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Abstract
Variational quantum circuits (VQCs) have shown great potential in near-term applications.
However, the discriminative power of a VQC, in connection to its circuit architecture and depth, is
not understood. To unleash the genuine discriminative power of a VQC, we propose a VQC system
with the optimal classical post-processing—maximum-likelihood estimation on measuring all
VQC output qubits. Via extensive numerical simulations, we find that the error of VQC quantum
data classification typically decays exponentially with the circuit depth, when the VQC architecture
is extensive—the number of gates does not shrink with the circuit depth. This fast error
suppression ends at the saturation towards the ultimate Helstrom limit of quantum state
discrimination. On the other hand, non-extensive VQCs such as quantum convolutional neural
networks are sub-optimal and fail to achieve the Helstrom limit, demonstrating a trade-off
between ansatz complexity and classification performance in general. To achieve the best
performance for a given VQC, the optimal classical post-processing is crucial even for a binary
classification problem. To simplify VQCs for near-term implementations, we find that utilizing the
symmetry of the input properly can improve the performance, while oversimplification can lead to
degradation.

1. Introduction

Quantum computation promises to solve classically intractable problems with a speedup in performance
[1]. However, as scalable error-corrected quantum computers are not available, quantum information
processing is limited to protocols using noisy intermediate-scale quantum (NISQ) [2] technology. The
technological constraints also call for an alternative route towards a quantum advantage. Among the
candidates, variational quantum circuits (VQCs) are a class of quantum–classical hybrid systems applicable
to various tasks, including optimization [3], state preparation [4, 5], auto-encoding [6, 7], eigen-solvers
[8–14], unsampling and state approximation [15, 16], state classification [17–20], state tomography [21],
sensor networks [22, 23], solving partial-differential equations [24], quantum simulation [25–27] and
machine learning in general [28–36].

Despite various applications, the fundamental understanding of the capability of VQCs in connection to
circuit depth and circuit architecture is still missing. Recent progresses unveil the notion of depth efficiency
on expressive and discriminative power in VQCs’ classical counterpart—neural networks [37–40]; VQCs’
discriminative power on quantum data has also attracted much attention recently, showing great potential
in the classification of few-qubit states [18] and quantum phases of many-body systems [19, 20], even in the
presence of noise [17]. For VQCs, recent works propose to quantify the expressivity via the effective
dimension from an information geometry perspective and show some quantum advantage in expressivity of
VQCs compared with their classical counterparts [41]. At the same time, the expressivity of VQC ansatzs is
also connected to the barren plateau phenomena [42–44], where the variance of gradient decays
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Figure 1. Schematic illustration of the MLE-VQC system. As any single qubit rotation can be combined into the VQC, we can fix
each single-qubit measurement to be Pauli Z without loss of generality. An MLE strategy is utilized on the measurement results to
make the decision.

exponentially with the number of qubits in the system and therefore highly limits the training performance
of large-scale VQCs. However, regardless of these challenges in training, it is still important to understand a
VQC’s discriminative power in connection to its depth and architecture.

In this paper, we take a further step to unveil how VQCs’ discriminative power quantitatively connects to
circuit depth and architecture, and compares with the ultimate limit [45]. First, to unleash the genuine
discriminative power of VQCs, we go beyond the popular approach—a single-qubit measurement on VQC
output [48, 49]—to measure all qubits and then perform maximum-likelihood estimation (MLE) on the
measurement results, even for a binary classification problem between two states. Our numerical results
show that the MLE-VQC approach offers an order-of-magnitude smaller deviation from the Helstrom limit
than the single-qubit approach. While both approaches can face the dilemma of barren plateau that limits
the trainability of large circuits [42–44], numerical evaluation shows that our MLE-VQC approach has
larger gradients relative to the single-qubit approach. With the full discriminative power of VQCs in hand,
we proceed to explore its connection to circuit architecture and depth.

When discriminating between complex quantum states, we find that the discrimination error is
exponentially suppressed with the continuous increase of the VQC depth, until a saturation to the
minimum given by the Helstrom limit [46, 47]. When such a continuous increase of depth is forbidden by
the non-extensive architectures, e.g., tree tensor network (TTN), multi-scale entanglement renormalization
ansatz (MERA) [49] and quantum convolutional neural networks (QCNNs) [19], the discriminative error
deviates from the Helstrom limit, even for translation-invariant (TI) or less entangled input states. Indeed,
these non-extensive architectures enable better trainability [50] at a cost. For extensive architectures that
allows the continuous increase of VQC depth, we find that the discriminative power is closely connected to
the scrambling power of VQCs.

To reduce the complexity in experimental implementation, we consider simplified VQCs with less
parameters or gates. Given the same VQC architecture, for symmetric input states, assuming symmetric
VQC gate parameters makes the VQC much easier to train while still competitive in the error probability
performance; for real ground states from many-body systems, restricting the VQC to implement a real
unitary significantly reduces the number of gates required to achieve the optimal performance. Indeed,
simplification of VQCs helps state discrimination only when properly utilizing the symmetry of the input
states.

2. Circuit architecture and main results

As shown in figure 1, to perform state discrimination, our MLE-VQC system utilizes a VQC to process the
input state, and then performs measurement. Different from existing approaches [17–20], we consider a
measurement on all qubits and optimal MLE post-processing to perform the state discrimination task. In
this paper, we will consider multiple-qubit input states, while infinite-dimensional quantum states can be
potentially considered generalizing the approach in references [22, 23].

A VQC is determined by the type of allowed gates and the circuit architecture. To discriminate between
general states, we allow each (two-qubit) gate in the VQC to be universal, composed of single-qubit
rotations and CNOT gates. As each gate only acts on at most two qubits, the spread and processing of
quantum information is determined by the circuit architecture. We will start with the simple 1D ‘brickwall’
local circuits (see figure 2(a) or figure 7(a)) with interchanging between gates acting on two set of
neighboring pairs. In section 5, we benchmark between different circuit architectures, including extensive
ones (brickwall, prism and polygon [52]) and non-extensive ones (QCNN [19, 20], TTN and MERA [49]),
as shown in figure 7. We also explore restricted gate sets to simplify VQCs for near-term implementations.
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Figure 2. (a) The open boundary local random unitary circuit, ‘brickwall’. Every pair of connected boxes represent local
two-qubit unitary gate. Here we show an example of a depth D0 = 6 circuit on n = 6 qubits input. (b) Phase diagram for TFIM.
The black curve represents the analytical expression for energy gap as ΔE = 2

(
|g| − 1

)
, and the dashed line indicates the critical

point. (c) Ensemble-averaged bipartite von Neumann entanglement entropy (see equation (4)) of states prepared by circuit in
(a). Black curve is the Page curve of Haar random states defined in equation (5). (d) Bipartite entanglement entropy curve for
n = 6 spins TFIM ground states with g = 1, 10. Inset shows the maximal bipartite entanglement entropy with different n.

