower than 30◦C) both while using free-cooling and
AC cooling. Overall, GreenDRL’s aggressiveness leads to
only a small amount of added energy consumption. Never-
theless, it does point to an area of potential improvement for
GreenDRL in future work.

Figure 7 plots the CA’s decisions (cooling, cap on dispatch-
ing of deferrable jobs, and the number of active servers) in
the time period with solar energy in the highS-highT day.
We observe that the CA tends to reduce the number of active
server whenever it turns on the AC so that the combined en-
ergy consumption does not exceed the available solar energy
(by toomuch). This reemphasizes GreenDRL’s ability to learn
to jointly manage cooling and server energy consumption
to avoid/reduce the use of brown energy.

Workload scheduling. Using the highS-highT day as a rep-
resentative example, the sampled Google workload never
exceeds the capacity of the DC. Thus, 98% of the nonde-
ferrable jobs are dispatched immediately on arrival by FIFO,
while the remaining jobs may be delayed up to 15 seconds for
a server to be activated. Under GreenDRL, 1% of the nonde-
ferrable jobs are delayed by 18 seconds or more. LP performs
much worse than both GreenDRL and FIFO, delaying 21% by
more than 15 seconds, and 1% by 350 seconds or more. These
delays under LP result from LP’s ignorance of fragmentation
in job placement when deciding on the number of active
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Figure 6: Cooling control comparison in the highS-
highT day.
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Figure 7: GreenDRL’s decision making in the highS-
highT day from 7:30 to 17:30

servers. Further, under LP, the CM will greedily dispatch as
many deferrable jobs as it can at the beginning of each time
slot. Nondeferrable jobs arriving after the start of a time slot
will thus often have to wait for dispatched deferrable jobs
to complete or more servers to be activated the beginning
of the next time slot. GreenDRL reduces this wait time by
capping the number of deferrable jobs that can be dispatched
in a time slot, leaving spare capacity to handle arriving non-
deferrable jobs. Note that this trades off additional energy
consumption to reduce wait times for nondeferrable jobs.

GreenDRL leads to some violation of the dispatch deadline
for deferrable jobs. Specifically, under GreenDRL, 1% of the
deferrable jobs are dispatched up to 288 seconds after their
deadlines. Under LP, all deferrable jobs are dispatched before
or at the deadlines. Deadline violations are possible under
GreenDRL for several reasons, including the fact that viola-
tions lead to penalties but are not absolute constraints and
GreenDRL’s probabilistic nature. We can reduce the number
and lengths of violations by increasing the corresponding
penalty, as shown in the sensitivity evaluation. However, the
frequency and length of violations are both already quite
small for our current weighting of penalties.

Sensitivity. We have studied GreenDRL’s sensitivity to a
number of important parameters, including the length of the
dispatch deadline for deferrable jobs (6, 12, and 24 hours), the
ratio between deferrable and nondeferrable jobs (50% and
75% deferrable), intensity of workload (50% and 70% average
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Figure 8: GreenDRL with different weights on the
penalty for delaying nondeferrable jobs when the
Google workload is run in a highS-highT day. The left
graph plots the CDF of wait times for nondeferrable
jobs. The right graph plots brown energy consumption.

utilization), and different weightings for the components of
the reward function. Results match intuition; for example,
when only 50% of the jobs are deferrable, GreenDRL’s savings
for brown energy consumption compared to FIFO and LP are
smaller, 27-44% and 1.2-12.5%, respectively. Similarly, higher
average utilization reduces the flexibility that GreenDRL
has to delay deferrable jobs to consume green energy and
avoid expensive cooling. Thus, GreenDRL’s savings in brown
energy consumption compared to FIFO are smaller.
Reducing the dispatch deadline for deferrable jobs to 6

