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Abstract
1.	 Ecosystem engineers strongly influence the communities in which they live by 

modifying habitats and altering resource availability. These biogenic changes 
can persist beyond the presence of the engineer, and such modifications are 
known as ecosystem engineering legacy effects.

2.	 Although many authors recognize ecosystem engineering legacies, and some 
case studies quantify the effects of legacies, few general frameworks describe 
their causes and consequences across species or ecosystem types.

3.	 Here, we synthesize evidence for ecosystem engineering legacies and describe 
how consideration of key traits of engineers improves understanding of which 
engineers are likely to leave persistent biogenic modifications.

4.	 Our review demonstrates that engineering legacies are ubiquitous, with 
substantial effects on individuals, communities and ecosystem processes. 
Attributes that may promote the persistence of influential legacies relate to an 
engineer's traits, including its body size, life span and living strategy (individual, 
conspecific group or collection of multiple co-occurring species).

5.	 Additional lines of inquiry, such as how the recipients respond (e.g. density or 
richness) or the mechanism of engineering (e.g. burrowing or structure building), 
should be included in future ecosystem engineering legacy research.

6.	 Understanding patterns of these persistent effects of ecosystem engineers and 
evaluating the consequences of losing them is an important area of research 
needed for understanding long-term ecological responses to global change and 
biodiversity loss.

K E Y W O R D S
abandoned, habitat, persistence, resource, temporal, traits

1  |  INTRODUC TION

Legacies are ideas, objects or processes that originate in the past 
and persist into and influence the future. Legacies sometimes arise 
from extraordinary actions that can change the course of history 
as well as expectations for what is possible (Miller et al.,  2009; 

Wittenberg, 2013; Wohl, 2019). For example, most people are famil-
iar with the legacy of Michael Jordan, who redefined what is possible 
in basketball. In nature, we also recognize legacies, such as those 
left by abiotic events such as hurricanes, heat waves, earthquakes 
and retreat of glaciers, which can have striking and persistent effects 
on physical and chemical conditions long after these events have 
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ceased (Connell, 1978; Dunson & Travis, 1991; Hughes et al., 2019). 
In addition, anthropogenic activities such as nutrient pollution and 
mining leave well-recognized contaminant legacies that continue to 
influence water quality over many decades (Basu et al., 2022; Lima 
et al., 2016). Less appreciated, however, are the legacies left by the 
myriad organisms that influence the availability and character of 
habitat and resources in ecosystems (Cuddington, 2011).

Ecosystem engineers are organisms that alter the abiotic environ-
ment, producing changes to habitat and resource supply that govern 
community assembly, ecosystem processes and niche construc-
tion (Table 1; Gutiérrez & Jones, 2006; Jones et al., 1994; Wright & 
Jones, 2006). Modifications can arise from activities of individuals, 
groups of conspecifics and assemblages of co-occurring organisms, 
and they often last longer than the organisms themselves. Such 
modifications are known as ecosystem engineering legacies (Table 1; 
Cuddington, 2011; Hastings et al., 2007). Our definition of an eco-
system engineer extends the classical definition (Jones et al., 1994) 
by including organisms that modify the environment in any of the fol-
lowing ways: the presence of their own bodies (autogenic; e.g. cor-
als); activities that transform the state of local materials or chemicals 
and often result in an extended phenotype (Table 1; allogenic; e.g. 
nest building); and simultaneous physical, other non-consumptive 
and trophic modification (e.g. salmon disturbing riverbed sediment 
and organic matter; Prugh & Brashares,  2012; Rex et al.,  2014; 
Wilby et al., 2001). Despite the substantial—and often long lasting—
influence of biota on the environment, appreciation of ecosystem 
engineering legacies as a significant factor shaping the structure and 
function of Earth's ecosystems has been relatively slow to develop 
(Dietrich & Perron, 2006; Naylor et al., 2002; Rice, 2021). In addi-
tion, frameworks that identify the general traits of engineers that 

are likely to leave legacies are still scarce (Frauendorf et al., 2021; 
Hastings et al., 2007).

Because ecosystem engineering effects are widespread, it is 
increasingly important that legacies are included in understanding 
maintenance of ecosystems and in predicting the biotic outcomes 
of anthropogenic change more broadly (Estes & Vermeij,  2022; 
Frauendorf et al., 2021). Here, we review the evidence for ecosys-
tem engineering legacies in nature using four approaches. First, we 
set the stage by describing select case studies of legacies in the lit-
erature and the trajectory of ecosystem engineering legacy knowl-
edge. Second, we use a conceptual framework designed around 
underlying organismal phenotypes to compare legacies across dif-
ferent engineering taxa. Third, we use a synthesis to demonstrate 
how the conceptual framework applies to published legacy exam-
ples. And finally, we discuss directions for continued development of 
metrics that will advance understanding of ecosystem engineering 
legacies and the roles that organisms play in influencing the struc-
ture and function of communities and ecosystems.

2  |  RE VIE W OF ECOSYSTEM 
ENGINEERING LEGACIES

2.1  |  Examples of ecosystem engineering legacies

Legacies may last for milliseconds to millennia and their spatial foot-
print can be small or large. For instance, crawling slugs (ca. 2 cm 
length) leave behind mucous residues that provide a surface and re-
sources for microbial colonists (Table 2; Theenhaus & Scheu, 1996) 
that is relatively small and persists for a short period of time. Other 

TA B L E  1  Definitions of terminology

Term Definition Germinal citation; case study example

Ecosystem engineer Organisms that create, maintain or modify physical habitat or resource 
flows. These effects feedback on the organism itself (a kind of 
niche construction), but also transform entire local ecosystems 
that other organisms experience. Commonly recognized examples 
include corals, beavers and burrowing activities of, for example, 
earthworms (terrestrial) or polychaetes (marine).

