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ABSTRACT
We simulate the scientific performance of the Nancy Grace Roman Space Telescope High Latitude Survey (HLS) on dark energy
and modified gravity. The 1.6-yr HLS Reference survey is currently envisioned to image 2000 deg2 in multiple bands to a depth
of ∼26.5 in Y, J, H and to cover the same area with slit-less spectroscopy beyond z = 3. The combination of deep, multiband
photometry and deep spectroscopy will allow scientists to measure the growth and geometry of the Universe through a variety
of cosmological probes (e.g. weak lensing, galaxy clusters, galaxy clustering, BAO, Type Ia supernova) and, equally, it will
allow an exquisite control of observational and astrophysical systematic effects. In this paper, we explore multiprobe strategies
that can be implemented, given the telescope’s instrument capabilities. We model cosmological probes individually and jointly
and account for correlated systematics and statistical uncertainties due to the higher order moments of the density field. We
explore different levels of observational systematics for the HLS survey (photo-z and shear calibration) and ultimately run a
joint likelihood analysis in N-dim parameter space. We find that the HLS reference survey alone can achieve a standard dark
energy FoM of >300 when including all probes. This assumes no information from external data sets, we assume a flat universe
however, and includes realistic assumptions for systematics. Our study of the HLS reference survey should be seen as part of a
future community-driven effort to simulate and optimize the science return of the Roman Space Telescope.

Key words: cosmological parameters – cosmology: theory – large-scale structure of the Universe.

1 I N T RO D U C T I O N

In the current Lamda cold dark matter (�CDM) paradigm cosmic
acceleration is caused by the �-term in the Einstein field equations

� E-mail: timeifler@gmail.com

(Einstein 1917). In terms of physical interpretation, � can be
associated with the Universe’s geometry or it can describe a new
energy component of the universe, so-called dark energy. In 1998,
two teams (Riess et al. 1998; Perlmutter et al. 1999) measured the
energy density of �, ��, to be consistent with a value close to 0.7.
To date, the science community lacks a convincing physics model for
cosmic acceleration; constraining its properties and testing it against
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alternative theories is one of the main science drivers of ongoing and
future surveys.

Major progress on this topic is made by the current (Stage 3)
generation of photometric surveys, such as Kilo-Degree Survey
(KiDS1), the Hyper Suprime Cam (HSC2), the Dark Energy Survey
(DES3), and spectroscopic surveys, such as the Baryon Oscillation
Spectroscopic Survey (BOSS4). These low-redshift constraints of
the (�CDM) model can be contrasted with cosmic microwave
background (CMB) measurements from the early Universe made e.g.
by the Planck5 satellite, the Atacama Cosmology Telescope (ACT6),
and the South Pole Telescope (SPT7). An emerging tension between
these high- and low-redshift (�CDM) constraints may be indicative
of new physics.

The potential tension between measurements, and with it the
probability to discover new physics, increases with decreasing
statistical uncertainty and better systematics control. With the advent
of so-called Stage 4 surveys, e.g. the Dark Energy Spectroscopic
Instrument (DESI; DESI Collaboration et al. 2016), the Prime Focus
Spectrograph (PFS; Takada et al. 2014), the Large Synoptic Survey
Telescope (LSST;8 Ivezić et al. 2019), Euclid9 (Laureijs et al. 2011),
the Spectro-Photometer for the History of the Universe, Epoch of
Reionization, and Ices Explorer (SPHEREx;10 Doré et al. 2014), and
the 4-metre MultiObject Spectroscopic Telescope (4MOST; de Jong
2019), the science community can expect an abundance of data to
study the late-time Universe at increased precision. Similarly, the
next generation of CMB surveys, such as the Simons Observatory
(SO; Ade et al. 2019) and CMB-S4 (Abazajian et al. 2016) will
enable us to contrast high and low redshift at increased precision and
to combine information from both eras to increase the constraining
power on cosmological models.

The Roman Space Telescope11 (Spergel et al. 2015) is a successor
mission to NASA’s ground-breaking telescope endeavors such as the
Hubble Space Telescope (HST12), the Spitzer Space Telescope,13 and
in the near future the James Webb Space Telescope (JWST14). The
Roman Space Telescope’s science portfolio ranges from exoplanets to
astrophysics to cosmology, building on a variety of standalone survey
components: a microlensing survey, direct imaging of exoplanets, a
supernovae (SNe) survey, a guest observer program, and the High
Latitude Survey (HLS). The latter is the main focus of this paper;
in particular, we aim to quantify the HLS’ constraining power on
physics driving the late-time accelerated expansion of the Universe
through a combination of multiband imaging and spectroscopy.

The Roman Space Telescope is designed as a highly versatile
missions that can flexibly react to findings of the aforementioned
surveys. Its launch is planned for the mid-2020s into an L2 orbit
with a nominal mission length of 5 yr; however, this primary survey
can be extended given that there are no consumables that prevent a

1http://www.astro-wise.org/projects/KIDS/
2http://www.naoj.org/Projects/HSC/HSCProject.html
3http://www.darkenergysurvey.org/
4http://www.sdss3.org/surveys/boss.php
5https://sci.esa.int/web/planck
6https://act.princeton.edu/
7https://pole.uchicago.edu/
8https://www.lsst.org/
9https://sci.esa.int/web/euclid
10http://spherex.caltech.edu/
11https://roman.gsfc.nasa.gov/
12https://hubblesite.org/
13http://www.spitzer.caltech.edu/
14https://www.jwst.nasa.gov/

Figure 1. An example Roman Space Telescope survey strategy as taken
from the SDT 2015 report (Spergel et al. 2015) and computed from the
exposure time calculator (ETC v0.13; Hirata et al. 2012). The individual
survey components are colored into the timeline graphic: blue for the SN
survey, magenta for microlensing, and red and yellow for the HLIS and
HLSS, respectively. The remaining time will be allocated as guest observer
proposals to the science community.

10+yr mission. The exact composition of the survey, i.e. the time
allocation for the different science cases and the survey strategy
within each science case is one of the most important topics that the
community will discuss over the coming years prior to launch.

Fig. 1 shows an example Roman Space Telescope survey scenario
composed of a 1.6-yr HLS, 6 months of SN observations distributed
over 2 yr, an exoplanet and microlensing survey component, and a
competed guest observer program that encompasses 25 per cent of
the overall observing time. For the purpose of this paper we mainly
focus on the HLS component, which can be divided further into the
HLIS (High Latitude Imaging Survey) and the HLSS (High Latitude
Spectroscopic Survey).

The reference survey of the Roman Space Telescope covers
2000 deg2 with high-resolution, multiband photometric imaging
in four near-infrared bands (HLIS) and deep grism spectroscopy
(HLSS). This combination allows us to measure a variety of cos-
mological probes, e.g. weak lensing, photometric galaxy clustering,
galaxy clusters, redshift space distortions (RSDs), and baryon acous-
tic oscillations (BAOs). Together with the SN survey, the reference
HLS is designed to control systematics with minimal uncertainties;
it will place tight constraints on the expansion history and structure
growth in the Universe addressing questions about the nature of
cosmic acceleration, neutrino physics, modified gravity, and dark
matter.

In this paper, we develop a framework to simulate multiprobe
strategies specifically for the Roman Space Telescope. We outline
the top-level concepts of combining cosmological probes including
inference and covariance implementation in Section 2, where we also
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show the main results of the paper, i.e. the Roman Space Telescope
forecast that includes weak lensing, galaxy–galaxy lensing, galaxy
clustering (photometric and spectroscopic), galaxy clusters number
counts, cluster weak lensing, and SN Ia. We consider subsets of this
joint analysis and explore the impact of systematics in Sections 3–5.
We conclude in Section 6.

2 M U LT I P RO B E L I K E L I H O O D A NA LY S E S

Contrasting and subsequently combining multiple probes is one
of the most promising avenues to constrain cosmology: Different
probes are sensitive to different physics in the Universe, and they
are affected differently by astrophysical uncertainties and observa-
tional systematics. Corresponding multiprobe strategies are relatively
straightforward to implement if the observables are independent, e.g.
when combining CMB temperature and polarization with BAO and
SN Ia; however, the story is much more complex when combining
correlated probes. In the latter case, one cannot simply combine the
most sophisticated version of the single probe analyses a posteriori,
but instead the analysis requires a joint covariances matrix that
includes the statistical correlations and one must ensure the consistent
modelling of systematics that affect the probes considered.