In order to retrieve the maximal information from the states output by the VQC, we perform
simultaneous single-qubit measurements on all n qubits in the system, as shown in figure 1. After the
measurement, a decision is made on the input state. The performance of such a VQC state discrimination
system is described by the error probability. For example, when discriminating between a pair of
equal-prior pure states {ψ0,ψ1}, the error probability refers to the probability of events where the decision
H̃ is not equal to the true state label H, namely

PE(UD;ψ0,ψ1) = 1 − 1

2

1∑
h=0

PH̃|H(h|h), (1)

where PH̃|H(h̃|h) is the conditional probability of making the decision of H̃ = h̃ (the state is ψh̃) while the
true label is H = h (the state is ψh) and the dependence on the VQC unitary UD is implicit. In this paper,
we take the MLE decision strategy, where the decision on the input state is chosen to maximize the posterior
probability of the measurement outcome (see appendix A for details). Given the VQC and the final
measurements, MLE is known to be the optimal decision strategy that minimizes the error probability.

The minimum ‘Helstrom’ error probability [46, 47] further optimizes over the measurement bases,
leading to the ultimate error probability of state discrimination (see appendix A). When discriminating
between a pair of equal-prior pure states {ψ0,ψ1}, the Helstorm limit has a simple closed-form

PH (ψ0,ψ1) =
1

2

[
1 −

√
1 − |〈ψ0|ψ1〉|2

]
. (2)

We train the VQC unitary UD to achieve the lowest error probability PE (UD;ψ0,ψ1) in state discrimination
(‘dis’) between states {ψ0,ψ1}. The corresponding cost function for training is chosen to be

Cdis(UD;ψ0,ψ1) ≡ PE (UD;ψ0,ψ1) − PH (ψ0,ψ1) . (3)

Details for the VQC training process can be found in appendix F. Below we summarize the organization
and main results in this paper, which are obtained on VQCs after a sufficiently long period of training.

In section 3, we introduce the states being considered for the discrimination task. To make our results
on discrimination representative, we consider states generated from random local circuits and ground states
of many-body systems.

In section 4.1, we show that our MLE-VQC strategy exponentially suppresses the error with the growth
of the circuit depth until the saturation to the Helstrom limit, when discriminating between complex
quantum states. The VQC circuit does so by engineering the output state to be highly entangled such that
local measurements can realize complex positive-valued operator measure (POVM) elements. In
section 4.2, we further demonstrate the importance of the MLE decision strategy. Given the same circuit
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architecture and gate set, the performance achievable by a single qubit measurement deviates from the
Helstrom limit by an order of magnitude more, compared to the deviation of the MLE case. In addition, the
MLE strategy also makes the training easier by increasing the gradients.

In section 4.3, we explore the error decay for states generated by random circuits with different depths.
When the complexity of input states—quantified by the preparation circuit depth D0 —increases, the depth
of the VQC circuit required to achieve close to the Helstrom limit increases linearly with D0.

Compared with other tasks such as state generation, we find that the VQC state discrimination task is
easier, both in terms of the error and trainability, as detailed in section 4.4. In addition, symmetry in the
inputs makes the Helstrom limit larger, but otherwise preserves all other characters in a VQC state
discrimination task.

Section 5.1 addresses the benchmark between VQC architectures. Regardless of whether the random
input states are symmetric or not, the extensive architectures with a constant number of gates per depth
(brickwall, prism, polygon) work much better than those with a limited depth (QCNN, TTN and MERA).
This shows a limitation of those over-simplified ansatzs, despite their advantage in trainability [50]. Due to
nonlocal gates, prism and polygon have slight advantages in error probability over the brickwall
architecture, consistent with their scrambling powers [52–54, 56, 57], as verified by operator size
calculations in section 5.2.

Section 5.3 addresses the simplification of VQCs for near-term implementation. When the input is
symmetric, given the same circuit architecture, the symmetric VQC ansatz works almost as good as the
general VQC ansatz, and is much easier to train due to larger gradients. For ground states of a time-reversal
symmetric Hamiltonian that have real wave functions, assuming a real matrix representation of the VQC
circuit offers similar performance advantages. However, simplifications not based on symmetry and
structure of the input can harm the performance.

Finally, we conclude with some additional discussions in section 6.

3. Ensemble of states under discrimination

In this section, we explain the ensemble of states being considered to benchmark the performance of our
MLE-VQC systems in quantum state discrimination. In order to make the benchmark representative, we
consider a wide range of applications for quantum state discrimination, in quantum communication,
quantum sensing and many-body physics, which involves different types of states. In quantum
communication, the decoding of classical information can be considered as a quantum state discrimination
task, and the direct coding part of capacity theorems are often obtained via a hypothesis testing approach
[58–62]. There, the state involved can be simple, for example coherent states in optical communication, and
can also be entangled across a large number of inputs in more advanced encoding. In quantum sensing,
distributed sensing [63, 64] and other applications [65–68] involve entangled state in a complex form. In
many-body physics, people are interested in detecting complex quantum phases of matter, which involves
ground states that can be highly entangled [19, 20].

3.1. States generated from local quantum circuits
To represent different classes of states involved, we consider quantum states generated by inputting a trivial
product state |0〉 = |0〉⊗n to local quantum circuits, composed of general two-qubit gates acting on
neighboring qubits (see figure 2(a)). As we choose the gates randomly, the ensemble is characterized by the
preparation circuit depth D0, and therefore denoted as H (D0). We utilize entanglement entropy as a
measure on the complexity of the states generated [69, 70]. For a quantum system in state ρAB divided into
subsystem A and B, the von-Neumann entanglement entropy between A and B is

S(A, B) = −Tr
(
ρA log ρA

)
, (4)

where ρA = TrA(ρAB) is the reduced density matrix of subsystem A. Typically, the entanglement of states in
H (D0) and thus circuit complexity grows linearly with depth D0 [69, 70] before saturation. As shown in
figure 2(c), when D0 < n is a fixed constant, the states generated have area-law entanglement where the
bipartite entanglement S(A, B) in a system only depends on the boundary, a constant in 1D system; while
when D0 ∝ n is large, the states are typically highly entangled under a volume-law where entanglement
S(A, B) is characterized by the size (number of qubits) of subsystem. The growth of entanglement is also
analytically characterized by reference [53]. Indeed, H (D0) well captures the different problems of interest.
In quantum communication, states in H (D0) are used as the random encoding [7] to achieve capacity; in
many-body physics, the depth D0 will control the bond dimension of the matrix product representation of
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states. Moreover, H (D0) are also studied in quantum information scrambling [53, 54] and t-design
complexity [71–74].