Jones et al., 1994; Messmer et al., 2011

Extended phenotype Phenotypes of organisms that project beyond their surfaces into the 
surrounding environment. Extended phenotypes often are built 
structures, like nests, burrows and dams, and they represent a kind 
of artifact arising from physiological or behavioural processes of 
the builder.

Dawkins, 1982; Edwards et al., 2020

Ecosystem engineering 
legacy

Transformations of the environment that persist beyond the 
disappearance or death of the transforming organisms and that 
affect other organisms in the community. The legacy can be 
physical, biological or chemical.

Hastings et al., 2007; Johnson-Bice 
et al., 2022

Niche construction Activities or structures of organisms that influence the biotic or 
abiotic environments that they experience. Leaf-mining insects, for 
example, can raise or lower the temperatures that they experience 
by altering local leaf radiative and evaporative budgets. In turn, 
such altered environments can shape evolutionary pressures on, 
for example, critical thermal maxima.

Odling-Smee et al., 1996; Pincebourde & 
Casas, 2019
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TA B L E  2  Examples of ecosystem engineers and their legacies drawn from the studies identified by the literature search. The examples provided here were selected by the authors as an 
illustrative subset of the 174 studies (Appendix A). Taxa are arranged in alphabetical order. The symbol ↟ in the Taxon column identifies autogenic engineers; no symbol identifies allogenic 
engineers

(a): Individual ecosystem engineers

Taxon Latin name
Body size 
(m)

Life span 
(year) Modification Purpose

Structure 
size (m)

Occupation 
time (year)

Decay time 
(year) Frequency

ND 
spatial

ND 
temporal Citation

Albatross Diomedea exulans 1 50 Nest Reproduction 1 0.19 1 Bi-annual 1 5.3 Haupt et al. (2016)

Bandicoot Isoodon fusciventer 0.5 3 Pit Food 0.1 0.0027 0.5 Daily 0.2 183 Valentine et al. (2018)

Bettong Bettongia lesueur 0.35 5 Pit Food 0.1 0.0027 1 Daily 0.29 365 Ross et al. (2020)

Bilby Macrotis lagotis 0.55 7 Pit Food/shelter 2 1.15 30 Daily 3.6 26 Dawson et al. (2019)

Bison Bison latifrons 2.5 10 Wallow Cleaning 4 1 125 Multiple 1.6 125 Nickell et al. (2018)

Caddisfly Hydropsychidae 0.02 1 Net Food 0.02 0.083 0.17 Monthly 1 2 Tumolo et al. (2019)

Echidna Tachyglossus aculeatus 0.3 50 Pit Reproduction 0.2 0.55 1.5 Annual 0.67 2.7 Eldridge and 
Koen (2021)

Eider duck Somateria mollissima 0.5 20 Faecal matter Waste 5 0.25 1 Seasonal 10 4 Ebert et al. (2013)

Elephant Loxodonta africana 4 60 Tree removal Food 60 1 7 Seasonal 15 7 Pringle (2008)

Kangaroo rat Dipodomys spectabilis 0.3 3 Burrow Shelter 5 3 70 Lifetime 17 23 Guo (1996)

Lamprey Petromyzon marinus 1 4 Redd Repro. 1 0.42 0.25 Lifetime 1 0.6 Hogg et al. (2014)

Moth Pseudoltephusa sp. 0.01 1 Leaf tie Pupation 0.05 0.038 0.33 Lifetime 5 8.5 Lill and Marquis (2003)

Puma Puma concolor 2 8 Carcass Food 1 0.019 0.12 Monthly 0.5 6.3 Barry et al. (2019)

Rabbit Oryctolagus cuniculus 0.4 9 Pit Breeding 0.1 0.1 2 Daily 0.25 20 James et al. (2011)

Salmon Oncorhynchus sp. 1 5 Redd Reproduction 0.5 0.02 1 Lifetime 0.5 50 Verspoor et al. (2010)

Shrub Noaea mucronata 1 5 Soil chemistry Growth 2 5 5 Lifetime 2 1 Stavi et al. (2021)

Stingray Dasyatidae 2 15 Pit Food 0.5 0.0027 0.01 Daily 0.25 3.7 D'Andrea et al. (2002)

Sunfish Centrachidae 0.13 3 Pit Reproduction 1.2 0.083 1 Annual 9.2 12 Thorp (1988)

Vole Microtus californicus 0.15 0.5 Plant removal Food 0.5 0.5 7 Daily 3.3 14 Huntzinger et al. (2011)

Woodpecker Dendrocopos major 0.2 5 Tree hole Nesting 0.3 0.083 50 Yearly 1.5 600 Catalina-Allueva and 
Martín (2021)

Worm Multiple 0.1 1 Cast Waste 0.05 0.17 1 Daily 0.5 6 Zangerlé et al. (2014)
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legacies are especially large and long lasting, with the potential to 
influence the system long after the engineer is gone (Table 2). For 
example, monitor lizards (ca. 1.5 m length) construct burrows that 
are used by amphibians and arthropods (Doody et al., 2021); individ-
ual spawning salmon disturb riverbeds at small spatial and temporal 
scales (Collins et al., 2011) yet the collective effects of salmon popu-
lations and spawning behaviour on riverbed geomorphology have 
broad consequences for watershed evolution (Fremier et al., 2018). 
Casts from bioturbating worms in marine tidal flats leave behind 
evidence that is visible in the sedimentary record over geologic time 
(Cribb & Bottjer, 2020; Kristensen et al., 2012). In addition, micro-
bial communities in marine environments that formed stromatolites 
fostered the rise of different chemical pathways over evolutionary 
time (Altermann, 2008; Paterson et al., 2008), and photosynthetic 
organisms associated with these features created the atmosphere 
on which we and all aerobic organisms depend (Blankenship, 2010). 
Together, these select examples illustrate the potential for many dif-
ferent organisms to participate in ecosystem engineering legacies 
over a very wide range of temporal and spatial scales.

