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ABSTRACT

The combination of galaxy—galaxy lensing (GGL) and galaxy clustering is a powerful probe of low-redshift matter clustering,
especially if it is extended to the non-linear regime. To this end, we use an N-body and halo occupation distribution (HOD)
emulator method to model the redMaGiC sample of colour-selected passive galaxies in the Dark Energy Survey (DES), adding
parameters that describe central galaxy incompleteness, galaxy assembly bias, and a scale-independent multiplicative lensing
bias Ajens. We use this emulator to forecast cosmological constraints attainable from the GGL surface density profile AX(r,)
and the projected galaxy correlation function w), 4,(r,) in the final (Year 6) DES data set over scales r, = 0.3-30.0 h~! Mpc.
For a 3 per cent prior on Aj.ps We forecast precisions of 1.9 per cent, 2.0 per cent, and 1.9 per cent on 2,,, 03, and Sg = o3y Q?n‘s ,
marginalized over all halo occupation distribution (HOD) parameters as well as Ajens. Adding scales r, = 0.3-3.0 2~ Mpc
improves the Sg precision by a factor of ~1.6 relative to a large scale (3.0-30.0 2~ Mpc) analysis, equivalent to increasing the
survey area by a factor of ~2.6. Sharpening the Ay, prior to 1 per cent further improves the Sg precision to 1.1 per cent, and it
amplifies the gain from including non-linear scales. Our emulator achieves per cent-level accuracy similar to the projected DES
statistical uncertainties, demonstrating the feasibility of a fully non-linear analysis. Obtaining precise parameter constraints from
multiple galaxy types and from measurements that span linear and non-linear clustering offers many opportunities for internal

cross-checks, which can diagnose systematics and demonstrate the robustness of cosmological results.
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1 INTRODUCTION

Understanding the origin of cosmic acceleration remains the most
pressing challenge of contemporary cosmology. Ambitious cosmo-
logical surveys are using a variety of observational probes to measure
the histories of cosmic expansion and the growth of matter clustering
with high precision over a wide span of redshift (for reviews
see e.g. Frieman, Turner & Huterer 2008; Weinberg et al. 2013).
Comparing expansion history and structure growth is critical to
testing whether cosmic acceleration reflects a breakdown of general
relativity (GR) on cosmological scales or a form of dark energy
that exerts repulsive gravity within GR. With present data sets, the
most powerful constraints on low-redshift matter clustering come
from large area weak lensing surveys, which can measure matter
clustering directly through cosmic shear or by combining galaxy—
galaxy lensing (GGL) with galaxy clustering.

This paper presents methodology for and forecasts of the precision
obtainable with the combination of GGL and galaxy clustering
in the final data sets from the Dark Energy Survey (DES; The
Dark Energy Survey Collaboration 2005; DES Collaboration 2021),
building on the work of Wibking et al. (2019, 2020). GGL measures
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correlations between foreground lens galaxies and a shear map
of background source galaxies to infer the lens galaxies’ mean
excess surface density profile AX(r,), which is proportional to
the product of the matter density parameter €2, and the galaxy-
matter cross-correlation function &,,,. On scales large enough to be
described by linear perturbation theory one expects &, = by, and
£ = bgémm, where b, is the galaxy bias factor and & ,, and §,,,, are
the galaxy and matter autocorrelation functions, respectively. One
can therefore combine GGL and &4, to cancel the unknown b, and
constrain ,, /& o 2,03, where o'g, the RMS linear theory matter
overdensity fluctuation in spheres of radius 8.0 2~! Mpc at z = 0, is
an overall scaling of the amplitude of matter fluctuations. In practice
the best constrained parameter combination is closer to Sy = 03 Q0.

Interpreting GGL and clustering measurements on smaller scales
requires a model for the relation between galaxies and dark matter in
the non-linear regime, such as the halo occupation distribution (HOD;
Jing, Mo & Borner 1998; Peacock & Smith 2000; Scoccimarro
et al. 2001; Berlind & Weinberg 2002) or sub-halo abundance
matching (Conroy, Wechsler & Kravtsov 2006; Vale & Ostriker
2006). Although these models require additional free parameters,
non-linear clustering data can constrain them, so extending to the
non-linear regime of GGL and &g, can potentially achieve much
tighter constraints on cosmological parameters (Yoo et al. 2006;
Zheng & Weinberg 2007; Cacciato et al. 2009, 2012, 2013; Leau-
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thaud et al. 2011; Yoo & Seljak 2012; More et al. 2013). The stakes
of this effort are illustrated by a number of recent studies finding
that the amplitude of matter clustering inferred from GGL + galaxy
clustering is 5-10 percent lower than the amplitude predicted by
extrapolating CMB anisotropies forward to low redshift assuming a
ACDM cosmological model (Mandelbaum et al. 2013; More et al.
2015; Leauthaud et al. 2017; Joudaki et al. 2018; Singh et al. 2020;
Wibking et al. 2020; Krolewski, Ferraro & White 2021).! The conflict
is strongest on non-linear scales, where the measurement precision is
highest but the demands on the accuracy of non-linear modelling are
the most stringent (Leauthaud et al. 2017; Lange et al. 2019, 2021).
Many cosmic shear studies also find clustering amplitudes lower than
the CMB-based prediction, but the discrepancy is less statistically
significant (Jee et al. 2016; Hildebrandt et al. 2017; Hikage et al.
2019; Amon et al. 2021; Secco et al. 2021). The recent ‘3x2pt’
analysis of the Year 3 (Y3) DES data, which combines cosmic
shear, GGL, and galaxy clustering on scales adequately described
by linear theory, yields results compatible with CMB-based ACDM
predictions, but also compatible with the lower amplitudes reported
in the studies listed above (DES Collaboration 2021).

In this study we adopt the HOD framework to model non-linear
galaxy bias. HOD methods statistically specify the relationship
between galaxies and their host haloes, primarily as a function
of host halo mass. In a cosmological context the most important
question is whether or not a given HOD parametrization is flexible
enough to model the non-linear galaxy bias without producing biased
cosmological constraints. One of the most important sources of
systematic uncertainty in the galaxy—halo connection is the potential
presence of galaxy assembly bias. Galaxy assembly bias refers to the
potential for the galaxy occupation inside haloes of the same mass to
vary with respect to a secondary halo property. In combination with
halo assembly bias (e.g. Sheth & Tormen 2004; Gao, Springel &
White 2005; Harker et al. 2006; Wechsler et al. 2006; Gao & White
2007; Jing, Suto & Mo 2007; Wang, Mo & Jing 2007; Li, Mo &
Gao 2008; Faltenbacher & White 2010; Mao, Zentner & Wechsler
2018; Salcedo et al. 2018; Xu & Zheng 2018; Johnson et al. 2019;
Sato-Polito et al. 2019; Mansfield & Kravtsov 2020; Tucci et al.
2021), the potential for halo clustering at fixed mass to vary with
respect to a secondary halo property, this can modify the large-scale
galaxy clustering making predictions from a standard HOD model
inaccurate (Croton, Gao & White 2007; Zu et al. 2008; McCarthy,
Zheng & Guo 2019). To provide our HOD framework the flexibility to
describe potential galaxy assembly bias we adopt the modifications of
Salcedo et al. (2020a; see also McEwen & Weinberg 2018; Wibking
et al. 2019; Salcedo et al. 2020b; Xu, Zehavi & Contreras 2021). For
our forecasts, we focus on the DES redMaGiC galaxy sample (Rozo
et al. 2016), which uses colour selection to identify passive galaxies
that allow precise photometric redshifts. To model a colour-selected
sample, we also extend the usual HOD formulation to include a
parameter that allows for ‘central galaxy incompleteness,” i.e. for
high-mass haloes that do not contain central galaxies passing the
sample’s colour cuts.

We adopt this HOD framework to populate N-body simulations
from the AbacusCosmos suite (Garrison et al. 2018) in order to model
the GGL excess surface density A X(r,) and projected galaxy correla-
tion function w,, 4,(r,) on scales 0.3 h~! Mpc < r, < 30.02~! Mpc
as a function of HOD and wCDM cosmological parameters. To
accurately model this datavector down to small scales, we adopt and

'We use ACDM to denote a model with inflationary primordial fluctuations,
cold dark matter, a cosmological constant, and a flat universe.
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extend the Gaussian process emulation scheme of Wibking et al.
(2020). This emulation is done over a large HOD and cosmological
parameter space centred on a fiducial model that roughly describes
the high-density DES redMaGiC sample. We use this emulator
to compute derivatives of AX and w,, o, with respect to HOD
and cosmological parameters, which we then use to forecast a
cosmological analysis of DES redMaGiC GGL and clustering. We
devote particular attention to the importance of the small scales in
such an analysis and also to the ability of the datavector to break
the degeneracy between cosmology and systematic uncertainties in
lensing calibration. The technical development behind producing
our forecasts is aimed at enabling a fully non-linear GGL and
clustering analysis of the final DES data release, which we predict to
yield per cent-level constraints on the amplitude of matter clustering.

