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Abstract—In this paper, we examine amplification of additive
stochastic disturbances to primal-dual gradient flow dynamics
based on proximal augmented Lagrangian. These dynamics can
be used to solve a class of non-smooth composite optimization
problems and are convenient for distributed implementation. We
utilize the theory of integral quadratic constraints to show that
the upper bound on noise amplification is inversely proportional
to the strong-convexity module of the smooth part of the objective
function. Furthermore, to demonstrate tightness of these upper
bounds, we exploit the structure of quadratic optimization prob-
lems and derive analytical expressions in terms of the eigenvalues
of the corresponding dynamical generators. We further specialize
our results to a distributed optimization framework and discuss
the impact of network topology on the noise amplification.

Index Terms—Convex optimization, distributed computation,
integral quadratic constraints, linear matrix inequalities, noise
amplification, primal-dual dynamics, proximal augmented La-
grangian, saddle-point dynamics.

I. INTRODUCTION

We consider a class of primal-dual gradient flow dynamics
based on proximal augmented Lagrangian [1] that can be used
for solving large-scale non-smooth constrained optimization
problems in continuous time. These problems arise in many
areas including signal processing [2], statistical estimation [3],
and control [4]. In addition, primal-dual methods have received
renewed attention due to their prevalent application in dis-
tributed optimization [5] and their convergence and stability
properties have been greatly studied [6]–[12].

While gradient-based methods are not readily applicable to
non-smooth optimization, we can utilize their proximal coun-
terparts to address such problems [13]. In the context of non-
smooth constrained optimization, proximal-based extensions of
primal-dual methods can also be obtained using the augmented
Lagrangian [1], which preserve structural separability and
remain suitable for distributed optimization.

Employing primal-dual algorithms in real-world distributed
settings motivates the robustness analysis of such methods as
uncertainty can potentially enter the dynamics due to noisy
communication channels [14]. Moreover, uncertainties can also
arise in applications where the exact value of the gradient
is not fully available, e.g., when the objective function is
obtained via costly simulations or its computation relies on
noisy measurements e.g., real-time and embedded applications.

In this paper, we consider the scenario in which the dynamics
of the primal-dual flow are perturbed by additive white noise.
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We examine the mean-squared error of the primal optimization
variable as a measure of how noise gets amplified by the
dynamics – we refer to this quantity as noise (or variance)
amplification. For convex quadratic optimization problems,
the primal-dual flow becomes a linear time invariant system,
for which the noise amplification can be characterized using
Lyapunov equations. For non-quadratic problems, the flow is no
longer linear, however, tools from robust control theory can be
utilized to quantify upper bounds on the noise amplification. In
particular, we use the theory of Integral Quadratic Constraints
(IQC) [15], [16] to characterize upper bounds on the noise
amplification of the primal-dual flow based on proximal
augmented Lagrangian using solutions to a certain linear matrix
inequality. Our results establish tight upper-upper bounds on the
noise amplification that are inversely proportional to the strong-
convexity module of the corresponding objective function.

The approach taken in this paper is similar to those in [17]–
[22], wherein IQCs have been used to analyze convergence
and robustness of first-order optimization algorithms and their
accelerated variants. The noise amplification of primal-dual
methods has also been studied in [14] where the authors have
focused on quadratic problems and considered the average
error in the objective function. In contrast, we consider the
average error in the optimization variable and extend the noise
amplification analysis to the case of strongly convex and non-
smooth optimization problems. For smooth strongly convex
problems, an input-output analysis with a focus on the induced
L2 norm using the passivity theory has been provided in [23].
In contrast, we study stochastic performance of primal-dual
algorithms that can be utilized to solve non-smooth composite
optimization problems.

The rest of the paper is structured as follows. We describe
the proximal-augmented Lagrangian and the noisy primal-dual
gradient flow dynamics in Section II. We next study the variance
amplification for quadratic problems in Section III. We present
our IQC-based approach for general strongly convex but non-
smooth optimization problems in Section IV. We study the
noise amplification in a distributed optimization setting in
Section V, and provide concluding remarks in Section VI.

