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On the asymptotic stability of proximal algorithms for

convex optimization problems with multiple non-smooth regularizers
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Abstract— We consider composite optimization problems in
which the objective function is given by the sum of a smooth
convex term and multiple, potentially non-differentiable, convex
regularizers. We show that a primal-dual method based on
the proximal augmented Lagrangian, which was originally
introduced for problems with two components, can be directly
extended to this multi-block case. Moreover, we prove that the
continuous-time primal-dual dynamics resulting from the prox-
imal augmented Lagrangian are globally asymptotically stable
even in the multi-block case if the set of equilibrium points
is compact. This is in contrast to ADMM where additional
assumptions, e.g., strong convexity of some components, are
required. We then examine three-block problems with two non-
smooth regularizers and establish global asymptotic stability
of splitting dynamic resulting from the proximal augmented
Lagrangian.

Index Terms— Asymptotic stability, composite optimization,
gradient flow dynamics, Lyapunov functions, proximal operator,
proximal augmented Lagrangian, operator splitting.

I. INTRODUCTION

We consider a class of composite optimization problems
with the objective function given by a sum of a smooth
convex term and multiple, possibly non-differentiable, con-
vex regularizers. Such problems arise in a variety of fields
including machine learning [1], [2], image processing [3],
statistics [4], and control theory [5]-[7].

In multi-block optimization, it is advantageous to intro-
duce auxiliary variables. This decouples non-differentiable
parts of the objective function from differentiable ones and
facilitates their separate treatment. For problems with two
blocks, a successful instance of this approach is given by the
celebrated Douglas-Rachford (DR) splitting algorithm [8].
When applied to the Fenchel dual problem, DR splitting
gives the Alternating Direction of Method of Multipliers
(ADMM) [9], which is widely used in practice [4]. Even
though convergence properties of ADMM and DR splitting
algorithms are well understood for two-block problems [10]-
[14], direct extension of ADMM to three-block problems
may not converge without additional assumptions [15].
Hence, extensive efforts have been made to understand addi-
tional conditions for ensuring global convergence of ADMM
in multi-block case; see [16], [17] and reference therein. In
addition to identifying sufficient conditions for convergence,
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several variants of standard ADMM algorithm that result
from different operator splitting rather than DR have also
been studied [18], [19]. To the best of our knowledge, unless
the smooth part of the objective function is strongly convex
or the associated Lagrangian satisfies Kurdyka-Lojasiewicz
condition [20] the global convergence of ADMM in multi-
block case is an open question.

Several operator splitting schemes including DR and
ADMM are particular instances of proximal point itera-
tions [21], [22]. The Method of Multipliers (MM) [4], [23],
a technique broadly used for solving constrained nonlin-
ear programming problems, represents another important
instance within this class. MM can be derived by applying
proximal point iterations to the Fenchel dual problem [24]
and, in contrast to ADMM, there are systematic ways for
setting algorithmic parameters. However, MM involves joint
minimization of the augmented Lagrangian over all primal
optimization variables and this task is typically as challeng-
ing as solving the original optimization problem. Moreover,
joint minimization step in MM precludes parallelization
which is indispensable for large-scale problems.

In [25], instead of minimizing the augmented Lagrangian
with respect to all primal variables, an approach that con-
strains it along the manifold resulting from explicit mini-
mization over the variables appearing in non-smooth com-
ponents was introduced. This approach yields the Proximal
Augmented Lagrangian (PAL), which is determined by the
sum of original smooth terms and Moreau envelopes asso-
ciated with non-differentiable regularizers. In contrast to the
augmented Lagrangian, PAL is a continuously differentiable
function of primal and dual variable and standard tech-
niques from smooth optimization, including Arrow-Hurwicz-
Uzawa primal-dual dynamics [26], can be used to compute
its saddle points. In the two-block case, these primal-dual
dynamics are shown to be globally exponentially stable
in both continuous [25] and discrete [27] time. Moreover,
methods based on proximal augmented Lagrangian are also
convenient for distributed optimization [28] as well as for
the development of second-order techniques for non-smooth
composite optimization [29].