For D0 →∞, the ensemble H (∞) approaches Haar random, where the average entanglement between
subsystem A and B, known as Page curve, is [55]

SH(∞)(A, B) 
 log dA − dA

2dB
(5)

where dA, dB are the dimension of subsystem A and B with the assumption that dA � dB. The typical
Helstrom limit between states ψ0,ψ1 ∈ H (∞) can be evaluated

〈PH (ψ0,ψ1)〉H(∞) =
1

2 (2n+1 − 1)
∼ 1

2n+2
, (6)

For a finite D0, when 2n+1 
 1, equation (6) still holds to the leading order (see appendix B for details).
As many-body systems often have a translational symmetry, we therefore also consider the subset of TI

states S (D0), which is prepared by the periodic boundary TI local random unitary circuit with depth D0.
The typical Helstrom limit for S (D0) is larger than equation (6) for H (D0), however still independent of D0

to the leading order (see figure A1). The increase of typical Helstrom limit for ensembles with symmetry
can be understood as follows. The Helstrom limit for two pure states is directly related to the overlap
between them; when there is symmetry or other constraints on the random states, the states come from a
smaller Hilbert space and therefore have a larger typical overlap. This larger overlap then leads to larger
Helstrom limit from equation (2).

3.2. Ground states of many-body systems
We also consider ground states of many body systems. We focus on the well-known toy model,
transverse-field Ising model (TFIM), whose Hamiltonian is

HTFIM = −
∑

i

ZiZi+1 + g
∑

i

Xi, (7)

where Zi, Xi are Pauli matrices at site i and g is the strength of external field relative to the coupling strength.
To reduce the finite-size effects, we consider a periodic boundary condition. As depicted in figure 2(b),
when |g| < 1, the system stays in an ordered ferromagnetic phase; as |g| increases, it transits to disordered
paramagnetic phase. In both phases, the ground states of the system show area-law entanglement
(figure 2(d)). At the critical point, |g| = 1, the system undergoes a quantum phase transition. The
entanglement entropy shows a logarithmic scaling behavior, which can also be described by conformal field
theory with central charge c = 1/2 [75–77].

4. Performance of the brickwall VQC in state discrimination

With the VQC circuit depth increasing, the performance of the MLE-VQC system will eventually approach
the ultimate Helstrom limit for pure state discrimination. This is because for an ensemble of pure states
being considered in this paper, the optimal POVM elements are also rank-one projectors [78, 79]; therefore
additional ancilla is not necessary in the measurement. At the same time, however, the training of the circuit
becomes harder as the number of parameters increases and the gradient decays [42, 43, 81–85].

In this section, we explore the error probability performance and trainability of the MLE-VQC system
with the open-boundary brickwall VQC ansatz. The periodic-boundary VQC shows similar results, as we
shown in appendix D. To understand the performance with a finite depth circuit, in section 4.1 we evaluate
the decay of error probability towards the Helstrom limit for different ensemble of input states. Then we
compare the performance and trainability between the MLE approach and single-qubit measurement
approach in section 4.2. Afterwards, we explore the connection between the performance to the input state
ensemble complexity in section 4.3. We close the section by a comparison between generative tasks and
discriminative tasks for VQCs in section 4.4.

4.1. Fast error decay
To begin with, we consider the average error probability for complex states discriminated by VQCs with
different depth D. In figure 3(a), we consider Haar random states (blue dots) and find a fast error
suppression—the error probability decays exponentially with D before saturation to the Helstrom limit
(blue dashed horizontal line). To represent the symmetric case, we further consider the set of states S(2n)
prepared by TI local quantum circuits with a large enough depth 2n 
 1. While symmetry increases the
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Figure 3. Error probability of binary state discrimination (between two quantum states) with trained MLE-VQC systems. (a)
State discrimination between Haar random states or complex TI states S (2n) in a system of n = 6 qubits. Horizontal dashed lines
represent the ensemble-averaged Helstrom limit 〈PH〉 and light color area represents the amount of ensemble fluctuation. (b)
State discrimination between ground states of TFIM with g = 1 and g = 10 in a system of n = 6, 8, 10 qubits, where the y-axis is
in a logarithmic scale. Horizontal dashed lines show the Helstrom limit in each case. We use the open-boundary brickwall VQC
ansatz in all cases.

Figure 4. MLE versus single-qubit measurement approach in a brickwall ansatz VQC for discriminating between Haar random
states and TI states sampled from S(2n). We consider a system of n = 6 qubits. We show the ensemble-averaged cost function
〈Cdis〉 in (a) and the parameter-averaged variance of gradient 〈Var

(
gi

)
〉i for ansatz with depth D = 2 in (b). We show the half

bipartite von Neumann entanglement entropy 〈S(n/2)〉 of VQC output states with MLE (circles) and single-qubit measurement
(diamonds) in (c). The input states are Haar random states. Black dashed line indicates the Page entanglement (see equation (5)).
In (a), the line going below the plot region decreases to zero at the machine precision; we choose the plot range to make the
trends clear.

Helstrom limit (red dashed horizontal line), it does not change the exponential suppression of error
probability with depth D (red dots). To extend the results beyond random states, we consider the
discrimination between two ground states of TFIM with different parameters g in figure 3(b). We see as the
number of qubits n increases, the Helstrom limit decreases and the error probability shows an exponentially
suppressed trend with VQC depth D. Although the number of qubits is limited due to the increasing level of
difficulty in the training, we see the depth required to saturate the Helstrom limit scales linearly with the
system size.