Our forecasts could prove optimistic if observational or theoretical
systematics in the final DES data turn out to be larger than we
have assumed. For example, the Y3 cosmology analysis identifies
systematics in the clustering measurements of the redMaGiC sample
(DES Collaboration 2021), while we have assumed that systematic
uncertainties in w,_,, will be negligible. None the less, our forecasts
play a valuable role in demonstrating what DES GGL+clustering
should be able to achieve if systematics are well controlled, thus
also demonstrating the level of systematics control that is required.
A key finding of our analysis is that modelling GGL + clustering
into non-linear scales can achieve gains in cosmological parameter
precision that are equivalent factors of 2.5—8.0 increases in survey
area, e.g. to the difference between a 5-yr weak lensing survey and
a survey lasting one to several decades. Doing the additional work
needed to realize these gains is a promising investment.

The next section describes our numerical simulations and HOD
modelling methodology. Section 3 defines our clustering and lensing
statistics, then describes our emulation methodology and derives the
sensitivity of our datavector to HOD and cosmological parameters.
Section 4 describes how we compute covariance matrices for our
Fisher forecasts, based on expectations for the final DES data release.
In Section 5 we present our main forecast results, which combine the
derivatives computed in Section 3.3 with the covariance matrices of
Section 4 to derive constraints on £2,,, og, and Sg. We summarize our
results and conclude in Section 6.

2 CONSTRUCTING MOCK GALAXY
CATALOGUES

2.1 Simulations and halo identification

We use 40 AbacusCosmos simulations in our analysis (Garrison
et al. 2018). These simulations are run with a variety of wCDM
cosmologies centred on the Planck Collaboration XIII (2016)
cosmology with fixed phases. The 40 cosmologies are selected
using a Latin hypercube method (Heitmann et al. 2009) optimized
to maximize the distance between points. These cosmologies are
sampled from a parameter space consisting of the union of cosmic
microwave background (CMB), baryon acoustic osccilations (BAO),
and supernovae (SN) results described in Anderson et al. (2014). We
utilize the larger 1100.0 h=3 Mpc? set of boxes with mass resolution
of 10" Mg A7,

Haloes were identified from particle snapshots using the software
package ROCKSTAR version 0.99.9-RC3 + (Behroozi, Wechsler &
Wu 2013). We use strict (i.e. without unbinding) spherical over-
density (SO) halo masses around the halo centres identified by
ROCKSTAR, rather than the default phase-space FOF-like masses
output by ROCKSTAR. For finding haloes ROCKSTAR uses a primary
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definition set to the virial mass of Bryan & Norman (1998). However,
after identification, we adopt the Moo, mass definition, i.e. the mass
enclosed by a spherical overdensity of 200 times the mean matter
density at a given redshift and cosmology. Distinct haloes identified
with the M,; definition are not reclassified as subhaloes under
the My, definition; such reclassification would affect a negligible
fraction of haloes. We identify haloes above 20 particles, and we only
use distinct haloes (not subhaloes) when creating galaxy populations.

2.2 HOD modelling

Similar to our previous papers we populate simulated haloes with
galaxies according to a halo occupation distribution (HOD) frame-
work (e.g. Jing et al. 1998; Benson et al. 2000; Ma & Fry 2000;
Peacock & Smith 2000; Seljak 2000; Scoccimarro et al. 2001;
Berlind & Weinberg 2002; Cooray & Sheth 2002; van den Bosch,
Yang & Mo 2003; Yang, Mo & van den Bosch 2003; Zheng et al.
2005; Cooray 2006; Mandelbaum et al. 2006; Zheng et al. 2009;
Zehavi et al. 2011; Coupon et al. 2012; Leauthaud et al. 2012; Guo
et al. 2014; Zu & Mandelbaum 2015; Zehavi et al. 2018). We extend
this framework to include central incompleteness, galaxy assembly
bias, and the possibility for the galaxy profile to deviate from that of
its host’s matter profile. We parametrize the mean central and satellite
occupations of our haloes with a modified form of the widely used
equations (Zheng et al. 2005),

(Neen(M3,)) = Jeen [1 +erf (M)} , (1
2 Olog M
_ <Ncen(Mh)) Mh - MO “
(Nsat(Mh)) - fcen ( Ml ) . (2)

The new parameter f.., allows only a fraction of high-mass haloes to
contain central galaxies that satisfy the sample selection criteria. In-
completeness may be present in any galaxy sample, but is particularly
important for us to model because we are forecasting for an analysis
that utilizes redMaGiC (Rozo et al. 2016) selected galaxies. These
galaxies are known to exhibit central incompleteness because of the
strict colour cuts applied in their selection. The fraction of satellite
galaxies that pass selection criteria is already encoded within the
parameter M.

The actual numbers of centrals and satellites placed into each halo
is drawn randomly from binomial and Poisson distributions, respec-
tively, with the mean occupations given above. Centrals are placed at
the center of their host halo, while satellites are distributed according
to a Navarro—Frenk—White profile (NFW; Navarro, Frenk & White
1997),

,Ogal(r) = pm(rlAcon X Cvir)v (3)

parametrized by halo concentration c;; = r,/ry with the parameter
Acon included to allow for the galaxy profile to deviate from that
of the matter. As in Salcedo et al. (2020b), we use the fits of
Correa et al. (2015) to assign halo concentrations because they were
calibrated using significantly higher resolution simulations than our
AbacusCosmos boxes.

Following Wibking et al. (2019; see also McEwen & Weinberg
2018; Salcedo et al. 2020b; Xu et al. 2021) we allow for the
possibility of galaxy assembly bias. Galaxy assembly bias refers
to the possibility for galaxy occupation at fixed host halo mass to
depend on properties other than halo mass. In combination with
halo assembly bias, this can boost the large-scale clustering of
galaxies (e.g. Croton et al. 2007; Zu et al. 2008), and it represents an
important source of systematic uncertainty in current cosmological
analyses. It is currently unclear which halo internal property, if any,
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is responsible for galaxy assembly bias. However, in the context
of a cosmological analysis, in which assembly bias is treated as
a nuisance effect to be marginalized over, it is only important to
characterize its potential effects. Therefore, we choose to allow the
central and satellite occupations to vary on a halo-by-halo basis based
on the matter overdensity measured in a top-hat spheres of radius
8.0 2~ Mpc centred on each individual halo 8. This environmental
dependence is written as

log M pin = 10g Mmin,O + chn(ggl - 05)7 (4)

log My = log M1 o + Quu(82" — 0.5), (5)

where Q.., and Qg express the strength of the dependence of My,
and M, respectively, on environment and Sg" € [0, 1] is the normal-
ized rank of &g' within a narrow mass bin. In this parametrization
the case of Qcen = Qs = 0.0 corresponds to having no assembly
bias. This parametrization has been found to provide a reasonable
description of galaxy assembly bias effects in semi-analytic models
and hydrodynamic simulations (e.g. Artale et al. 2018; Zehavi
et al. 2018; Bose et al. 2019; Contreras et al. 2019; Xu et al.
2021). Despite this success we note that further work is required
to establish the optimal scale at which the overdensity is measured
to implement galaxy assembly bias in an HOD context or if a model
that more flexibly combines information from multiple scales is
necessary.

The Y3 DES 3 x 2pt. cosmological analysis (DES Collaboration
2021) considered both the redMaGiC galaxy sample and an apparent
magnitude-limited sample (Porredon et al. 2021), adopting the latter
for its fiducial results. We expect that our HOD parametrization
would adequately represent this magnitude-limited sample, but
the fiducial parameters would be quite different from those for
redMaGiC, with higher ng,, higher fe.,, shallower «, and perhaps
smaller 0407, based on SDSS results at low redshift (Zehavi et al.
2011). Because of the higher ng,, the magnitude-limited sample
should yield smaller statistical errors, particularly for AX, and might
therefore achieve tighter statistical constraints than those forecast
here. However, there are additional complications in modelling this
sample because of the lower precision of photometric redshifts, and
we have not investigated the impact of these complications.

3 EMULATION OF COSMOLOGICAL
OBSERVABLES

3.1 Clustering and weak-lensing statistics

We use CORRFUNC (Sinha & Garrison 2017) to compute the real-
space galaxy autocorrelation function & ,,(r,, ) and galaxy-matter
cross-correlation function &,,,(r,, 7) in 20 equal logarithmically
spaced bins of 7, covering scales 0.3 < r,, < 30.0 2~ Mpc and 100
equal linearly spaced bins out to Il = 100.0 2~ Mpc. These
real-space correlation functions are used to calculate the more
observationally motivated quantities w), 4,(r,) and AX(7,),

Mmax
Wy ap(ry) = 2/0 Eap(rp, ), (6)

2 rl) !’ ’ /
Az(rp) = Qmlocril |:r2 / r wp,gm(r )dr - wp,gm(rp) . (7)
p J0

For a given source redshift distribution, AX(r,) is proportional to

the observable tangential shear profile,

AX(rp)
2cril

vi(rp) = ; ®)
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where the critical surface density . is

(,‘2 H(Zsrc - Zlens)Df(Zsrc)
4n G DL’(ZIEDS) [Dc(zsrc) - Dc‘(zlens)] (] + Zlens)’

and where D,.(z) denotes the comoving distance to redshift z with the
Heaviside step function H enforcing the convention that X . (Zge <
Zlens) =0.

