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A B S T R A C T

While designing sustainable and resilient urban built environment is increasingly pro-
moted around the world, significant data gaps have made research on pressing sus-
tainability issues challenging to carry out. Pavements are known to have strong eco-
nomic and environmental impacts; however, most cities lack a spatial catalog of their
surfaces due to the cost-prohibitive and time-consuming nature of data collection. Re-
cent advancements in computer vision, together with the availability of street-level im-
ages, provide new opportunities for cities to extract large-scale built environment data
with lower implementation costs and higher accuracy. In this paper, we propose City-
Surfaces, an active learning-based framework that leverages computer vision techniques
for classifying sidewalk materials using widely available street-level images. We trained
the framework on images from New York City and Boston and the evaluation results
show a 90.5% mIoU score. Furthermore, we evaluated the framework using images
from six different cities, demonstrating that it can be applied to regions with distinct
urban fabrics, even outside the domain of the training data. CitySurfaces can provide
researchers and city agencies with a low-cost, accurate, and extensible method to col-
lect sidewalk material data which plays a critical role in addressing major sustainability
issues, including climate change and surface water management.
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1. Introduction

As urban areas expand around the world, more impervious
surfaces replace the natural landscape, creating significant eco-
logical, hydrological, and economic disruptions (Arnold Jr &
Gibbons, 1996; Chithra et al., 2015). Choosing the right ma-
terial to cover city surfaces has become a critical issue in mit-
igating the adverse effects of increased anthropogenic activi-
ties. Historically, local availability, cost, strength, and aesthet-
ics were the main factors influencing the choice of surface pave-
ments (Tillson, 1900; Lay et al., 2020). The advent of asphalt
and, later, concrete changed the face of cities. The longevity

e-mail: maryam.hosseini@nyu.edu (Maryam Hosseini)

and durability coupled with relatively low production and in-
stallation costs made them the pavements of choice. However,
as it was later revealed, these benefits came with huge environ-
mental burdens (Van Dam et al., 2015).

One of the concerning environmental impacts of impervious
surfaces is the sharp rise in urban temperature compared to its
neighboring rural areas – a phenomenon called Urban Heat Is-
land (UHI) effect (Oke, 1982). UHI, which poses serious chal-
lenges to public health, ecological environment, and urban live-
ability (Estoque et al., 2017), is shown to be directly associated
with surface characteristics, such as thermal performance and
reflectivity. It can influence microclimates within the city by
absorbing more diurnal heat and emitting that into the atmo-
sphere at night (Takebayashi & Moriyama; Wu et al., 2018;
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Fig. 1. Using CitySurfaces to map the dominant surface material in Chicago, Washington DC, and Brooklyn (not part of our training data). Segments
where the dominant material differs from concrete are drawn using a thicker line.

Nwakaire et al., 2020). Natural surfaces and vegetation in-
crease the amount of evapotranspiration and decrease the over-
all temperature and create a cool island effect (Amati & Tay-
lor, 2010; Du et al., 2017). Reflective/high-albedo materials are
also known to decrease UHI (Akbari et al., 2009; Santamouris
et al., 2011; Santamouris, 2013; Zhu & Mai, 2019). Hence,
the spatial distribution of land cover has a strong impact on the
surface temperature (Chen & Zhang, 2017). Surface material
also impact the water runoff and increase the risk of flooding.
Sidewalks and roads form the main part of the urban ground
surfaces. Today, the majority of the sidewalks are covered with
impermeable materials which prohibit the infiltration of the wa-
ter into the underlying soil, increase both the magnitude and
frequency of surface runoffs (Shuster et al., 2005; Bell et al.,
2019), reduce the groundwater recharge, and negatively impact
the water quality. The excessive use of impervious surfaces is
shown to be the primary cause of the Combined Sewer Over-
flows (CSOs), which can lead to massive pollution of natural
bodies of water and street flooding (Joshi et al., 2021). Aside
from the mentioned impacts, sidewalk pavements can also lead
to public health hazards such as outdoor falls, or pose a barrier
to walkability and accessibility of public spaces, specifically
for the more vulnerable population and wheelchair users (Tal-
bot et al., 2005; Clifton et al., 2007; Aghaabbasi et al., 2018).
Studies show that uneven surfaces, indistinguishable surface
colors, and low-friction materials contribute to the high inci-
dence of outdoor falls in elderly populations (Chippendale &
Boltz, 2015; Thomas et al., 2020).

Despite the substantial economic, environmental, public
health, and safety implications of sidewalk pavements (Muench
et al., 2010; Van Dam et al., 2015; Estoque et al., 2017), most
cities, even in industrialized economies, still lack information
about the location, condition, and paving materials of their side-
walks (Deitz et al., 2021). The lack of data creates barriers
to understanding the real extent of the environmental and so-
cial impacts of using different materials and inhibits our abil-
ity to take a complex system approach to sustainability as-
sessment (Van Dam et al., 2015). For instance, studies show
a significant intra-urban variability of the urban thermal envi-
ronment due to the street-level heterogeneity of paving mate-
rials (Agathangelidis et al., 2020). However, the data scarcity
makes it challenging to measure this variability across different

neighborhoods and consequently, impedes the development of
a sustainable and resilient mitigation response plan (Akbari &
Rose, 2008; Li et al., 2013; Yang et al., 2019). In the absence
of fine-scale data, studies mainly rely on remote sensing im-
ages; however, the high-resolution aerial images are both spa-
tially and temporally sparse (Zhang et al., 2009), requiring re-
searchers to use a variety of data aggregation and extrapolation
techniques to fill in the missing data, which can lead to high
bias and hurt the validity of the final results.