Studying optimization algorithms as continuous-time dy-
namical systems has a rich history, starting with the seminal
paper by Arrow, Hurwicz, and Uzawa [26]. This viewpoint
has recently been advanced and extended to a broad range of
problems including convergence analysis of primal-dual [25],
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[30]-[34] and accelerated [35]—[41] first-order methods.

In this paper, we study continuous-time primal-dual dy-
namics based on proximal augmented Lagrangian for multi-
block convex composite optimization problems. In addition
to smoothness of at least one component in the objective
function, we assume that the set of the solutions is compact
and prove global asymptotic stability of these dynamics in
the multi-block case. We also confine our attention to three-
block problems with two non-smooth convex regularizers and
show that a splitting dynamic based on PAL represents a
continuous-time analogue of the splitting algorithm in [19].

The rest of the paper is organized as follows. In Section II,
we formulate a convex multi-block composite optimization
problem and provide background material. In Section III-
A, we introduce primal-dual gradient flow dynamics based
on proximal augmented Lagrangian and employ a Lyapunov-
based approach to show that the associated set of equilibrium
points is globally asymptotically stable. In Section III-B,
we examine a class of three-block problems with two non-
smooth regularizers and establish global asymptotic stability
of the splitting algorithm resulting from PAL. We conclude
the paper in Section IV with remarks.

II. PROBLEM FORMULATION AND BACKGROUND

We study composite optimization problems of the form,

T

mini@mize flz) + Z 9:(T;x)

i=1

(1)

where = € R"™ is the optimization variable, f: R® — R is a
convex continuously differentiable function with a Lipschitz
continuous gradient Vf, g;: R™ — R are possibly non-
differentiable convex regularization functions, and 7; €
R™i*™ are given matrices. Equivalently, (1) can be cast as

+ Zgz Zz

=1
subject to T;x — z;

minimize
T,z

2)

T . .
where z = [ 2T P ] is the vector of auxiliary
variables z; € R™:.

The proximal operator of a proper, closed, convex function
g is the minimizer of a quadratically-augmented version of g,

1
prox,,(v) = arginin <g(z) + % Iz — v||g>

where 1 is a positive parameter and v is a given vector. The
value function of this optimization problem determines the
associated Moreau envelope,
1 2
Myg(v) = g(prox,,(v)) + % [prox,,,(v) — v[3
which is a continuously differentiable function, even for a
non-differentiable g [21],

Y My (v) = v (3)

— prox,,(v).
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The Lagrangian associated with (2) is given by,
+ Z gz zz

and the corresponding augmented Lagrangian is

Lu(w,zy) = L(w,29) + Y 5| Tiw — 23

L(z,zy) + (Y, Tiw — zi))

Hi

13)

T .
where y = [ y{ yr |" is the vector of Lagrange
multipliers y; € R™ and p;’s are positive parameters.

)+ Z( z) + shllz — (T + o) 3 —

The first-order optimality conditions for (2) are

0 = ) + DTy (4a)
0 € 0gi(zf) —yr,i=1,...,r (4b)
0 = Tix* Si=1,...r (4¢)

and these are equivalent to the optimality condition for (1),

0€ Vi +ZTT89L T;(x*)) 5)

where Jg; is the subdifferntial of g;. On the other hand, the
minimizer of £,, with respect to z; is determined by

i=1,... (6)

and the proximal augmented Lagrangian is obtained by eval-
uating £,, along the manifold determined by z*(z,y) [25],

Z:(xvyz) = proxp,igi(/rix + Nzyz)a T

Lo(zy) == Lu(z,2*(z,y);y)
— fa)+ Z wegs (T + miyi) — 5 [1yil13) -
= ™

Here, M, 4, is the Moreau envelope of the function g; and
the saddle points of (7) are characterized by