2.2  |  Fundamental attributes of biogenic 
modifications

Attributes that are often used to determine the magnitudes of eco-
logical legacies, including ecosystem engineering legacies, duration, 
spatial extent and frequency through time and space (Figure 1). The 
magnitude of a physical drought legacy in a forest, for example, can 
depend on a suite of attributes, including the duration, spatial loca-
tion and timing of the current drought, as well as the time elapsed 

(1/temporal frequency) since other recent droughts (Kannenberg 
et al.,  2020). Along with duration and spatial extent, frequency 
in space is especially salient for ecosystem engineering legacies. 
Consider soil-dwelling organisms, which can have engineering ef-
fects on soil properties and on communities of arthropods and 
plants. Many ants, for example, construct below-ground nests, into 
which colonies introduce terrestrial organic matter (e.g. leaf-fungus 
farmed by leaf-cutting ants; Schoenian et al., 2011). High densities 
of nests may transform soil properties over large spatial scales, 
even though each individual nest affects a limited area. Likewise 
for earthworms—although individual worms have limited capacity 
to alter soils, large populations can have profound effects on soil 
properties across large areas, with wide ranging effects on other 
soil arthropods and local plant communities (Eisenhauer,  2010; 
Holdsworth et al., 2007).

Like those that are frequent in space, legacies that are frequent 
in time will often be more important than those that occur rarely. 
For example, the ability of marine invertebrates to move, as well as 
to obtain nutrients and gases from their environment, is influenced 
by the persistent presence of surface-fouling ecosystem engineers 
growing on the invertebrate itself. Sea spiders (pycnogonids) obtain 
oxygen from seawater via pores in their cuticles (Lane et al., 2018), 
but oxygen availability can be blocked by surface fouling organisms. 
Some kinds of fouling, like biofilms, are ubiquitous and the inver-
tebrate must contend with their growth and subsequent respira-
tory effects on a daily basis by spending a substantial proportion 
of their time grooming their surfaces with specialized appendages. 
Other kinds of fouling, like colonies of bryozoans or large barnacles, 
could have large effects but they occur much less frequently than 
do biofilms (Lane et al., 2016). So, the consistently present biofilms 
are more likely to matter to the sea spider's biogeochemical environ-
ment than are rarely present bryozoans or barnacles.

Temporal frequency and spatial extent may be directly or in-
directly related to one another. Whales, for example, often fall 
after death to the ocean floor, where their carcasses engineer the 
local environment by supporting diverse communities of other or-
ganisms that occupy and feed on them (Roman et al., 2014; Smith 
et al., 2015). In this context, ‘spatial extent’ refers to the body size 
of the dead whale. Larger carcasses probably occur less frequently 
than do small ones because not as many individuals survive to later 
life stages, but they nevertheless can leave large-magnitude legacies 
by persisting for long periods of time (sometimes decades to centu-
ries; Smith et al., 2015).

2.3  |  Legacy in the eye of the beholder

A component of a legacy's importance depends on the impact it has 
on recipient individuals, species and biological processes, as well 
as environmental context. In some instances, legacies affect one 
or a few individuals, without broader effects on populations, com-
munities or ecosystems (Farji-Brener & Werenkraut,  2015). These 
legacies may be considered less influential. However, if those single 

F I G U R E  1  (a) Ecosystem engineering organisms can leave 
legacies that range from small (green) to large (blue) duration (a) 
and spatial extent (b), and from low (green) to high (blue) frequency 
through time (c) and through space (d). These three attributes—
duration, spatial extent and frequency—of the modification 
contribute to the magnitude of the legacy.
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or few individuals belong to an endemic, endangered or keystone 
species, then the impact of that legacy is amplified. Beyond ways in 
which legacies affect individuals, ecosystem engineering activities 
that modify habitat or resources in ways that propagate to the com-
munity level or ecosystem level could leave particularly impactful 
legacies.

2.3.1  |  Community-level responses

Multiple, co-occurring engineering species can create collective 
legacies (Caliman et al., 2013; Thomsen et al., 2018). For example, 
trees modify habitats that foster epiphytes, and these epiphytes also 
provide habitat to other organisms (Thomsen et al., 2010). Such ef-
fects often can persist even when the engineers are no longer living, 
but generally to a lesser extent than when they are alive (Bologna 
& Heck Jr, 1999). Collective legacies also manifest at the commu-
nity level when multiple species are influenced by and respond to 
the legacy. As a result, a legacy that affects one recipient may be 
considered less important than one that affects a diverse suite of 
species or a whole community (Thomsen et al., 2018). For example, a 
large number (up to 28) of different species of springtail (Collembola) 
can live in soil patches created by mobile earthworms (Lavelle, 2002; 
Loranger et al., 1998). Sometimes, the recipient taxa are ecosystem 
engineers themselves (i.e. a ‘facilitation cascade’), whereby the pres-
ence of one engineer promotes the presence of others even after 
that original engineer is gone (Thomsen et al.,  2010), an idea that 
parallels the conceptual framework of succession and replacement 
of species as the environment is altered by the previous occupants 
(Drury & Nisbet, 1973; Odum, 1969). Finally, some engineers may 
leave legacies that could extend across ecosystem boundaries. For 
instance, freshwater mussels increase the productivity of emergent 
aquatic plants by increasing water-column phosphorous, and the 
plants, in turn, attract and provide resources for terrestrial herbi-
vores (Lopez et al., 2020). Because mussel shells continue to affect 
the environment after the mussels are dead, this cross-boundary ef-
fect may persist through time.