Errors in photometric redshift estimation can introduce errors into
e and therefore AX. Additionally, errors in shear calibration will
introduce errors in A X through y,. We characterize the effect of these
errors by introducing a scale-independent lensing bias parameter
Alensa

Azobs(rp) = Alens X AElrue(rp)- (10)

©

crit —

We include Aj,s as an additional nuisance parameter that we
marginalize over in our forecasts in Section 5. The DES Y3 analysis
finds evidence of internal inconsistency between the clustering
and GGL of redMaGiC galaxies, which they tentatively ascribe to
an undiagnosed systematic in the clustering measurements (DES
Collaboration 2021; Pandey et al. 2021). They model this effect
with a nuisance parameter Xy, that scales the predicted GGL signal
relative to clustering, inferring a value Xje,s &~ 0.9 rather than the
theoretically expected 1.0. We suspect that our forecasts would be
similar if we replaced Ajens With Xjens as a nuisance parameter and
adopted the same fractional prior (3 per cent in our fiducial case).
However, we have not investigated this alternative parametrization
of systematics. Our forecasts implicitly assume that the systematics
suggested by Y3 redMaGiC galaxy clustering will be controlled in
the final analysis, at least to the level represented by our Ajeps prior.

In addition to a multiplicative lensing bias, so-called ‘boost’
factors will also affect the galaxy—galaxy lensing signal of redMaGiC
galaxies. These are a correction to the measured lensing signal to
account for the presence of lens-source clustering. In the case of
redMaGiC galaxies, boost factors significantly impact the small-
scale lensing signal, but their uncertainties are relatively small (e.g.
Prat et al. 2021) and subdominant to our statistical errors. Therefore,
we do not model boost factors for our forecast analysis.

Our choice to model the projected correlation function of red-
MaGiC selected galaxies is somewhat idiosyncratic, since these
galaxies have photometrically estimated redshifts. Photometric sam-
ples are more commonly characterized by the angular correlation
function in photo-z bins, whereas w), 4, uses the photo-z’s of each pair
of galaxies to estimate the separations of r, and 7. The redMaGiC
algorithm produces impressively precise photometric redshifts in the
redshift range z = 0.1—-0.7, roughly 1-2 per cent in terms of 1 +
Zphot (Rozo et al. 2016). Given our fiducial cosmology, this precision
corresponds to 30.0-60.0 2~! Mpc errors in line-of-sight distance.
Because we integrate to T, = 100.0 2! Mpc, the photo-z errors
will mildly depress w), (r,) by a scale-independent factor (Wang
et al. 2019). In this paper we ignore this effect, implicitly taking for
granted our ability to model it with good enough knowledge of photo-
z errors, and assuming its independence from HOD and cosmology.
We examine this problem more fully in a forthcoming paper (Zeng
et al. in prep.).

To model the dependence of w), ,, on our HOD and cosmological
parameters we choose to directly emulate a halo-model correction
(Wibking et al. 2020),

wsim (r )

Jeon(rp) = %(”) (1)
Wp.gg Up

where w;i_‘?g is calculated using CORRFUNC on our simulation mock

model

galaxy catalogues, and w},'%

is analytically calculated. This proce-
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dure has two major advantages, the first being that the ratio f.,, has a
significantly smaller dynamic range than w3 . Additionally, wi%!
is capable of capturing a significant amount of the sensitivity to our
HOD and cosmological parameters with insignificant computational
expense. The upshot is that our emulation scheme is able to more
accurately fit f.o than w;if‘f‘gg. For galaxy—galaxy lensing, on the
other hand, we have found that we can achieve acceptable modelling
errors when emulating AX directly. This success may not hold for
a different set of modelling requirements (e.g. a larger survey that
yields smaller measurement errors), in which case we could emulate
a similar halo-model correction for AX.

To calculate w',f‘i,iel we integrate over an analytically calculated
real-space galaxy autocorrelation function & g“;,"del, which is expressed

as a quadrature sum of 1- and 2-halo terms,

mode 2 2
Emlr) =/ (&) + (g20)". (12)
The two-halo term is given by,
2 = b2 X Eun (1), (13)

where &, is the linear theory matter—matter correlation function
and b, is the galaxy-bias calculated by integrating over the HOD and
halo-mass function dn;,/dM;, and halo bias function b,(M,,),
1 o0 d
b = / AM, 1 N(My) > by(M)). (14)
0 dm,

Ngal

The more complicated 1-halo term is a sum of central-satellite DD,
and satellite—satellite DDy; pairs,

1+ &g(r) = RR() , (15)
where RR(r) = 2r rzng. These terms are written as,
o0 , r
DDcs(r) = ,/0' <Ncen(Mh)) (Nsal(Mh)>I (M7 Cvir(Mh))
AUy (16)
dM,, rp(My)
_1/~ S A
DD”(I’) - 2 /0 (Nsal(Mh)> F <rh(Mh)’ Cv1r(Mh))
dl’lh 1
My, (17)

X ——— d
dM,, rp(My)

where I' and F are dimensionless, differential pair count functions
for an NFW profile. In the interest of brevity we omit expressions
for these terms and direct the reader to the appendices of Wibking
etal. (2020) for them. In the calculation of the 1- and 2-halo terms we
utilize the mass function dn;,/dM,, of Tinker et al. (2008), the halo bias
function b,(M;) of Tinker et al. (2010), and the redshift-dependent
concentration—mass relation of Correa et al. (2015). The matter—
matter correlation function £, is obtained by Fourier transforming
the linear matter power spectrum calculated with the fitting formula
of Eisenstein & Hu (1998). Although this calculation of & gf’dﬂ would
not be accurate enough on its own for DES analysis, it allows us to
construct a high-accuracy emulator.

3.2 Emulation using Gaussian processes

To model the dependence of w, . and AX on cosmological and
HOD parameters, we implement the Gaussian process emulation
scheme of Wibking et al. (2020). This amounts to performing a
Gaussian process regression with a squared-exponential kernel in

each radial bin of fcorrzwjjf‘;g/wf;‘?l and AX. In each bin the
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Table 1. Fiducial model parameters (HOD and cosmological).

Parameter Fiducial value Sampling range Description

Ngal X 103 1.0 13 Mpc—3 [0.8,1.2] x 73 Mpc—? galaxy number density

OlogM 0.6 [0.4,0.8] width of central occupation cutoff

Mﬁi‘m 30.0 [20.0, 50.0] satellite fraction parameter

%—‘1’ 0.2 satellite cutoff parameter

a 1.5 [1.2,1.8] slope of satellite occupation power law
feen 0.6 [0.4, 0.8] central incompleteness factor

Acon 1.0 [0.5,2.0] galaxy concentration factor

Qcen 0.0 [—0.3,0.3] central galaxy assembly bias parameter
QOsat 0.0 [—0.3,0.3] satellite galaxy assembly bias parameter
Aleng 1.0 scale independent lensing bias parameter
Q 0.314 [0.253, 0.367] cosmological matter density

o3 0.83 [0.65, 1.0] power spectrum amplitude

Hy 67.26 [61.567, 74.793] Hubble constant

wo —1.00 [—1.370, —0.655] equation of state of dark energy

ng 0.9652 [0.9300, 0.9898] scalar spectral index

hyperparameters of the kernel are obtained by maximizing the leave-
one-out cross validation pseudo-likelihood. For more details on this
process we direct the reader to the relevant appendices in Wibking
et al. (2020).

The input data for this emulation are computed from 1000
cosmology and HOD models obtained from assigning 25 randomly
generated HOD models to each of the 40 AbacusCosmos simulations
described in Section 2.1. The cosmological models used in these 40
simulations are drawn from constraints from CMB, BAO, and SN
data (Anderson et al. 2014) using the Latin hypercube sampling
method of Heitmann et al. (2009). To obtain HOD parametrizations
we Latin hypercube sample over flat probability density distributions
in the ranges given in Table 1.2 While not strictly necessary in a
forecast context, these ranges are chosen to produce a large volume
in parameter space to demonstrate the utility of our emulation
scheme. Also listed in Table 1 are fiducial values of each parameter
chosen to roughly describe the high-density sample of redMaGiC
galaxies. We use these fiducial values to compute derivatives with
respect to our combined HOD and cosmological parameter vector.
We produce 1000 HOD parametrizations using this method and
randomly assign 25 to each of the 40 AbacusCosmos cosmologies
without replacement. For each combination of HOD and cosmology
we compute foor and AX as described in Section 3.1. The set of
1000 feorr and A X models serves as the input to our Gaussian process
emulator.

In Fig. 1 we show the input data set for emulation (top panels)
of foorr and AX as well as the respective modelling errors we obtain
(bottom panels). The left-hand panels correspond to AX¥ while the
right-hand panels correspond to w,, ,,. Each top panel shows the
fiducial model in black with 1000 additional faint lines representing
the models we use to construct our emulator. We can see that the
parameter space we model covers a large range in amplitude for
both of our observables. Each bottom panel shows the respective
leave-one-out-simulation error. This error is computed by training
the emulator with all elements of the training set except for those
associated with one of the 40 AbacusCosmos boxes, then comparing

Note that in our HOD analysis we choose to consider the galaxy number
density ng, as a parameter because it provides a direct observational constraint
on the HOD. Consequently, we do not consider My, M1, or M directly as
parameters but instead model the ratios M /My, and Mo/M; .
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it to the observable computed with that simulation (cosmology) and
HOD parametrization. This functions as a conservative estimate of
the accuracy of our emulator. The yellow region in each panel shows
the diagonal errors we assume for our forecast of DES-Y6 clustering
and galaxy—galaxy lensing. We can see that for both w, ,, and AX
our modelling errors are comparable to the statistical errors. For
w), ¢, We can see that the 1o errors are noticeably larger than the
15th/85th error percentiles at small scales indicating that the errors
are non-Gaussian. The outliers in error space are also outliers in
W), ¢¢ SPace, so the 15th/18th percentile curves are more indicative of
modelling errors that would appear in a likelihood analysis of data.
Furthermore, the range of models being emulated is much larger
than the +50 range expected from the DES errors, and training
and applying the emulator over a more restricted range compatible
with the measurements would yield still smaller emulator errors. We
conclude that the current emulator is probably accurate enough to
model AY and w), 4, in the final DES data, at least within our adopted
parametric model, though further testing in the context of the final
measurements will be desirable.