The Roman Space Telescope’s combination of spectroscopic and
imaging instrumentation enables measuring a variety of LSS probes,
such as weak lensing, galaxy clusters, galaxy clustering, and SN
Ia. The latter can be treated as independent information, though
SN magnification in overdense regions could become non-negligible
at some point in the future. The other probes however are tracers
of the same underlying density field, where modes are significantly
correlated due to non-linear evolution of the late-time density field. A
corresponding likelihood analysis requires a multiprobe covariance
matrix.

2.1 Analysis choices

Designing a multiprobe analysis for the galaxies observed with the
Roman Space Telescope reference survey can be broadly split into
the following steps:

(i) Choose broad categories of cosmological probes that are to be
combined: For our Roman Space Telescope reference survey, these
are weak lensing, galaxy clusters, galaxy clustering (photometric and
spectroscopic).

(ii) Define specific probe combinations and summary statistics
that make up the data points of the data vector, which in our case
are one-point functions and two-point functions that represent the
corresponding probes. We do not consider higher-order correlation
functions.

(iii) Define the galaxy samples that are associated with the
aforementioned probes. We use the Roman Space Telescope ETC
(Hirata et al. 2012) to compute realistic survey scenarios for the
Roman Space Telescope’s coverage of area and depth in a given
band. We fix the time per exposure and vary the number of exposures
to build up depth over the survey area of a given scenario. For the
HLS Reference Survey, this area is 2000 deg2. The total survey time
for a given number of exposures includes a simple prescription for
overheads and is correct to approximately 10 per cent.

In order to obtain accurate redshift distributions, we closely follow
Hemmati et al. (2019) in applying the ETC results to the CANDELS
data set (Grogin et al. 2011; Koekemoer et al. 2011), which is
the only data set available that is sufficiently deep in the near-
infrared to model Roman Space Telescope observations. The ETC

has a built-in option to obtain a weak lensing catalogue based on an
input catalogue of detected sources. The criteria for galaxies to be
considered suitable for weak lensing are signal-to-noise ratio (S/N)
> 18 (J+H band combined, matched filter), ellipticity dispersion σ ε

< 0.2, and resolution factor R > 0.4, where we used the Bernstein &
Jarvis (2002) convention (i.e. ε = (a2 − b2)/(a2 + b2) instead of (a
− b)/(a + b)).

We apply these selections to the CANDELS catalogue and obtain
our source sample for the HLS 4 NIR band survey. For the lens
sample, we select CANDELS galaxies with S/N > 10 in each of
the four HLS bands. Our Roman Space Telescope analysis assumes
LSST photometry from the ground, hence we further down-select
both samples by imposing an S/N > 5 cut in each LSST band except
for the u band (we note that 50 per cent of our galaxy sample has
S/N > 5 in the u band as well).

The resulting number densities for the HLS are

n̄source = Nsource/�s = 51 galaxies arcmin−2, (1)

n̄lens = Nlens/�s = 66 galaxies arcmin−2 . (2)

where �s is the HLS reference survey area. We impose a zmin =
0.25 for the lens sample and define 10 tomographic bins for each
sample such that n̄i

x = n̄x/10. These tomographic bins are then
convolved with a Gaussian distribution, which is further described
in Section 3.3.

We consider two different Gaussian photo-z scenarios: an opti-
mistic variation with mean zero and narrow width of σ z = 0.01 and
a more pessimistic scenario with broader kernel of σ z = 0.05. The
resulting redshift distributions are depicted in Fig. 2:

(a) Source galaxy sample, for which we require position,
photometric redshift, and galaxy shape measurements.

(b) Lens galaxy sample, for which we require position and
photometric redshift measurements.

(c) Galaxy clusters, for which we require position, photomet-
ric redshift, and optical richness estimates for galaxy clusters
that are identified in the overall galaxy catalogue.

(d) Spectroscopic galaxy sample, which requires measure-
ments of positions and spectroscopic redshifts.

(iv) Define exact analysis choices. Given that we are looking at
two-point functions as summary statistics, we need to decide on the
exact auto and cross-galaxy samples that constitute a cosmological
probe. Further, we need to define the exact binning within each
probe, in particular which angular scales and tomographic redshift
binning are considered. The decision tree for these choices is complex
and takes into account our ability to accurately model physics and
systematics at specific angular scales and redshifts, and in particular
our ability to model the correlations across all data points in the
covariance matrix. For the data vector that we use to simulate the
HLS reference Survey, we choose the follows:

(a) Source galaxies – cosmic shear: In terms of angular bin-
ning, we universally choose 25 logarithmically spaced Fourier
mode bins ranging from lmin = 30 to lmax = 15 000 for all
two-point functions in our data vector; however, we impose
different scale cuts for the different probes. The idea of universal
binning across probes is driven by the desire to avoid computing
cross-covariances of probes with different l-binning. For the
cosmic shear part of the data vector we impose a scale cut
of lmax(cosmic shear) = 4000, which leaves 20 bins that carry
information. The ten tomographic bins translate into 55 auto
and cross-power spectra.

MNRAS 507, 1746–1761 (2021)
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Figure 2. The redshift distributions for the lens and source galaxy sample for
two different levels of photometric redshift precision, σz = 0.01 and 0.05,
respectively. These map on to our optimistic and pessimistic systematics
scenarios considered for the HLIS.

(b) Lens galaxies – photometric clustering: The redshift
distribution for the lens sample is further detailed in Section 3.3
and divided into 10 tomographic bins. We exclude l-bins, if
scales below Rmin = 2π/kmax = 21 Mpc h−1 contribute to the
Limber integral (see equation 5), which imposes a redshift-
dependent scale cut in the l-binning.

(c) Lens × source galaxies – photometric galaxy-galaxy
lensing: The galaxy–galaxy lensing part of the data vector
assumes the lens galaxy sample as foreground and the source
galaxy sample as background galaxies; we only consider
source–lens combinations where the source bin is fully behind
the lens bin in redshift. We again impose a cut-off at Rmin =
21Mpc h−1.

(d) Galaxy cluster number counts: This is the one-point
function we include in our data vector. We split our cluster
sample into four cluster redshift bins (0.4–0.6, 0.6–0.8, 0.8–
1.0, 1.0–1.2) and four cluster richness bins between λmin = 40
and λmax = 220 in each redshift bin.

(e) Galaxy clusters× source galaxies – cluster weak lensing:
In order to calibrate the cluster mass–richness relation (equa-
tion 26), we consider the stacked weak lensing signal from all
combinations of cluster redshift and richness bins with source
galaxies, with the restriction that source galaxies are located

at higher redshift than the galaxy clusters. Specifically, we use
the cluster lensing power spectrum in the angular range 4000 <

l < 15 000, which corresponds mostly to the one-halo cluster
lensing signal.

(f) Spectroscopic × spectroscopic – spectroscopic galaxy
clustering: While our analysis considers all cross-covariance
terms for the five cosmological probes above, the Roman Space
Telescope’s spectroscopic clustering is treated as an independent
probe whose cosmological information is determined separately
and added a posteriori. This is an approximation; however, the
derivation of a 2D + 3D joint covariance is beyond the scope
of this paper and deferred to future work. Our spectroscopic
clustering data vector is comprised of 3D power spectrum
Fourier modes P(k, μ) and we select 100 logarithmic bins
ranging from kmin = 0.001 to kmax = 0.3 hMpc−1, 10 linearly
spaced μ bins from 0 to 1.0, and 7 density-weighted redshift
bins that start at 0.83 and range out to 3.7. This data vector
captures both the BAO and RSD information.