II. PROXIMAL AUGMENTED LAGRANGIAN

We study a nonsmooth composite optimization problem

minimize
x,z

f(x) + g(z)

subject to Tx − z = 0
(1)

where f : Rn → R is a convex, continuously differentiable func-
tion, g: Rk → R is a convex, but possibly non-differentiable
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function, and T ∈ Rk×n is a given matrix. The augmented
Lagrangian associated with (1) is given by

Lµ(x, z; ν) = f(x) + g(z) + νT (Tx− z) + 1
2µ‖Tx− z‖

2
2

where µ > 0 is a parameter and ν is the Lagrange multiplier.
The infimum of the augmented Lagrangian Lµ with respect to
z is given by the proximal augmented Lagrangian [1]

Lµ(x; ν) := inf
z
Lµ(x, z; ν)

= f(x) + Mµg(Tx+ µν) − µ
2 ‖ν‖

2
2 (2)

where Mµg(ξ) := g(proxµg(ξ))+ 1
2µ‖proxµg(ξ)−ξ‖

2
2 is the

Moreau envelope of the function g and

proxµg(ξ) := argmin
z

(
g(z) + 1

2µ‖z − ξ‖2
)

is the corresponding proximal operator. In addition, the Moreau
envelope is continuously differentiable and its gradient is
determined by µ∇Mµg(ξ) = ξ − proxµg(ξ).

For convex problems, solving (1) amounts to finding the
saddle points of Lµ(x; ν). To this end, continuous differentia-
bility of Lµ(x; ν) was utilized in [1] to introduce associated
Arrow-Hurwicz-Uzawa gradient flow dynamics

ẋ = −∇xLµ(x; ν)

ν̇ = ∇νLµ(x; ν)
(3)

which is a continuous-time algorithm that performs gradient
primal-descent and dual-ascent on the proximal augmented La-
grangian. For Lµ(x; ν) given by (2), gradient flow dynamics (3)
take the following form,

ẋ = −∇f(x)− 1
µ T

T (Tx+ µν − proxµg(Tx+ µν))

ν̇ = Tx − proxµg(Tx+ µν).
(4)

A. Stability properties

When f is convex with a Lipschitz continuous gradient, and g
is proper, closed, and convex, the set of equilibrium points of (4)
is characterized by minimizers of problem (1) and is globally
asymptotically stable [1, Theorem 2]. Furthermore, when f is
strongly convex and T is full-row-rank, there is a unique
equilibrium point (x?, ν?) which is globally exponentially
stable and (x?, z? = proxµg(Tx

? + µν?)) is the unique
optimal solution of problem (1) [8, Theorem 6].

B. Noise amplification

We examine the impact of additive stochastic uncertainties
on performance of the primal-dual gradient flow dynamics. In
particular, we consider the noisy version of (4),

dx = −
(
∇f(x) + TT∇Mµg(Tx+ µν)

)
dt + dw1

dν =
(
Tx − proxµg(Tx+ µν)

)
dt + dw2

(5)

where dwi(t) are the increments of independent Wiener
processes with covariance E[wi(t)w

T
i (t)] = siIt and si > 0

for i ∈ {1, 2}. We quantify the noise amplification using [16]

J = lim sup
T→∞

1

T

∫ T

0

E[‖x(t) − x?‖22] dt. (6)

For quadratic objective functions f(x) := 1
2x

TQx, if we let g
be the indicator function of the set {b} with b ∈ Rk, (5) is a
linear time-invariant system and J quantifies the steady-state
variance of the error in the optimization variable x(t)− x?,

J = lim
t→∞

E[‖x(t) − x?‖22]. (7)

In the next section, we examine this class of problems.

III. QUADRATIC OPTIMIZATION PROBLEMS

To provide insight into the noise amplification of the primal-
dual gradient flow dynamics, we first examine the special case
in which the quadratic objective function f(x) = 1

2x
TQx is

strongly convex with Q = QT � 0 and g(z) = I{b}(z), where
IS is the indicator function of the set S, i.e., IS(z) := 0 for
z ∈ S and IS(z) := ∞ for z /∈ S. For this choice of g,
optimization problem (1) simplifies to

minimize
x

f(x)

subject to Tx = b
(8)

and the nonlinear terms in (5) are determined by

∇f(x) = Qx, proxµg(ξ) = b, ∇Mµg(ξ) = 1
µ (ξ − b).

Hence, (5) simplifies to

dx = −
(

(Q + 1
µT

TT )x+ TT ν − 1
µTb

)
dt + dw1

dν = (Tx − b) dt + dw2

(9)
In what follows, without loss of generality, we set b = 0. In

this case, noisy dynamics (5) are described by an LTI system

dψ = Aψ dt + dw (10)

where w :=
[
wT1 wT2

]T
and

ψ :=

[
x − x?

ν − ν?

]
, A =

[
−(Q+ 1

µT
TT ) −TT

T 0

]
.