3.3 Cosmological and HOD derivatives

To compute derivatives for use in our Fisher forecast analysis, we
use our emulator to compute w), 4 and AX at the fiducial values
listed in Table 1 and steps up and down in each of our parameters.
When using these derivatives to compute forecast constraints we
additionally smooth them with a Savitsky—Golay filter. Rather than
plot the derivatives directly, in Fig. 2 we instead examine the impact
of fixed variations in parameters for w,, o, and AX. Curves in the
figure are computed using simulations (snapshots at z = 0.5). In each
panel red (blue) curves show the effect of increasing (decreasing) the
indicated parameter relative to the fiducial value for AX (solid lines)
and w), ¢, (dashed lines).

We begin by examining the effects of parameter changes on AX.
We see that a decrease in the galaxy number density g, corresponds
to an increase in AX at all scales. Recall that we treat ng,; as an
adjustable HOD parameter, not My,,, so when we reduce ngy we
increase My, and M, at fixed M /My, to achieve the new density.
At small scales this has a significant effect on AX by increasing the
mean mass of haloes that host galaxies. At large scales this increase
in mean host halo mass leads to a small-scale independent increase
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Figure 1. AX (left) and w), g, (right) as predicted by our simulations in our z = 0.5 bin. Each of the grey-scale lines plots one of the 1000 training
HOD + cosmology models we use to compute our emulator, while the black line shows the prediction for our fiducial model. The respective bottom panels
show the leave-one-out emulator error for our two observables compared with the predicted observable covariance, plotted as a yellow band.

in the galaxy bias. Turning to 045y We see that an increase in the
parameter decreases AX at all scales. At large scales this behaviour
is similar to the case of raising ng,: an increase in o, 37 corresponds
to a decrease in the mean host halo mass and therefore the galaxy
bias. At small scales the increase in o,y leads to a decrease in the
satellite fraction. This small-scale sensitivity exhibits an interesting
scale dependence, peaking around 1.0—2.0 2~! Mpc, due to the offset
in the positions of satellites and the peak of the matter distribution at
the center of the host halo.

The parameters M,/My, and o exhibit very similar behaviour.
Increasing (decreasing) « (M/My,) increases the galaxy bias and
satellite fraction, leading to a boost to the amplitude of AX at all
scales. We note that the extent to which the satellite fraction is
increased due to changes in M, and My, at fixed M,/M,,;,, depends
on the value of «. Because « is relatively high, with a fiducial value
of 1.5, a decrease in M, contributes relatively more satellites than
an equal decrease in My, contributes centrals. Depending on the
shape of the halo mass function, a lower value of o could reverse this
situation.

The remaining HOD parameters feen, Acons Qcens and Oy, exhibit
more interesting behaviour. When f., is decreased this boosts the
large scales of AX by increasing the satellite fraction (since ng, is
held fixed) and therefore the galaxy bias. However, at the smallest
scales this leads to a decrease in A X. This is because central galaxies
residing in the most massive haloes contribute significantly to AX.
Unlike changes in the satellite fraction due to oogy Or Mi/Mpipy,

changing f.., removes some of these high-signal central galaxies.
An increase in the parameter A.,, increases the concentration of
satellite galaxies. This moves satellites closer to the peak of the
matter distribution within haloes and therefore increases the 1-halo
term of AX. Because Ao, does not affect the mean occupation at all,
it has no effect on large scales.

Turning to the first of our assembly bias parameters we see that
a decrease in Qe boosts AX at all scales. This is because negative
values of Q.., decrease My, for haloes in dense environments. This
leads to a significant increase in AX at large scales peaking around
8.0 h~! Mpc. The effect decreases towards small scales, though it
does not vanish. Similarly a decrease in Qg, decreases M, for haloes
in dense environments, boosting AX at all scales. Interestingly, Qg
has a much smaller effect on AX than Q.. This is because the
variation in bias for low-mass haloes that may host a central is much
larger than for the high-mass haloes that host satellites.

Next are our cosmological parameters. We see that an increase in
Q,, leads to an increase in AX at all scales, with some mild scale
dependence at small scales. The effect of increasing €2,, on the linear
power spectrum is to shift it towards higher &, or equivalently to
shift &, towards lower r. This leads to a decrease in &,,, at large
scales and an increase at small scales that is suppressed by non-linear
evolution. The large scale decrease is counteracted and overcome by
the increase in the 2,0 pre-factor in AX, and the increase in
A at small scales is larger still. Increasing og also increases AX
at all scales though with a different scale dependence that peaks at
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Figure 2. Fractional changes to AX (solid lines) and w), ¢, (dashed lines) induced by changes in HOD and cosmological parameters at z = 0.5. In each
panel red and blue curves show the emulator-predicted change of the observable for the parameter values indicted in the panel legend while holding all other

parameters fixed.

rp, 7~ 2.0-3.0 h! Mpec. This is directly due to an increase in &, at
all scales. An increase in Hy, like an increase in €2,,, shifts the linear
power spectrum towards higher k, and the impact on the 2,0
pre-factor is absorbed by measuring AY in units of /~! Mg pc?.
The impact is a small decrease in AX at large r,. Note that when
we compute derivatives with respect to og we use the value of og
at z = 0 rather than the relevant snapshot redshift. In principle,
this choice can affect our constraints, but in practice the effect is
small.

Increasing wy from —1.0 to —0.9 leads to a slight scale indepen-
dent increase in AX, which is due to the analogous increase in &,,,,.
With wo = —0.9, structure growth ‘freezes’ at slightly higher redshift,
and with o fixed at z = O the implied clustering at z > 0 is larger.
Increasing n, makes the linear power spectrum bluer, decreasing
the large scale &,,, (and thus AX) relative to the 8.0h~' Mpc
scale. The converse effect on small scales is damped by non-linear
evolution.

Turning to w), g, we see similar behaviour as AX for many of
our HOD parameters, particularly at large scales. As discussed in the
AY case, the most important effect an HOD parameter can have on
large scales is to change the galaxy bias by changing the mean host
halo mass. We can see this in the case of ng,1, 0’108 11, M1/Mmin, o, and
Jeen, Where the effects on the large scales of w), ,, of our parameter
variations are qualitatively similar to those for AX. There are subtle
differences in scale dependence at large scales due to the fact that
AX is an excess surface density rather than a local overdensity. At
small scales there are more significant differences between w), g,
and AX because of the strong impact of the satellite fraction on
& 4¢ in the 1-halo regime. For ng, the small-scale effect is opposite
in sign to the large-scale effect because the increase of satellite
galaxies dominates over the reduction in the galaxy bias. Our next
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three parameters, o164 47, M1/Mpyin, and o, exhibit similar small-scale
behaviour because they all also increase the satellite fraction at fixed
Nga.

In contrast the central incompleteness parameter f.., exhibits
significantly different behaviour at small scales than AX. Because
W), ¢ includes a satellite—satellite contribution to the 1-halo term,
increasing the satellite fraction with a reduced fc., at fixed ng, leads
to an increase in the 1-halo term at all scales. Turning to Ao, We
see further differences in small-scale behaviour. An increase in Ao,
boosts the very smallest scales of w, , but has a compensatory
decrease at larger scales still within the 1-halo term. This is because
the pairs gained at small scales by sharpening the galaxy profile
concentration are lost at larger scales.

Our assembly bias parameters also exhibit different behaviour than
in the case of AX. A decrease of Qc, increases w), 4, at all scales
but does so more significantly than for AX. We also observe the
same peak around 8.0 4~! Mpc, but it is much smoother. The satellite
assembly bias parameter Qg exhibits similar behaviour for w), 4, and
AY at large scales, but it differs at small scales. Interestingly, both
a decrease and increase of Qg boost the small scales of w), g,. This
is because we have chosen for our fiducial value Qg = 0.0, which
minimizes the value of the second moment of the halo occupation
(N2,(M)).

The effect of our cosmological parameters on w), 4, is in most
cases similar to the effect on AX, albeit with different detailed
scale dependence. The notable exceptions are €2,, and n, at small
scales. Unlike the case of AX, an increase in £2,, leads to a decrease
in w), g because there is no longer a pre-factor proportional to
Q,,. The small-scale behaviour follows from the upward shift in
the halo mass function caused by higher 2,,. To achieve the same
number density at fixed M /M, both M| and M,,;, must shift to
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high values. As discussed previously this leads to a decrease in the
satellite fraction and therefore depresses the 1-halo term. The origin
of the small-scale impact of n; is not obvious, but we suspect it
derives from the effect of the power spectrum shape on the halo mass
function.