0= ) + ZTTV g (Ti™ + piy?)  (8a)
0 = VMugL(TiCC +iyy) — iyl =17
(8b)

We next show that the saddle points (z*, y*) of the proximal
augmented Lagrangian, determined by (8), satisfy optimality
condition (5). Substitution of expression (3) for p; VM, 4,
into (8b) yields

i=1 9)

Since the resolvent operator associated with Jg; is single
valued and prox, , = (I + p;dg;)"", equation (9) is
equivalent to y} € Jg;(T;z*) for i = 1,...,r. Combining
this relation with (8b) and (8a) gives (5).

Tiz* = Prox, . (Tiaj* + myf), T

geeey

III. GLOBAL ASYMPTOTIC STABILITY OF PROXIMAL
GRADIENT FLOW ALGORITHMS

In this section, we introduce a continuous-time system
based on Arrow-Hurwicz-Uzawa (AHU) gradient flow dy-



namics that can be used to compute saddle points of the
proximal augmented Lagrangian (7). For convex problems,
we utilize a Lyapunov-based approach to show that these
saddle points correspond to the set of globally asymptotically
stable equilibrium points of AHU dynamics. Furthermore,
for problem (1) with two non-smooth regularizers and 7} =
T, = I, we utilize a nonlinear coordinate transformation,
inspired by Douglas-Rachford splitting [8], to show that
the approach based on the proximal augmented Lagrangian
yields a continuous-time version of the splitting algorithm
developed in [19]. For convex problems, we prove the global
asymptotic stability of the set of equilibrium points of the
resulting dynamics.

A. Arrow-Hurwicz-Uzawa gradient flow dynamics

The Arrow-Hurwicz-Uzawa gradient flow dynamics based
on proximal augmented Lagrangian (7) are given by

b= =Vf(@@) = Y TV My (T + piy:)
yi = WM (VM[ngi (EI + szz) - yi)7 1= 17 sy T
(10)
We next demonstrate that these primal-descent dual-ascent

dynamics can be used to compute saddle points of (7) and,
thus, to solve convex composite optimization problem (1).

Assumption 1: Let the function f in (1) be convex with
an L ¢-Lipschitz continuous gradient V f and let the regular-
ization functions g; be proper, closed, and convex.

Assumption 2: The set of solutions to problem (1) char-
acterized by (5) and subdifferentials Og; evaluated at T;z*
for each i = 1,...,r are compact.

Remark 1: Assumption 2 provides sufficient conditions
for the equilibrium points of gradient flow dynamics (10),
which are characterized by (8), to form a compact set. The
condition on compactness of the solution set of problem (1)
is satisfied if, for example, the function f is strictly convex
or if at least one of the regularizers is an indicator function
of a compact set. On the other hand, the condition on
compactness of Jg; (T;x*) is satisfied if T;x* is in the interior
domain of g; [42] or if the functions g; are locally Lipschitz
continuous [43] forallt=1,...,r.

Theorem 1: Let Assumptions 1 and 2 hold. Then, the
set of saddle points (z*,y*) of proximal augmented La-
grangian (7) is a globally asymptotically stable equilibrium
set of gradient flow dynamics (10) and each z* is a solution
of (1).

Proof: Let us introduce a Lyapunov function candidate

. 1, . 1 L
V(1'7y) - 5 <.’L‘,(E> + §;<yuyz>
where & := x — 2*, §; = y; — y}, and (z*,y*) is an

equilibrium point of (10) determined by (8). For notational
convenience, we define

zi = zr(x,y) — 22X (ar, y))

= prox,, . (T;x + pyi) — prox,, . (Tiz* + py;)
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and express dynamics (10) in new coordinates as

~(VF(@) = Vf@) = 3 g T (T + pigi = %)