Collecting comprehensive and fine-scale sidewalk data using
conventional methods is time-consuming and cost-prohibitive.
Recent technological innovations in data collection opened
new frontiers for research on public space and pedestrian fa-
cilities, creating opportunities to track features of interest at
higher temporal frequencies and more granular geographic
scales (Glaeser et al., 2018). The use of street-level images
in urban analysis has gained popularity since the introduction
of Google Street View (GSV) (Anguelov et al., 2010) and Mi-
crosoft Street Slide (Kopf et al., 2010), services that provide
panoramic images captured by cameras mounted on a fleet of
cars. Concurrently, developments in machine learning and com-
puter vision applied to these new datasets have enabled novel
research directions to measure the “unmeasurable” in urban
built environments (Ewing & Handy, 2009), including side-
walks (Frackelton et al., 2013; Ai & Tsai, 2016).

In this work, we address this data gap and take a step to-
wards exploring the surface of our cities through CitySurfaces,
a framework aimed at generating city-wide pavement material
information by leveraging a collection of urban datasets. We
combine active learning and computer vision-based segmenta-
tion model to locate, delineate, and classify sidewalk paving
materials from street-level images. Our framework adopts a re-
cent high-performing segmentation model (Tao et al., 2020),
which uses hierarchical multi-scale attention combined with
object-contextual representations. To tackle the challenges of
high annotation costs associated with dense semantic label an-
notation, we make use of an iterative, multi-stage active learn-
ing approach, together with a previously acquired sidewalk in-
ventory from Boston, which lists the dominant paving material
for a given street segment. We demonstrate how the trained
segmentation model can be extended with additional classes of
materials with noticeably less effort, making it a versatile ap-
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proach that can be used in cities with varying urban fabrics
and paving materials. To show the generalization capabilities
of CitySurfaces, we employ our framework in the segmenta-
tion of street-level images from four different cities: Brook-
lyn, Chicago, Washington DC, and Philadelphia, none of which
were included in the training process. Figure 1 highlights how
different pavement materials are spatially distributed in three
cities.

Our contributions can be summarized as follows:

• We present CitySurfaces, a deep-learning-based image
segmentation framework for large-scale localization and
classification of sidewalk paving materials.
• We adopt an active learning strategy to significantly reduce

pixel-level annotation costs for training data generation,
and yield increased segmentation accuracy.
• We conduct extensive experiments using street-level im-

ages from six different cities demonstrating that our model
can be applied to cities with distinct urban fabrics, even
outside of the domain of the training data.
• We make publicly available our model as well as the

results of our material classification in the six selected
cities 1.

This paper is organized as follows: Section 2 describes the
main data sources of our framework; Section 3 describes the
CitySurfaces framework; Section 4 summarizes our results;
Section 5 highlights challenges and limitations; and Section 6
presents our conclusion.

2. Data description

Aware of the fact that manually labeling images is a time-
consuming task, our proposed framework leverages a unique
dataset that describes the material of sidewalks in Boston. We
combine that data with the street-level images to create the
training data for our semantic segmentation model. Next, we
describe both data sources.

2.1. Boston sidewalk inventory
The sidewalk inventory (Boston PWD, 2014) is part of the

Boston Pedestrian Transportation Plan (Loutzenheiser, Felix,
2010) and describes sidewalk features, including geographic
coordinates and paving materials collected via manual field vis-
its. The material attribute describes the dominant surface mate-
rial of each street segment (either concrete, brick, granite, a mix
of concrete and brick, or asphalt). Figure 2 illustrates patches
of these five materials; the other three extra materials (gran-
ite block, cobblestone, hexagonal pavers) shown in the image
were not recorded in the Boston dataset but were later manu-
ally added to our classes, as we will discuss in Section 3.3. We
grouped the street segments by materials, using the geographic
coordinates of the paving materials in the Boston inventory, and
used it to assign an overall image class to the street-level images
to guide the annotation process.

1https://github.com/VIDA-NYU/city-surfaces

Concrete Bricks Asphalt Granite

Mixed concrete 
& bricks

Hexagonal 
asphalt paver

Cobblestone 
road

Granite
blocks

Fig. 2. The eight classes of surface materials used in our study. Top:
standard and prevalent materials, Bottom: materials with distinct use.

2.2. Street-level images
Street-level image usage in urban analysis has gained

popularity with the introduction of Google Street View
(GSV) (Anguelov et al., 2010) and Microsoft Street Slide (Kopf
et al., 2010), services that provide panoramic images captured
by specifically designed cameras mounted on a fleet of vehi-
cles. These new data sources enable new questions and study
designs for urban planning and design, urban sociology, and
public health (Griew et al., 2013; Yin et al., 2015; Mooney et al.,
2016). The GSV API can retrieve street-level images via geo-
graphic coordinates and allows users to adjust camera settings
such as the heading, field of view (FoV), and pitch.