2.2 Inference, likelihoods, covariances

Given the data vector D, we sample the joint parameter space of
cosmological pc and nuisance parameters pn using the EMCEE15

(Foreman-Mackey et al. 2013), which is based on the affine-invariant
sampler of Goodman & Weare (2010). At each step, we compute the
posterior using Bayes’ theorem:

P ( pc, pn|D) ∝ Pr ( pc, pn)︸ ︷︷ ︸
SN Ia

L(D| pc, pn)︸ ︷︷ ︸
HLS

. (3)

Pr ( pc, pn) denotes the prior probability, which, in our case, is based
on the Roman Space Telescope SN Ia survey forecast from (Hounsell
et al. 2018). Specifically, we reran the ‘Imaging: Allz (optimistic)’
scenario (cf. section 5.4 and table 13 in Hounsell et al. 2018) centred
it on the fiducial cosmology of our analysis. We did not include any
information from CMB or BAO experiments, which explains the
different contours compared to Hounsell et al. (2018).

The cosmological information from the HLS enters our simula-
tions through the second term in equation (3), i.e. the likelihood,
L(D| pc, pn) = N × exp(−(1/2)χ2( pc, pn)). We assume that the
errors of this data vector are distributed as a multivariate Gaussian:

L(D| pc, pn) = N × exp

(
−1

2

[
χ2

HLIS( pc, pn) + χ2
HLSS( pc, pn)

])
,

(4)

which is composed of two χ2 = (D − M)t C−1 (D − M) terms
reflecting our approximation that the cosmological information from
HLSS and HLIS is independent. We note that future work should
explore correlations between HLIS and HLSS and develop a joint
covariance matrix for these measurements. N is a normalization
constant.

Based on the analysis choices (probes, redshifts, scales) described
in Section 2.1 we compute the data vectors and covariance matrices
for HLIS and HLSS at the fiducial cosmology and systematics
parameters (see Tables 2, 5 and 7 for the different probes). In case
of the HLSS survey the covariance matrix is diagonal and further
described in Section 5, in case of the HLIS, the matrix has significant
off-diagonal terms (see Fig. 3).

Fig. 3 illustrates the structure of the matrix with the autoprobe
matrices denoted as numbers 1–5 corresponding to cosmic shear (1),

15https://emcee.readthedocs.io/en/stable/
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Figure 3. The multiprobe covariance matrix for the HLIS survey, calculated under the Limber approximation, where we have highlighted some parts of the
matrix to illustrate the correlation structure: (1) depicts the cosmic shear covariance matrix, comprised of 55 tomographic combinations of source bins, each
with 20 fourier l-bins. (5) shows one of the tomographic combinations, and the individual l1, l2 elements are clearly visible. (2) is the galaxy–galaxy lensing
tomography covariance with (8) being the galaxy–galaxy combinations of the fourth lens bin with all the non-overlapping source bins at higher redshifts. (3) is
the clustering autoprobe matrix with 10 tomographic bins. (4) corresponds to the cluster number counts autoprobe matrix, which is comprised of four cluster
redshift bins each with four richness bins (hardly distinguishable within in the four yellow squares). (5) is the autoprobe covariance of the cluster weak lensing
part of the data vector, which uses the four cluster redshift bins as lens bins and the source sample as source bins. (10) zooms into the covariance of the fourth
cluster redshift bin, which again is split into four richness bins, all of which are then correlated with the highest four source galaxy redshift bins. One can
see that the diagonal structure consists of 16 blocks that are each composed of 5×5 elements. The latter correspond to the covariance of the five cluster weak
lensing l-bins, which range from l ∈ [4000–15 000]. Zoom-in box (6) is a zoom into the first tomographic bin combination cosmic shear covariance matrix, and
(7) shows the cross-probe covariance of cosmic shear and galaxy–galaxy lensing. The impact of the kmax scale cuts causes the blocks to be non-quadratic. The
Limber approximation leads to non-Gaussian terms only for specific combinations of lens and source tomographic bins (all three source bins need to be behind
the lens bin). (9) is the cross-probe covariance of galaxy clustering and cluster number counts, which only has non-zero elements when both probes overlap in
redshift, i.e. in the range z ∈ [0.2–1.2]. The shape of the yellow rectangles is determined by the number of l-bins used in the clustering data vector, i.e. 20, and
the number of richness bins in cluster number counts, i.e. four.

galaxy–galaxy lensing (2), photometric galaxy clustering (3), cluster
number counts (4), and cluster weak lensing (5). Calculation of the
individual terms of the covariance can be found in the Appendix
(equations A2–A14 of Krause & Eifler 2017).

Since this covariance matrix is calculated analytically and not
estimated from either simulations or data, it can be considered noise-
free and is easily invertible. It does not inherently limit the number
of data points that can enter our analysis, which would be the case
if the covariance were computed from a limited set of realizations
(see e.g. Taylor, Joachimi & Kitching 2013; Dodelson & Schneider
2013, for details on these constraints).

We compute figures of merit (FoMs) from the parameter covari-
ance extracted from the MCMC chains. We note that for highly
non-Gaussian posteriors this process will not accurately map con-
straining power. Given the parameter covariance, we compute the
FoM = [det C(p1, p2)]−1/2. In almost all cases in this paper (p1,
p2) = (w0, wa), which makes it consistent with the well-known dark
energy FoM; however, when considering the modified gravity FoM,
we use the modified gravity parameters (p1, p2) = (μ, 	). The FoMs

for the multiprobe analysis depicted in Fig. 4 can be found in Table
1; all likelihood settings are summarized in Table 2.

3 C O S M I C SH E A R A N D G A L A X Y C L U S T E R I N G

We start exploring the Roman Space Telescope multiprobe analyses
by looking at the HLIS weak lensing and photometric galaxy
clustering probes, which when combined with galaxy–galaxy lensing
form a so-called 3×2pt analysis. Here, we summarize the com-
putation of angular (cross)-power spectra for the different probes
and the computation of galaxy cluster number counts. We use
capital Roman subscripts to denote observables, A,B ∈ {

κ, δg, δλα

}
,

where κ references lensing, and δg is the density contrast of
(lens) galaxies. The density contrast of galaxy clusters in richness
bin α, δλα

, will be considered in Section 4. The results for the
3x2 fiducial likelihood analyses are summarized in Fig. 5 and
Table 3; a systematics study is shown in Fig. 6 and quantified in
Table 4.
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Figure 4. Left-hand panel: individual probes considered in this analysis, i.e. weak lensing, photometric galaxy clustering, galaxy cluster number counts
calibrated through cluster weak lensing, RSD power spectra including the BAO scale, and SN Ia. Right-hand panel: multiprobe analyses starting from weak
lensing only, then adding photometric clustering and galaxy–galaxy lensing (3×2), then adding cluster number counts and cluster weak lensing, then adding
RSD and BAO information, and lastly adding in SN Ia based on the findings of (Hounsell et al. 2018). The FoMs for the individual and multiprobe chains can
be found in Table 1.

Table 1. FoMs for individual and multiprobe chains depicted in Fig. 4.

Multiprobe FoM summary
Probe Individual Cumulative

Cosmic shear 9.8 9.8
3×2 23.46 23.46
Clusters 3.86 31.56
RSD + BAO 8.19 89.54
SN Ia 24.62 300.11

Notes. Note that 3×2 includes cosmic shear. All FoMs assume a flat universe.

3.1 Modelling of observables

We calculate the angular power spectrum between redshift bin i of
observable A and redshift bin j of observables B at projected Fourier
mode l, C

ij

AB (l), using the Limber and flat-sky approximations (we
refer to e.g. Fang et al. 2019, for the potential impact when analysing
data):

C
ij

AB (l) =
∫

dχ
qi

A(χ )qj

B (χ )

χ2
PAB (l/χ, z(χ )), (5)

where χ is the comoving distance, qi
A(χ ) are weight functions of the

different observables given in equations (6) and (7), and PAB(k, z) are
the three-dimensional, probe-specific power spectra detailed below.
The weight function for the projected galaxy density in redshift bin
i, qi

δg
(χ ) is, given the normalized comoving distance probability of

galaxies in this redshift bin,

qi
δg

(χ ) = ni
lens(z(χ ))

n̄i
lens

dz

dχ
, (6)

with ni
lens(z) the redshift distribution of galaxies in (photometric)

galaxy redshift bin i (cf. equation 17), and n̄i
lens the angular number

densities of galaxies in this redshift bin (cf. equation 1). For the
convergence field, the weight function qi

κ (χ ) is the lens efficiency,

qi
κ (χ ) = 3H 2

0 �m

2c2

χ

a(χ )

∫ χh

χ

dχ ′ n
i
source(z(χ ′))dz/dχ ′

n̄i
source

χ ′ − χ

χ ′ , (7)

with ni
source(z) the the redshift distribution of source galaxies in

(photometric) source redshift bin i (equation 17), n̄i
source is the angular

number densities of source galaxies in this redshift bin (equation 1),
and a(χ ) is the scale factor.