hours also reduces GreenDRL’s ability to delay deferrable
jobs to increase green energy consumption, leading to 30%
saving compared to FIFO on the highS-highT day. Stretching
the deadline to 24 hours does not bring much benefits given
that 12 hours already allowed GreenDRL to fully utilize all
servers when green energy is available. Finally, GreenDRL is
not sensitive to a mix of different dispatch deadlines. When
run on a workload where 25%, 50%, and 25% of deferrable
jobs have 6, 12, and 24 hours dispatch deadlines, respectively,
GreenDRL did not incur additional deadline violations while
achieving energy savings of 37-53% compared to FIFO.
Perhaps the most interesting results are for sensitivity

to penalty weightings. Ideally, GreenDRL should achieve
different trade-offs among its objectives when weights in
the reward function are changed. Figure 8 shows the results
when we change the weight of the penalty for delaying non-
deferrable jobs. Increasing the weight by 10× can completely
avoid nondeferrable waiting but incurs increased energy con-
sumption. Interestingly, GreenDRL learns to reserve more
free resources (by allocating more servers and reducing the
cap for dispatching deferrable jobs). In contrast, decreasing
the weight by (1/4)× increases the energy saving but also
increases the wait time for many nondeferrable jobs.

Scalability. We simulate a larger DC to provide evidence
for GreenDRL’s scalability. We increase the server number
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Figure 9: GreenDRL energy consumption (top) and cool-
ing control (bottom) in a scaled DC when running the
Google workload on the highS-highT day.

by 10 (320 servers) and keep the single server power model
unchanged. We revise our cooling model which has similar
cooling effects for the cluster but with 10× power consump-
tion. We realize that these scalings are rough approximations
at best. But it allows us to study whether GreenDRL can still
learn the fundamental principles and control policies with
the same policy neural network structure and training algo-
rithm; i.e., GreenDRL’s neural network structure and size
are not dependent on DC size, at least within the order of
magnitude change that we are studying.
The training takes 3 times longer because of the larger

simulation. The inference time remains the same because it
only depends on GreenDRL’s policy neural network struc-
ture. As show in Figure 9, the GreenDRL can learn the similar
behavior as before, e.g., shifting workload execution to solar-
rich time, jointly managing server and cooling power. The
brown energy consumption increases proportionally (by a
factor of 10.4 in the highS-highT day). These results show
the robustness of GreenDRL’s design to DC size.

Summary. LP is not an optimal policy given various sim-
plifying assumptions. However, it is quite powerful since
it is given oracular knowledge of the future. Thus, it is en-
couraging that GreenDRL can match LP’s performance for
minimizing brown energy consumption on days when AC
cooling is not needed, while also keeping wait times for non-
deferrable jobs and violations of deferrable dispatch dead-
lines low. It is further encouraging that GreenDRL can learn
to jointly manage cooling and server energy consumption to
outperform LP on days when AC cooling is needed. While
it is certainly possible to tweak GreenDRL in various ways
to further improve performance, we believe that the results
above demonstrate that deep RL can be effectively applied to
the complex multi-dimensional problem of managing energy
consumption in a green datacenter.
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6 DISCUSSIONS
Offline simulation and training. GreenDRL relies on sim-

ulation to train its agent. Building accurate models for sim-
ulation to train an RL agent can be especially challenging.
Exploration of the learning space often leads to simulated
execution under unusual operating conditions. For example,
in our cooling problem, a good policy is usually just keeping
the inside temperature right below the maximum thresh-
old. So traditional management systems, like optimization
or heuristic, just need the cooling model to work well in a
narrow inside temperature range.
In contrast, training an RL agent may require exploring

states with very low or very high inside temperatures for the
agent to learn the extreme penalties associated with allowing
the state. Unfortunately, it is very difficult to gather data at
these operating points to build the models, and it is difficult
to extrapolate from data obtained under “normal” conditions;
for cooling, thermal dynamics might be quite different in
different temperature ranges.

Thus, it would be desirable to eliminate the need for sim-
ulation and models, and directly train the agent using the
real system. But the challenges of system safety and long
training time need to be addressed before real deployment.
It is also possible to explore a combination of offline and on-
line training [33], where offline training can learn a relative
good/safe policy from historical data without the need for
simulation and models and online training will improve the
agent’s performance on the real system.