We use the OSMnx library (Boeing, 2017) to obtain the
Boston street network and query the GSV API for street-level
images at a fixed interval (5 meters), excluding major highways
and tunnels. We acquire the compass bearing of each street to
set the camera heading to be perpendicular to the street, thus
looking directly at left and right sidewalks. The pitch was set
to 0◦ with an FoV of 80◦. To create a more diverse training set,
for 35% of the training data, we use different combinations of
headings (pitch ∈ [−10◦,−20◦], and FoV∈ [60◦, 70◦]), to have
sidewalk images taken at varying angles and perspectives. Fig-
ure 3 illustrates sampled street segments in Boston, together
with their image-level annotations. In order to train our frame-
work, 3,500 Boston images were obtained, and later 2,000 im-
ages from New York City (NYC) were added to the pool of
initially unannotated data. We excluded images with no side-
walks as well as those where more than 80% of the sidewalks
were occluded. The final set had a total of 4,300 images.

3. CitySurfaces

CitySurfaces adopts an active learning approach for the se-
mantic segmentation of sidewalk paving materials. Using this
framework, we aim to: 1) Train a model that can classify five
different paving materials plus asphalt roads; 2) Extract infor-
mation about sidewalk materials of a city for which no ground
truth sidewalk inventory exists (e.g., NYC); and 3) Extend the
model to classify additional classes of materials so that it can
be applied to a more general set of cities.

https://github.com/VIDA-NYU/city-surfaces
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Sidewalks

BackgroundRoadBricksConcreteGranite

Street-level images

Fig. 3. Examples of sampled points in Boston to obtain street-level images.
Three different sampling locations are highlighted and for each location,
the street-level image as well as the prediction result of the model is de-
picted.

Active learning aims at achieving high accuracy while mini-
mizing the amount of required labeled data. The main hypoth-
esis is, if we allow the model to choose the training data, it
will perform better with fewer labeled instances (Settles, 2009).
Through iteratively selecting the most informative or represen-
tative images to be labeled, fewer labeled instances are required
to achieve similar performance compared to randomly selecting
a large sample as training data and annotating all of it at once
(Bloodgood & Vijay-Shanker, 2014; Huang et al., 2010).

In general, our multi-stage workflow is different from previ-
ous works in active learning for semantic segmentation in two
important ways: First, our sample selection method is not fully
automated; we use the uncertainty measure to filter the pool of
unlabeled data in each stage, but we also use domain expertise
for selecting a sample of images to be annotated and added to
the training set in the next stage. Second, our query frequency
is ten epochs (each epoch is a pass through all training data).
The conventional approach in active learning is to select new
samples (query) every iteration, which can work in cases where
the cost of annotation is not high or in experimental studies that
work with already annotated images to advance the field and
develop new query algorithms, as is the case with most of the
already published works in active learning for semantic seg-
mentation, where they use datasets such as Cityscapes (Cordts

et al., 2016) or ADE20k (Zhou et al., 2017). However, since no
annotated dataset exists for sidewalk materials, we have to an-
notate every new sample we choose during the training process,
and it is impractical to annotate a new sample for every itera-
tion (Kim et al., 2020). To overcome this, we adopt a multi-
stage framework and annotate a new sample at the end of each
stage, where each stage consists of ten epochs.

Our workflow has three major blocks as illustrated in Fig-
ure 4: Block (a) creating initial training labels; Block (b) train-
ing a material segmentation model and; Block (c) extending the
model to segment three additional classes from NYC standard
materials. In this section, we first describe the different blocks
of the workflow in detail, followed by a description of the se-
mantic segmentation model. The training process and experi-
ments were executed on 4 NVIDIA P100 GPUs with 12 GB of
RAM each.

3.1. Block (a): Initial image annotation

To start the training process, we need a set of annotated im-
ages. To obtain the annotated data, we randomly sample 1,000
images from a pool of unlabeled Boston street-level images and
feed that sample into HRNet-W48 (Sun et al., 2019; Wang et al.,
2020) model pre-trained on Cityscapes (Cordts et al., 2016) and
get the initial segmentation results (Figure 4(a)). The model
outputs 19 classes from which we only keep roads and side-
walks. To generate an initial set of labeled data, we make use
of the Boston Sidewalk Inventory (detailed in Section 2.1). We
first query for the street segments of the images in our initial
sample and modify the label to match the audited pavement
from the inventory. Effectively, we are ensuring that, instead
of having a general sidewalk class outputted by the pre-trained
HRNet, our image set will have annotations according to the
ground truth inventory data (e.g., concrete, bricks). We then
manually refine them to account for the pre-trained model’s pre-
diction errors. In the initial training set, we restrict our sampling
to images where the sidewalks mainly consist of a single mate-
rial and eventually move to more complex material configura-
tions in later stages. The final annotated images were split into
80% training and 20% validation to train the model in block (b).

