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Abstract— Policy gradient algorithms in model-free reinforce-
ment learning have been shown to achieve global exponential
convergence for the Linear Quadratic Regulator problem de-
spite the lack of convexity. However, extending such guarantees
beyond the scope of standard LQR and full-state feedback has
remained open. A key enabler for existing results on LQR is
the so-called gradient dominance property of the underlying
optimization problem that can be used as a surrogate for strong
convexity. In this paper, we take a step further by studying
the convergence of gradient descent for the Linear Quadratic
Gaussian problem and demonstrate through examples that
LQG does not satisfy the gradient dominance property. Our
study shows the non-uniqueness of equilibrium points and thus
disproves the global convergence of policy gradient methods for
LQG.

Index Terms— Data-driven control, gradient dominance, gra-
dient decent, nonconvex optimization, observer-based controller,
policy gradient, reinforcement learning.

I. INTRODUCTION

Modern reinforcement learning algorithms have shown
great empirical performance in solving continuous control
problems [1] with unknown dynamics. However, despite the
recent surge in research, convergence and sample complexity
of these methods are not yet fully understood. This has
recently motivated a significant body of literature on data-
driven control to focus on the Linear Quadratic Regulator
(LQR) problem with unknown model parameters with the
primary purpose of providing insight into the behavior and
performance of RL algorithms in more challenging settings.

The LQR problem is the cornerstone of control theory. The
globally optimal solution to LQR is given by a static linear
feedback and, for problems with known models, the solution
can be obtained by solving the celebrated Riccati equation
using efficient numerical schemes with provable convergence
guarantees [2]. In the data-driven setting, existing techniques
are mainly divided into two categories, model-based [3] and
model-free [4]. While model-based techniques use data to
obtain approximations of the underlying dynamics, model-
free methods directly search over the parameter space of
controllers using the reward/cost values without attempting
to form a model.
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Among model-free approaches, simple random search,
which emulates the behavior of gradient descent by forming
estimates of the gradient via cost evaluations, has been shown
to achieve sub-linear sample complexity for LQR [5]. This
can be even further improved to a logarithmic complexity if
one can access the so-called two-point gradient estimates [6],
[7]. These results build on the fact that the gradient descent
itself achieves linear convergence for both discrete [8] and
continuous-time LQR problems [9] despite lack of convexity.
A key enabler for these results is the so-called gradient
dominance property of the underlying optimization problem
that can be used as a surrogate for strong convexity [10].

In this paper, we take a step further by studying the
convergence of gradient descent for the Linear Quadratic
Gaussian (LQG) problem with incomplete state information.
The separation principle states that the solution to the LQG
problem is given by an observer-based controller, which
consists of a Kalman filter and the corresponding LQR
solution. This problem is also closely related to the output-
feedback problem for distributed control, which is known to
be fundamentally more challenging than LQR. In particular,
the output-feedback problem has been shown to involve an
optimization domain with exponential number of connected
components [11], [12]. In contrast, the standard LQG problem
allows for dynamic controllers and do not impose structural
constraints on the controller.

Motivated by the convergence properties of gradient descent
on LQR, we reformulate the LQG problem as a joint
optimization of the control and observer feedback gains whose
domain, unlike the output feedback problem is connected.
We derive analytical expressions for the gradient of the LQG
cost function with respect to gain matrices and demonstrate
through examples that LQG does not satisfy the gradient
dominance property. In particular, we show that, in addition
to the global solution, the gradient vanishes at the origin
for open-loop stable systems. Our study disproves global
exponential convergence of policy gradient methods for
LQG. The analysis of the optimization landscape of the
LQG problem with unknown system parameters has also
been recently provided in [13], where the authors relate the
existence of multiple equilibrium points to the non-minimality
of the controller transfer function.

The rest of the paper is structured as follows. In Section II,
we formulate the LQG problem and provide background
information. In Section III, we derive an analytical expression
for the gradient. In Section IV, we discuss the lack of
gradient domination and non-uniqueness of equilibrium points.
We present numerical experiments in Section V and finally
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provide concluding remarks in Section VI.