For Q � 0 and a full-row-rank T , A is a Hurwitz matrix and
LTI system (10) is stable. Moreover from linearity, it follows
that the variance amplification, J = limt→∞ E[‖x(t)−x?‖22],
can be computed as

J = trace (XCTC) = trace (X1) (11)

where X := limt→∞ E[ψ(t)ψT (t)] =

[
X1 X2

XT
2 X3

]
is the

steady-state covariance matrix of the state ψ(t) which can be
obtained by solving the algebraic Lyapunov equation

AX + XAT = −diag (s1I, s2I) (12)

and C :=
[
I 0

]
. Theorem 1 addresses the special case

with Q = mfI and provides an analytical expression for
the variance amplification of the corresponding primal-dual
gradient flow dynamics. This result is obtained by computing
the steady-state covariance matrix of the state ψ.

Theorem 1: Let f(x) =
mf

2 ‖x‖
2, g(z) = I{0}(z), and T be

a full-row-rank matrix in (1). Then, the steady-state variance of
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the primal optimization variable in (5) with dwi(t) being the
increments of independent Wiener processes with covariance
E[wi(t)w

T
i (t)] = siIt is determined by

J =
(n− k)s1

2mf
+

k∑
i=1

s1 + s2
2(mf + (1/µ)σ2

i (T ))

where σi(T ) is the ith singular values of the matrix T .

Proof: Let T = UΣV T be the singular value decompo-
sition of the matrix T , with unitary matrices U ∈ Rk×k and
V ∈ Rn×n and Σ =

[
Σ0 0k×(n−k)

]
∈ Rk×n, with

Σ0 := diag (σ1, . . . , σk) ∈ Rk×k.

Multiplication of the Lyapunov equation (12) by M =
diag (V,U) and MT from right and left, respectively, yields

Â X̂ + X̂ ÂT = −diag (s1I, s2I) (13)

where

Â =

[
−mfI − 1

µΣTΣ −ΣT

Σ 0

]

X̂ =

[
X̂1 X̂2

X̂T
2 X̂3

]
:= MTXM.

Finally, it is straightforward to verify that

X̂1 =

 s1+s2
2

(
mfI + 1

µ Σ0Σ0

)−1
0

0 s1
2mf

I


X̂2 =

[
− s22 Σ−10

0(n−k)×k

]
∈ Rn×k

X̂3 = diag (a1, . . . , ak) ∈ Rk×k

where ai =
s1 + s2

2(mf + σ2
i /µ)

+
s2(mf + σ2

i /µ)

2σ2
i

. The result

follows from J = trace (X1) = trace (X̂1).
The following corollary is immediate from Theorem 1.

Corollary 1: Under the conditions of Theorem 1, the steady-
state variance of the primal optimization variable in (5) is upper
bounded by J ≤ (ns1 + ks2)/(2mf ).

Corollary 1 establishes that, for µ > 0 and a full-row-rank
matrix T , the variance of the primal optimization variable
in (5) satisfies an upper bound that is independent of T and
µ. In addition, using the explicit expression for J provided in
Theorem 1, it follows that for any fixed µ > 0, in the limit
of σmax(T ) → 0 and/or n/k → ∞, the upper bound on the
variance amplification J in Corollary 1 becomes exact.

It is also noteworthy that, as demonstrated in the proof of
Theorem 1, the dual variable ν may experience an unbounded
steady-state variance for s2 > 0 if σmin(T )→ 0.

Even though it is challenging to derive an analytical
expression for the covariance matrix X for a general strongly
convex quadratic objective function f , we next demonstrate
that the upper bound in Corollary 1 remains valid.

Theorem 2: Let f(x) = 1
2x

TQx with Q � mfI , g(z) =
I{0}(z), and T be a full-row-rank matrix in (1). Then, the
steady-state variance of the primal optimization variable in (5)
with dwi(t) being the increments of independent Wiener
processes with covariance E[wi(t)w

T
i (t)] = siIt satisfies

J ≤ ns1 + ks2
2mf

. (14)

Proof: To quantify J , an alternative method to using the
state covariance matrix is to write

J = trace (P diag (s1I, s2I))

where P is the observability gramian of system (10)

ATP + PA = −CTC (15)

with C =
[
I 0

]
. Thus, any matrix P ′ � P satisfies

J ≤ trace (P ′diag (s1I, s2I)).

To find such a P ′, we note that A satisfies

AT I + IA = −2diag (Q+ 1
µT

TT, 0) � −2λmin(Q)CTC.