The three-dimensional power spectra PAB(k, z) can be expressed
through the matter density power spectrumPmm(k, z). For the purpose
of this section, Pmm(k, z) corresponds to the density power spectrum
Pδδ(k, z), where we use the Takahashi et al. (2012) fitting formula to
model non-linear evolution. Noting that PAB = PBA, we describe the
different cases in equations (8, 9, 23). For A = κ , this is trivial:

PκB (k, z) = PmB (k, z) . (8)

For quantities related to the galaxy density, we note that we only
consider the large-scale galaxy distribution, where it is valid to
assume that the galaxy density contrast on these scales can be
approximated as the non-linear matter density contrast times an
effective galaxy bias parameter bg(z):

PδgB (k, z) = bg(z)PmB (k, z) . (9)

3.2 Modified gravity modelling

Since there is no compelling model of modified gravity, we adopt
phenomenological modified gravity parameters (μ0, 	0) that we
define similar as e.g. Simpson et al. (2013).

In this parametrization the expressions for the Newtonian po-
tential 
 and the curvature potential � that govern the perturbed
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1752 T. Eifler et al.

Table 2. Fiducial parameters, flat priors (min, max) for cosmology and
galaxy bias, and Gaussian priors (μ, σ ) for observational systematics.

Parameter Fiducial Prior

Survey
�s 2000 deg2 Fixed
nsource 51 galaxies arcmin−2 Fixed
nlens 66 galaxies arcmin−2 Fixed
σ ε 0.26 Fixed

Cosmology
�m 0.3156 Flat (0.1, 0.6)
σ 8 0.831 Flat (0.6, 0.95)
ns 0.9645 Flat (0.85, 1.06)
w0 −1.0 Flat (−2.0, 0.0)
wa 0.0 Flat (−2.5, 2.5)
�b 0.0492 Flat (0.04, 0.055)
h0 0.6727 Flat (0.6, 0.76)

Galaxy bias (tomographic bins)
bi

g 1.3 + i × 0.1 Flat (0.8, 3.0)

Lens photo-z (optimistic)
�i

z,lens 0.0 Gauss (0.0, 0.002)
σ z, lens 0.01 Gauss (0.01, 0.002)

Lens photo-z (pessimistic)
�i

z,lens 0.0 Gauss (0.0, 0.02)
σ z, lens 0.05 Gauss (0.05, 0.02)

Source photo-z (optimistic)
�i

z,source 0.0 Gauss (0.0, 0.002)
σ z, source 0.01 Gauss (0.01, 0.002)

Source photo-z (pessimistic)
�i

z,source 0.0 Gauss (0.0, 0.02)
σ z, source 0.05 Gauss (0.05, 0.02)

Shear calibration (optimistic)
mi 0.0 Gauss (0.0, 0.002)

Shear calibration (pessimistic)
mi 0.0 Gauss (0.0, 0.01)

Notes. We consider optimistic and pessimistic scenarios in this paper, which is
indicated in the corresponding sections of the table. The ellipticity dispersion
value is for one ellipticity component.

Friedmann–Robertson–Walker metric,

ds2 = (1 + 2
)dt2 − a2(t)(1 − 2�)dx2, (10)

are altered. Within general relativity 
 = � holds. The (μ, 	)
parameters give additional freedom to the Newtonian gravitational
potential 
 experienced by non-relativistic particles and the lensing
potential (� + 
) experienced by relativistic particles, specifically


(k, a) = [1 + μ(a)]
GR(k, a), (11)


(k, a) + �(k, a) = [1 + 	(a)](
GR(k, a) + �GR(k, a)) . (12)

We assume that μ(a) and 	(a) are both scale independent. Fur-
thermore, since their motivation was to explain the dark energy
phenomenon, we assume that the modified gravity parameters scale
with the dark energy density, i.e.

μ(a) = μ0
��(a)

��

, (13)

	(a) = 	0
��(a)

��

, (14)

where �� is the present-day dark energy density. Note that in the
case of general relativity, μ0 = 	0 = 0.

The μ0 parameter modifies the growth of linear density perturba-
tion such that

δ′′ +
(

2

a
+ ä

ȧ2

)
δ′ − 3�m

2a2
[1 + μ (a)] δ = 0, (15)

which changes the growth function, and consequently the density–
density power spectrumPδδ and all projected power spectra described
in equation (5).

The 	0 parameter only affects lensing related quantities, which
in a 3×2pt analysis means the galaxy–shear and shear–shear power
spectrum. Specifically, equation (5) is modified as

C
ij

AB (l) =
∫

dχ
qi

A(χ )qj

B (χ )

χ2
[1 + 	 (χ )]k PAB (l/χ, z(χ )), (16)

where the exponent k = 2 if A = B = κ , k = 0 if A = B = δg, and
k = 1 if either A = κ or B = κ .

3.3 Systematics

We parametrize uncertainties arising from systematics through nui-
sance parameters, which are summarized with their fiducial values
and priors in Table 2. Our default likelihood analysis includes the
following systematics:

3.3.1 Photometric redshift uncertainties

The true redshift distribution as measured from the CANDELS
data (cf. Fig. 2) is convolved with a Gaussian photometric redshift
uncertainty model to obtain the distribution within tomographic
bin i:

ni
x(zph) =

∫ zi
max,x

zi
min,x

dz nx(z) pi
(
zph|z, x

)
, (17)

where p(zph|z, x) is the probability distribution of zph at given true
redshift z for galaxies from population x:

pi
(
zph|z, x

) = 1√
2πσz,x(1 + z)

exp

[
−
(
z − zph − �i

z,x

)2

2
(
σz,x(1 + z)

)2

]
. (18)

The resulting Gaussian tomographic bin is parametrized through
scatter σ z(z) and bias between z and zph, i.e. �i

z(z). The bias �i
z(z)

has fiducial value of zero; the fiducial value for σ z is assumed to be
the same for the lens and source sample and we choose σ z = 0.01
for the optimistic and σ z = 0.05 for the pessimistic scenario. The
resulting distributions are shown in Fig. 2.

In this analysis we only consider Gaussian photometric redshift
uncertainties, which are characterized by scatter σ z(z) and bias �z(z).
While these may in general be arbitrary functions, we further assume
that the scatter can be described by the simple redshift scaling σ z, x(1
+ z) and allow one (constant) bias parameter �i

z,x per redshift bin.
For our 10 lens and source galaxy redshift bins, this model results in
22 parameters describing photo-z uncertainty, 10 photo-z bias, and 1
photo-z scatter parameter for each lens and source sample.

3.3.2 Linear galaxy bias

Linear galaxy bias is described by one nuisance parameter per
tomographic lens galaxy redshift bin, which is marginalized over
using conservative flat priors in a likelihood analysis. The fiducial
values of galaxy bias in lens bin i follow the simple description 1.3
+ i × 0.1. We note that the actual fiducial value is not important
for the constraining power; important is the range over which we
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Roman ST – multiprobe strategies 1753

Figure 5. Constraining power on dark energy equation of state parameters w0 and wa (left-hand panels), �m and S8 (middle panel), and on modified gravity
parameters 	0 and μ0 for optimistic and pessimistic systematics scenarios for a 3×2 analysis. Note that the likelihood analysis in the two left-hand panels
assume GR to be the correct theory, and only in the right-hand panels we vary 	0 and μ0. The relative loss in information depicted here is quantified as FoMs
in Table 3.

Table 3. FoMs for optimistic and pessimistic systematics scenarios for the
science cases depicted in Fig. 5.

3×2 different science cases FoM summary
Science case Optimistic Pessimistic

Dark energy 23.46 7.88
Modified gravity 22.20 9.49

marginalize (flat priors from 0.8 to 3.0) and the fact that we use one
free parameter per redshift bin instead of a parametrized redshift
evolution.