2.3.2  |  Ecosystem-level responses

Besides influencing communities, legacies can also generate per-
sistent effects on ecosystem and biogeochemical processes. These 
effects are evident when engineering activities have lasting effects 
on material resources (e.g. nitrogen and carbon) or environmental 
conditions (e.g. light, temperature and redox potential; Gutiérrez 
& Jones,  2006). Nitrogen fixation by many early successional or 
invasive plant species, for example, can fuel primary production of 
other taxa long after they are gone (Chapin et al., 1994). Von Holle 
et al.  (2013) found that nitrogen pools remained elevated at least 
14 years following the removal of non-native N2-fixing black locust 
trees. Other ecosystem engineers such as beavers or earthworms 
often reconfigure the amount and structure of river sediments or 

forest soils for many years following their disappearance (Naiman 
et al., 1988). In the case of beaver, although many of the engineered 
changes may be reversed over 5–10 years, some may last much 
longer (Wohl, 2021). For instance, Laurel and Wohl (2019) found that 
the effects of beavers on river geomorphology persist for >30 years 
after the beavers stop maintaining a dam. Their influence on the 
storage of organic carbon in floodplains—and associated carbon 
turnover and mineralization (Naiman et al.,  1986)—may persist for 
even longer.

Biogenic legacies can also drive ecological feedbacks that en-
hance their persistence. This may be particularly evident if lega-
cies change the character of natural or anthropogenic disturbance 
regimes. In western North America, forest insect outbreaks can 
have lasting effects on ecosystem properties (e.g. soil moisture, 
surface fuel accumulation) that may alter susceptibility to future 
wildfires (Meigs et al.,  2016). Such changes have the potential to 
feed back and influence subsequent insect outbreaks (Bergeron & 
Leduc,  1998). Grazing by large herbivores, together with fire, can 
produce and maintain African savannah ecosystems by removing 
trees and woody vegetation. Grassland conditions persist beyond 
the life span of the herbivores and promote future grazing and fire 
that reinforces the savannah state (Lenton et al.,  2021; Marshall 
et al., 2018).

2.3.3  |  Directional responses by the recipients

Ecosystem engineers inevitably create conditions that are better for 
some organisms or ecological processes than for others; thus, lega-
cies can be simultaneously positive or negative (Daleo et al., 2006; 
Gribben et al., 2013). For example, ecosystem engineering kangaroo 
rats Dipodomys ingens create networks of burrows that decrease bird 
and plant diversity potentially through soil disturbance but increase 
invertebrate diversity potentially through increased habitat avail-
ability or food subsidies (Prugh & Brashares, 2012). Another impor-
tant avenue by which directionality mediates a legacy occurs when 
ecosystem engineers alter their surroundings through multiple, co-
occurring processes that may leave differing positive or negative 
effects. Spawning salmon, for example, may beneficially engineer 
streams by disturbing sediments and enriching nutrients, but they 
may also detrimentally engineer streams by transporting pollutants 
(Baker et al.,  2009; Gerig et al.,  2016). Indeed, decomposing fish 
tissues may fertilize streams while also leaching persistent organic 
contaminants, which can bioaccumulate in the tissues of other or-
ganisms (Baker et al., 2009; Gerig et al., 2016; Morrissey et al., 2012).

2.3.4  |  Environmental disturbance

Engineering effects have the greatest potential to leave legacies 
when the modifications are resistant to environmental disturbances 
or when these disturbances are rare or small in magnitude (Johnstone 
et al., 2016). The strength of pairwise interactions between species, 
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such as an engineer and the recipient of the modified environment, is 
very likely affected by environmental context (Germain et al., 2018). 
For example, dead animal flesh, bone and cartilage each provide a 
resource legacy that attracts scavengers (hours to days) or slowly 
releases phosphorus (months to years) into soil or water until the 
animal remains are gone. However, any legacy effect could be 
negated if those remains are washed away by waves, flooding or 
another form of disturbance (Cortés-Avizanda et al., 2012; Laidre & 
Greggor, 2015).

Although extreme events are by definition rare, they may be 
large enough in magnitude to erase existing modifications very 
rapidly. For example, when spawning salmon dig nests, they scour 
river sediments, enrich biofilms and dislodge macroinvertebrates 
in small patches (Collins et al., 2011; Verspoor et al., 2011). Nests 
can withstand daily stream flows, but spring runoff can disturb sed-
iments and destroy a nest several months later. Thus, engineering 
effects can be robust to daily fluctuations but destroyed by stron-
ger events. As another example, a beaver can construct a dam in a 
few months and maintain it for years (Cenderelli,  2000; Johnson-
Bice et al., 2022). The dam's structural integrity, and thus resilience, 
depends on features such as size and construction material (Woo & 
Waddington,  1990). Although dams can withstand a range of dis-
turbances for years, intense precipitation, flooding and collapse of 
upstream dam(s)—all relatively unpredictable events—can destroy 
them (Cenderelli,  2000; Rutherford,  1953). In both examples, leg-
acy effects reflect a balance between build-up of the engineered 
structure and erosion of it by the local disturbance regime. Legacy 
duration will thus depend strongly on the frequency, extent and se-
verity of disturbances.

How recipients of the engineering modification perceive or use 
the legacy also relates to environmental context. In harsh environ-
ments with large or frequent disturbances, recipients that use the 
engineering modification may rely more heavily on the changes 
imposed by the engineer (Bertness & Callaway, 1994). That is, the 
positive effect of the modification by the ecosystem engineer will 
play an increasingly important role in creating suitable habitat or 
providing valuable resources when an environment is otherwise 
highly disturbed.

2.4  |  Traits of the engineer

Another component of a legacy's importance relates to traits of 
the engineer itself. The population density of an engineer, for 
example, should modulate the legacy. Earthworms offer a clear 
example. Individual worms create soil casts that alter soil aggrega-
tion and oxygenation at small spatiotemporal scales, equivalent 
to or less than that of an individual earthworm's own body size 
and lifetime (Table  2). However, the collective effects of earth-
worm populations can be realized at macroscales. As earthworms 
have expanded into northern forests, for example, they have re-
leased large amounts of soil carbon through their casts with con-
sequences for ecosystem-level nutrient cycling and greenhouse 

gas emissions (Table 2; Frelich et al.,  2019). Another example of 
individually minor effects that become significant at high popu-
lation densities is soil disturbance by mammals. A single wallow 
made by a bison, for example, may only have a 4-m diameter and 
last 25 years, but in places like Yellowstone National Park, where 
the bison population has grown from 500 individuals in the 1970s 
to 5000 today, the cumulative effects of all wallows on the land-
scape persist for many decades and shape physical, chemical and 
biological processes (Nickell et al., 2018).