It is worthy to point out that the amount of entanglement in states before the final measurement is high
in the MLE-VQC approach. For the Haar random input states, the optimal VQC of different depth D
preserves the bipartite entanglement entropy 〈S(n/2)〉 at the Page curve value, as shown by the purple line
in figure 5(b). Note that for less entangled inputs H(D0) prepared by random local circuits of depth D0, the
VQC circuit increases the level of entanglement 〈S(n/2)〉 at the output side before the final measurements
(green, red, blue for D0 = 2, 4, 6). From this, we see that the VQC is essentially sorting and increasing
entanglement between the qubits to enable the best performance on the final separable measurement. In
contrast, for the single-qubit measurement approach, as shown in figure 4(c), the entanglement entropy is
much lower. This is because when the final measurement is only performed on a single qubit, the circuit
tries to concentrate all valuable information onto a single-qubit. Therefore, there is no incentive for the
VQC to entanglement the final qubits, rather it tries to disentangle that qubit being measured from the rest
of the system.

4.2. MLE’s superiority over single measurement schemes
The simultaneous single-qubit measurements on all qubits and optimal MLE decision rule are crucial for
our MLE-VQC approach to unleash the full power of the brickwall ansatz. To demonstrate such, we

6
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Figure 5. (a) Discrimination error probability using the brickwall ansatz between a pair of random states sampled from H(D0)
for n = 6 qubits. Black and grey dashed horizontal lines show the Helstrom limit 〈PH〉 and a critical value 〈PE〉 = 2〈PH〉. Note
the relative large error bar in the error probability in states H(D0) generated by a shallow depth VQC is due to the lack of
self-averaging. (b) Average maximal bipartite entanglement entropy 〈S(n/2)〉 of VQC output states before measurements for
H(D0) discrimination. (c) The critical depth Dc to achieve 〈PE〉 = 2〈PH〉 versus input complexity D0. (d) Maximal bipartite
entanglement entropy 〈S(n/2)〉 of the input states to be distinguished. In (c) and (d), we plot odd and even D0 separately.

benchmark the MLE-VQC approach against the VQC with only a single-qubit Z-measurement at the center.
To show their difference, we still focus on two ensembles, Haar random states and complex TI states S(2n).
As shown in figure 4(a), the residual error utilizing MLE-VQC approach is around an order of magnitude
smaller than that of the single-qubit approach at a given D, which shows the power of MLE to gather the
full information from all qubits. Moreover, the MLE case shows a sharp drop in the error at a large enough
VQC depth D, while the single-qubit case has a consistent decay. As for trainability, although the variance of
gradient for both approaches decreases exponentially with the number of qubits n, the MLE approach
typically has a larger gradient and therefore is easier to train (see figure 4(b)). Note that the local two-qubit
gates in VQC ansatzs we study are universal, and thus the depth of VQCs falls in the range of barren plateau
for both single-qubit approach and MLE strategy, whose trainability are much different in shallow VQCs
according to their corresponding local and global cost function [43].

4.3. Linear growth of complexity
Here we explore how the complexity of the input state ensemble affects the error probability. As explained
in section 3.1, we can tune the complexity of output states H (D0) produced in a depth-D0 local random
circuit by controlling the depth D0; therefore, we study the discrimination between states sampled
from H (D0).

For states sampled from H(D0), the fast suppression of error probability still holds, as shown in
figure 5(a). With increasing input states complexity, the discrimination task becomes harder, leading to an
increasing error probability for a fixed VQC depth D. Similar to results in figure 5(a), as for binary
discrimination between TI states sampled from S(D0), the universal exponential suppression still holds with
a slightly increased Helstrom limit, as shown in figure D1.

As the saturation towards the Helstrom limit has a long tail, we consider the number of layers Dc

required to achieve an error probability PE = 2PH. In figure 5(c), we see a linear growth of Dc with D0, as
expected. This can also be explained by a sub-optimal strategy mimicking the Kennedy receiver [86], which
implements the POVM element Π0 = |ψ0〉 with a depth D ∼ D0 VQC to achieve the error probability
|〈ψ0|ψ1〉|2/2 
 2PH when PH � 1. One can also understand the increase from the increase of entanglement
in the input state, which also shows a linear trend, as depicted in figure 5(d). Our error probability results
are obtained from a finite system of six qubits, however, extending to larger systems to further consolidate
the conclusion is challenging, due to the exponential decay of gradient shown in section 4.4.

4.4. Comparison between state generation and discrimination: performance and trainability
To understand the level of difficulty of state discrimination (‘dis’), we benchmark with the most relevant
task of state generation (‘gen’) [15, 16]. In an n-qubit state generation task, the VQC performs a unitary UD

on a trivial product state |0〉 = |0〉⊗n to approximate a target state |ψ〉. Similar to the discrimination case in
equation (3), we utilize the following cost function

Cgen(UD;ψ) ≡ 1 − |〈ψ|UD|0〉|2, (8)

as a function of the VQC unitary UD; details for the numerical optimization process can be found in
appendix F.
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Figure 6. Performance and gradient of the open-boundary brickwall VQC. We consider two different state ensemble, Haar
random states and TI states S(2n). (a) Ensemble-averaged cost functions for discrimination and generation. Blue and red curves
show ensemble of Haar random states and TI states separately in a system of n = 6 qubits. (b) Parameter-averaged variance of
gradient 〈Var

(
gi

)
〉i in the D = 2 ansatz. In (a), the lines going below the plot region decrease to zero at the machine precision;

we choose the plot range to make the trends clear.

From figure 6(a), we can identify a sharp transition in the cost function C for both discrimination and
generation, where C is exponentially suppressed before reaching an extremely small value. Although we can
find that Cdis is about an order of magnitude smaller than Cgen, due to the different cost function definition,
the gap does not necessarily indicate one task is harder than the other. The same conclusion is also
confirmed for random states sampled from H(D0) and S(D0) with a finite D0 (see figure B3). Although we
have focused on the brickwall ansatz in figure 6(a) in this section, the same gap between discrimination and
generation exists in other architectures as we will discuss in section 5.

To explore the trainability of VQCs, we evaluate the gradient of the cost functions to the parameters.
For both the generation and discrimination tasks, the cost function gradient gi with respect to parameter θi

can be obtained numerically from a central finite-difference (see appendix F). Note that as the gradient can
be positive or negative, we evaluate the variance Var(gi) among different positions to get a sense of the
magnitude of gradients, similar to reference [42]. Moreover, we take an average over the different gradient
directions to obtain the average variance of gradient 〈Var(gi)〉i. In figure 6(b), the parameter-averaged
variance of gradient decays exponentially with the number of qubits n, predicted by the well-known barren
plateau phenomena [42]. The barren plateau, combined with the high average entanglement from t-design,
makes training specifically hard in large systems for the t-design VQCs we study here; to mitigate the
difficulty, we discuss the simplification of VQC ansatzs and utilization of symmetry in section 5.3.