Future efforts should investigate several aspects of galaxy bias:
(1) perturbative or simulation based parametrizations that allow the
analyst to push to smaller scales; (2) improved parametrizations, in
particular such that parametrize the redshift evolution with fewer
parameters; and (3) informative priors.

3.3.3 Multiplicative shear calibration

Multiplicative shear calibration is modeled using one parameter
mi per redshift bin, which affects cosmic shear and galaxy–galaxy
lensing power spectra via

Cij
κκ (l) −→ (1 + mi) (1 + mj ) Cij

κκ (l),

C
ij
δgκ (l) −→ (1 + mj ) C

ij
δgκ (l), (19)

where the cluster lensing power spectra are affected analogously
to the galaxy–galaxy lensing spectra. We marginalize over each
mi independently with Gaussian priors (10 parameters). Similar to
the photo-z scenarios we are looking at optimistic and pessimistic
prior information shear calibration (which can come from either
simulations or external data such as in Schaan et al. 2017).

3.3.4 Other systematics

In this paper, we only consider observational uncertainties (and
galaxy bias), but neglect astrophysical systematics most notably
baryonic physics uncertainties (e.g. Semboloni et al. 2011; van
Daalen et al. 2011; Zentner et al. 2013; Eifler et al. 2015; Chisari

et al. 2018; Chisari et al. 2019; Huang et al. 2019) and uncertainties
in modelling intrinsic alignment of galaxies (e.g. Hirata & Seljak
2004; Mandelbaum et al. 2006; Joachimi & Bridle 2010; Troxel &
Ishak 2014; Blazek, Vlah & Seljak 2015; Chisari et al. 2015;
Singh, Mandelbaum & More 2015; Tenneti et al. 2015; Krause,
Eifler & Blazek 2016; Blazek et al. 2019; Samuroff et al. 2019;
Vlah, Chisari & Schmidt 2019). We show results for optimistic
and pessimistic scenarios for observational systematics in Fig. 6
and Table 4. In the context of 3×2pt analyses for the Roman
Space Telescope and LSST, we explore the impact of baryonic
physics and intrinsic alignment in a companion paper (Eifler et al.
2020).

4 GALAXY CLUSTERS

This section summarizes the halo model for galaxy cluster observ-
ables employed in this analysis. We consider galaxy clusters stacked
in bins of optical richness, λα , and relate their properties to dark
matter haloes using the probability distribution function p(ln λ|M,
z), which describes the probability that a dark matter halo of mass
M at redshift z hosts a cluster with richness λ. We will specify
and explain our specific choice of cluster mass–observable relation
(MOR) further in Section 4.2. Throughout this paper, we define halo
properties using the overdensity � = 200, which is defined with
respect to the mean matter density, and employ the Tinker et al.
(2010) fitting function for the halo mass function.

4.1 Modelling of observables

4.1.1 Cluster number counts

The expected cluster count in richness bin α, with λα, min < λ <

λα, max, and redshift bin i with zi
λ,min < z < zi

λ,max is given by

Ni(λα) =�s

∫ zi
λ,max

zi
λ,min

dz
d2V

dzd�

∫
dM

dn

dM

∫ λα,max

λα,min

d ln λ p(ln λ|M, z),

(20)

where d2V/dzd� is the comoving volume element, and dn/dM the
halo mass function in comoving units for which we omitted the
redshift dependence.
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1754 T. Eifler et al.

Figure 6. Study of systematic effects for a 3×2 dark energy analysis. On the very left, we again show Fig. 5 as a baseline. The middle panel shows the difference
when only considering photo-z uncertainties, and the right-hand panels show results when only considering shear calibration uncertainties. There are two main
findings: (1) In the optimistic scenario, shear calibration and photo-z uncertainties are equally (un)important; and (2) in the pessimistic case, we find that photo-z
uncertainties are a significantly larger contribution to the systematics budget compared to shear calibration.

Table 4. FoMs for optimistic and pessimistic systematics for shear and
photo-z calibration depicted in Fig. 6.

Systematics impact FoM summary
Systematic Optimistic Pessimistic

Shear + photo-z 23.46 7.88
Photo-z 23.56 7.00
Shear calibration 26.95 16.88

4.1.2 Galaxy cluster weak lensing

Starting again from the Limber and flat-sky expression for projected
power spectra, i.e. equation (5):

C
ij

AB (l) =
∫

dχ
qi

A(χ )qj

B (χ )

χ2
PAB (l/χ, z(χ )), (21)

we can express the weight function for the projected cluster density
similar to equations (6) and (7):

qi
δλα

(χ ) = �
(
z(χ ) − zi

λ,min

)
�
(
zi
λ,max − z(χ )

) dV

dχd�
, (22)

with �(x) the Heaviside step function. Note that we neglect variations
of the cluster selection function within redshift bins, as well as
uncertainties in the cluster redshift estimate.

Within the halo model, the cross-power spectrum between cluster
centres and matter density contrast can be written as the usual sum
of two- and one-halo term,

Pδλα m(k, z) ≈ bλα
(z)Plin(k, z)

+
∫

dM dn
dM

M
ρ̄

ũm(k, M)
∫ ln λα,max

ln λα,min
d ln λ p(ln λ|M, z)∫

dM dn
dM

∫ ln λα,max

ln λα,min
d ln λ p(ln λ|M, z)

,

(23)

with Plin(k, z) the linear matter power spectrum. The mean linear
bias of clusters in richness bin α reads

bλα
(z) =

∫
dM dn

dM
bh(M)

∫ ln λα,max

ln λα,min
d ln λ p(ln λ|M, z)∫

dM dn
dM

∫ ln λα,max

ln λα,min
d ln λ p(ln λ|M, z)

, (24)

where bh(M) the halo bias relation, for which we use the fitting
function of Tinker et al. (2010). The Fourier transform of the radial

matter density profile within a halo of mass M, ũm(k, M), is mod-
eled assuming the Navarro–Frenk–White (NFW) profile (Navarro,
Frenk & White 1997) with the Bhattacharya et al. (2013) mass–
concentration relation c(M, z).

4.2 Systematics

4.2.1 Cluster mass–observable relation

We chose to implement the MOR scatter defined in Murata et al.
(2018) and further extend their parametrization to account for
possible redshift dependence in the scatter of the mass–richness
relation.

Specifically, we assume a lognormal distribution with mass- and
redshift-dependent mean and scatter σ ln λ|M:

p(ln λ|M, z) = 1√
2πσln λ|M,z

exp

[
− (ln λ − 〈ln λ〉 (M))2

2σ 2
ln λ|M,z

]
. (25)

The mean relation is defined as

〈ln λ〉 (M, z|A, B, C) = A + B ln

(
M

Mpivot

)
+ C ln (1 + z) , (26)

with normalization A, slope B, redshift dependence C, and the pivot
mass Mpivot = 3 × 1014 M� h−1. The mass- and redshift-dependent
MOR scatter is defined as

σln λ|M (M, z|σ0, qM, qz) = σ0 + qM ln

(
M

Mpivot

)
+ qz ln (1 + z) .

(27)

We assume fiducial values for (A, B, σ 0, qM) = (3.207, 0.993, 0.456,
0.0), which correspond to the findings in Murata et al. (2018). For
the redshift-dependent MOR parameters that are newly introduced
in this paper (C and qz) we assume fiducial values of 0.

Our fiducial priors for σ 0 and qM are from the posterior distribu-
tions derived in Murata et al. (2018), i.e. a Gaussian prior centred at
the fiducial values described above and with the width of 0.045 and
0.03, respectively, and a prior for qz is centred at 0 with the broader
width of 0.1.

We note that this is conservative, since prior information on the
MOR is expected to grow substantially in the coming years, near-
term with the full HSC survey, which will be one of the deepest
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Figure 7. Impact on the cosmological constraints from a joint cluster number
counts and cluster weak lensing analysis when knowing the MOR perfectly.
We show the equation of state parameters w0, wa (upper panel) and the
combination �m and S8 = σ 8 × (�m/0.315)0.35 (lower panel).

imaging surveys yielding the most stringent constraints on galaxy
cluster physics before the LSST and Roman Space Telescope era.