3.2. Block (b): Model training on Boston and NYC

In the second block of the framework (Figure 4(b)), we train
an attention-based model (detailed in Section 3.4) using the la-
beled images from block (a). Our training step initially uses
800 images for training, and 200 images for validation, with a
batch size of 8, SGD for the optimizer, momentum 0.9, weight
decay 5e−4, and an initial learning rate of 0.002. We train the
model in a multi-stage framework, where each stage consists of
ten epochs. In each stage, we choose the epoch with the high-
est mIoU on the validation set. At the end of each stage, we
make two decisions: 1) we select the best model considering
all epochs of the current stage; and 2) we analyze the quan-
titative and qualitative results of the model to guide sampling
the new addition to the training data. In particular, we analyze
the confusion matrix, similarity matrix, as well as the top 10%
of predictions with the highest mIoU and the top 20% of fail-
ures, obtained from the validation phase of the best epoch. The
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Fig. 4. CitySurfaces workflow. Block (a): Creating the initial ground truth labels using the Boston sidewalk inventory and GSV images. A sample of
unlabeled images is fed to a pre-trained HRNet, which outputs annotation labels containing two classes of interest: roads and sidewalks. The labels are
manually refined to represent the five sidewalk paving classes, forming our ground truth set; Block (b): Training the base model to classify five classes of
surface materials, plus roads. The data from block (a) is used for the first stage of training. The model is then iteratively retrained for multiple stages
on new samples. In each stage, the most representative and informative samples are chosen, and the annotations are manually refined and added to the
training set to retrain the network; Block (c): Introducing three new classes of materials. The pre-trained model from block (b) is retrained on the newly
annotated image with three new classes. The final model can classify eight classes of different materials.

weights of the best model in the current stage are then used to
initialize the model in the next stage with more training data.
This restating scheme of SGD with the best solution of the pre-
vious stage is useful in increasing the chances of finding better
solutions in the current stage.

To sample new images, we employ two strategies: i) Un-
certainty in predicting unlabeled images: We make use of the
model’s uncertainty estimations on unlabeled data and select
the images that were most challenging for the model to predict;
and ii) Performance on validation set: By examining per-image
IoU, uncertainty, and error rates of the images from failure and
success cases together with confusion matrices, we construct a
set of sample images to be used as inputs for finding similar
unlabeled images. A more detailed explanation of these two
techniques is provided in Appendix A.

Following the sample selection strategies, we retrieve 300
unlabeled images, apply the current model on these new un-
labeled images to generate a prediction, and then modify the
predicted labels to add them to the overall training set, such that
the segmentation model is trained on more samples of hard-to-
segment images. To improve model generalization, in the third
stage, we begin including images from Manhattan, which has
a different urban fabric and more diverse forms and types of
paving materials, in the pool of unlabeled data. Since no ground
truth data exists for Manhattan, to create the ground truth label,
we need to have a model with reliable performance to create
the base annotation. We chose the third stage since the model
reached a reliable performance (83% mIoU) in detecting the
main classes, and outputs had clear borders compared to the
other two stages. The selected images from Manhattan were
fed to the model, and the results were corrected and refined us-
ing feedback from the domain expert and added to the training

dataset. The segmentation model is then trained on the com-
bined set of the initial and newly annotated data (1,100 images),
initialized with the weight from the best epoch of the previous
stage. This procedure is iterated for five stages (at which point
we observe no further notable improvements). The model at
the final stage was trained on 2,500 images (Figure 4(b)), and
achieved 88.6 % mIoU on the held-out test set.

Input image

BackgroundAsphaltRoadGranite block/stoneConcreteCobblestone

Prediction 
block (b)

Training data
block (c)

Fig. 5. Examples of how the annotation labels with additional classes were
created from the output of the model in block (b) of our framework. The
model trained in block (b) classified granite blocks and cobblestone as
background, leaving smooth and clear boundaries, which helps to augment
the labels with new classes during manual refinement and train a model
that can classify eight different materials (block (c) of the framework).
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Fig. 6. Confusion matrices for the three stages of the extended model. These results guided sample selection and signaled which type of images should
be included in the training data for the next stage. Notice the improvement of the predictions for hexagonal pavers, granite block, and granite/bluestone
(highlighted in red).

3.3. Block (c): Including additional materials from NYC

Once the model in block (b) attains sufficiently accurate seg-
mentation performance, we extend it by adding three additional
classes (Figure 4(c)). The three additional classes are granite
blocks, hexagonal pavers, and cobblestone. These materials
are standard sidewalk materials in the NYC street design man-
ual (NYC DOT, 2020). While granite blocks and cobblestones
were also observed in Boston, they were not included in the
Boston sidewalk inventory. Since the original model in block
(b) was not trained to detect these materials, they are initially
either classified as background (mostly granite blocks and cob-
blestones) or misclassified (mostly hexagonal pavers) as other
visually similar materials. To collect street-view images that
have these new materials, we follow the NYC and Boston street
design manuals (Thomas M. Menino, 2013; NYC DOT, 2020)
to filter unlabeled data from the locations in which these ma-
terials can be found. For example, hexagonal pavers (NYC
only) are typically used on sidewalks adjacent to parks and open
spaces, and cobblestones are used in historic districts.

We select a total of 800 images that contain these new classes
to be iteratively sampled for training, 150 additional images for
the validation set, and 200 images for the held-out test set. An-
notating the new image set consumed fewer resources as com-
pared to the initial annotations since smooth model predictions
typically leave clear boundaries, which only needed to be as-
signed the appropriate label (see Figure 5). The newly gener-
ated set of labels was used to train the model by initializing the
architecture with model weights in block (b) and only replac-
ing the final softmax layer instead, to produce ten output chan-
nels (corresponding to eight paving materials, plus the road, and
background). At the end of each stage, we select a new sample
of unlabeled images following the same process explained in
Section 3.2, run them through the model, obtain segmentation
predictions, refine the results, and retrain the model. In total,
726 additional images were added to the training set, and in
the final stage, the model was trained on 3,226 images (2,500
from block (b) + 726). We halt the training in stage 3 after 30
epochs, and test the model on the held-out test set (Figure 4(c)).