3.4 Summary

Regardless of the detailed explanations of each curve in Fig. 2,
our critical finding is that each parameter that has a significant
impact on AX or w, ., does so with a distinct scale dependence,
which is typically different for the two observables. Therefore,
even though the HOD introduces many free parameters, precise
measurements of AY¥ and w,, ,, over a wide dynamic range provide
enough information to break parameter degeneracies and achieve
tight constraints on cosmological parameters. The distinctive scale
dependence arises because we span the linear, trans-linear, and
fully non-linear regimes. Modelling measurements into small scales
thus offers the prospect of significantly improving cosmological
inferences from weak lensing and galaxy clustering data, as we
demonstrate in subsequent sections.

4 COVARIANCE ESTIMATION

We use a combination of analytic and numerical methods to compute
the observable covariance matrix for w, ,, and AX. We analytically
compute the AX covariance using a Gaussian formalism, i.e.
assuming the galaxy and matter fields are Gaussian random and
adding a shape noise contribution (e.g. Singh et al. 2017; Wibking
etal. 2020). Recently, Wu et al. (2019), in the context of cluster weak
lensing, showed that the standard Gaussian formalism for computing
the lensing covariance becomes insufficient when the large-scale
structure contribution to the covariance becomes comparable to
shape noise. Because our AX covariance is shape-noise dominated
we utilize the standard Gaussian formalism, but we note that in a
deeper weak lensing survey than DES it may become insufficient
for galaxy—galaxy lensing as well. Because the lensing covariance
matrix is shape-noise dominated, we also ignore the cross-observable
covariance with w), 4, and treat the two observables as independent
in all that follows.

We include a correction to the A¥ covariance matrix to analyti-
cally marginalize over potential contributions from a point mass at the
center of each galaxy lens (e.g. MacCrann et al. 2020; Wibking et al.
2020). This enclosed point mass, which is allowed to be positive or
negative, can represent the impact of small-scale substructure that is
unresolved and absent from our simulations. It can also characterize
the impact of baryonic physics effects like dissipation and feed-
back. In the covariance matrix, the point-mass correction takes the
form,

C=C+oc*v’, (18)

where v is a column vector with values [r;%, . 2 rﬁv] and o is
the width of the Gaussian prior on the enclosed point mass. We use
the Sherman—Morrison matrix identity and assume a flat prior on o
(e.g. MacCrann et al. 2020; Wibking et al. 2020), yielding

clwfc™!
vI'C—lvy
To compute the covariance for w), ,, we use a combination of

analytic and numerical methods. Unlike A X the covariance for w), g,
contains a significant non-Gaussian contribution, particularly at small

Cl'l=c'- (19)
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scales.? To account for this contribution we use bootstrap methods to
numerically compute the covariance using the 20 (1100.0 2~' Mpc)?
simulation boxes of a fiducial cosmology with different phases
from Garrison et al. (2018). Each box is divided into 25 equal
area subvolumes in the x — y plane. In each subvolume w,, o, is
computed in projection for the fiducial HOD model. We obtain 500
bootstrap resamples by choosing 500 subvolumes with replacement
and averaging w,, ,, for each resample. These bootstrap resamples are
used to compute the covariance for w), ¢,. This numerical covariance
matrix is inherently noisy and may lead to optimistically biased
forecasted parameter constraints. For this reason we also compute
the Gaussian covariance for w), 4, (e.g. Cooray & Hu 2001; Marian,
Smith & Angulo 2015; Krause & Eifler 2017; Singh et al. 2017)
and use the diagonal elements of the numerical covariance matrix to
normalize the analytic correlation matrix. Thus, our final covariance
matrix uses the Gaussian model to compute off-diagonal correlations
and the numerical simulations to compute variances and to scale
correlations to covariances.

Our forecasts are meant to model DES weak lensing and galaxy
clustering with redMaGiC selected galaxies. Consequently, we
consider three bins of redshift for our galaxies, z = 0.15—0.35,
z = 0.35—-0.55, and z = 0.55—0.75, and we assume a survey area
of @ = 5000 deg?. These bins are modelled using AbacusCosmos
simulation snapshots at z = 0.3, z = 0.5, and z = 0.7, respectively,
which are also assumed as lens redshifts when calculating X ;.. Mean
source redshifts are computed using the source redshift distribution
of Rozo, Wu & Schmidt (2011). This source redshift distribution is
also used to compute source surface densities in each bin assuming
a total source surface density of Xy, = 10.0 arcmin—2. We assume a
shape-noise per galaxy of o, =0.2.

5 COSMOLOGICAL FORECASTS

5.1 Fiducial scenario

We forecast parameter constraints for our fiducial scenario, a DES-
like survey, with the covariance matrix described in Section 4 and
derivatives calculated by finite difference from emulator predictions
described in Section 3.3. Additionally, we impose a 5 per cent
Gaussian prior on the galaxy number density and a 3 per cent prior
on Ajens. The parameter Ay, allows for some amount of scale
independent lensing bias. It can be thought of as representing some
combination of uncertainty in shear calibration and photometric
redshift errors that lead to uncertainty in X. Our choice of a
3 per cent prior on Ay, is loosely motivated by MacCrann et al.
(2022) and Myles et al. (2021). Note that we forecast constraints for
the natural logarithm of our parameters, except for Qcen and Qg
which can be zero or negative.

Our fiducial scenario combines w), ,, and AX with information
from 0.3 2~! Mpc < r, < 30.0h~! Mpc in the z = 0.35—0.55 red-
shift bin. We focus on this single redshift bin for the sake of clarity,
chosen because it produces the strongest constraints. In Section 5.4
we examine constraints from our other redshift bins. Results for
this fiducial case are shown in Fig. 3. The bottom left block shows
our forecast with all cosmological parameters other than €2,, and
og fixed. The upper right block shows the fiducial constraints
on all cosmological parameters (note that these constraints are

3ﬁg. 5 of Salcedo et al. (2020b) shows the magnitude of this non-Gaussian
contribution, boosting the diagonal elements of the w), ¢, covariance matrix
by a factor of 3 on 1-halo scales.
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Figure 3. Forecast parameter constraints (68 per cent and 95 per cent contours) for our fiducial scenario, assuming DES-Y6 survey parameters for galaxies
between z = 0.35—0.55, and using all scales 0.3 < r, < 30.0 =~ Mpc of AT and W), gg- The bottom block shows constraints on €2, and o'g and all of our
HOD parameters while holding all other cosmological parameters (Hy, wo, ny) fixed at their fiducial values. The upper right block shows constraints on all
cosmological parameters while marginalizing over all HOD parameters. Fully marginalized errors on each parameter are listed above each PDF panel. Standard
HOD parameters are labelled in green, extended HOD parameters in blue, and cosmological parameters in black.

marginalized over all other HOD and nuisance parameters, which
have been suppressed for visual clarity). Typically other data, such
as CMB anisotropies, the supernova Hubble diagram, and the galaxy
power spectrum, provide tight constraints on Hy, wy, and ny, so the
fixed parameter case is more representative of what DES can achieve
on (€2, og) in a multiprobe analysis.

When o3 and €2, are our only cosmological parameters the best
constrained combination of the two is 03 2%, with a 1o uncertainty
of 2.19 per cent after marginalizing over the halo—galaxy connection.
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Individual marginalized constraints on og and €2,, are 2.6 per cent
and 3.2 per cent. Our choice to constraint og(z = 0) rather than
os(z = 0.5) affects the €2,, — o constraint slightly because of the
effect of 2,, on the growth factor, but the effect is smaller than our
precision. For example, a 3.0 per cent difference in the value of €2,,
corresponds to a sub-per cent change in the linear growth factor at
z =0.5. There are significant degeneracies between o g and HOD or
nuisance parameters, particularly Aj,s and «. In the case of €2,,, there
is a significant degeneracy with Q..,, likely due to the large scales of
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Table 2. Parameter forecast uncertainties with Hy, wg, and n, and fixed, in the z = 0.5 bin.

Case Aln Ajeng Aln Q,, Alnog Aln Sg
AY and wp, gg, Atens fixed - 0.031 0.021 0.012
AY and wp, ¢, Alens free, 3 per cent prior 0.028 0.032 0.026 0.022
AY and wp, ¢, Alens free, no prior 0.078 0.037 0.047 0.053
AY and wp, g, No point-mass, Ajens fixed - 0.031 0.021 0.012
AY and wp, g¢, No point-mass, Ajens free, 3 per cent prior 0.028 0.031 0.026 0.022
AY and wp, g0, No point-mass, Ajens free, no prior 0.078 0.036 0.047 0.053
W), go- Among HOD parameters o443 and M/My;, exhibit a strong 0.08
degeneracy, leading to poor constraints on both parameters. This is — {A%(r,>3.0 A~ Mpe ), w, 4y(r, >3.0 b~ Mpc )
unsurprising as both parameters have virtually the same effect on 0.07] — {A%(r, <3.0 A7 Mpc ), w, 4(r,)}
both of our observables (see Fig. 2). Interestingly fe., also exhibits — {A%(r, >3.0 A7 Mpe ), wp.go(rp) )
a strong degeneracy with both o,y and M /My, likely due to 0.06 — (1) W o (1) }

the way all three parameters affect w), . Our two assembly bias
parameters, Qc.n and Qgy, also exhibit a strong degeneracy with
each other, likely due to their similar scale dependence at large r,.
Constraints on Q., are much tighter than constraints on Qg,; because
it has a much stronger effect on our observables.