5. Performance benchmarks of different ansatz

In section 4, we employ the brickwall VQC ansatz, where each two-qubit gate is applied to pairs of nearest
neighbors in one dimension. As we mentioned in section 2, various other architectures have been proposed
for different tasks. Since we find that VQCs relying on increasing the amount of entanglement in the
quantum states to approach the Helstrom limit, we expect that architectures with non-local gates might
improve the discriminative power of VQCs. In section 5.1, we offer a benchmark between different
architectures to confirm this. Then we provide insights into the different performance by evaluating the
scrambling power of the VQCs in section 5.2.

Despite the different architectures, in the NISQ era, VQC implementations are limited in the circuit
depth and number of gates, due to the accumulation of device imperfections. Therefore, we further explore
simplification of the gate sets in section 5.3. In particular, we find that symmetry in the input states allows
VQCs to be simplified.

5.1. Comparison between different architectures
In this section, we benchmark the various VQC architectures (see figure 7) for both state discrimination
and generation tasks. An architecture determines the layout of the quantum gates and therefore constrains
the information flow in the VQC. In section 4, we have focused on the local brickwall ansatz. To extend the
interactions beyond nearest-neighbor, prism and polygon [52] architectures generalize the line geometry to
different shapes. These three architectures are extensive—they have the number of gates per layer roughly
unchanged as the depth of the circuit increases. Other popular choices of architectures have a fixed depth
and therefore are not extensive, including QCNN [19, 20] and tensor network architectures
(TTN and MERA) [49].
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Figure 7. Topological architectures of VQCs. Two connected boxes represents a universal two-qubit gate. For (a) brickwall, (e)
prism and (f) polygon ansatzs, we show the case with depth D = 2, 3, 3 separately.

In figure 8(a), we begin the benchmark with the error probability performance in discriminating Haar
random state pairs. We see that the extensive architectures (brickwall, prism and polygon) provide a better
performance over the non-extensive architectures (QCNN, TTN and MERA) at the same depth D. In
particular, the extensive ones saturate the Helstrom limit at D = 5 exactly, while the non-extensive ones are
far from the Helstrom limit even at a larger depth. Among the three extensive architectures, we find prism
and polygon to be slightly better than the brickwall architecture at a finite depth D, due to non-local gates
more efficiently processing the global quantum information. The same conclusions also generalize to the
complex TI inputs S(2n), as shown in figure 8(c). In some sense, it is expected that QCNN, TTN and MERA
do not work well, as they are developed for problems with specific structure and symmetry.

We also consider the task of state generation, and find similar conclusions to hold—the relative ordering
of the error is identical to that in state discrimination, as shown in figures 8(b) and (d) for the Haar
ensemble and TI ensemble. This shows a consistent ordering of quantum information processing power
among the architectures, which also agrees with the quantum information scrambling capabilities explored
in section 5.2. Comparing between the state generation task in figures 8(b) and (d) and the state
discrimination task in figures 8(a) and (c), we also extend the previous conclusion in section 4.4 that state
discrimination is easier than state generation to VQCs with different architectures.

Comparing figure 7 bottom panels (c) and (d) with the top panels (a) and (b), we can see that for a
general VQC, translational symmetry in the input merely increases the Helstrom limit, while at any depth
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Figure 8. Cost functions for the discrimination (left) and generation (right) among Haar random states (top) or complex TI
states S(2n) (bottom) in a system of n = 6 qubits. We compare performance with different VQC architectures. For comparison,
the Helstrom limit 〈PH〉 ∼ 10−2.4 for (a) and 〈PH〉 ∼ 10−2 for (c), as shown in figure 3. The relative differences in the cost
functions between top and bottom panels are below 3%. The lines going below the plot region decreases to zero at the machine
precision; we choose the plot range to keep the trends clear. Note that each of the non-extensive architectures
(TTN, MERA, QCNN) have a single fixed depth and therefore is represented by a single dot.

the deviations to the Helstrom limit (the cost function) are almost identical with and without input
symmetry. Although here symmetry does not make much difference, it will allow simplifications of the
VQC, as we will explain in section 5.3.

Finally, we want to emphasize that even for less complex states H(D0) and S(D0) prepared by low-depth
circuits with and without symmetry, the non-extensive architectures (QCNN, TTN and MERA) are still
worse than the extensive architectures at the same depth, as shown in figures B3 and B4 in appendix E. In
this sense, these non-extensive architectures trade-off performance for the smaller number of quantum
gates and parameters. To obtain the optimal performance, extensive architectures are
preferable.

5.2. Discriminative power versus scrambling power
As the circuit depth increases, a VQC generates more entangled outputs in order to achieve a better error
probability in state discrimination (see figure 5(b)). The expressibility and entangling power of VQCs are
also studied in terms of the connection pattern of two-qubit gates in a relatively small system from a general
perspective of view [51]. Because entanglement growth is also an important indicator of quantum
information scrambling in the circuit, we evaluate the scrambling power of the VQCs utilized in section 5,
in comparison to their performances.

Similar to reference [52], we choose the operator size [56] as the metric to evaluate the scrambling
power of VQCs. To define operator size, we consider a Pauli-Z operator M0 = I1 ⊗ · · · Zn/2 ⊗ · · · ⊗ In

initially located at the center, where Ik is an identity operator acting on the kth qubit. Under the VQC
represented by unitary UD, the operator evolves to MD = U†

DM0UD. In general, MD can be expanded in the
Pauli bases, i.e., MD =

∑
SαSS, where S = ⊗n

k=1σk is a Pauli string with σk being one of the four Pauli
operator Ik, Xk, Yk, Zk at kth qubit. The size of the evolved operator

Size (MD) =
∑
S

|αS |2L (S) , (9)

where L (S) is the number of non-identity elements in the Pauli string S. The operator size starts from the
minimum value of unity when the operator MD is a single-qubit local operator, and saturates to the
maximum value of 3n/4 when it is uniformly distributed in the space spanned by Pauli strings. We
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Figure 9. Ensemble-averaged operator size growth with the VQC depth for Z initially localized at the n/2th qubit in a n = 6
system.