Dividing this inequality by 2λmin(Q) and subtracting from (15)
yields

AT ( 1
2λmin(Q) I − P ) + ( 1

2λmin(Q) I − P )A � 0.

Since A is Hurwitz, it follows that P � 1
2λmin(Q)I , and hence

J = trace (P diag (s1I, s2I))

≤ 1

2λmin(Q)
trace (diag (s1I, s2I)) ≤ ns1 + ks2

2mf
.

IV. BEYOND QUADRATIC PROBLEMS

In this section, we extend our upper bounds on the noise
amplification of the primal-dual gradient flow dynamics to
problems with a general strongly convex function f , a convex
but possibly non-differentiable function g, and a matrix T
of an arbitrary rank. Our approach is based on Integral
Quadratic Constraints (IQCs) which provide a convex control-
theoretic framework for stability and robustness analysis of
systems with structured nonlinear components [15]. This
framework has been recently used to analyze convergence
and robustness of first-order optimization methods [17]–[20].
In what follows, we first demonstrate how IQCs can be
combined with quadratic storage functions to characterize
upper bounds on the noise amplification of continuous-time
dynamical systems via solutions to a certain linear matrix
inequality (LMI). We then specialize this result to the primal-
dual gradient flow dynamics and establish tight upper bounds
on the noise amplification by finding feasible solutions to the
associated LMI.

A. An IQC-based approach

As demonstrated in Section IV-B, noisy primal-dual gradient
flow dynamics can be represented via feedback interconnection
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of an LTI system with a static nonlinear component

dψ = Aψ dt + B u dt + dw[
z
y

]
=

[
Cz
Cy

]
ψ, u(t) = ∆(y(t)).

(16)

Here, ψ(t) is the state, dw(t) is the increment of a Wiener
process with covariance E[w(t)wT (t)] = Wt, where W is a
positive semidefinite matrix, z(t) is the performance output,
and u(t) is the output of the nonlinear term ∆: Rn → Rn that
satisfies the quadratic inequalities[

y
∆(y)

]T
Πi

[
y

∆(y)

]
≥ 0 (17)

for some matrices Πi and all y ∈ Rn.
Lemma 1 utilizes property (17) of the nonlinear mapping ∆

and provides an upper bound on the average energy [16]

J = lim sup
T →∞

1

T

∫ T

0

E [‖z(t)‖]22 dt.

Lemma 1: Let the nonlinear function u = ∆(y) satisfy[
y
u

]T
Πi

[
y
u

]
≥ 0 (18)

for some matrices Πi, let P be a positive semidefinite matrix,
and let λi be nonnegative scalars such that system (16) satisfies[

ATP + PA+ CTz Cz PB
BT P 0

]
+
∑
i

λi

[
CTy 0
0 I

]
Πi

[
Cy 0
0 I

]
� 0. (19)

Then the average energy of the performance output in statisti-
caly steady-state is bounded by J ≤ trace(PW ).

The proof of Lemma 1 follows from similar arguments as
in [16, Theorem 7.2] and is omitted due to space limitation.
Lemma 1 introduces a quadratic storage function, ψTPψ, for
continuous-time primal-dual gradient flow dynamics. We note
that discrete-time variants of this result were used to quantify
noise amplification of accelerated first-order optimization
algorithms [19, Lemmas 1, 2], [22].

B. State-space representation

We next demonstrate how noisy primal-dual gradient flow
dynamics (5) can be brought into the standard state-space
form (16). In particular, choosing the state variable

ψ =
[
xT νT

]T
along with z := x and

y =

[
y1
y2

]
:=

[
x

Tx+ µν

]
u =

[
u1
u2

]
:=

[
∇f(x)−mfx

proxµg(Tx+ µν)

]

brings system (5) into the state-space form (16) with

A =

[
−(mfI + 1

µ T
TT ) −TT

T 0

]
(20a)

B =

[
−I 1

µ T
T

0 −I

]
, Cy =

[
I 0
T µI

]
. (20b)

and Cz =
[
I 0

]
, where mf is the strong-convexity module

of f . We note that the input-output pair (u, y) satisfies the point-
wise nonlinear equation u = ∆(y) with ∆ = diag (∆1,∆2),
where

u1 = ∆1(y1) := ∇f(y1)−mfy1

u2 = ∆2(y2) := proxµg(y2).