T

Yi

(L)
by utilizing

VMg, (Tix + piyi) — VMg, (Tiz™ + /“Liy;) =
i (TF + wigi — %)
The derivative of V' along the solutions of (11) is given by
— (2, Vf(z) = Vf(z¥)) - ZiHTii’II% +
> i T — g, 21)
— (& Vf(@) = V@) - Y

3

v

wITEl3 +

Hi

(T, 2) = Y (T + padis, 2) -

%

2
Hi

Now, since f is convex with an L j-Lipschitz continuous
gradient [44] and prox,, . is firmly non-expansive [21], we

have
—(z,Vf(z) = Vf(z))
—(Ti% + piGi, Zi)

—1; IV f(2) = V()3

<
< —|Izl13

(12)
and substitution of these upper bounds to V' yields

V< —lIVf(2) = ViEIE -

9

ITE — Z]15.

Thus, V is a negative semidefinite function and the set of
equilibrium points is stable in the sense of Lyapunov.

Furthermore, since V. < 0 for the points satisfying
Vf(x) =V f(x*) and T;& = Z;, dynamics (11) evaluated at
these points become

- TG
i

0,2=1,...,r

T

Yi
and V = (2,3, TT§;). Now, let

= {(a,9) | V(,9) = 0}
;> TFgi) =0, then
& (8 2 T )
<'%7 Zi TzTgl>
=132 T w3
This implies that 27 TiT;z}i = 0. Thus, under dynamics (11),
the largest invariant set {2 C C is given by
Q- {<'7~57?j) | (i‘,ﬂ)ec, ZiﬂT~i:0}’

Next, we show that ) is equivalent to the set of equilibrium
points characterized by (8). For every pair (z,y) such that

C
and note that if <:%

0



(z

,7) € Q, we have

Vi) — Vf(z*) =0 (13a)
ZTT — ) =0 (13b)
Tix — proxmgi(Tix—i—,uiyi) =0,9=1,...,7. (13¢)

Equality (13c) follows from 7T;2 = Zz; and (9), and is
equivalent to y; = VM, (Tix + py) for i = 1,...,r
Substituting these relations to (13b) and then adding (13b)
to (13a) yield optimality condition (8a). Finally, (8b) can
be obtained from (13c) using (3). This shows that €2 is a
compact set and LaSalle’s Invariance Principle implies global
asymptotic stability of the set of equilibrium points. [ ]

B. A splitting algorithm for problems with two regularizers
=Ty =1in (1),

(14)

For two regularization functions with 7T}
minimize f() + g1(x) + ga(a)

optimality conditions (8) for proximal augmented La-

grangian (7) with g1 = po = p simplify to
Vf(@*) + VMg, (2 + pyi) + VMg, (2" + py3) = 0
VMg, (2* + pyi) — yi = 0
VMg, (x* + py3) — y3 = 0.
The last two equalities together with (3) yield
¥ = prox,, (v* + pyy) = prox,, (z* + uys) (15)
and from the above optimality conditions we also have
V") + i +y5 = 0. (16)
Now, introduction of an auxiliary variable
& =" + pyl (17a)
allows us to express z* as
r* = prox,, (§%) (17b)
and combine (16) with (17a) and (17b) to obtain
*+pys =t — pVf(a*) — pyr
— 2t — pVf(at) - €
= 2prox,,, (&) — MVf(proxug1 (&%) — &
17¢)

Finally, substitution of (17a) and (17¢) into (15) yields the
following optimality condition,

Pug (§°) = Pug, (2Pug, (§7) — uV f(Pug, (£9)) — &)
(18)
where, for notational compactness, P4, := prox,,,. and z*

is determined by (17b).

We next demonstrate that the proximal splitting dynamics
obtained from (18),

5 - = Hgl(é-) + PM92(2P

Hg1

pV f( ugl(g)) - §),

&) -
19)
can be used to solve composite optimization problem (14).
We note that the dynamical system in (19) is a continuous-
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time version of the splitting algorithm developed in [19].