Figure 10. Cost function 〈Cdis〉 (a) and average variance of gradient 〈Var
(

gi

)
〉i (b) of different brickwall ansatz in discriminating

between random states sampled from S(2n) with number of qubits n = 6. We take TI and periodic-boundary brickwall ansatz. In
(b) all ansatzs are set to be D = 2. In (a), the lines going below the plot region decrease to zero at the machine precision; we
choose the plot range to make the trends clear.

numerically study the ensemble-averaged operator size with different VQC architectures in figure 9, when
each two-qubit gate is randomly chosen. Comparing the operator size growth with the performances in
state discrimination and generation of figure 8, we find the same ordering for all VQC architectures. This
consistency confirms the connection between the scrambling power and the discrimination power of VQCs.

5.3. Performance of simplified gate sets
In the NISQ era [2], quantum circuit implementations are limited due to device imperfections. In
particular, the imperfections accumulate with the increase of the number of quantum gates and the depth
of the circuit. In all the VQC architectures being explored in section 5.1, the realization of a universal
two-qubit gate in fact requires three CNOT gates and additional qubit rotations (see appendix C), creating
extra burdens in the VQC implementation. Another major constraint comes from the vanishing gradient
due to barren plateau [43] that prevents the efficient training of VQCs, which limits the scale of the
implementations. In this section, we consider different ways to simplify the quantum gates in the brickwall
VQC and probe the induced change of the performance and trainability in state discrimination.

As we are often considering state discrimination between TI states, a natural attempt to simplify the
VQC is to enforce TI on each layer of the VQC, including the gate parameters and a periodic boundary. As
the TI symmetry reduces the number of parameters, we expect TI VQCs to be more trainable, which is
confirmed by the gradient evaluations in figure 10(b): the TI VQC typically shows a much larger gradient.
Although assuming symmetry might lose some performance, however, as show in figure 10(a), we find that
when the input is symmetric, the TI brickwall ansatz (blue) provides almost identical performance to the
periodic-boundary brickwall ansatz without the symmetry constraint (red). This shows that enforcing the
VQC to have the same symmetry as the input simplifies the training of the VQC, while not losing much
performance. Similar benefits from simplification are being explored in other tasks [80].
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Figure 11. Architectures and performance for NISQ VQCs. (a) Layout of an n = 6-qubit sVQC ansatz and real sVQC ansatz,
plotted in (a1) and (a2) separately. The sVQC ansatz consists of CZ gates and generic single qubit rotations, and the real sVQC
ansatz consists of CZ gates and RY rotations. The circuits surrounded by the red dashed box represent D� = 2 layers and at the
end of circuit each qubit is applied with a rotation. (b1) and (b2) Cost function 〈Cdis〉 and average variance of gradient 〈Var

(
gi

)
〉i

for discriminating between Haar random states. (c1) and (c2) Cost function and average variance of gradient for discriminating
between TFIM ground states with g = 1, 10. We benchmark in a system of n = 6 qubits. In (b2) and (c2) we take D� = 6 for all
ansatz. Note for the brickwall ansatz, it corresponds to D = 2. In (b1) and (c1), the lines going below the plot region decrease to
zero at the machine precision; we choose the plot range to keep the trends clear.

Next, we consider simplifying the set of gates in VQCs. We replace each universal two-qubit gate in
figure 7(a) (which requires three CNOT gates) with a single CZ gate4, and insert general single-qubit
rotations in between each layer of CNOT gates, leading to the simple VQC (sVQC) of figure 11(a1) similar
to the designs in references [9, 33]. In an sVQC, each single-qubit rotation
R(θ1, θ2, θ3) ≡ e−iθ1Z/2 e−iθ2Y/2 e−iθ3Z/2 is characterized by three angles θ1, θ2 and θ3, where Z, Y are Pauli
matrices. We can further reduce the complexity of each single-qubit gate by constraining its matrix
representation to be real (via fixing θ1 = θ3 = 0), leading to the real sVQC architecture which only
implements real unitary UD in figure 11(a2). Real sVQCs are widely utilized in eigen-solvers [13, 14], as the
ground state of a time-reversal-symmetric Hamiltonian can be taken as real. The overall number of
parameters (which equals the number of single qubit gates) and the number of CNOT/CZ gates are listed in
table 1 for comparison: both sVQC and real sVQC reduce the number of CNOT/CZ gates by a factor of
three; while sVQC reduces the number of parameters roughly by half, the real sVQC reduces the number of
parameters roughly by a factor of seven.

To ensure a fair comparison of error probability performance and trainability, instead of the depth D of
VQCs in terms of universal two-qubit gates that we consider in most of the paper, we count the number of
layers of CNOT/CZ gates D� in the final physical implementations in the original (brickwall) ansatz, sVQC
ansatz and real sVQC ansatz. In figure 11, we find that sVQC outperforms the original ansatz consistently at
the same D�, while the trainability barely changes. This is due to a certain level of redundancy in requiring

4 An extra CZ gate is inserted every two layers to form a periodic boundary condition.
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Table 1. The number of parameters and CNOT/CZ gates of
brickwall ansatz, sVQC and real sVQC ansatz to the leading order
O(nD) with depth D in a system of n qubits.

Number Brickwall sVQC Real sVQC

Parameters ∼ 15
2 nD 3n(D + 1) n(D + 1)

CNOT/CZ gates ∼ 3
2 nD ∼ 1

2 nD ∼ 1
2 nD

each two-qubit gate to be universal in the original ansatz. The real sVQC further restricts the unitary
implemented by the VQC to be real without losing much performance compared to sVQC in the
discrimination between real ground states of TFIM, as shown in figure 11(c1); indeed, the trainability of the
real sVQC improves due to the further simplification, as indicated by the larger gradients shown in
figure 11(c2). While for Haar random states, due to the lack of symmetry of the input, such a restriction to
real unitaries harms the performance while not improving the trainability, as shown in figures 11(b1)
and (b2).

6. Discussions and conclusions

To conclude, we propose an MLE-VQC scheme for quantum data classification, which shows an enormous
error probability advantage over the single-qubit measurement approach. As the depth of the VQC increases
in an extensive way, the error probability of VQCs decreases exponentially towards the Helstrom limit.
Despite being popular choices, non-extensive VQCs such as QCNN and MERA are sub-optimal in their
error probability performances. The proposed MLE-VQC scheme can be implemented on near-term
quantum devices, and has the potential to be used in various applications. It is an important future
direction to explore the MLE-VQC’s performance in different applications, as in each application the
symmetry and structure of the problem vary and may allow additional simplifications.