II. LINEAR QUADRATIC GAUSSIAN

Consider the stochastic LTI system

ẋ = Ax + Bu + w, y = Cx + v (1a)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the control
input, y(t) ∈ Rp is the measured output, A, B, and C
are constant matrices, and w(t) and v(t) are independent
zero-mean Gaussian white noise processes with covariance
functions E[w(t)wT (τ)] = δ(t− τ)Σw and E[v(t)vT (τ)] =
δ(t− τ)Σv . Here, δ is the Dirac delta (impulse) function and
we assume Σw,Σv � 0 are positive definite matrices. The
Linear Quadratic Gaussian (LQG) problem associated with
system (1a) is given by

minimize
u(t)∈Y(t)

lim
t→∞

E
[
xT (t)Qx(t) + uT (t)Ru(t)

]
(1b)

where Q and R are positive definite matrices and Y(t) is the
set of functions that depend only on the available information
up to time t, i.e., the measured outputs y(s) with s ≤ t.

A. Separation principle

It is well-known that if the pair (A,B) is controllable
and (A,C) is observable, the solution to (1) is given by an
observer-based controller of the form

˙̂x = A x̂ + B u − L(ŷ − y)

ŷ = C x̂, u = −Kx̂
(2)

where x̂(t) ∈ Rn is the state estimate, and L ∈ Rn×p and
K ∈ Rm×n are the observer and controller feedback gain
matrices, respectively [2], [14]. The separation principle states
that the optimal gains K? and L? correspond to solutions
to two decoupled problems associated with (1), namely the
linear quadratic regulator

minimize
K

lim
t→∞

E
[
xT (t)Qx(t) + uT (t)Ru(t)

]
(3)

subject to (1a) with the full-state feedback u = −Kx, and
the Kalman filter, which seeks to

minimize
L

lim
t→∞

E
[
‖e(t)‖2

]
(4a)

subject to the error dynamics

ė = (A− LC) e − Lv + w (4b)

where e := x− x̂ is the state estimation error. The solutions
to these two problems (and also to the original LQG problem)
are given by

K? = R−1BTP ?
c , L?T = Σ−1v CX?

o (5)

where P ?
c and X?

o are the unique solutions to the decoupled
pair of Algebraic Riccati Equations (ARE)

ATP ?
c + P ?

c A + Q − P ?
c BR

−1BTP ?
c = 0

AX?
o + X?

oA
T + Σw − X?

oC
TΣ−1v CX?

o = 0.

B. Characterization based on gain matrices

In this paper, we analyze the LQG problem as optimization
of feedback gain matrices K and L. In particular, the closed-
loop dynamics in (1a) and (2) can be jointly described by

ξ̇ = Acl ξ + µ (6)

where ξ :=
[
xT eT

]T ∈ R2n consists of the state and
error signals, µ :=

[
wT wT − vTLT

]T
is white noise,

and the closed-loop matrix Acl is given by

Acl :=

[
A−BK BK

0 A− LC

]
. (7)

The closed-loop representation (6) allows us to reformulate
the LQG problem as an optimization over the set Sc ×So of
stabilizing gain matrices, where

Sc := {K ∈ Rm×n |A − BK is Hurwitz}
So := {L ∈ Rn×p |A − LC is Hurwitz}.

(8)

In particular, the LQG problem in (1b) amounts to

minimize
K,L

f(K,L) := 〈Ω, X〉 (9)

where X = lim
t→∞

E
[
ξ(t)ξT (t)

]
is the steady-state covariance

matrix associated with closed-loop system (6) and it can be
determined by solving the algebraic Lyapunov equation

AclX + XAT
cl + Σ = 0. (10)

Here, the positive semi-definite matrices Ω, Σ are given by

Ω :=

[
Q+KTRK −KTRK
−KTRK KTRK

]
(11a)

Σ :=

[
Σw Σw

Σw Σw + LΣvL
T

]
. (11b)

The matrix Ω accounts for the weight matrices in the cost
function (1b) and the matrix Σ determines the covariance
function Σδ(t− τ) of µ.