It is worth mentioning that for the special case g(z) =
I{0}(z), which we considered in our analysis of quadratic
problems in Section III, the nonlinear term u2 vanishes and
the primal-dual gradient flow dynamics simplify to

dx = −
(
∇f(x) + 1

µT
TTx + TT ν

)
dt + dw1

dν = Tx dt + dw2.
(21)

C. Characterizing the structural properties via IQCs

The input-output pairs (yi, ui) associated with nonlinear
mappings ∆i satisfy[

yi − y′i
ui − u′i

]T
πi

[
yi − y′i
ui − u′i

]
≥ 0 (22)

where

π1 :=

[
0 (Lf −mf )I

(Lf −mf )I −2I

]
π2 :=

[
0 I
I −2I

]
.

The above inequalities follow from the facts that ∆1 is the
gradient of the (Lf − mf )-smooth convex function f(·) −
(mf/2)‖ · ‖2 and that ∆2 = proxµg is firmly non-expansive.

To make the above IQCs conform to the required format in
Lemma 1, we can employ a suitable permutation combined
with a change of variables that utilizes deviations from the
optimal solution to obtain the inequalities in (18) with

Π1 =


0 0 (Lf −mf ) I 0
0 0 0 0

(Lf −mf ) I 0 −2I 0
0 0 0 0

 (23a)

Π2 =


0 0 0 0
0 0 0 I
0 0 0 0
0 I 0 −2I

 . (23b)

D. General convex g

The main result of the paper is presented in Theorem 3. It
demonstrates that proximal primal-dual gradient flow dynamics
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enjoys the same upper bound on noise amplification as the
primal-dual gradient flow dynamics for smooth problems.

Theorem 3: Let the function f be mf -strongly convex and
let g be closed, proper, convex. Then, the noise amplification
of noisy primal-dual gradient flow dynamics satisfies (14).

Proof: It is easy to verify that P = pI , λ1 = 1/(Lf−mf ),
λ2 = 1/µ with p ≥ 1/(2mf ) provides a feasible solution to the
LMI in Lemma 1 for the system matrices in (20) and matrices
Π1, Π2 in (23). Thus, the result follows from Lemma 1.

For general strongly convex problems, Theorem 3 establishes
the same upper bound on the noise amplification as what we
obtained using Lyapunov equations for quadratic problems in
Theorem 2. In addition, as we discussed in Section III, this
upper bound is tight in the sense that the noise amplification
for the quadratic problem in Theorem 1 converges to this upper
bound in the limit σmax(T )→ 0 and/or as n/k →∞. Another
advantage of the IQC framework is that it does not require the
matrix A to be Hurwitz. Therefore, the upper bound established
in Theorem 3 holds for any matrix T independent of its rank.

V. APPLICATION TO DISTRIBUTED OPTIMIZATION

The primal-dual gradient flow dynamics provide a distributed
strategy for solving the optimization problem

minimize
θ

n∑
i=1

fi(θ) (24)

where fi are convex functions [5]. Assuming without loss of
generality that θ ∈ R, given a connected network with an
incidence matrix E = TT , we can assign a different scalar
variable xi to each agent and define the equivalent problem

minimize
x

n∑
i=1

fi(xi)

subject to T x = 0

(25)

where the constraint enforces that

x :=
[
x1 · · · xn

]T ∈ Null (T ) = {c1 | c ∈ R}

where 1 := [ 1 · · · 1 ]T . Letting f(x) :=
∑
i fi(xi), the primal-

dual gradient flow for solving problem (25) is determined
by (21) and, in the absence of noise, it converges to x =
θ?1, where θ? is an optimal solution of problem (24). In this
formulation, the primal and dual variables xi and νi correspond
to the nodes and the edges of the network, respectively.

Theorem 3 provides an upper bound on noise amplification
of a distributed primal-dual algorithm

J ≤ ns1 + ks2
2mf

for strongly convex problems. Here, k denotes the number of
edges in the network and mf is the strong convexity module
of the function f . However, if f lacks strong convexity, then
an additive white noise with a full-rank covariance matrix can
result in unbounded variance of x(t) as t→∞.

To see one such example, we can let fi be constants,
in which case the primal-dual gradient flow simplifies to

a consensus-type algorithm. In this case, the average mode
a(t) := 1

n (1Tx(t))1 experiences a random walk, and its
variance

Ja := lim
t→∞

E
(
‖a(t)− θ?1‖2

)
(26a)

is unbounded. However, the mean-square deviation from the
network average

J̄ := lim
t→∞

E
(
‖x(t)− a(t)‖2

)
(26b)

becomes a relevant quantity and it can be used in lieu of J to
quantify stochastic performance as it remains bounded [24].