Theorem 2: Let Assumption 1 hold and let y € (0,2/Ly).
Then, the set of equilibrium points {z*} of proximal splitting
dynamics (19) is globally asymptotically stable and corre-
sponding 2* = prox,, , (£*) is an optimal solution of (14).

Proof: Let us introduce a change of variables and a
Lyapunov function candidate

1 - 1 N
SIEIE = Sle - €13

where £* satisfies (18). For notational convenience, we also
introduce three nonlinear functions,

V(E) = (20)

A1(§) == Pug (&) — uVf(Pug (£))
Az(8) == Pugi(§) + A1(§)
A(§) = Aa(8) = ¢
and rewrite (19) in new coordinates,
é ( rg1 (E) - Pﬂgl (6*)) + (2])
(Pug2(A(§)) - ug2( (5*)))
The derivative of V' along the solutions of (21) is given by
<£ 5* ng1 (f) - PM91 (g*»
(€ = €% Pug, (A(£)) = Pug, (A(E)))) -

Since the proximal operator is firmly non-expansive [21], the
first term on the right-hand-side satisfies

- <€ - f*» Pugl (f) - Pugl (5*)> < _||Pug1 (f) - Pugl (8)”%
and, since § = As(§) — A(£) = Pug, (§) + A1(§) — A(E).

the second can be written as

(€ =& Pugy (AE)) = Prg, (A(E7)))) =

— (A(§) = A(£), Pugs (A(E)) = Pugo (A7) +
(Pugi (§) = Prugi (€7); Pugo (A(§)) = Prugo (A(E))) +
(A1(E) = A1(€7), Pugy (A(E)) — Prg, (A(E7))) -

(22)
For the first term on the right-hand-side of (22) we have the
following upper bound,

—(A(§) = A(€), Pug. (A(E)) —
~[1Pugs (A(E)) = Pug, (A(E1))II3

Hng2
and for the third, we use the Fenchel-Young inequality

<A (5) Al(f*) Mgz(A(f)) ugz( (5*)»
Q(IIAl(ﬁ)*Al(f*)HﬁIIP#gQ(A(ﬁ)) Prug (A(EN)3) -

Furthermore, from the definition of A;(§), we have

Pug, (A(£9))) <

[A1() = AL(ENNE = [[Pugi (€) = Pugi (€3 +
12|V £ (Poug, (€)) = Vf(Pugi (€13 —
2 (Pugy (§) — Pug (§%), Vf(Pug, (§)) = V(Pug, (8)2)23)

Since f satisfies (12), we have the following upper bound



for (23),

181(6) = Ar(E)IF < [ Pugy (&) = Prugy (€13 —
2/ Ly = IV f(Pug, (§)) = VI (Pugy ()13

For € (0,2/L¢), we can use the above expressions to
upper bound the derivative of V' along the solutions of (21)
with

(24)

=5 [1(Prugy (€) = Pug, (€7)) = (Puga (A(E)) = Prga (A(E7))II3
Finally, using (18) we can write
V < =3 1Pug, (€) = Puga (A3

which shows that V is a negative definite function every-
where apart from the set of equilibrium points, where V' = 0.
This completes the proof. [ ]

IV. CONCLUDING REMARKS

We have considered a class of composite optimization
problems where the objective function can be expressed
as a sum of a smooth convex term and multiple possibly
non-differentiable convex regularizers. We proved that if the
set of equilibrium points is compact, then, unlike existing
ADMM variants, the Arrow-Hurwicz-Uzawa gradient flow
dynamics based on proximal augmented Lagrangian are
globally asymptotically stable even in the multi-block case.
We then confined our attention to a three-block problem
and showed that the splitting dynamics resulting from the
proximal augmented Lagrangian represent a continuous-time
version of the algorithm developed in [19]. In our ongoing
effort, we aim to identify conditions for global exponential
stability of the primal-dual gradient flow dynamics based on
proximal augmented Lagrangian.
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