Behavioural traits can also affect legacies (Gribben et al., 2013). 
How conspecifics interact with one another is an important be-
havioural consideration that likely determines legacy magnitude. For 
example, some species have individuals that are solitary (e.g. a rab-
bit), while other species have individuals that live in extremely close 
proximity groups (e.g. mussels). Additionally, some legacies emerge 
from the combined effects of multiple species (Bétard,  2021). As 
such, collective legacies can arise from either multiple individuals of 
the same species acting together to modify the environment or from 
multiple, coexisting and interacting species, and these often shift 
the abiotic environment to a new stable state. One example of this 
type of collective legacy is the formation of soil. For coherent rock to 
be transformed into a porous matrix of disaggregated minerals and 
organic material typically requires the joint actions of microorgan-
isms, invertebrates, large plants and even mammals. The soils that 
blanket the well-studied mountains of the Luquillo National Forest 
of Puerto Rico are created in part by bacteria Cupriavidus (Liermann 
et al., 2015; Napieralski et al., 2019) that oxidize iron-bearing min-
erals, Tabonuco trees Dacryodes excelsa (Scatena & Lugo, 1995) that 
root in and break apart rock and contribute some of their own bio-
mass, and worms Pontoscolex corethrurus (Lavelle et al., 2007) that 
mix soils and leave nutrient-rich castings. None of the species alone 
creates soil from rock, but each contributes this pervasive alteration 
of the physical environment.

The step-pool morphology of travertine rivers provides another 
example of a collective legacy that illustrates how diverse assem-
blages of organisms can shift the abiotic environment to a new sta-
ble state (Fuller et al.,  2011). Fallen trees and large-woody debris 
catalyse travertine dam formation in streams, by causing high veloc-
ity overflow that drives CaCO3 precipitation from super-saturated 
spring-fed baseflow (Viles & Pentecost,  1999). Nascent dams trap 
floating algal mats and leaf litter, which provide surface area for 
travertine crystals to precipitate (Compson et al., 2009; Merz-Preis 
& Riding,  1999), a process enhanced by microbial photosynthesis 
which raises local pH (Ferris et al., 1995; Pentecost, 2005; Takashima 
& Kano, 2008).

The temporal magnitude of collective legacies cannot be easily 
quantified at the scale of the individual species, whose life spans 
range from hours (bacteria) to centuries (trees). For soils, traver-
tine and other collective legacies created by multiple co-occurring 
engineers, the relevant time-scale would capture how long the ef-
fect would persist if all organisms abruptly ceased their work. For 
long-lived legacies, the potential decay time should scale with the 
residence time of the bio-mediated material at steady state. For 
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example, the soils produced by collective ecosystem engineering 
legacies described previously in the mountain forests of Puerto 
Rico are in an approximate steady state, in which soil produc-
tion from rock below is balanced by soil erosion into down-slope 
river channels. Using representative values of soil depth (~1 m) 
and soil production and long-term erosion rate (10−4 m/year), a 
steady-state residence time, and thus potential legacy time-scale 
would be 10,000 years (Willenbring et al., 2013). In other geologic 
and climatic settings, where soils are both thicker and produced 
more slowly, residence times can be orders of magnitude longer 
(Almond et al., 2007).

Another important behavioural consideration is how the en-
gineer carries out the activity that alters habitat or resources. 
Organisms that alter the environment through their own physical 
presence (autogenic engineers; e.g. tree stumps) operate differently 
than organisms that actively transform the environment external 
to their own physical presence (allogenic engineers; e.g. burrows 
made by crayfish). Movement presents an additional challenge in 
quantifying legacy effects. On one hand, movements expand the 
spatial scope of engineering because individual organisms can cre-
ate multiple modifications across the landscape (Booth et al., 2020; 
VanBlaricom, 1982). On the other hand, sessile foundational spe-
cies, such as coral reefs, leave large, persistent legacies in single 
locations that are much easier to quantify. Legacies can certainly 
be left by organisms that are not yet dead if they engineer their 
environments locally but then move on. While this idea has not tra-
ditionally been included in legacy science because the effect occurs 
within the life span of the engineer, a growing body of literature 
highlights the need to further develop theory and experimental 
evidence to demonstrate how these types of effects fit into the 
scope of legacies. In freshwater streams, diel movements of biotur-
bating Sonora sucker Catostomus insigni resuspend and redistrib-
ute sediments and organic matter downriver as they feed during 
the night (Booth et al., 2020). In saltwater environments, stingrays 
excavate depressions in local tidal flats. Once abandoned, these 
divots provide temporary habitat for other marine fauna (Takeuchi 
& Tamaki, 2014). Other impressive examples include bison and wil-
debeest, which migrate during the growing season to browse on 
vegetation just as it greens up. In doing so, however, large ungulates 
also engineer the food resources through their browsing activity by 
delaying plant maturation and altering soil compaction and mois-
ture as they graze, thereby prolonging availability of young, more 
nutritious vegetation on the order of weeks to months (Gass & 
Binkley, 2011; Geremia et al., 2019; McNaughton, 1976). Whether a 
legacy resulting from movement combines with or replaces a legacy 
resulting from death remains an exciting area for future research.

2.5  |  Trajectory of ecosystem engineering 
legacy research

A growing body of literature has described and quantified ecosys-
tem engineering legacies, including those in the preceding sections. 