For example, the full HSC survey will have 20 000 optically
selected clusters with a mean galaxy density of background sources
of 20 arcmin−2. Scaling the product of the number of clusters and
the source number density in Murata et al. (2018), 8000 clusters and
1 arcmin−2, respectively, to the product of these numbers for the full
HSC survey translates into a factor of 7 improvement on the priors of
the MOR under the assumption that we can translate optical richness
as measured in HSC into the realm of NIR Roman Space Telescope
measurements.

In Fig. 7, we investigate the gain in constraining power for a
perfectly known MOR, i.e. when fixing all the parameters in Table 5

Table 5. Fiducial parameters, flat priors (min, max), and Gaussian priors
centred on the fiducial value with the σ given in brackets.

Cluster mass–observable relation scenarios
Parameter Fiducial Prior

A 3.207 Gauss (3.207,0.045)
B 0.993 Gauss (0.993,0.045)
C 0.0 Gauss (0.0,0.3)
σ 0 0.456 Gauss (0.456,0.045)
qM 0.0 Gauss (0.0,0.03)
qz 0.0 Gauss (0.0,0.1)

to their fiducial values. The gain in information from blue contours
to red serves as an upper limit for this particular choice of MOR
parametrization. We note that we expected a larger improvement
when assuming perfect knowledge of the MOR but we note that the
redshift scaling in equation (26) is likely the reason to diminish the
science return on dark energy.

Studying the most promising cluster MOR parametrization to
optimize the cluster cosmology component of the Roman Space
Telescope survey further will be important future work as the mission
preparation progresses.

4.2.2 Other systematics

We note that analyses of cluster number counts and cluster weak
lensing of current and future datasets requires the modelling of addi-
tional systematic effects, as well as improvements in the ingredients
of the forecast model depicted here: For example, we do not consider
galaxy cluster mis-centring, assembly bias and stochasticity, cluster
member dilution of the source sample, or projection effects in this
paper (see, e.g. Oguri & Takada 2011; McClintock et al. 2018).
We also point out that both terms in equation (23) need additional
modelling as a function of the cluster sample at hand. The two-
halo term needs to accurately model halo exclusion (Tinker et al.
2005; Garcı́a & Rozo 2019), as well as non-linear contributions
to halo-matter clustering. For the one-halo term, the NFW profile
and Tinker et al. (2010) mass function are likely insufficient and
must be calibrated using simulations of the specific cluster sample
considered in order to account for e.g. baryonic effects (e.g. Bocquet
et al. 2016), halo triaxiality, and scatter in the mass–concentration
relation. Implementing a mode detailed cluster cosmology model is
beyond the scope of of this paper and we instead postpone studies of
these effects to future work.

5 THE HI GH LATI TUDE SPECTROSCOPIC
SURVEY

In this section, we study the trade space of area versus depth for the
HLSS, starting from a baseline survey of 2000 deg2 and a wavelength
range of 1.05–1.85 μm. The section is split into two parts, where
the first part focuses on dark energy parameter constraints using
MCMC and the second part is a Fisher analysis of how well the
Roman Space Telescope will be able to measure the BAO scale s
and the parameter combination fσ 8 for RSD. The assumptions and
systematics modelling differ slightly but are clearly explained in each
subsection.

5.1 Dark energy forecasts

We use the Roman Space Telescope ETC version 16 of Hirata et al.
(2012) to compute galaxy densities and redshift distributions for our
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1756 T. Eifler et al.

Table 6. HLSS survey parameters.

HLSS survey params (�s = 2000 deg2)
Redshift Comoving volume Galaxy density
(density weighted) (109 Mpc h−1)3 (hMpc−1)3

0.84 2.12 0.003 803
1.28 3.23 0.002 845
1.75 3.72 0.001 182
2.28 3.90 0.000 503
2.75 3.87 0.000 195
3.26 3.75 0.000 069
3.71 2.88 0.000 025

baseline scenario (cf. Table 6) and then consider doubling (halving)
the survey area, doubling (halving) the galaxy number density, and
decreasing the minimum scale that we include in our analysis (see
Fig. 8).

Following Seo & Eisenstein (2003) and Wang, Chuang & Hirata
(2013), we model the cosmological information from RSDs and
BAOs through features in the observed power spectrum:

Pg(kref
⊥ , kref

‖ ) =
[
Dref

A (z)
]2

H (z)

[DA(z)]2 H ref (z)
b2

(
1 + β μ2

)2

1 + k2μ2σ 2
r,p/2

×
[

G(z)

G(z = 0)

]2

Pm(k, z = 0) e−k2μ2σ 2
r,z + Pshot , (28)

where we assume that the 3D Fourier mode k can be decomposed into
a line-of-sight k� and a transverse k⊥ component with μ = k‖/|k| as
the cosine of the angle between the 3D vector and the line of sight.
The arguments for the observed power spectrum kref

⊥ and kref
‖ are

computed at a reference cosmology, indicated through the superscript
ref. The functional form of H(z) and DA(z) is assumed to be known
for any given set of cosmological parameters.

In order to relate the observed power spectrum to
the true underlying power spectrum, a correction factor(
[Dref

A (z)]2H (z)
)
/
(
[DA(z)]2H ref (z)

)
, which accounts for the vol-

ume difference between the two cosmologies, is introduced.
The 1/[1 + k2μ2σ 2

r,p/2] term in equation (28) models the small-
scale RSD contribution (Wang et al. 2013). It is the Fourier transform
of our assumed peculiar velocity distribution,

f (v) = 1

σp

√
2

e−√
2|v|/σp , (29)

where σ p is the pairwise velocity dispersion that is related to the
distance dispersion σ r, p as

σr,p = σp

H (z)a(z)
. (30)

The Pshot term describes residual uncertainties that remain after
subtracting the shot noise term computed from the inverse number
density of galaxies. These residuals occur, e.g. because of galaxy
clustering bias (Seljak 2000). Equation (28) accounts for residual
redshift uncertainty in our measurement, e.g. from fitting emission
lines, through the damping factor e−k2μ2σ 2

r,z . Following Wang et al.
(2013), we consider the dewiggeled power spectrum,

Pm(k, z = 0) = P0 kns T 2
dw(k) , (31)

where P0 defines the normalization of the linear power spectrum at
redshift zero, ns is the spectral index, and the (dewiggeled) transfer

function T 2
dw(k, z) is given by

T 2
dw(k, z) = T 2

nw(k) + [
T 2(k) − T 2

nw(k)
]

e−gμk2/(2k2∗ )

≡ T 2
nw(k) + T 2

BAO(k)e−gμk2/(2k2∗ ) , (32)

where gμ(k, z) = 1 − μ2 + μ2[(1 + fg(z))2 − 1] (cf. Eisenstein,
Seo & White 2007) and fg(z) being the linear growth factor.

The BAO transfer function is defined as the difference between
the linear matter transfer functions with and without baryons, and
the exponential damping due to non-linear effects is only applied to
the transfer function associated with BAO. The uncertainty in non-
linear effects that are still present in the power spectrum even after
reconstruction (Seo & Eisenstein 2007; Padmanabhan et al. 2012) is
paramtrized through

k−1
∗ = 8.355 Mpc h−1 σ8

0.8
pNL . (33)

In case no reconstruction algorithm is applied, non-linear effects
in structure growth, galaxy bias, and redshift-space distortions are
fully present and pNL = 1.0. We assume an optimistic reconstruction
algorithm in line with Wang et al. (2013) of pNL = 0.5, which
corresponds to k∗ = 0.24hMpc−1. We allow for uncertainty in the
reconstruction algorithm through varying k∗ and marginalize over a
Gaussian prior with 10 per cent uncertainty in the fiducial value.

The dewiggled model characterized through equation (32) will
break down on small scales where RSD couples with the damping
factor but has been shown to work well on quasi-linear scales (Angulo
et al. 2008).

We bin the observable power spectrum linearly in k (100 bins
between kmin = 0.001 and kmax = 0.3) and μ (10 bins between 0
and 1) and assume seven bins in redshift (cf. Table 6). We model
the fractional error of said power spectrum as detailed in Seo &
Eisenstein (2003):

σ (k, μ) = 2π

√
2

Vsurveyk2�k�μ

(
1 + nP (k, μ)

n

)
, (34)

where n refers to the galaxy number density within a given redshift
bin, which again are specified in Table 6.