When we forecast with all other cosmological parameters free
we find constraints of 4.4 per cent and 7.7 per cent on og and €2,,, a
degradation by roughly a factor of 2. In this case, the best constrained
combination of o' and ,, is 03 Q%** with a forecasted constraint of
2.79 per cent, moderately degraded from the 2.19 per cent constraint
with fixed Hy, wy, and n;. With DES data alone, much of the ability
to break the €2,, — oy degeneracy comes from the shape of w), 4,
but the impact of Hy and ny on the linear power spectrum is largely
degenerate with that of €2,,. Leaving these parameters free therefore
widens the constraints on €2,, and o' individually but with less impact
on their best constrained combination. The value of w, has little
impact on our observables (Fig. 2), and unsurprisingly we do not
forecast a meaningful wq constraint. The value of wg is somewhat
degenerate with og and €2,, because og is defined at z = 0 and our
observation redshift is z = 0.5. If we fix wq but leave H, and n,
free then the constraint on the best constrained parameter oy and
Q,, combination og 9%604 improves to 2.3 per cent, similar to the
case with all three parameters fixed. In contrast, the constraint on £2,,
only improves to 6.0 per cent compared to the 3.2 per cent constraint
when Hy, ng, and wy are fixed. We discuss constraints in the Sg —
2,, plane below, for the fiducial scenario and other cases.

5.2 Impact of systematics: Aj.,s and point-mass

Our forecasts include two important sources of systematic uncer-
tainty in AX. As described in Section 4 we modify our lensing
covariance to marginalize over an enclosed point-mass. This point-
mass marginalization is meant to characterize the impact of baryonic
physics on the mass profile within haloes as well as representing
small-scale substructure potentially unresolved by our simulations.
We also include a multiplicative bias parameter Ay, that captures
potential scale independent errors in lensing calibration. This may
be caused by errors in shear calibration or errors in the measurement
of Ecrit~

To test the sensitivity of constraints to these systematics, we
perform a variety of tests and list resulting forecasted constraints
on Ajens, 2,1, 08, and Sg = oy Q?,l's in Table 2. In these tests we fix all
cosmological parameters besides o'g and €2,, and we marginalize over
all HOD parameters. All of these results are for the z = 0.35—0.55
bin only. Our first series of tests utilizes the full datavector (AX
and w, ,,). We see that our constraints on Ay, are largely prior

0.02

0.01

O'%).00 0.02 0.04 0.06 0.08 0.10
U(Alens)

Figure 4. Forecast constraints on In Sg as a function of Ajens prior in the z =
0.5 bin marginalized over all HOD parameters with all other cosmological
parameters fixed. The black line shows results from all scales of AX and
W), g¢- the red (blue) line shows results from small (large) scales of AX with
all scales of w), ¢, and the green line shows the results from large scale of both
AY and w), g, Points on these lines mark our fiducial forecast assumption
of 0 (Ajens) = 0.03. Analogously coloured dashed lines show constraints with
Alens fixed.

dominated; when Ay, is free with no prior our datavector only
constrains it at the 7.8 per cent level. This significantly degrades
our forecast constraint on og, almost doubling the uncertainty
from 2.6 per cent to 4.7 per cent, but it has less of an effect
on £2,,.

Because the impact of parameters other than Ay, is scale-
dependent, we might hope that modelling AX and w) 4z into
non-linear scales could break the degeneracy between A, and
cosmology. Table 2 shows that this is only partly the case. If we adopt
no prior on Aj, then our data vector constrains it to 7.8 per cent
and constrains Sg to 5.3 per cent. This is a huge improvement on
linear theory, where Aj,s and og are perfectly degenerate. However,
with a 3 per cent Aje,s prior, the posterior uncertainty in Ajeps is only
slightly better at 2.8 per cent. Furthermore, the A, uncertainty
remains a significant limitation, causing the Sg uncertainty to be
2.2 per cent instead of the much stronger 1.2 per cent that could
be achieved if A, were known perfectly. We further examine the
sensitivity of our constraints to our Ay, prior in Fig. 4, discussed
below.

We next test the robustness of our forecasts to our point-mass
marginalization scheme. We repeat each of the previous tests without
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Table 3. Parameter forecast uncertainties with Hy, wq, and n, fixed in the z = 0.5 redshift bin. Also included are constraints on Sg = ogQ
first and second columns indicate which scales are retained in the AX and w), 4, datavectors, with ‘small” indicating 0.3-3.0 h~"Mpc and ‘large’ indicating
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3.0-30.0 2! Mpc. All cases assume a 3 per cent prior on Aje,s and marginalization over a point mass contribution to AX.

0.5

m

. Entries in the

AX Wy ge Aln %‘1 Alnogy Aln Itx.lm Alna AQcen AQsat  AlnAcon  Alnfeen AlnApys Aln,  Alnog Aln Sg
all all 0.049 0.698 0.334 0.083 0.063 0.373 0.704 0.299 0.028 0.032 0.026 0.022
all - 0.050 3.353 0.990 0.709 0.275 3.234 5.763 1.095 0.030 0.354 0.233 0.238
- all 0.050 1.649 0.678 0.162 0.123 0.613 1.108 0.564 0.030 0.061 0.184 0.206
small all 0.050 1.185 0.521 0.095 0.105 0.472 0.803 0.468 0.030 0.037 0.028 0.027
large all 0.050 0.858 0.394 0.138 0.066 0.422 1.032 0.350 0.029 0.036 0.034 0.027
all small 0.050 0.825 0.431 0.139 0.110 0.899 1.172 0.359 0.029 0.065 0.053 0.029
all large 0.050 1.439 0.594 0.190 0.085 0.522 0.846 0.554 0.029 0.036 0.037 0.030
small small 0.050 1.558 0.734 0.171 0.250 1.815 1.435 0.638 0.030 0.125 0.079 0.042
large large 0.050 2.499 1.078 0.628 0.130 0.636 4.756 0.843 0.029 0.040 0.056 0.046

including this modification to the lensing covariance. We see that in
this case the point-mass marginalization has very little effect on the
final constraints. When Aj., is fixed it has a completely negligible
effect. When we assume a 3 per cent prior on Aj,s O assume no
prior, the point-mass marginalization has a very small effect on
constraints on €2,,. These results suggest that for our datavector,
the small scales of AX are not the most important regime for
constraining €2,, or og. It may also appear to suggest that the point-
mass marginalization is unimportant, but we caution that this depends
on the choice of datavector and galaxy sample. Because our assumed
lensing covariance is shape-noise dominated, we can imagine a
future scenario in which the errors on A X are substantially improved
relative to w), .. Conversely, a sparser lens sample would have larger
errors for both AX and w), ,,, but the impact on w,, ,, could be larger.
In either scenario, including marginalization over a point-mass would
be more important because of the increased relative importance of
the small scales of AX. Also, while we are considering point-mass
marginalization as a proxy for baryonic physics uncertainties, it is
necessary to check that it does in fact remove biases from baryonic
effects at the DES statistical precision.

5.3 Relative contributions of scales

Table 3 examines a variety of alternative scenarios in which we omit
different elements of the fiducial datavector. In all of these tests we
fix all cosmological parameters other than €2, and og and report
constraints on Sy = oy QSI‘S. We assume our fiducial 3 per cent prior
on Ajeps and 5 per cent prior on ng,, and we include the point-mass
marginalization term in the lensing covariance matrix. In addition
to omitting one of AXY and w, ,, entirely, we also try omitting
small (r, < 3.0 h~!'Mpc) and large (rp, >3.0 h~!'Mpc) scales of
either. The choice of 3.0 2! Mpc roughly corresponds to a division
between the linear regime and non-linear regime, and it also splits
each observable into equal numbers of data points. The first line
of Table 3 (‘all all’) corresponds exactly to the fiducial scenario
shown in Fig. 3. We again focus on the z = 0.5 redshift bin for
simplicity.

The second line of Table 3 shows a forecast with AX as the
only observable. We see that the precision on all parameters has
degraded drastically, except for ng, and Ajeps which have informative
priors. Compared to the fiducial case, the precision on og, €2,
Sg degrades by roughly a factor of 10. This poor performance is
unsurprising: without galaxy clustering, galaxy—galaxy lensing in
the linear regime has no cosmological constraining power because
of degeneracy between b, and o3, and non-linear scale-dependence
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at DES measurement precision allows only moderate degeneracy
breaking.

We next consider the case of w), 4 on its own. We again see
that all parameter constraints are significantly degraded, although
not by as much as in the case of AX on its own. Constraints on
all of our HOD parameters are significantly worse than with the
full datavector, but are significantly better than from AX on its own.
This difference is not surprising in the context of Fig. 2, which shows
that w, ., is generally more sensitive to the galaxy—halo connection,
particularly at small scales. Since many of these HOD parameters
are degenerate with each other, these individual improvements in
sensitivity synergize with each other to significantly improve overall
constraints on the HOD. The large-scale shape of w, ,, constrains
,,, so the cosmological parameter constraints from w), 4, alone are
better than those from A ¥ alone. However, fractional errors in o g and
Sg are still at the 20 per cent level, drastically worse than the fiducial
scenario. In linear theory the impact of b, and o3 on w), 4, would
be fully degenerate. Non-linear scaling provides enough leverage to
obtain 20 per cent precision, but o'g remains significantly degenerate
with HOD parameters. As expected, precise constraints on matter
clustering require both AX and w), g,.