That legacies can arise from the activities of ecosystem engineers 
has been formally recognized since the seminal work by Jones 
et al. (1994). However, it is only recently that studies on ecosystem 
engineering legacies have appeared regularly in the literature. To 
assess the status of this research, we performed a systematic litera-
ture search in October 2021 (Appendix A; Gurevitch et al., 2001). A 
list of data sources used in the study are provided in the Data sources 
section. The number of published papers on ecosystem engineering 
legacies has increased steadily since the late 1990s, with a substan-
tial increase in the past decade (Figure  2a). Although an average 
of 3.1 papers/year were published from 1994 to 2009, nearly 13 
papers/year were published from 2010 to 2020. Interestingly, many 
studies did not apply the term ‘legacy’ but rather used other related 
terms such as ‘persistence’, ‘abandoned’ and ‘temporal’ (Figure 2b; 
Appendix A). We argue that all of these terms can be usefully sub-
sumed under the concept of ‘legacy’. Divergent terminology likely 
arises, in part, from discipline-specific choices (Hodges,  2008). 
Ecologists studying how an ecosystem engineer changes resources 

F I G U R E  2  Summary of ecosystem engineering papers studying 
legacy effects from 1994 to 2020; see Appendix A for additional 
information. (a) The number of papers studying legacy effects 
through time. Black circles show all papers identified by any of 
the search terms in panel (a) and grey circles show those papers 
identified using only the specific search term ‘legac*’. (b) The 
number of papers identified by each search term, ordered from 
highest to lowest. There were 28 papers that matched with more 
than one of the search terms.
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for communities, landscapes or ecosystems could all be studying 
legacies but might describe these alterations in different ways, such 
as niche construction, spatial patterns or elemental cycling, respec-
tively, yet all would be studying ecosystem engineering legacies. 
Clearly, there is large variation in ecosystem engineering legacies, 
and as knowledge continues to be built, we need additional syn-
thesis and theory for identifying the ecological and environmental 
attributes that promote meaningful ones.

3  |  TOWARDS CONCEPTUALIZ ATION OF 
LEGACY IMPORTANCE

Although recent syntheses have begun to describe ecosystem engi-
neering effects (Albertson & Allen, 2015, 2021; Romero et al., 2015; 
Woods et al., 2021), determining the importance of a legacy is com-
plex. A legacy's importance is influenced by non-mutually exclusive 
considerations of (i) the modification itself (e.g. duration), (ii) traits of 
the engineer (e.g. mass) and (iii) the impact on and response of the re-
cipients that use the modified conditions (e.g. density change). In this 
section, we explore how to link attributes of the modification, such 
as duration and spatial extent, with traits of the engineer. This ap-
proach can provide new, general insights into ecosystem engineer-
ing legacies across taxa and ecosystems using a non-dimensional 
framework to compare different ecosystem engineers and the scale 
of their modifications relative to their own scaling traits.

3.1  |  Engineer traits determine legacy magnitude

Traits of engineering taxa will influence the characteristics of their 
legacy (Albertson & Allen, 2015). For example, engineers like corals 

that build structure or termites that have group living strategies may 
leave larger legacies compared to those that modify chemical prop-
erties, like salt marsh plants, or solitary organisms, like tortoises. 
However, it is worth noting that many traits are correlated (Boersma 
et al., 2016). Behavioural traits of sociality are inextricably linked to 
population density in termite mounds; and body size correlates to 
density based on resource availability and metabolic constraints (e.g. 
high densities of smaller bodied organisms; Elton,  1927). Legacies 
arise from a surprisingly large number of different ecosystem en-
gineering taxa that vary substantially in their life spans and body 
sizes. Below we explore a framework that links three key traits, living 
strategy, life span and body size, to the duration and spatial extent of 
the environmental modification.

3.1.1  |  Engineer living strategy

Categorizing engineers into those that work as individuals (e.g. 
a tortoise burrow), as conspecific groups (e.g. a termite mound), 
or as collectives illustrates what engineering characteristics lead 
to relatively large legacies (Figures  3). Arguably, the ecosystem 
engineers with the longest, and most profound legacy are the 
groups and collectives of cyanobacteria that produced the first 
free oxygen in the Earth's atmosphere during the Proterozoic 
era, more than 2.3 billion years ago (Lyons et al., 2014). Although 
cyanobacteria are still present, their current contribution to 
maintaining atmospheric oxygen is negligible; terrestrial plants 
and marine phytoplankton now produce most of the current 
atmospheric oxygen (Catling & Claire, 2005). This shift suggests 
a distinction between the legacies of engineers that cause regime 
shifts in biogeochemistry, and those that subsequently maintain 
the stability of the system. For the case of modern oxygen 

F I G U R E  3  Duration of an engineered 
structure through time and its spatial 
extent determine legacy magnitude. Living 
strategies such as individuals (purple) 
or groups of organisms (orange) and 
collective actions of multiple organisms 
(grey), provide additional context for 
understanding ecosystem engineering 
legacies.
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producing organisms, the temporal magnitude of their legacy 
could be represented by the 5000 year residence time of oxygen 
in the atmosphere (Walker, 1980), with concentrations relatively 
stable over millions to 100s of millions of years (Figure 3).

3.1.2  |  Engineer body size

Engineer body size should be positively correlated to the spatial ex-
tent of the modification. If decay rate relates linearly to modification 
size, then larger modifications last longer and leave a bigger legacy 
because they have more material to remove. As such, larger bodied 
organisms likely leave bigger legacies. However, it should be noted 
that larger modifications may also act as bigger targets for advective 
forces such as wind and wave action, which could result in relatively 
short legacies.

3.1.3  |  Engineer life span

Engineer life span also contributes to legacy magnitude. Engineers 
that live for a long time can continually fortify the modification they 
make, which should result in increased duration of the modification 
after the engineer is gone. Longer-lived organisms also have the op-
portunity for frequent actions through time, which may strengthen 
their legacy. Longer-lived organisms also have larger body sizes, on 
average, which may lead to large legacies (Speakman,  2005). We 
found that long- and short-lived organisms act as ecosystem engi-
neers. For example, engineers that modify sediment by consolidating 
it or transporting it can live anywhere from 50 years (e.g. echidnas) 
to just one (e.g. worms; Table 2).