III. GRADIENT METHOD

In this section, we introduce the gradient method on the
LQG objective function over the set of stabilizing gain
matrices Sc × So and discuss its convergence properties.

Lemma 1: For any stabilizing pair of gain matrices
(K,L) ∈ Sc×So, the gradient of the LQG objective function
f in (9) is given by

∇Kf(K,L) = 2(RK −BT P̂1)X̂1 − 2BT P̂2X̂
T
2

∇Lf(K,L) = 2P3(LΣv − X3C
T ) − 2PT

2 X2C
T

where the matrices

X =

[
X1 X2

XT
2 X3

]
, X̂ =

[
X̂1 X̂2

X̂T
2 X̂3

]
P =

[
P1 P2

PT
2 P3

]
, P̂ =

[
P̂1 P̂2

P̂T
2 P̂3

] (12)
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are the unique solutions to the Lyapunov equations

AclX + XAT
cl + Σ = 0 (13a)

Âcl X̂ + X̂ÂT
cl + Σ̂ = 0 (13b)

AT
cl P + PAcl + Ω = 0 (13c)

ÂT
cl P̂ + P̂ Âcl + Ω̂ = 0. (13d)

Here, the matrices Acl, and Ω and Σ are given by (7) and (11),
respectively, and

Âcl :=

[
A−BK LC

0 A− LC

]
(14a)

Ω̂ :=

[
Q+KTRK Q

Q Q

]
(14b)

Σ̂ :=

[
LΣvL

T −LΣvL
T

−LΣvL
T Σw + LΣvL

T

]
. (14c)

Proof: See the appendix.
Using the explicit formula of the gradient in Lemma 1,

the gradient descent method over the set of stabilizing gain
matrices Sc × So follows the update rule

Kk+1 := Kk − α∇Kf(Kk, Lk), K0 ∈ Sc
Lk+1 := Lk − α∇Lf(Kk, Lk), L0 ∈ So

(GD)

where α > 0 is the stepsize.

A. Non-separability of gradients

For the LQG problem, unlike the optimal solution that
satisfies the separation principle, we observe from Lemma 1
that the gradient is not separable as ∇Kf and ∇Lf depend
on both L and K. To provide more insight, let us examine the
value of gradient over two special subsets of the domain Sc×
So, namely Sc×{L?}, where L? is the optimal Kalman gain,
and {K?} × So, where K? is the optimal control feedback
gain in (5).

1) Optimal observer gain L = L?: In this case, from (5)
and the corresponding Riccati equation, it follows that

LΣv = X?
oC

T (15)

where X?
o is the unique positive definite solution to the

Lyapunov equation

(A − LC)X?
o + X?

o (A − LC)T = −Σw − LΣvL
T .

Expanding (13a) and (13b), we observe that X3 and X̂3 also
satisfy the above Lyapunov equation. Thus, since A−LC is
Hurwitz, it follows that

X?
o = X3 = X̂3. (16)

In addition, combining equations (13b), (15), and (16) yields

(A−BK)X̂2 + X̂2(A− LC)T = 0. (17)

Now, since K ∈ Sc and L ∈ So, we obtain that X̂2 = 0.
Form this equation in conjunction with (15) and (16), we

obtain that the following terms in the gradient vanish

BT P̂2X̂
T
2 = 0, P3(LΣv − X3C

T ) = 0 (18a)

and thus the gradient simplifies to

∇Kf(K,L?) = 2(RK −BT P̂1)X̂1

∇Lf(K,L?) = − 2PT
2 X2C

T .

Remark 1: As we demonstrate in the proof of Lemma 1,
for any stabilizing gains L and K, the matrix X̂2 is given by

X̂2 = lim
t→∞

E
[
e(t)x̂T (t)

]
.