Fig. 8 shows the variation of the Roman Space Telescope and
BAO and RSD measurements on w0 and wa. We again use the
EMCEE sampler to cover the parameter space; each chain is >3M
steps and, in addition to the cosmological parameters mentioned
in Table 2, we sample the 11 systematics parameters specified in
Table 7. Specifically, we account for uncertainties in the level of shot
noise Pshot (one parameter), uncertainties in galaxy bias modelling
parametrized through one free parameter bi in each redshift bin
(seven parameters), uncertainties in redshift measurements σ 2

r,z (one
parameter), uncertainties in modelling peculiar velocities σ p in each
redshift bin (seven parameters), and uncertainty in residual non-linear
effects k∗ (one parameter).

Fig. 8 shows the change in constraining power when in-
creasing/decreasing the survey area (left-hand panels), increas-
ing/decreasing the number density of galaxies (middle panel) and
when changing our fiducial kmax from 0.3 to 0.25 and 0.2. Note that
the observing time is not held fixed in the left-hand and middle panels
(as opposed to the calculations in Section 5.2), which means that
when considering twice the area in the left-hand panels this implies
doubling the observing time compared to reference HLSS survey.
We summarize the FoMs in Table 8 and find that the difference for
different kmax is negligible, and that there is a slight preference for
going deeper compared to going wider.
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Figure 8. The impact of variations in area, depth, and scales to which we assume to be able to model Pδ(k) for the HLSS part of the reference survey (0.6
months). We summarize the FoMs in Table 8.

Table 7. Spectroscopic Survey: fiducial parameters, flat priors (min, max),
and Gaussian priors centred on the fiducial value with the σ given in brackets.

HLSS systematics parameters
Parameter Fiducial Prior

b1 1.55 [0.6-4.2]
b2 1.87 [0.6-4.2]
b3 2.22 [0.6-4.2]
b4 2.62 [0.6-4.2]
b5 2.97 [0.6-4.2]
b6 3.38 [0.6-4.2]
b7 3.72 [0.6-4.2]
σ p(i) 290 km s−1 Gaussian (290, 50)
k∗ 0.24 hMpc−1 Gaussian (0.24, 0.024)
σ r, z 0.001 Gaussian (0.001,0.0001)
Pshot 0.0 [−0.001,0.001]

Table 8. FoM for chains depicted in Fig. 8.

HLSS FoM summary

Area 2000 deg2 4000 deg2 1000 deg2

FoM 8.19 14.34 5.33

Galaxy density Reference 2 × ref 0.5 × ref
FoM 8.19 14.60 4.74

kmax 0.3 0.25 0.2
FoM 8.19 7.79 6.68

We note that including an absolute measurement of the BAO
scale imprinted in the CMB would notably increase the information
compared to the HLSS survey alone. In Fig. 9, we include information
from (Planck Collaboration VI 2018) on the acoustic angular scale
θ∗ = r∗/(1 + z)Da, where r∗ is the comoving sound horizon at
recombination and Da is the comoving angular diameter distance
to the CMB. The combined likelihood of Planck TT, TE, EE,
low-E measurements gives θ∗ = 0.010 4109 ± 0.000 0030, which
we re-centre to our fiducial cosmology and use as a prior in
Fig. 9.

5.2 BAO scale and RSD measurement Fisher forecasts

In addition to the MCMC analysis in the previous subsection, we
explore the science return of the HLSS using a Fisher analysis on

Figure 9. We see the gain in constraining power when assuming that the
scale of the BAO feature in the CMB is known at Planck precision (see
equation 9 in Planck Collaboration VI 2018).

constraining the BAO scale s and RSD parameter combination fσ 8

as a function of redshift.
For this analysis we run the ETC in BAO survey mode, using

either galaxies observed in H α and [N II] (compilation option -
N II) or in [O III] (-DOIII GAL) as tracers. For the H α and [N III]
detections, we use model option 992, an average of the three galaxy
luminosity functions given in Pozzetti et al. (2016), which were
derived specifically for Euclid and the Roman Space Telescope; in
all cases, the [N II] luminosity function (used to enhance the S/N of
detected galaxies) is assumed to be 0.37 times the H α luminosity
function. For the [O III] detections, we use model 1992, an average
of three luminosity functions: Mehta et al. (2015) and Colbert et al.
(2013), two different analyses of the WFC3 grism, and Khostovan
et al. (2015), based on ground-based narrow-band surveys. In both
the H α + [ N II] and [O III] scenarios, we use an updated galaxy
size distribution from a mock catalogue based on COSMOS data
originally based on Jouvel et al. (2009).
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1758 T. Eifler et al.

Figure 10. dN/dz/dA for the two galaxy populations used in the BAO and
RSD forecast: H α + [ N II] (solid lines) and [O III] (dashed lines). The various
curves used in the trade-off study are shown: (1) from the top to bottom
panel, varying the S/N cutoff from 6.5, 5, to 3.5; (2) inside each panel,
varying survey depth from 2×, 1×, to 0.5× the fiducial depth with decreasing
thickness. These curves are used as input for the forecast results shown in
Fig. 11.

The resulting redshift distributions are shown in Fig. 10, which
are used as input for the trade-off studies of the forecast results in
this section. In each panel, we vary the survey depth from 0.5×,
1×, to 2× the fiducial depth (shown in thick, normal, and thin
lines, respectively), while the different panels show the distributions
obtained with different S/N cutoffs (6.5, 5, and 3.5). As expected,
the number densities increase significantly when lower S/N cutoffs
are chosen. Note that in this section, we explore the impact of survey
depth at fixed observation time, so the area of the survey is scaled
proportionally in what follows.

Using each of the above-mentioned distributions, we compute the
fractional error σpi

/pi = [F−1]ii on parameter pi, where the Fisher
information matrix for parameters pi and pj is given by

Fij =
∫ kmax

kmin

∂ ln Pg(k)

∂pi

∂ ln Pg(k)

∂pj

Veff (k)
dk3

2 (2π)3
, (35)

assuming spatially constant galaxy density n, we have

Veff (k, μ) =
[

nPg(k, μ)

nPg(k, μ) + 1

]2

Vsurvey . (36)

There are two separate Fisher matrices, one for the RSD cosntraints
on fσ 8, and another for the BAO constraints on s. For the RSD
constraint, we follow McDonald & Seljak (2009) (using only
one tracer) and model the observed galaxy power spectrum as in
equation (28) but without the distance ratios for changing cosmology
as we fix the background cosmology:

Pg(kref
⊥ , kref

‖ ) = b2
(
1 + β μ2

)2

×
[

G(z)

G(z = 0)

]2

Pm(k, z=0)e−k2μ2σ 2
r,z +Pshot . (37)

and we marginalize over σ r, z = σ r, v(1 + z)/H(z). We adopt
the fiducial value of σ r, v = 0.001, which is dominated by the
observational redshift uncertainty of the grism. Furthermore, for the
RSD forecast, we assume perfect reconstruction with k∗ = ∞.

For the BAO constraints, we calculate errors for the Hubble
parameter H and the angular diameter distance D and report their
best constrained combination s. Again we use equation (35) but
this time, modelling the galaxy power spectrum as defined in
equation (37) with the following differences: First, the fractional
reconstruction capability pNL is set by how well the displacements
can be determined, given the level of shot noise in the data in linear
theory. Secondly, σ r, z is not marginalized for the BAO forecast but
is fixed at the same fiducial value mentioned above.

For both BAO and RSD forecasts, we use the inverse galaxy num-
ber density for the galaxy shot noise, and the same linear bias model
as in DESI Collaboration et al. (2016) for emission-line galaxies
(ELGs) as is appropriate for the Roman Space Telescope GRS:
bELG(z)D(z) = 0.84, where D(z) is the growth factor normalized
at z = 0.

The Fisher matrices are computed at a fixed flat cosmology
consistent with Planck 2015 best fit (baseline model 2.6; Ade et al.
2016) and we separately evaluate fractional errors on parameters
for the H α + [N II] and [O III] samples before inverse-variance
combining them. In Fig. 11 we show the combined fractional error
on the BAO scale s (left-hand panels) and RSD parameter fσ 8 (right-
hand panels). Note that the H α is the dominant sample up to z ≈ 1.9,
beyond which the [O III] sample becomes the only available sample.