Using the fact that 〈x(t)− a(t),1〉 = 0, this idea can be
generalized to the distributed optimization framework by noting
that the variance amplification can be split into two terms,

J = Ja + J̄ .

To provide insight, let us examine the special case with fi(θ) =
1
2mf (θ − ci)2, where the agents aim to compute the average
of ci. Although the underlying dynamics are linear in this case,
the results of Theorem 1 are not applicable because the matrix
T is full row-rank only when the corresponding graph is a tree.
However, by eliminating modes from the dual-variable that are
not stable, a similar argument as in the proof of Theorem 1 can
be used to establish an expression for the noise amplification
in the distributed setting in terms of the non-zero eigenvalues
λi of the Laplacian matrix L = TTT .

Proposition 1: The noisy primal-dual gradient flow dynam-
ics (9) for solving distributed optimization problem (25) with
fi(xi) = 1

2mf (xi − ci)2 satisfies J = Ja + J̄ , where

Ja =
s1

2mf
, J̄ =

n−1∑
i=1

s1 + s2
2(mf + λi(L)/µ)

and λi are the non-zero eigenvalues of the Laplacian matrix
L = TTT of connected undirected network.

Proof: See Appendix A.

For quadratic optimization problems, Proposition 1 demon-
strates that, in addition to the strong-convexity module of
the function f , the topology of the network also impacts the
variance amplification. In the limit mf → 0, while the variance
of the average mode Ja becomes unbounded, the mean-square
deviation from the average mode remains bounded and is
captured by the sum of reciprocals of the eigenvalues of the
graph Laplacian. This dependence of variance amplification
on the spectral properties of L is identical to the one observed
in standard consensus algorithms [19], [24].

VI. CONCLUDING REMARKS

We have examined the noise amplification of proximal
primal-dual gradient flow dynamics that can be used to solve
non-smooth composite optimization problems. For quadratic
problems, we have employed algebraic Lyapunov equations
to establish analytical expressions for the noise amplification.
We have also utilized the theory of IQCs to characterize tight
upper bounds in terms of a solution to an LMI. Our results
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show that stochastic performance of the primal-dual dynamics
is inversely proportional to the strong-convexity module of
the smooth part of the objective function. The ongoing work
focuses on examining the impact of network topology on the
noise amplification in distributed settings and on extension of
our results to discrete-time versions of primal-dual algorithms.

APPENDIX

A. Proof of Proposition 1

Let us without loss of generality assume that ci = 0; using
the change of variables y := TT ν, we obtain that the noisy
primal-dual flow satisfies[

dx
dy

]
=

[
−mfI − 1

µL −I
L 0

][
x
y

]
dt+

[
dw1

TTdw2

]
.

Noting that L1 = 0, we can let L = V ΛV T , where
Λ = diag(0, Λ̂) is the diagonal matrix of eigenvalues and
the columns of the unitary matrix V =

[
1/
√
n U

]
are the

corresponding eigenvectors. Using the change of variables

x̂ := UTx, ŷ := UT y, ψ̂T =
[
x̂T ŷT

]
it is easy to verify that

dψ̂ =

[
−mfI − 1

µ Λ̂ −I
Λ̂ 0

]
ψ̂dt+

[
dŵ1

dŵ2

]
where dŵ1 and dŵ2 are the increments of independent Wiener
process with covariance s1It and s2Λ̂t, respectively. In addition,
the average modes associated with the primal and dual variables
a = (xT1)1/n and b = (yT1)1/n satisfy

da = −mf a dt+ dwa, b = 0

and the variance amplification is determined by

J = Ja + J̄ = lim
t→∞

E[‖x̂‖2] + E[a2]

= trace(X1) +
s1

2mf

where X =

[
X1 X2

XT
2 X3

]
is the corresponding state covari-

ance matrix at the steady state[
−mfI − 1

µ Λ̂ −I
Λ̂ 0

]
X + X

[
−mfI − 1

µ Λ̂ Λ̂

−I 0

]

=

[
−s1I 0

0 −s2Λ̂

]
The result follows from noting that X1, X2, and X3 are all
diagonal and

X1 =
s1 + s2

2
(mfI + Λ̂)−1, X2 =

−s2
2
I.
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[24] B. Bamieh, M. R. Jovanović, P. Mitra, and S. Patterson, “Coherence in
large-scale networks: dimension dependent limitations of local feedback,”
IEEE Trans. Automat. Control, vol. 57, no. 9, pp. 2235–2249, September
2012.

931