Thus, the equality X̂2 = 0 can be directly established using
the orthogonality principle which states that the optimal
estimator is orthogonal to the estimation error.

2) Optimal control gain K = K?: Similar to the previous
case, from (5) and the corresponding Riccati equation, it
follows that

RK = BTP ?
c

where P ?
c is the unique positive definite solution to the

Lyapunov equation

(A − BK)P ?
c + P ?

c (A − BK)T = −Q − KTRK.

Combining this equations with (13c) and (13d) yields P̂1 =
P ?
c and P2 = 0. Thus, we have

(RK −BT P̂1)X̂1 = 0, PT
2 X2C

T = 0 (18b)

which yields

∇Kf(K?, L) = − 2BT P̂2X̂
T
2

∇Lf(K?, L) = 2P3(LΣv − X3C
T ).

We observe that ∇Kf(K?, L) and ∇Lf(K,L?) do not
vanish and thus the sets Sc × {L?} and {K?} × So are
not invariant with respect to the gradient descent method.
Therefore, unlike the optimal solutions, the gradient of the
LQG objective function may not be decoupled.

IV. LACK OF GRADIENT DOMINATION

Recently, it has been shown that the gradient descent
method achieves linear convergence for the LQR problem
with full-state feedback in both discrete [8] and continuous-
time [9] settings. These results build on the key observation
that the full-state feedback LQR cost in (3) as a function of
the feedback gains, denoted by g(K), satisfies the Polyak-
Łojasiewicz (PL) condition over its sub-levelsets, i.e.

‖∇g(K)‖2F ≥ µg (g(K) − g(K?)) (19)

for some constant µg > 0. The PL condition, also known
as gradient dominance, can be used as a surrogate to strong
convexity to ensure convergence of gradient descent at a linear
rate even for nonconvex problems. This observation raises
the question of whether the LQG problem is also gradient
dominant.
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In addition, it has been recently shown that the set of
stabilizing gains for the case of static output feedback, i.e. u =
−Ky, y = Cx consists of multiple connected components
and local minima [12], which hinders the convergence of local
search algorithms. However, in contrast to the static output
feedback problem, the joint optimization of the controller
and observer feedback gains for the LQG, as studied in this
paper, involves the connected domain Sc × So.

We now demonstrate that despite connectivity of the
optimization domain, this formulation yet suffers from the
existence of non-optimal equilibrium points and thus lack of
gradient domination.

A. Non-uniqueness of critical points

The nonconvexity of the function f suggests the possibility
of having multiple critical points ∇f(K,L) = 0. In this
section, we demonstrate that this is in fact the case by
providing two of such points for the LQG problem in the
general form. This should be compared and contrasted to the
full-state feedback LQR problem which, despite nonconvexity,
has been shown to have a unique critical point.

1) Global minimizer: The most obvious critical point is
the unique global minimizer of f , which is given by (5).
To verify this, note that for the optimal gains L? K?, we
have (18a) and (18b), respectively. Using these equations,
and the form of gradient in Lemma 1, it immediately follows
that ∇f(K?, L?) = 0.

2) The origin for stable systems: To find another critical
point, let us assume for simplicity that the system is open-
loop stable. We next show that the origin (K,L) = (0, 0) is
also a critical point, i.e., ∇f(0, 0) = 0.

For (K,L) = (0, 0), from (13b) it follows that X̂1 =
X̂2 = 0. In addition, from (13c), it follows that P2 = P3 =
0. Combining these equalities and the form of gradient in
Lemma 1 ensures ∇f(0, 0) = 0.

The existence of the sub-optimal critical point (K,L) =
(0, 0) also implies that gradient domination may not hold for
the LQG problem.