Finally, we discuss about some important messages of our work. Adopting VQCs to the symmetry of the
problem will maintain the discriminative power for the particular problem while simplifying the VQC
implementations. For example, when the input is TI, constraining the VQC to be TI not only reduces the
number of parameters and improves the trainability, but also preserves the performance; similar advantages
apply to assuming real VQCs for real ground states of TFIM. However, oversimplification can be
problematic. As we have seen in figure 10, constraining the unitary to be real will significantly harm the
performance when discriminating between general complex quantum states. As in the typical case, powerful
VQCs are hard to train due to small gradients [43], one needs to utilize the structure and symmetry of the
task to simplify the circuit and enable efficient training. Our results indicate that such a simplification needs
to be tailored with caution.
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Appendix A. Preliminary of state discrimination

A.1. General Helstrom limit
The minimum ‘Helstrom’ error probability [46, 47] for the discrimination between m states {ρi}m−1

i=0 with
prior probability {pi}m−1

i=0

PH

(
{ρi, pi}

)
= 1 − max∑

i
Πi=I

∑
i

pi Tr (ρiΠi) , (A.1)
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Figure A1. Ensemble-averaged Helstrom limit 〈PH〉 for n = 6 qubits states sampled from H(D0) and S(D0). The blue dashed
line represents 〈PH〉 ∼ 1/2n+2 and the red dashed line is the average over red dots.

where the POVM element Πi corresponds to the hypothesis that the state is ρi. For the binary pure-state
case, equation (A.1) can be reduced to equation (2).

A.2. MLE decision for general state discrimination
We use the notation PA|B(a|b) for the probability of event A = a to happen conditioned on event B = b

already happened. For example, in the main text PH̃|H(h̃|h) in equation (1) denotes the event of decision

H̃ = h conditioned on the true label H = h.
Consider the general state discrimination described above, when the VQC implements the unitary UD

on input ρi, the measurement result M is equal to j with the probability

PM|H( j|i ) = Tr
(
| j〉〈 j|UDρiU

†
D

)
, (A.2)

where { j}2n−1
j=0 forms the set of all possible measurement results. Conditioned on the measurement result

j, MLE strategy minimizes the average error probability by making the decision on the state ρ ĩ via

ĩ( j) = argmaxi piPM|H( j|i), (A.3)

leading to the minimum error probability for a fixed measurement choice as

PE

(
{ρi, pi}

)
= 1 −

m−1∑
i=0

piPH̃|H(i|i). (A.4)

Here the conditional correct probability PH̃|H(i|i) =
∑

ĩ(j)=iPM|H( j|i).
In this paper, we focus on the binary pure state case with equal prior and the MLE error probability is

reduced to

PE =
1

2

⎧⎨
⎩1 −

∑
j : PM|H ( j|0 )�PM|H ( j|1 )

[
PH̃|H( j|0) − PH̃|H( j|1)

]⎫⎬
⎭ . (A.5)

Appendix B. Evaluation of 〈PH (ψ0, ψ1)〉H(D0)

B.1. n � 1 limit of finite D0

When n 
 1, we expect the typical state overlap |〈ψ0|ψ1〉|2 to be small [73], therefore

PH (ψ0,ψ1) =
1

2

[
1 −

√
1 − |〈ψ0|ψ1〉|2

]
∼ 1

4
|〈ψ0|ψ1〉|2. (B.1)

Below we show that regardless of D0, within the state ensemble H (D0), the typical Helstrom limit between
states is 〈PH (ψ0,ψ1)〉H(D0) ∼ 1/2n+2, which simply follows from the typical overlap
〈| 〈ψ0|ψ1〉 |2〉H(D0) = 1/2n. We also show it numerically in figure A1.

Consider an n-qubit system, suppose one considers an initial product state |0〉⊗n, for two local quantum
circuits implementing unitaries U0, U1, the overlap is |〈ψ0|ψ1〉|2 = 〈0|U|0〉〈0|U|0〉 where U = U†

0 U1. As U
and U † each appears only once, taking the ensemble average over a one-design [71–73] suffices to produce
the Haar value. In our case, we consider random local quantum circuits for U0 and U1, with each two-qubit

14



Quantum Sci. Technol. 7 (2022) 035017 B Zhang and Q Zhuang

Figure B1. A decomposition of a general two-qubit gate. The R gate represents an arbitrary single qubit rotation with three
independent parameters as R(θ1, θ2, θ3) = RZ(θ1)RY(θ2)RZ(θ3).

Figure B2. (a) Cost function 〈Cdis〉 and (b) average variance of gradient 〈Var
(

gi

)
〉i for discriminating between n = 6 qubits

Haar random states using open-boundary and periodic-boundary brickwall ansatzs. In (b) we evaluate both ansatzs at the depth
of D = 2. In (a), the lines going below the plot region decrease to zero at the machine precision; we choose the plot range to
make the trends clear.

Figure B3. Cost functions of different VQC architectures in the discrimination (top) and generation (bottom) of random states
sampled from H(D0) with D0 = 2, 4, 6 in a system of n = 6 qubits. The lines going below the plot region decrease to zero at the
machine precision; we choose the plot range to make the trends clear. Note that each of the non-extensive architectures
(TTN, MERA, QCNN) have a single fixed depth and therefore is represented by a single dot. The same applies to figure B4.

unitary Haar random. Regardless of the number of layers of the circuit, the ensemble {U†
0U1} forms a

one-design, therefore ∫
Haar

dU〈0|U†|0〉〈0|U|0〉 = 1

2n
, (B.2)
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Figure B4. Cost functions of different VQC architectures in discrimination (top) and generation (bottom) of TI random states
sampled from S(D0) with D0 = 2, 4, 6 in a system of n = 6 qubits.

where we utilized the Haar average identity for two elements of a U(d) matrix,

〈| 〈ψ0|ψ1〉 |2〉H(D0) =

∫
Haar

dU UαaU∗
βb =

1

d
δαβδab. (B.3)

where d is its dimension.

B.2. D0 � 1 limit
The exact 〈PH (ψ0,ψ1)〉H(D0) is not easy to compute for a finite D0. Here we consider the case of D0 
 1,
where the ensemble H (D0) is simply Haar random. In this case, the distribution of the overlap
x = |〈ψ0|ψ1〉|2 can be analytically obtained [87].