Stage 1
Prediction

Stage 2 Stage 3

BackgroundAsphalt RoadConcreteGranite

Ground truthInput image

Cobblestone

Hexagonal asphalt paverGranite block/stone

Fig. 7. Evolution of the block (c) extended model’s inference through dif-
ferent training stages.

Figure 6 shows the confusion matrices for all three stages of
our extended model, illustrating model performance as a func-
tion of the amount of training data. These matrices were also
used in part to guide the sampling of images to annotate.

Using the described method, model performance increases
from 74.3% mIoU to 88.6% for the base model (block (b)) and
to 90.5% in the extended model (block (c)), with the manual re-
finement time decreasing from 25 to 4 minutes per image. Fig-
ure 7 depicts the evolution of the segmentation results of block
(c) through the active learning stages. The model outputs more
refined boundaries and significantly less noise in later stages;
thus, significantly less time is needed to modify the newly an-
notated data as the stages go on. In each stage, the model is
initialized with the weights from the previous stage.

3.4. Semantic segmentation model

For the semantic segmentation task (blocks (b) and (c)),
we adopt the Hierarchical Multi-Scale Attention (Tao et al.,
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2020) and fine-tune the parameters on our dataset. To train
the model, following Zhu et al. (2019), we employ class uni-
form sampling in the data loader, which chooses equal sam-
ples for each class for handling the class imbalance, since some
classes like road and background are almost present in all im-
ages, whereas classes like cobblestone and hexagonal pavers are
not that prevalent. The Region Mutual Information (RMI) loss
(Zhao et al., 2019) was employed as the primary loss function.
RMI takes the relationship between pixels into account and uses
the neighboring pixels around each pixel to represent it instead
of only relying on single pixels to calculate the loss. We run dif-
ferent experiments with and without the RMI loss function for
the main segmentation head. In the absence of RMI, standard
cross-entropy loss was used instead. The model under the same
setting, but without RMI loss, performed slightly worse (89.84)
compared to the one where RMI loss was used (90.51). Figure 8
presents an overview of the architecture. Next, we describe the
network’s architecture in more detail.

3.4.1. Backbone
We chose HRNet-OCR (Yuan et al., 2019) as the backbone.

The network comprises HRNet-W48 (Sun et al., 2019; Wang
et al., 2020) and adds Object-Contextual Representations (Yuan
et al., 2019) to further augment the representation extracted by
the HRNet. The final representation from HRNet-W48 works
as the input to the OCR module, which computes the weighted
aggregation of all the object region representations to augment
the representation of each pixel. The weights are calculated
based on the relations between pixels and object regions. The
augmented representations are the input for the attention model
described next.

3.4.2. Attention model
The model is mainly based on Share-Net (Chen et al., 2016).

Suppose an input image is resized to several scales, i.e., s ∈
{1, ..., S }. Each scale is passed through the backbone part
(HRNet-W48+OCR), and we can get the output feature f s

i,c. For
the feature, c ∈ {1, ...,C} (C is the number of classes of inter-
est, and i ranges over all the spatial positions). As shown in
Figure 8, the features then go through two heads, one for atten-
tion generation and the other for segmentation. The features f s

i,c
are resized for different scales to have the same resolution (with

0.5x scale

1.0x scale

g

*

*

HRNet+OCR

HRNet+OCR Seg Head

Seg Head

Attention Head
a

0.5

1-a
1.0

h
1.0

h
0.5

f
1.0

f
0.5

Pixel-wise multiplication Pixel-wise addition

+
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Fig. 8. The general architecture of the hierarchical multi-scale attention
(HMSA) based semantic segmentation method (Tao et al., 2020). The in-
puts are images from two scales. The network learns the relative attention
between scales and hierarchically applies the learned attention to combine
the results from two segmentation heads and make a prediction.

respect to the finest scale) using bilinear interpolation before
passing the model heads. For the attention head, we generate
the learned weights for f s

i,c which is represented by as
i,c. This

weight is integrated into the initial output hs
i,c from the segmen-

tation head, and we have:

gs
i,c = as

i,c ∗ hs
i,c (1)

in which gs
i,c is the final output score map for scale s, and ∗ here

represents the pixel-wise multiplication.
In the model, the combination of score maps is similar to (Tao

et al., 2020) to make the flexible scales during inference time
possible and improve the training efficiency. During the train-
ing, we only need to train with two adjacent scales (as shown
in Figure 8). During testing, weights for the network are shared
for each adjacent scale pair.

To be more specific, suppose the two selected adjacent scales
are 1x and 0.5x (the final selected scales during training in the
model are 0.5x, 1x, and 2x) to obtain the pair of scaled im-
ages for the model input. For inference, we can hierarchically
and repeatedly use the learned attention to combine N scales of
predictions together. Precedence is given to lower scales since
they have a more global context and can choose where predic-
tions need to be refined by higher scale predictions. The final
combination principle for these adjacent scales is defined as:

gi,c = a0
i,c.5 ∗ h0

i,c.5 + (1 − a0
i,c.5) ∗ h1

i,c (2)

The hierarchical mechanism used in the model coupled with
the powerful HRNet-OCR backbone provides a robust archi-
tecture for the challenging task of material classification in the
wild.

4. Results

In this section, we present the results of applying our trained
model on the held-out test set. We do not rely on pixel-level
accuracy in evaluating the model since sidewalks comprise a
relatively small portion of each image, while road and back-
ground can occupy more than 70% of most images, resulting in
a significant class imbalance. This class imbalance creates an
arbitrary high pixel-level accuracy, which is not a fair represen-
tation of the model’s performance.