We consider different survey strategies varying depth (top row
of Fig. 11) and S/N (middle row) starting from a pilot survey with
default area A = 2000 deg2 and S/N cutoff 5. We fix the total HLSS
observation time to 0.6 yr in all cases. In the top panels, we show
results for a deeper (twice deeper, half the area) and a wider survey
(twice the area, half the depth) compared to the pilot survey. For
both s and fσ 8, the wide survey would improve the low-z constraints,
whereas the deep survey is more powerful at higher z, as expected.

Since the aggregate constraint (shown in the text beside each
curve) is dominated by better errors at low-z, the wide survey would
improve on the total constraint on parameters compared to the deep
survey (e.g. 0.3 per cent versus 0.4 per cent for s and 0.7 per cent
versus 1.1 per cent for fσ 8). On the other hand, if dark energy
behaviour at higher z becomes an important science case, the deep
survey improves constraining power by almost a factor of 2–3 over
the wide option.

In the middle row of Fig. 11, we also show the impact of different
S/N cutoffs for galaxy detections at fixed area and depth. We compare
our default case of S/N = 5 with a conservative S/N = 6.5, and a more
optimistic S/N cutoff of 3.5. As expected, a lower S/N cutoff yields
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Figure 11. For all rows in this plot, we show the fractional error on the BAO scale (left-hand panels) and the error on the RSD parameter combination fσ 8

(right-hand panels) at a redshift binwidth of dz = 0.05. The aggregate fractional error over the entire redshift range is indicated near each curve. Upper row
shows the results for a 0.6-yr HLSS survey of H α + [N II] and [O III] galaxies; varying area and depth for a fixed default S/N cutoff of 5. The default scenario
(black) has A = 2000 deg2, the wide scenario (green) has twice the area but half the depth, whereas the deep scenario (blue) is twice deeper but half the area.
For both the BAO and RSD probes, a wider but shallower survey improves the constraints for z � 2 whereas a deeper but narrower survey improves at z � 2.
The middle row shows results when varying the S/N cutoff (3.5, 5, 6.5) for the default area and depth scenario. A lower S/N cutoff yields better constraints
everywhere in z, with more improvement at higher z. The bottom row shows results when covering a larger area of 13 559 deg2 corresponding to an extended
spectroscopic survey time of 2 yr at half the default depth. We vary again the S/N cutoff: 3.5, 5, and 6.5.

better constraints everywhere in z, with more improvement at higher
z as fainter and distant galaxies are more affected by the cut. There
is factor of 2 improvement at high z between the curves at S/N = 6.5
and 5. The same is true for 5 and 3.5; we however note that S/N =
3.5 is not likely going to be a realistic value for reliable detections.

We perform a similar analysis but for an extended HLSS survey
that lasts 2 yr instead of 0.6 yr and at only half the depth of the pilot
survey, which allows us to survey 13 559 deg2 (see the bottom row
of Fig. 11). We show results for three different S/N cut and again
find unsurprisingly that an S/N cut of 3.5 improves constraining
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power substantially compared to the more realistic S/N = 5 and the
conservative S/N = 6.5 cuts.

6 C O N C L U S I O N S

The Roman Space Telescope’s wide-field instrument will join the
concert of cosmological endeavors after DESI, LSST, SPHEREx, and
Euclid have already made initial measurements. These measurements
will inform the design of an optimal Roman Space Telescope survey,
which can be finalized shortly before launch. The unique versatility
of its wide-field instrument, ranging from multiband imaging to high-
resolution slitless spectroscopy, in combination with the fact that the
Roman Space Telescope carries enough propellant for at least 10 yr
of observations with no active cryogens, make it an ideal observatory
to flexibly target the most interesting science aspects after its launch
in the mid-2020s.

In this paper, we study the Roman Space Telescope reference
survey’s science return on dark energy, structure growth, and mod-
ified gravity accounting for a variety of observational systematics.
We present results for the joint analysis of weak lensing, galaxy
clustering (photometric), galaxy cluster number counts, BAO and
RSD features in the spectroscopic clustering power spectrum, and
combine this with SN Ia information from the Roman Space Tele-
scope (as detailed in Hounsell et al. 2018). We outline strategies
for optimizing the Roman Space Telescope’s science return and to
identify and retire risks from systematic effects early.

For each cosmological probe examined in this paper, we identify
important areas of future research to further increase the level of
realism of our Roman Space Telescope simulations, to improve
the parametrization of systematics, or to shrink the prior range on
existing parametrizations. For example, we postpone modelling and
mitigation of baryons (e.g. van Daalen et al. 2011; Eifler et al. 2015;
Chisari et al. 2018; Chisari et al. 2019; Huang et al. 2019) or intrinsic
galaxy alignment (e.g. Hirata & Seljak 2004; Mandelbaum et al.
2006; Joachimi & Bridle 2010; Krause et al. 2016; Blazek et al.
2019; Samuroff et al. 2019; Vlah et al. 2019) for lensing-based
measurements to future studies, a decision that is in part driven
by the fact that these uncertainties have different levels of modelling
maturity for the different probes considered in this paper. We explore
corresponding uncertainties in a companion paper (Eifler et al.
2020), which focusses on 3×2 (weak lensing and photometric galaxy
clustering) synergies of the Roman Space Telescope and LSST.

We impose conservative scale cuts on photometric clustering
information due to uncertainties in modelling galaxy bias. Improved
galaxy bias modelling for the spectroscopic and photometric galaxy
clustering to include small scale information (see e.g. Ivanov,
Simonović & Zaldarriaga 2019; Salcedo et al. 2020; Wibking et al.
2020) should become another important area for Roman Space
Telescope optimization. Krause & Eifler (2017) have explored a Halo
Occupation Density model to access small scale information in a
similarly high-dimensional parameter space (but simulating an LSST
3×2 analysis), and found that tapping into corresponding information
is worth the increased modelling complexity.

Our modelling of the cluster MOR is based on Murata et al. (2018)
but extended to account for possible redshift dependence in the scatter
of the mass–richness relation. This again is a conservative choice
and tightening priors on the existing parametrization or improving
the parametrization itself can significantly change the constraining
power from galaxy clusters. Precise modelling of cluster cosmology
is an active research field (e.g. see Costanzi et al. 2019; DES
Collaboration et al. 2020) and studying multiwavelength strategies
including external data sets will be important.

We quantify all statements in this paper using the well-known
FoM metric; however, we note that the FoM metric reduces a
complex answer to a one-dimensional statement. This compression
of information is not lossless; for example, the FoM depends on
analysis choices: scales considered and excluded in the analysis,
redshift distribution binning choices, cosmological parameters and
priors, systematics parametrization and priors, which covariance and
cross-correlations to include, and how to model the covariance in
general, which external data sets to include, are all choices by the
analyst. Multiple options are justifiable and for some the impact on
the FoM can be significant.

While the decision on the optimal Roman Space Telescope survey
strategy can be made shortly before launch, it is critical to develop
realistic survey simulation capabilities now in order to characterize
the trade space of statistical power and systematic dangers accurately.
Some of these systematics will have subdominant uncertainties,
which means they can be corrected and need no further parametriza-
tion in a likelihood analysis. This type of systematics will hardly
change the error bars presented in this paper; it will only move the
best-fitting value in a likelihood analysis based on data.

It is important to note that complexity of modelling and covariance
code such as the one used in this paper will become a challenge for
the community. Increased complexity in a prediction and later in
an analysis framework does not automatically increase the precision
but it certainly increases the potential for errors. Increased model
complexity for systematics must to be rigorously justified by residual
uncertainties that are non-negligible, given the constraining power
of the survey. This requires a demonstration of the impact of the
systematic effect in the presence of a realistic systematics budget
overall; it is not sufficient to demonstrate the impact of the systematic
as a standalone effect on cosmological parameters.

This work contributes to developing such a framework for the
Roman Space Telescope, but several extensions are forthcoming in
future work. More realistic systematics models, best informed by
actual observations and realistic synergy studies across the whole
spectrum of multimessenger astronomy, which includes optical NIR
imaging and spectroscopy but also CMB, gravitational waves, and
radio observations, should be considered to design a survey that fully
utilize the Roman Space Telescope’s potential.
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