Stability. Although the overall performance is good, Green-
DRL will sometimes vary its decisions rapidly within a time
period. For example, it may rapidly alternate between turn-
ing servers and the cooling system on/off from one time
slot to the next. This behavior is acceptable with the cur-
rent reward function because the rewards/costs for these
state changes are low. However, it may be disadvantageous
from the perspective of system stability. Thus, it would be
worthwhile to investigate a systematic approach to designing
reward functions that would encourage “smooth” operation.

7 CONCLUSION
In this work, we study the use of deep RL to jointly manage
all controllable aspects (e.g., workload, power, cooling) of a
green DC. Specifically, we propose and evaluate GreenDRL,
a management system that combines deep RL and simple
heuristics. Our design addresses several important challenges
of the problem domain, brining a robust approach for de-
signing efficient management systems that can account for
specific workload, datacenter, and environmental character-
istics. Simulation results using historical data collected from
Parasol, an experimental green DC, show that GreenDRL
successfully learns many important management principles

and outperforms two baselines policies. We thus conclude
that deep RL is a promising technique for building efficient
DC management systems.

ACKNOWLEDGEMENTS
This work was partially supported by NSF grant #1730043.
We thank the anonymous reviewers and our shepherd, No-
man Bashir, for helping to improve the paper.

A LP FORMULATION
Decision Variables:
𝑤𝑑
𝑡 ∈ [0, 𝑁𝑚𝑎𝑥 ×𝐶]: amount (CPU-seconds) of deferrable

workload, scheduled in slot 𝑡 . 𝑁𝑚𝑎𝑥 is the maximum number
of servers, 𝐶 is the capacity (CPU-seconds) of each server.
𝑛𝑡 ∈ {1, . . . , 𝑁𝑚𝑎𝑥 }: number of active servers in slot 𝑡 .
𝑛
wkup
𝑡 ∈ {0, . . . , 𝑁𝑚𝑎𝑥 − 1}: number of servers activated in

slot 𝑡 .
𝑒𝑡 ∈ [0, +∞]: grid energy consumed in slot 𝑡 .

Parameters:
𝑊 𝑛

𝑡 : amount of non-deferrable workload that should be
executed in slot 𝑡 , assuming all non-deferrable jobs are dis-
patched immediately on arrival.
𝑊 𝑑

𝑡 : amount of deferrable workload that should be exe-
cuted in slot 𝑡 , assuming all deferrable jobs are dispatched
immediately on arrival.
𝐿𝑡 : minimum amount of deferrable workload that must be

executed in slot 𝑡 to avoid deadline violations.
𝐺𝑟𝑒𝑒𝑛𝑡 : green energy available in slot 𝑡 .
𝑓𝑒 (𝑊 𝑛

𝑡 ,𝑤
𝑑
𝑡 , 𝑛𝑡 ): total energy consumed by active servers

in slot 𝑡 .
𝐶wkup: capacity loss during a server’s start-up.
𝑃 : the constant electricity price.

Optimization problem:

min
{ 𝑇∑︁

𝑡=0
𝑒𝑡𝑃

}
, s.t.

Capacity constraints:

𝑊 𝑛
𝑡 +𝑤𝑑

𝑡 ≤ 𝑛𝑡𝐶 − 𝑛wkup𝑡 𝐶wkup,∀𝑡 ≤ 𝑇

𝑛
wkup
𝑡 = max(0, 𝑛𝑡 − 𝑛𝑡−1),∀𝑡 ≥ 1
Cumulative dispatched load cannot exceed cumulative arrived

load, cumulative dispatched load must be at least amount

needed to avoid deadline violation:

𝐿𝑡 ≤
𝑡∑︁

𝜏=0
𝑤𝑑
𝜏 ≤

𝑡∑︁
𝜏=0

𝑊 𝑑
𝜏 ,∀𝑡 ≤ 𝑇,

𝑒𝑡 =𝑚𝑎𝑥 (𝑓𝑒 (𝑊 𝑛
𝑡 ,𝑤

𝑑
𝑡 , 𝑛𝑡 ) −𝐺𝑟𝑒𝑒𝑛𝑡 , 0),∀𝑡 ≤ 𝑇
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