4.1. General evaluation metrics

Table 1 presents class-level evaluation metrics, the mean
Jaccard index (IoU), precision, and recall for the final model.
The model outputs ten classes in total, seven classes of side-
walk pavings, one extra class of street pavings - cobblestone
- plus road and background. Excluding road and background,
the model achieved 88.37% accuracy, with hexagonal asphalt
pavers and asphalt sidewalks having the highest accuracy mea-
sures. Overall, half of the pavement classes have IoU above
90%. Concrete, the most prevalent and versatile material, can
be classified with 88.7 accuracy. A robust result considering the
high within-class variation (i.e., it comes in various colors and
textures). Granite/bluestone and granite block have the lowest
accuracy (81.09 and 82.92 respectively). This can be partially
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Fig. 9. Predictions of the model on the held-out test set. Fine details and boundaries of objects like poles, plants, wooden sticks, and fire hydrants are
very precisely predicted. The model also segmented curb cuts (line 1 - column 2), different instances of the same material (3-1), (3-3), and visually similar
materials of different classes (1-4).

Table 1. Evaluation metrics on the held-out test set.
Label IoU Precision Recall

Concrete 88.69 0.95 0.93
Brick 91.79 0.95 0.96

Granite/Bluestone 81.09 0.85 0.95
Asphalt 92.58 0.96 0.97
Mixed 86.11 0.93 0.93

Granite Block/Stone 82.92 0.94 0.88
Hexagonal Asphalt Paver 92.81 0.98 0.95

Cobblestone 90.95 0.94 0.96
Road 99.01 0.99 1

Background 99.16 1 1
mIoU 90.51

mIoU (eight main classes) 88.37

explained by their visual similarity to dark concrete (or wet con-
crete), potentially leading to more false positive predictions.

Figure 9 illustrates some examples of the model’s predic-
tion, highlighting its performance in detecting boundaries be-
tween fine objects, like poles and plants, even in shadowed
scenes (line 1 - column 1, 1-3, 2-1). The model can also de-
tect curb ramps in most scenes, even though it was not specif-
ically trained with such a goal (1-1 and 2-2). Figure 9 (1-2)
shows an example in which the model accurately classified a
sidewalk segment with patches of different materials. We can
also see the model performance in distinguishing between vi-
sually similar materials (1-4, 3-2), as well as different variation
of the same material such as (3-1) where two visually distinct
concrete slabs are classified correctly.

4.2. Evaluating the generalization capabilities of CitySurfaces

To demonstrate the generalization capabilities of City-
Surfaces, we tested the performance of our approach on sam-
ples from Chicago, Washington DC, Philadelphia, and Brook-
lyn (NYC borough), which were not part of the training data.

Table 2. Evaluation metrics on samples from the selected cities (outside of
training domain).

City mIoU Mean Per-Segment Accuracy
Brooklyn 86.12 87.09
Chicago 84.31 86.52
Washington DC 82.61 84.27
Philadelphia 82.81 83.46

We randomly sampled 200 street segments from each city, and
obtained their corresponding street-view images, at every five
meters of each segment, from the left and right sides of the
sidewalks. After data cleaning and pre-processing, we were
left with roughly 600 images per city; these images were an-
notated using the model in block (b), then manually checked
and refined to create the test set. Table 2 shows the results of
applying CitySurfaces on these test sets. We report mIoU and
mean per-segment accuracy. Mean per-segment is a simple and
practical metric that measures whether the model correctly de-
tected the dominant materials in each street segment and report
the average accuracy over all images in the test set. All tested
cities had an accuracy greater than 82%. Brooklyn achieved the
highest accuracy, since the borough’s paving materials follow
the same street design regulation as Manhattan, which was part
of the training data.

CitySurfaces enables generating city-wide sidewalk material
datasets, as illustrated in Figure 9. This allows us to compare
the distribution of different paving materials in various cities.
Figure 10 shows the result of this comparison. We can see
that Manhattan and Washington DC use more diverse and bal-
anced material types. Concrete is the dominant material in
all of the cities. Chicago has the highest number of asphalt
sidewalks among the selected cities; Boston, Washington DC,
and Philadelphia have a similar number of asphalt sidewalks,
which come second to Chicago. Asphalt sidewalks are mainly
used in suburban neighborhoods; that is why dense urban areas
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Fig. 10. Comparison of the distribution of detected materials in six different
cities. The star plots show the log of the number of sidewalk segments
identified as having a given material.

Fig. 11. Left: Exposure to direct sunlight changed the appearance of colors
and texture of the paving material, Left top: Part of a concrete sidewalk
under the shadow was classified as asphalt. Left bottom: Part of a granite
surface under direct sunlight was classified as concrete. Right: The correct
predictions of the final model in the same settings.

like Manhattan and Brooklyn have the lowest number of side-
walks paved with asphalt. Another interesting observation is
the higher usage of granite/bluestone in Manhattan compared
to Brooklyn, two boroughs of the same city. Granite is consid-
ered an expensive and decorative material, used mainly in com-
mercial streets or historic neighborhoods, which signals Man-
hattan’s higher land value and income level, since maintenance
and installation of decorative pavings are the owner’s responsi-
bility.