V. AN EXAMPLE

We consider the mass-spring-damper system in Figure 1
with s masses to demonstrate the performance of gradient
descent given by (GD) on the LQG problem over the
set Sc × So of stabilizing gains. We set all spring and
damping constants as well as masses to unity. In state-space
representation (1a), the state vector x = [ pT vT ]T contains
the position and velocity of masses and the measured output
y = p is the position only. In this example, the dynamic,
input, and output matrices are given by

A =

[
0 I
−T −T

]
, B =

[
0
I

]
, C =

[
I 0

]
where 0 and I are zero and identity matrices of suitable size,
and T is a Toeplitz matrix with 2 on the main diagonal, −1
on the first super and sub-diagonals, and 0 elsewhere.

We solve the LQG problem with Q = Σw = I , R =
Σv = I for s = 50 masses, i.e., n = 2s state variables. The

M1 Ms

u1 us

Fig. 1. Mass-spring-damper system.

f
(K

k
,L

k
)
−
f

(K
?
,L

?
)

f
(K

0
,L

0
)
−
f

(K
?
,L

?
)

iteration
Fig. 2. Convergence curve of gradient descent for s = 50.

algorithm was initialized with scaled matrices of all ones
K0 = (L0)T = 10−51. Figure 2 illustrates the convergence
curves of gradient descent with a stepsize selected using a
backtracking-based procedure initialized with α0 = 10−3 that
guarantees stability of the feedback loop and ensures descent.
The optimal solution K?, L? is obtained using (5) and the
corresponding Riccati equations.

VI. CONCLUDING REMARKS

Motivated by the recent results on the global exponential
convergence of policy gradient algorithms for the model-
free LQR problem, in this paper we studied the standard
LQG problem as optimization over controller and observer
feedback gains. We present an explicit formulae for the
gradient and demonstrate that for open-loop stable systems,
in addition to the unique global minimizer, the origin is also
a critical point for the LGQ problem, thus disproving the
gradient dominance property. Numerical experiments for the
convergence of gradient descent are also provided. Our work
is ongoing to identify conditions under which gradient decent
can solve the LQG problem at a linear rate.

APPENDIX

To obtain ∇Lf(K,L), we use the Taylor series expansion
of f(K,L+ L̃) around (K,L) and collect first-order terms.
From (9), we have

f(K,L+ L̃)− f(K,L) ≈
〈
∇Lf(K,L), L̃

〉
=
〈

Ω, X̃
〉

(20a)

where X̃ is the unique solution to

AclX̃ + X̃AT
cl = −ÃclX − XÃT

cl − Σ̃

=

[
0 X2C

T L̃T

L̃CXT
2 L̃CX3 +X3C

T L̃T

]
− Σ̃ =: Φ (20b)
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Here, the first equality is obtained by differentiating Lyapunov
equation (10), and the second follows by noting that

Ãcl =

[
0 0

0 −L̃C

]
, Σ̃ =

[
0 0

0 L̃ΣvL
T + LΣvL̃

T

]
.

Using the adjoint identity and (20), we obtain that〈
∇Lf(K,L), L̃

〉
= 〈−Φ, P 〉

where P is given by (13c). Rearranging terms completes the
proof for ∇Lf(K,L).

In order to obtain ∇Kf(K,L), we use a slightly different
representation of the objective function. In particular, if we let
ξ̂ :=

[
x̂T eT

]T
, it is easy to verify that the closed-loop

system satisfies

˙̂
ξ = Âcl ξ̂ + µ̂

where the closed-loop matrix Âcl is given by (14a) and µ̂ =[
vTLT wT − vTLT

]T
. Furthermore, it is straightforward

to verify that for any stabilizing gain matrices K ∈ Sc and
L ∈ So, the LQG cost in (1b) is given by

f(K,L) :=
〈

Ω̂, X̂
〉

(21)

where X̂ = lim
t→∞

E
[
ξ̂(t)ξ̂T (t)

]
is the unique solution to the

algebraic Lyapunov equation (13b) and and the matrices Ω̂
and Σ̂ are given by (14). Now, using this representation, the
same technique as in the first part of the proof can be used
to obtain ∇Lf(K,L). This completes the proof.
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