The remaining lines of Table 3 show the impact of omitting small-
or large-scale measurements from one or both components of the
datavector. When we omit the large scales of AX (line 4, ‘small
all’), the Sg constraint degrades to 2.7 per cent from its fiducial
value of 2.2 per cent. Both o and €2, are individually degraded.
If we retain the large scales of AX instead of the small scales (line
5, ‘large all’) then the Sy precision is again 2.7 per cent. The fact
that large and small scales of AX¥ can independently give precise
Sg constraints in concert with w), 4, has encouraging implications.
Modelling systematics and some measurement systematics are likely
to be very different in these two regimes, so comparing inferred
parameters will provide a strong test of robustness and a valuable
diagnostic of systematics if they are present.

If we retain all scales of AX but use only the small or large
scales of w), 4, then Sg constraints degrade to 2.9 per cent or
3.0 per cent, respectively. HOD constraints are typically much worse
if we have only large scales of w), ¢, so it may seem surprising
that Sg constraints are comparable. However, in the linear regime
it is only the overall galaxy bias factor b, that matters, so large
trade-offs among HOD parameters may not have much impact
on Sy precision. Furthermore, the large scales of w, ,, provide
better €2, constraints, so the breaking of €2,, — og degeneracy is
considerably better for the ‘all large’ scenario than the ‘all small’
scenario.
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The final rows of Table 3 show cases in which we take either large
or small scales of both w,, ,, and AX. The most important takeaway
is the large gain in cosmological constraining power from using all
scales of AX and w), 4, (first line of Table 3) versus using only scales
7, > 3.0 h~! Mpc (last line). The improvement on Ss precision from
4.6 per centto 2.2 per cent is equivalent to a (4.6/2.2)* ~ 4.4 increase
in survey area. The ‘small small’ scenario slightly outperforms
the ‘large large’ scenario, with a 4.2 per cent versus 4.6 per cent Sg
precision. However, given the increased modelling complexity of
small scales there is no reason to contemplate pursuing this scenario
in practice, whereas the ‘large large’ scenario (in multiple redshift
bins) is roughly analogous to the DES key project analyses performed
to date.

We summarize and expand upon some of these results in Fig. 4.
Curves show the constraint on Sg marginalized over the HOD
with all other cosmological parameters fixed as a function of the
prior assumed on Ajp,. Each colour corresponds to a different
forecast scenario from Table 3, and analogous dashed lines show
the constraint on Sg when Ajes is fixed. The black curve in Fig. 4
shows the relationship between the Aje,s prior and S when the full
datavector is used. We see that if Aj,s were perfectly known then
the best constraint we could achieve with our z = 0.5 datavector is
about a factor of two narrower than our fiducial scenario, 1.2 per cent
versus 2.2 per cent. At large values of o (Aj,s), the curve begins to
flatten around o (Ajeps) = 0.07 and asymptote towards a ~5 per cent
constraint on Sg. This behaviour is consistent with our results in
Table 2; when Ay is completely free our full datavector yields a
7.8 per cent constraint on Aje,s and a 5.3 per cent constraint on Sg.
The red and blue curves correspond to omitting the large and small
scales of A, respectively. Finally the green curve shows results
when we omit the small scales of both of our observables. The relative
ordering of these curves at a given o(Aj,s) indicates the relative
importance of the respective elements of the datavector. Given our
fiducial prior on Ajeys, the large and small scales of AX have similar
impact on the constraint on Sg. The large difference between the
black and green curves emphasizes the value of the small scales of
both observables. If the o (Ajens) prior could be tightened from 0.03
to 0.01 then the difference between all the scales and large scales
analysis would be equivalent a to (3.93/1.36)> & 8.35 times increase
in survey area.

5.4 Dependence on redshift

So far we have limited our forecasts to a bin of redshift z =
0.35—0.55. Since DES redMaGiC galaxies extend from redshift
z = 0.15—-0.70, we now consider additional bins at lower and
higher redshift. Specifically, we define three bins in redshift, z =
0.15-0.35, z = 0.35—0.55, and z = 0.55—0.70, and we use ABACUS
snapshots at z = 0.3, z = 0.5, and z = 0.7, respectively, to compute
emulator derivatives. We also compute separate covariance matrices
for each bin taking into account the full range in redshift in each
bin. Comparing across bins we observe little qualitative difference
in derivatives for a given parameter. Quantitatively there is mild
evolution, with most parameters having slightly larger effect at low
redshift. A more important effect is the evolution of the covariance
matrix. For w), ., fractional errors, decrease with increasing redshift
because of increasing bin volume. For A increasing volume with
redshift is counteracted by fewer sources, which increases the shape
noise contribution to the covariance and is dependent on the assumed
source redshift distribution from Rozo et al. (2011). Fractional errors
for AY improve going from the z = 0.3 to z = 0.5 redshift bin.
However, going from z = 0.5 to z = 0.7 we find an increase
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Figure 5. Forecast constraints on In Sg as a function of redshift marginalized
over all HOD parameters with all other cosmological parameters fixed. Red
points show constraints with Ajeps fixed, while blue points show constraints
from including our fiducial 3 per cent prior on Ajeps. Analogously coloured
dashed lines show constraints from combining all three of our redshift bins.
When combining redshift bins we constrain HOD parameters in each bin
separately.

in fractional error because the increase in volume is not able to
compensate for the loss in sources.

Forecast results in all three redshift bins are shown in Fig. 5. In
each bin we forecast constraints on Sg with our full datavector, w,, ¢
and AX, with all other cosmological parameters fixed. For each bin
we perform two separate forecasts in which Ay is fixed (red points)
or free with a 3 per cent prior (blue points). Finally we indicate
the constraint on Sg from combining all three bins together with
horizontal dashed lines. When combining constraints from multiple
redshift bins we allow for different HOD parameters in each redshift
bin and we assume redshift bins are independent. When Ay, is free
we forecast constraints of 3.2 per cent, 2.2 per cent, and 2.4 per cent
on Sg in the z = 0.3, z = 0.5, and z = 0.7 bins, respectively. Fixing
Ajens improves these constraints to 2.6 per cent, 1.2 per cent, and
1.3 per cent. As expected from our covariance matrices, we see that
our constraint improves from z = 0.3 to z = 0.5. From z = 0.5 to
z = 0.7 the constraint slightly degrades. In this case the precision
has improved for w, 4, but gotten worse for AX. When all three
redshift bins are combined we forecast constraints of 1.9 per cent and
0.8 per cent on Sg with Ay, free and fixed, respectively. Both of these
constraints slightly underperform simple quadrature combination of
individual constraints.

5.5 Summary

We have forecast cosmological parameter constraints for an analysis
of galaxy—galaxy lensing AX and galaxy clustering w), ,, while
marginalizing over a flexible HOD model and a scale independent
lensing bias parameter Aje,s. Fig. 6 summarizes our main results in
the Sy — €2, plane. The green contours in the left-hand panel show
our fiducial scenario combining information from AX and w), g
measured on scales 0.3/47 ! Mpc < r, < 30.0h~! Mpc in a DES-
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Figure 6. Forecast constraints (68 per cent and 95 per cent contours) on Sy = og Q%S and 2, with Hy, ng, and w fixed, summarizing some of our main results.
Contours in the left-hand panel show constraints from just the z = 0.35—0.55 bin, while the right-hand panel shows constraints from combining all three of our
redshift bins. Blue contours show constraints when only the large scales of AX and w), ¢, are used and a 3 per cent prior on Ajeps is assumed. Green contours
show our fiducial scenario in which all scales of AX and w), ¢, are used with a 3 per cent prior on Ajens. Red contours show constraints from all scales of AX

and w), ¢ When our prior on Ajeys is sharpened to 1 per cent.

like survey of galaxies within a bin of redshift z = 0.35—0.55. For
this scenario we forecast 3.2 per cent and 2.2 per cent constraints on
2, and Sg. When the ‘small’ scales (r, < 3.0 h~" Mpc) are omitted
from such an analysis (blue contours) these constraints are degraded
to 4.0 per cent and 4.6 per cent, respectively. This difference in
precision on Sg is equivalent to a ~4.4-fold increase in survey area,
illustrating the stakes of accurate modelling of non-linear scales. If
our external prior on Ajeps i be sharpened to 1 per cent (red contours)
then constraints on €2,, and Sg sharpen even further to 3.1 per cent
and 1.4 per cent, respectively.