5. Discussion

The specific characteristics of computing the spatial distribu-
tion of sidewalk pavement materials require experts to oversee
the performance of the model and ensure that the network is cor-
rectly classifying the pavement materials. Through active learn-
ing process, we identified certain elements of the urban scenes
that can create higher prediction confusion and lead to misclas-
sification. Two main categories of patterns repeatedly observed
among the failure cases were shadow/light contrasts (Figure 11)
and distinct objects such as metal gratings and plant pits that re-
semble brick from a distance (Figure 12). The texture and color
of different materials can appear different under shadow or ex-
treme light, showing a higher resemblance to another material.
For instance, under the shadow, concrete is classified as asphalt
(Figure 11 - left top). Moreover, some patterns or objects can
look similar to certain materials. For example, the model ini-
tially classified certain plant pits (Figure 12 - left top) or brown-
ish metal covers (Figure 12 - left bottom) as bricks alongside the

concrete pavement and would incorrectly predict mixed mate-
rials for that part of the sidewalk, or even small pieces of bro-
ken concrete or granite were classified as cobblestones (Fig-
ure 12 - left middle). Adding more images with these patterns
to the training data improved the model’s performance in the
next stage. Some examples of the correct predictions for simi-
lar patterns are shown on the right side of Figure 12. The active
learning strategy significantly helped with choosing the right
data at each stage. Having an expert in the loop to review the
results in each stage enabled identifying specific patterns that
were not evident by merely analyzing the quantitative metrics
of the model.

5.1. Challenges

One of the key challenges of this study was handling differ-
ent textures of the same object (sidewalk). Objects have defined
boundaries that are easier to classify (Jain & Gruteser, 2018).
However, similar textures can appear on multiple objects. For
instance, red bricks are used in both building facades and side-
walk pavings (although different types of bricks are used for
each purpose, they possess very close visual characteristics).
Our goal is to have a model that can detect sidewalks of certain
materials from street-view images.

Another challenging aspect of this task is the high degree of
within-class variation and between-class similarities. For in-
stance, NYC designated five different types of concrete as stan-
dard materials for sidewalk pavings, while Boston uses three
different types of concrete. Each of these types has distinct
visual features that, in some cases, can resemble materials of
other classes, which pose further challenges to the classifica-
tion task. Distinguishing between dark concrete and bluestone
in some cases is very difficult, even for humans. When wet,
some concretes with aggregates can look very similar to gran-
ite, and under the shadow, asphalt and worn-off concrete can
look very similar. Having a model that can accurately handle
the within-class variability with between-class similarity calls
for smartly selected training datasets with a good distribution
of different classes as well as multiple variants of the same ma-
terial under different conditions.

5.2. Limitations

Even though CitySurfaces can provide city-scale sidewalk
material classification, some challenges remain unaddressed.
For instance, in the absence of proper sidewalk network data,
it can be challenging to map the materials to their correspond-
ing locations accurately. The maps in Figure 1 are based on the
road centerlines where GSV cars traveled to capture images, de-
picting the dominant materials for each street segment by tak-
ing an average over the materials observed in each image from
both the left and right sides of the street. However, knowing the
exact location of certain materials is critical for urban design-
ers, planners, and those working with safety and ease of walk
for people with special needs. Although our model produces
this result at a highly fine level, we cannot depict this variety
in detail without proper sidewalk network data. Having sepa-
rate maps for left and right sidewalks can be one solution, but
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Fig. 12. Objects with patterns similar to different materials. Left: Classifying failures caused by different patterns. Left top: Concrete alongside a
furnishing zone was misclassified as mixed class since plant pit was detected as bricks, Left middle: Broken concretes were misclassified as granite blocks,
Left bottom: Concrete was misclassified as mixed class due to the presence of brownish metal covers. Right: Correct prediction of the model for the similar
pattern in the final cycle of active learning.

the intersections where more than one street is captured pose a
challenge for assigning the correct materials to each segment.

Also, street-level images have some inherent limitations.
Since the images are taken by cars moving alongside streets,
in many instances, specifically in dense urban areas, the cars
parked on the sides blocked the sidewalk view, as shown in the
first street-view image of Figure 3. The issue can be mitigated
to some extent by adjusting the heading and pitch of the camera,
but that solution fails in images with large vehicles like trucks,
or when the car with mounted cameras is too close to the side-
walks.

6. Conclusion

We present CitySurfaces, a scalable, low-cost approach to-
wards the automatic computation of the spatial distribution of
pavement materials at the sidewalk segment level. Our model
can detect a diverse range of materials, which to our knowledge,
were not covered by any existing dataset. For instance, hexag-
onal pavers or granite blocks were not reported in any sidewalk
inventories reviewed in this study. CitySurfaces produces ac-
curate segmentation considering multiple cities both within and
outside the domain of the training data, demonstrating general-
ization capabilities across varying urban fabrics. CitySurfaces
can detect, delineate, and classify eight standard surface mate-
rials used throughout most US cities. As shown in Section 3.3,
the framework can be extended to include additional surface
materials with less effort than building a city-specific model
from scratch, which makes it possible for almost any city or
government agency that has spatially dense street-level image
data, to create a similar dataset. Moreover, since we have cov-
ered the standard materials, such as concrete, asphalt, gran-
ite/bluestone, and brick, the model can be applied to a wide

range of cities without any further annotation effort or with sub-
stantially less effort using our pre-trained model. The models as
well as the datasets generated for the six selected cities are pub-
licly available in a GitHub repository.