Consider d = 2n complex numbers {αi}d
i=1 as the complex amplitudes of the states ψ1 with

normalization condition
∑d

i=1|αi|2 = 1, it indicates that the amplitudes {αi}d
i=1 forms 2D-sphere. The

other state ψ0 we can choose it to be |ψ0〉 = |0〉 with the freedom in choosing the Haar unitary. The
probability distribution for x = |〈ψ0|ψ1〉|2 = |〈0|ψ1〉|2 = |α1|2 = γ is

P(x = γ) =

∫∞
−∞

∏
id

2αi δ
(
γ − |α1|2

)
δ
(
1 −

∑
i|αi|2

)∫∞
−∞

∏
id

2αi δ
(
1 −

∑
i|ai|2

) =

∫∞
−∞

∏
i>1d2αi S1

(√
γ
)
δ
(
1 − γ −

∑
i>1|αi|2

)
2
√
γS2d−1(1)/2

=
S1

(√
γ
)

S2d−3

(√
1 − γ

)
2
√
γ
√

1 − γS2d−1(1)
= (d − 1)(1 − γ)d−2.

(B.4)
Here we utilize the N-dimensional sphere surface area formula

SN (R) ≡
∫ ∞

−∞

N+1∏
l=1

dxl δ

⎛
⎝R −

√√√√N+1∑
l=1

x2
l

⎞
⎠ = 2R

∫ ∞

−∞

N+1∏
l=1

dxl δ

(
R2 −

N+1∑
l=1

x2
l

)
=

2π
N+1

2

Γ
(

N+1
2

)RN , (B.5)

where we use the expansion 2aδ(x2 − a2) = δ(x − a) + δ(x + a). One can also check that the probability∫ 1
0 dγ P(x = γ) = 1 is normalized. From the probability distribution, we have the Haar average Helstrom

limit as

〈PH〉Haar =

∫ 1

0
dγ

1

2

(
1 −

√
1 − γ

)
p(x = γ) =

d − 1

2 (d2 − 3d + 1)
=

1

2 (2n+1 − 1)
. (B.6)

When n 
 1, the Haar average Helstrom limit 〈PH〉Haar ∼ 1/2n+2.
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Figure D1. Error probability for discriminating between random states from S(D0) (left) and H(D0)(right) using brickwall
ansatz in an n = 6 system. Black and grey dashed lines in (a) and (b) show ensemble-averaged Helstrom limit 〈PH〉 and 2〈PH〉.

Figure D2. Cost functions of the sVQC ansatz in discrimination 〈Cdis〉 (a) and generating 〈Cgen〉 (b) of random states from
H(D0) with D0 = 2, 4, 6 and Haar random states in a system of n = 6 qubits. In this case, the depth D = D� equals the layers of
CNOT/CZ. The lines going below the plot region decrease to zero at the machine precision; we choose the plot range to make the
trends clear.

Appendix C. Local random gates construction

As shown in figure 7, various architectures of VQC are constructed from local two-qubit gates. In general, a
two-qubit gate, in the form of 4 × 4 unitary, includes 15 independent parameters (up to a global phase).
Such a gate can be decomposed into single qubit rotations and up to three CNOT gate [88], as we show in
figure B1.

Appendix D. Boundary condition for VQCs

In section 4, we assume the brickwall VQC ansatz to be open-boundary, which is a local quantum circuit.
However, one can also assume the brickwall ansatz to have a periodic-boundary. In figure B2, we compare
the performance and gradient of open-boundary and periodic-boundary brickwall ansatzs in
discriminating between Haar random states. Just as we expect, the periodic-boundary brickwall ansatz
performs slightly better than the open-boundary one in the low depth region, due to the extra gates on the
first and last qubit that help process global quantum information, while the gradient is nearly the same
which leads to the same difficulty of training. Therefore, without specific clarification we utilize
open-boundary brickwall ansatz in the main text to restrict the locality of VQCs.

Appendix E. More results of VQCs performance

The VQC architectures utilized in section 5 are applied to the discrimination and generation of random
states sampled from H(D0) and S(D0) with D0 � n. With D0 increases, the random states become more
complex and entangled, as shown in figure 2(b). Similar to the Haar case, we can also confirm the
advantage for extensive architectures towards non-extensive ones in small D0 cases from figure B3. From
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Figure F1. The optimization history of cost function Cdis in discriminating between a pair of Haar random states. We apply the
brickwall ansatz with different depth D in a system of n = 6 qubits.

figures B3(a)–(c), as states become more complex, for a fixed D the residual error also increases with
extensive architectures, brickwall, prism and polygon. Compared to generation tasks shown in
figures B3(d)–(f), discrimination still shows better performance within the depth range that Cgen(UD, |ψ〉) is
non-zero.

Unlike the Haar case shown in figure 8, we can find that as D0 decreases, the advantage of prism and
polygon ansatzs over brickwall ansatz is reduced. Note that the information of input states is locally stored
as D0 is small, and thus the non-local gates in those architectures (which help to processes global
information) could not perform as efficiently as in the large D0 cases. The above discussions can also be
extended to the performance of VQCs in TI states from S(D0), as we show in figure B4.

In figure 6(a), we see that the discrimination residual error for random states from Haar ensemble and
S(2n) roughly agrees when D is low. We plot the discrimination error probability directly in figure D1.
Compared to the typical random states, the Helstrom limit of TI random states is larger and independent of
D0, as we already confirmed in figure A1. Except for that, for all D0, the error probability for TI states is still
exponential suppressed with the depth D.

Finally, we provide the performance of the sVQC anstaz, in figure D2. Due to the limited number of
CNOT/CZ gates and parameters, the depth required to approach the ultimate limit increases for the sVQC
ansatz.

Appendix F. Computation details

To implement different VQC ansatzs, we use Qulacs [89], a high performance VQC simulator for Python.
We utilize the BFGS algorithm [90], a gradient based quasi-Newton method for numerical optimization on
parameters of VQCs. Compared to regular gradient descent training methods like stochastic gradient
descent (SGD) and Adam used in classical neural networks, the VQC can be optimized in less iteration steps
using the BFGS algorithm. We choose the best one among the 40 optimization results from random
initializations of parameters. An example of optimization history is shown in figure F1.

We evaluate the gradient of cost functions with respect to each parameter using the central finite
difference method. Another formalism, parameter-shift rule, is also proposed to provide an analytical
expression for the gradient [91]. For a given observable O, the gradient of the mean of the observable is
gi

PSR ≡ ∂i〈O〉 = 1
2

(
〈O〉+ − 〈O〉−

)
, where 〈O〉± = 〈O〉θi± π

2
. Note that with the MLE strategy, the classical

post-processing makes the observable dependent on the choice of each parameter separately and implicitly,
for convenience and a fair comparison in all cases, we have adopted a finite-difference numerical approach
in calculations of gradient. The step size Δs is also a free parameter in the definition of finite difference, and
here we apply Δs = 10−6.
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