3.2  |  Synthesis of ecosystem engineering 
traits and legacies

We gathered data from a representative subset of the engineers 
identified in our literature search to compare engineering activities 
across different species and to quantify engineering legacies after 
accounting for engineer, body size, life span and living strategy. We 
found several interesting patterns (Figure 4a; Appendix A). Several 
incredibly different species have similar magnitude legacies. For ex-
ample, puma and earthworms have a 10-fold difference in body size 
and life span, yet they have almost identical magnitude of spatial 
and temporal legacy relative to their physical presence. Another ex-
ample comes from conspecific groups of oysters and cordgrasses. 
Despite one being animal and one being plant, both species leave 
similar magnitude legacies.

Several species stand out as leaving especially large legacies. 
These include well-recognized and iconic beaver, which have high 
non-dimensional spatial extent, likely because of the strong response 
of the physical system (damming flow; trapping sediment). Coral is 
another example of a large legacy, with high non-dimensional tem-
poral extent; its high non-dimensional temporal extent likely results 
from strong biogenic structure that can resist erosive forces.

In general, none of the engineers analysed had both non-
dimensional spatial and temporal extents less than 1.0. This finding 
implies that to leave a legacy, a species needs to change its environ-
ment in ways that are either as large as their body or last at least as 
long as their occupation time. There is also asymmetry in the pat-
tern below 1.0 (log10 = 0; equivalent to the body size or life span of 
the engineer) on the two axes. Many more taxa plot below 1.0 on 
the spatial axis than on the temporal axis. This finding shows that 
ecosystem engineers can have a meaningful legacy magnitude that 

F I G U R E  4  Non-dimensional framework for evaluating the strength of ecosystem engineering legacy effects. (a) Ecosystem engineering 
examples that illustrate the wide range of legacies documented in the literature, scaled by life span and body size of the engineer. Legacy 
effect is a function of structure duration (temporal extent relative to time of engineer occupation) and size (spatial extent relative to 
engineer body size). Living strategies of the engineer(s) may influence the relative importance of spatial versus temporal extent, as suggested 
by the differences in plotting positions of single individuals (purple) and conspecific groups (orange). We categorized each example as 
individual or group by taking cues from the language used by the author(s) of the original paper when the information was not explicitly 
stated; see Table 2 and Appendix A for additional information. (b) A general framework for relating legacy magnitude to the life span and 
body size of the engineer doing the work. Legacies fall along a gradient, where those that last as long or longer or are as large or larger than 
the engineer are stronger (blue), and those that are relatively brief or small are weaker (green) or negligible (grey).
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is smaller than their body size (e.g. pit diggers such as stingray or 
rabbits), provided that the modification lasts longer than their time 
of occupation. However, the pattern does not hold in reverse. If 
the modification does not last long compared to occupation time, 
the legacy is less meaningful even it its large relative to body size. 
Finally, if additional studies follow the patterns we observe for these 
examples, we might expect a temporal threshold for individuals, as 
suggested by plotting position generally to the right, and a spatial 
threshold for groups, as suggested by plotting position generally to 
the top, but these distinctions are less obvious and need further in-
vestigation. Ultimately, legacies scaled to the traits of the engineer 
exist along a wide gradient (Figure 4b). More influential legacies are 
very likely left by engineers that change their environment in ways 
that last a long time and are large compared to their own life span 
and body size.

4  |  FUTURE RESE ARCH DIREC TIONS

Because legacies have pervasive effects on biological processes, ad-
ditional research will be critical for understanding how changes in 
abundance and richness of species that leave legacies may be altered 
by global change. Although legacies are increasingly studied, they 
still only comprise a small fraction of papers within the topic of eco-
system engineering (5% of the 3393 results for ‘ecosystem engineer’ 
provided data for a legacy effect; Appendix A; Data sources section). 
Without considering these legacies, we may underestimate how bio-
diversity loss will influence ecosystem services (Chapin et al., 2000; 
Valiente-Banuet et al., 2015). Below we identify several exciting re-
search directions ready for further development.

4.1  |  Incorporating ecological complexity

Additional considerations related to attributes of the modification, 
traits of the engineer and the impact on recipient's will need to be 
included in future work. The mechanism of engineering, such as 
burrowing (loosening sediment), cementing (stabilizing sediment) 
or geochemical alteration, could all differentially modulate how big 
of a legacy is left when an engineer disappears. A previous meta-
analysis shows that digging (bioturbation), for example, does not 
have as strong of an effect on sediments in fluvial environments as 
does structure building (Albertson & Allen, 2015). Bioturbation ac-
tivities in particular are one obvious mechanism of ecosystem engi-
neering that did not show up as consistently as we expected from 
the literature search given the well-recognized influence of biotur-
bating taxa such as worms or shrimps on benthic ecosystems. This 
finding highlights the need for additional work on how to quantify 
and describe bioturbation legacies, especially in marine and fresh-
water environments (Kristensen et al., 2012; Wilkinson et al., 2009). 
Future research on trait-based ecosystem engineering could assess 
when intraspecific engineering trait variation explains legacy size 

more so than interspecific traits, especially for collective legacies 
(Des Roches et al., 2018). The directionality of response by recipi-
ents could simultaneously be positive and negative, resulting in no 
net change. The response variable measured (e.g. richness, biomass, 
density) is an important consideration here. Recent work shows that 
interactions between organisms are weaker when biodiversity is 
measured as the response variable compared to abundance or bio-
mass (Adams et al.,  2022). As such, future research could explore 
how the response variable measured can control the legacy mag-
nitude. It is worth noting that the legacies described in this paper 
reveal a potential observer bias. These legacies are apparent to us in 
part because we are large-bodied and long-lived compared to most 
organisms. For organisms with much smaller body sizes and shorter 
life spans, more modest biotic effects in space and time qualify as 
important legacies. In other words, legacies can likely be scaled use-
fully to the size and life span of engineer as well as the recipients. 
The largest, longest-lived organisms are affected primarily by the 
largest scale and most persistent modifications, whereas smaller 
organisms are affected by a set of smaller-scale modifications rela-
tive to their body sizes. We hope that ecosystem engineering legacy 
research will continue to establish how to comprehensively incorpo-
rate and weight the numerous factors that affect the magnitude and 
impact of an ecosystem engineering legacy.