In the right-hand panel of Fig. 6 we show results for the same
three forecast scenarios when combining all three of our redshift bins
spanning z = 0.15—0.70. When small scales of AX and w), ,, are
omitted (blue contours) using all three bins of redshift we forecast a
2.6 per cent and 3.0 per cent constraint on €2, and Ss. This constraint
on Sg is an improvement on the 4.6 per cent constraint from the z =
0.5 bin, but it is still relatively weak. When the small scales are
also included in the datavector we forecast 1.9 per cent constraints
on both €2, and Sg (and 2.0 per cent on o). These constraints are
an improvement on the 3.2 per cent and 2.2 per cent obtained from
the z = 0.5 bin, though the Sg gain is moderate in part because the
Ajens Uncertainty affects all three redshift bins coherently. When the
prior on Ajeys is reduced to 1 per cent these constraints improve to
1.8 per cent on €2,,, 1.4 per cent on og, and 1.1 per cent constraint
on Sg. This result shows the impressive gains that are attainable if
future analyses can include small-scale information from galaxy—
galaxy lensing and clustering while controlling the uncertainty in
lensing calibration over a broad range in redshift z = 0.15—0.70.
Our forecasts show that if those conditions are met the degeneracy
between 2, and og can be broken to yield per cent-level constraints
on the amplitude of matter clustering.

Fig. 7 presents a different summary form of our results, with an
emphasis on the information content of smaller scales. Here we have
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Figure 7. Forecast constraints on Inog as a function of minimum scale
of AX and wp, 4. The constraint on Inog is marginalized over all HOD
parameters with all other cosmological parameters fixed. The black solid line
shows the case for the fiducial bin at z = 0.5 with Ajeps fixed, while blue and
red lines show results from the z = 0.3 and z = 0.7 bins. The dashed black
line shows the case for the fiducial bin at z = 0.5 with Ajeps included with our
fiducial 3 per cent prior. For the sake of comparison analogously coloured
triangles show constraints from the cluster weak-lensing AX, w), ¢, and
w), g¢ datavector of Salcedo et al. (2020b) using all scales of 0.3 < r, <
30.0 ~~! Mpc. Filled in triangles show constraints for the case of fixed scatter
in the cluster mass—observable relation oy, p7,, While empty triangles show
the case of free oy, pr, -
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forecast constraints on o' g with fixed values of the other cosmological
parameters including €2,,; in a given redshift bin, fractional errors on
og at fixed €2, are similar to the errors on Sg with free €2,,. Filled
circles and connecting solid curves show forecast constraints for the
three redshift bins with fixed Aj.ns, as a function of the minimum
scale included in both AY and w, 4, (With 1, ;,=30.0 h~! Mpc
in all cases). At z = 0.5, the precision on og degrades moderately
as r, min increases from 0.3 h! Mpc to 1.8 h! Mpc, then degrades
sharply as 7, min crosses 2.0~ Mpc. For z = 0.7, the precision
with small 7, i, is similar to z = 0.5, and it degrades more slowly
with increasing 7, min until jumping sharply at 7, min»=8.0 2! Mpc.
For z = 0.3, the precision is lower as explained previously, and it
is nearly constant for 7, yin < 1.0 h! Mpc. The black dashed curve
shows the forecast at z = 0.5 with a 3 per cent prior on Aje,s. The
Ajens uncertainty significantly degrades the og precision, as shown
previously in Table 2, but the loss is smaller than one would expect
from a naive quadrature combination of the Aj.,s and o g uncertainties,
even though both parameters have the same effect on AX in linear
theory. Determining g with a precision tighter than the Ay prior is
a benefit of working into the non-linear regime, where the impact of
og is scale-dependent.

Open triangles show the og precision forecasts from Salcedo
et al. (2020b) for a combination of three observables: cluster
weak lensing profiles AX.(r,), the projected cluster—galaxy cross-
correlation function w), (r,), and the projected galaxy—galaxy
correlation function w,, 4,(r,). These forecasts are computed in the
z = 0.15-0.35 and z = 0.35—0.55 redshift bins assuming DES-
like cluster samples and weak lensing and clustering measurements,
with fixed Aj.,s. We see that this three-observable combination can
attain a og precision comparable to that of GGL + clustering at
z = 0.5 and better at z = 0.3. Salcedo et al. (2020b) do not
compute a forecast for z = 0.7. Although some systematics would
be in common between these two analyses such as uncertainties in
shear calibration and source photometric redshifts, many systematics
would be different. It is encouraging that clusters and GGL offer
parallel routes to high-precision constraints on matter clustering
from DES. The three-observable combination considered by Salcedo
et al. (2020b) constrains the scatter oy, 7, between true cluster mass
and an observable mass proxy such as richness, which is the most
important nuisance parameter that affects cosmological constraints
from cluster weak lensing. Filled triangles show the still tighter
constraints that could be derived from cluster A3 alone if oy, , were
known independently. Wu et al. (2021) discuss cluster weak lensing
constraints and the trade-off with oy, ), and survey parameters in
greater detail.

6 CONCLUSIONS

We have investigated potential cosmological constraints from a
combination of galaxy—galaxy lensing AX and galaxy clustering
w,, oo measured using redMaGiC selected galaxies with the precision
expected in the final (Y6) data release of DES. We have computed
observables using simulations from the ABACUSCOSMOS suite (Gar-
rison et al. 2018) of N-body simulations and populating haloes with
mock galaxies using a flexible HOD parametrization that includes
central and satellite galaxy assembly bias. Using these observables
we have constructed Gaussian process emulators (Wibking et al.
2020) of w,, ¢ and AX, which accurately model each observable
over a wide range of scales 0.3-30.0 A~! Mpc and a large space of
HOD and cosmological parameters. We have also included in our
analysis the effects of biased lensing calibration, represented by the
parameter Aje,s. We assume a fiducial HOD that is meant to describe
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the clustering of redMaGiC selected galaxies in DES; these values
are listed in Table 1. To compute covariance matrices we have used
a mixture of analytic and numerical methods described in Section 4.
To represent potential measurements and modelling systematics, we
have included a parameter Ay, that multiplies all scales of AX by a
common factor, and we have modified the weak lensing covariance
matrix to analytically marginalize over a point mass contribution to
AX. These parameters can represent effects such as shear calibration
bias, photo-z bias, or baryonic modification of halo density profiles
on small scales.

With a 3 percent prior on Ap,, we forecast precision of
1.9 per cent and 2.0 per cent on £2,, and og, respectively, from the
combination of all three redshift bins, with fixed values of Hy, ny,
and w, and separate marginalization over all HOD parameters in
each redshift bin. The precision on Sg is 1.9 per cent. If the prior
on Ay 1s sharpened to 1 per cent, then the Sg constraint tightens to
1.1 per cent. Our results demonstrate the great promise of modelling
GGL and galaxy clustering into the non-linear regime using HOD
and N-body + emulator methods. If we restrict our datavectors
to scales r, > 3.0h~! Mpc then the Sg precision degrades by a
factor of 1.6, equivalent to a factor of 2.5 in survey area. For the
1 per cent Ajeps prior the benefit of small scales is even larger, a
factor of 2.8 in Sg precision (a factor of 7.7 in equivalent survey
area). For the z = 0.5 redshift bin, Sections 5.1-5.3 examine the
correlations between HOD and cosmological parameters, the impact
of different systematics assumptions, and the contribution of different
scales of the two observables (Figs 2—4 and Tables 2 and 3). In our
forecasts, point-mass marginalization does not noticeably degrade
cosmological parameter precision, but uncertainty > 1 per cent in
Alens does.

The recent DES-Y3 3 x 2pt. cosmological analysis (DES Col-
laboration 2021) uses only large-scale lensing and clustering data
and obtains 9.3 percent, 6.1 percent, and 2.2 percent constraints
on €2,,, og, and Sg. Comparison to our forecasts is difficult because
this analysis includes cosmic shear, uses a magnitude-limited sample
instead of redMaGiC, uses lower depth (Y3 versus Y6) DES data,
and includes nuisance parameters we have not considered here
(such as intrinsic alignments). Closer to our scenarios, Pandey et al.
(2021) analysed DES-Y3 redMaGiC lensing and clustering in the
linear regime, obtaining 10.7 percent and 4.2 percent constraints
on 2, and Sg. They caution that their Sg results are likely biased
by an unknown systematic causing internal inconsistency between
redMaGiC lensing and clustering. We have implicitly assumed that
this challenge can be overcome by the time of the final DES analyses
and that remaining systematics can be adequately encapsulated by
our Ajps parameter even if they arise from multiple contributing
factors.

Our emulator already appears accurate enough for the expected
precision of final DES redMaGiC data (see Fig. 1), though further
testing and training on still larger simulation suites is desirable.
We expect that our methods can be readily adapted to magnitude-
limited samples, which should allow more precise A ¥ measurements
that require more careful treatment of photo-z errors. Fortunately, in
addition to affording high statistical precision, analyses that extend to
non-linear scales provide rich opportunities for internal consistency
checks and systematics tests, through distinctive scale dependence
and comparison among galaxy samples that have different HODs
but should yield consistent cosmological parameters. For our z = 0.5
forecast with all scales used in w), 4, , we find essentially equal cosmo-
logical precision using scales 7, > 37~ Mpc and r, < 37~ Mpc
in AX, allowing a strong consistency check between regimes where
many systematics are very different. If there is a 5-10 percent
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discrepancy between low redshift matter clustering and CMB-
normalized ACDM predictions, as suggested by some but not all
recent weak lensing studies, then final DES analyses will demonstrate
the discrepancy at high precision and allow initial explorations of
its redshift and scale dependence. Alternatively, if early universe
fluctuations and low redshift matter clustering are consistent at the
1 per cent level, then maximally exploiting the potential of Stage
III weak lensing surveys will demonstrate impressive success of
standard cosmology and prepare the way for Stage IV dark energy
experiments that are underway or beginning soon.
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