4.2  |  Scale of research approaches

Most experiments or monitoring programs cannot run long enough 
to evaluate legacies on time scales that match the life span of the 
engineer or, even longer, the expected duration of the modification. 
Additionally, many studies do not cover a time period long enough 
to document the evolutionary consequences of an engineer alter-
ing the environment (Lenton et al., 2021; Odling-Smee et al., 2003). 
Rather, commonly measured responses are short-term changes in 
density or biomass (Albertson et al.,  2021). In addition, carrying 
out manipulative experiments by adding or removing engineers, or 
experimentally altering their structures, is difficult, especially for 
larger-bodied engineers; the easier path is to use natural variation in 
presence/absence of engineers (in time or space), but those patterns 
can be confounded by other unrecognized or uncontrolled variables 
(Coggan et al., 2018). Some legacies operate on geologic time-scales, 
where effects of now extinct taxa still persist but are not obviously 
associated with a specific original engineer. For example, ancient 
burrows likely created by ground sloths or armadillos are still vis-
ible today in South America (Frank et al., 2012; Lopes et al., 2017). 
Along with extinction, removal of engineers, such as reef building 
oysters or burrowing grouper, from the landscape can also result 
from anthropogenic threats such as overharvest or fishing bycatch 
(Coleman & Williams, 2002). Extinction of key engineers, or shifts in 
the relative dominance of engineering species, undoubtedly affects 
the role of legacies. Modelling may provide a solution to some of 
these challenges.
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4.3  |  Feedbacks and modelling

Models have frequently included relationships between the envi-
ronment and the engineer, but not in both directions simultaneously 
(Berke, 2010; Coggan et al., 2018). Such models have also tradition-
ally focused on how individuals or species respond to a legacy rather 
than evaluating community- or ecosystem-level consequences to 
legacies (Berke, 2010; Cuddington et al., 2007; Zhang et al., 2012). 
Mechanistic models that can incorporate engineer movement and 
other behaviours will also be an important area of research mov-
ing forward (Franco & Fontanari, 2017; Moore, 2006). These mod-
els may be able to identify, for example, how repeated engineering 
activities that are more or less frequent through time can affect the 
magnitude of legacies. Disciplines that link ecology with the physi-
cal sciences, such as ecogeomorphology or ecohydrology, provide 
a novel way to place legacies into a theoretical framework that in-
corporates feedbacks (Atkinson et al., 2018; Corenblit et al., 2011).

Additional areas in need of development, more experimental 
work and better models include projected future climate variabil-
ity and facilitation (Dee et al., 2020; Silknetter et al., 2020; Vasseur 
et al.,  2014). Global change may disrupt feedbacks between engi-
neers and their local environments. For example, oyster larvae set-
tle and start to grow on the shells of dead oysters, which promotes 
positive density dependence and the persistence of oyster beds 
(Moore et al., 2018). However, these relationships can be influenced 
by pollution, warming and erosion of shorelines. Niche construction 
theory considers the ways that engineers facilitate diversity by ex-
panding suitable conditions for other organisms (Bulleri et al., 2016; 
Kylafis & Loreau, 2011; Silknetter et al., 2020). Although both pos-
itive and negative outcomes for various taxa responding to altered 
environments created by ecosystem engineers are appreciated 
(Jones et al.,  1997), directionality as it relates to ecological lega-
cies remains poorly understood. For example, beaver dams might 
increase invertebrate beta diversity but decrease fish movement 
(Larsen et al., 2021). Do ‘positive’ effects have longer legacies than 
‘negative’ effects, or vice versa, and more importantly, why? Do the 
processes that maintain positive legacies also maintain negative leg-
acies? And, how will more frequent climate extremes alter the decay 
rates of engineered structures and their potential to support biodi-
versity and ecosystem processes?

4.4  |  Restoration and management

Restoration ecologists and land managers are capitalizing on ecosys-
tem engineers as tools for rehabilitation (Byers et al., 2006; Crain & 
Bertness, 2006; Johnson et al., 2020; Law et al., 2017). Commonly 
used organisms include nearshore marine molluscs and large, graz-
ing mammals that are reintroduced to areas where they were histori-
cally prominent but have been extirpated. Restored oyster beds, for 
example, influence availability of food resources that stimulate pro-
duction of higher trophic levels and create habitat for a vast suite of 
other species (Borsje et al., 2011; Coen et al., 2007). Restored bison 

populations promote several ecosystem services and their positive 
effects on biodiversity are highest in abandoned rather than active 
wallows (Nickell et al., 2018; Wilkins et al., 2019). Effort and funding 
allocated to restoration work that includes ecosystem engineers sug-
gests that practitioners are hopeful and perhaps even confident that 
this approach will create a persistent biogenic influence and maintain 
improved conditions over time. Despite these important and excit-
ing advances, however, understanding of engineer persistence and 
ability to provide the anticipated restoration outcomes over the long 
term is still in its infancy. In an era of biodiversity loss, understanding 
how the removal of key ecosystem engineering organisms and their 
legacies will influence communities and ecosystem processes is an 
important area for future research in conservation biology (Boogert 
et al., 2006; Valiente-Banuet et al., 2015; Yeakel et al., 2020).
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