This work has addressed some challenges in data annota-
tion and accurate classification of different materials with high
between-class similarities and within-class variation. The ac-
tive learning framework utilized in this study helped reduce the
annotation costs by choosing the most informative set of data to
be annotated and incrementally decreasing the manual modifi-
cation time. By offering the first comprehensive dataset of side-
walk surface materials at the city scale, this study goes beyond
reporting the dominant material of each segment and provides
information on the percentage distribution of all detected mate-
rials per sidewalk segment. The material classes in this study
were selected based on the standard surface materials listed by
Boston sidewalk inventory (Boston PWD, 2014), to use it as our
baseline ground truth. That list is not extensive and does not
distinguish between various types of the same class of material,
such as concrete. However, for some more in-depth analysis,
such as measuring UHI, we may need to classify the materials
differently, and distinguish between different variations of the
same material within one class. For instance, reflective gran-
ite and dark matte bluestone should have two distinct classes,
same goes with the dark and light concretes since they have
distinctively different albedo values. The CitySurfaces frame-
work can be easily extended to detect more classes of materials
as illustrated with the Manhattan example in Section 3.3, given
the availability of the images corresponding to each class of in-
terest to create the initial ground-truth set. In future work, we
plan to take these differences into account and combine the gen-
erated data with shadow accumulation (Miranda et al., 2019) to
generate a city-scale UHI map.
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Ground truth Prediction Uncertainty mapInput image

Fig. .13. Two different scenarios of using the model’s output and uncer-
tainty map in sample selection. The warmer colors in the uncertainty map
represent areas where the model was less confident in its prediction. Top:
the model correctly predicted the class in a previously identified challeng-
ing setting (shadow) but was less certain in predicting the shadowed ar-
eas; Bottom: The model classified the parts in shadow as concrete along-
side brick and outputted mixed class for that region. The uncertainty map
shows that the model was least certain in its prediction for that area.

To facilitate designing automated audit tools, we are going to
extend our model to detect surface problems such as potholes,
significant breakage, and obstacles on pedestrian paths for ac-
cessibility analysis (Miranda et al., 2020). We also aim to ad-
dress the walkability and active design of sidewalks by develop-
ing a model to detect the relevant features of the sidewalks wall
plane and furnishing zone, such as window-to-wall ratio. As
another line for our future work, we would like to explore auto-
mated sample selection procedures and self-supervised learning
techniques and tailor them to sidewalk and pedestrian facility
analysis. We chose a simple (yet effective) uncertainty measure
and coupled it with the analysis of the model’s performance on
the validation set and used expert’s feedback to refine the an-
notations and check whether the model is predicting correctly
since, on many instances, it is difficult to distinguish between
visually similar materials.
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Appendix A. Sampling Strategies

i) Uncertainty in predicting unlabeled images. Uncertainty
sampling is one of the most frequently used query methods to
select a new sample of training data in active learning (Settles,

2009). To measure the uncertainty, we use softmax probability,
which has been commonly used in active learning as a strategy
for choosing the next training sample (Settles, 2009). We use
the outputs of the softmax layer as part of the sampling strat-
egy, which can partly reveal the most challenging instances for
the model to predict. We apply multi-class uncertainty sam-
pling known as margin sampling (MS) (Scheffer et al., 2001),
which calculates the difference between the two highest predic-
tion probabilities on softmax to produce uncertainty maps. The
smallest margin in each map is then chosen as the image-level
uncertainty. The MS measure is defined as:

x∗MS = argminxPθ(ŷ1|x) − Pθ(ŷ2|x) (A.1)

where ŷ1 and ŷ2 are the class labels for pixel x, with the first
and second highest probability, respectively, under the model
θ. The lowest margin gives us the highest uncertainty, which is
used as an image-level uncertainty measure.

To select new samples, we feed the pool of unlabeled images
to our network, obtain the segmentation and calculate image-
level uncertainty to select images with the highest uncertainty.
We start by selecting 10% of the images using this strategy. As
the training proceeds, we increase the share of images selected
through this strategy at each stage by 10%.

ii) Performance on validation set. Since softmax probabilities
do not necessarily represent the true correctness likelihood, a
problem known as “confidence calibration” (Guo et al., 2017),
we need other strategies as well to select an informative sam-
ple for the model. To this end, at each stage, we examine the
performance of the best epoch on the validation set and select
10% of the best predictions and 20% of the top failures. Im-
ages from failure and success cases are then clustered using K-
means (Cover & Hart, 1967; Fix, 1985) with the Euclidean dis-
tance to investigate potential common patterns in each group.
In each cluster, we rank images based on the average IoU of
all classes, excluding road and background. We then select im-
ages with the highest error rate. The error rate is defined as
the sums of false positive and false negative predictions of the
model in each image. Aside from the described method, we
examine the clusters of images to detect common error-causing
patterns. Figure .13 (bottom row) depicts a brick sidewalk that
the initial model incorrectly segmented the part next to shad-
owed regions as the “mixed” class. Its associated uncertainty
map reveals prediction difficulty near the edge of the car and the
plant pit, which are incorrectly classified as mixed. Uncertainty
maps of the success cases are examined to find regions where
the model is least confident while making a correct prediction.
Figure .13 highlights a set of uncertainty maps. After we find
the most error-prone images, we use them to find similar unla-
beled images. We extract their feature maps using the backbone
HRNet-W48 (Sun et al., 2019; Wang et al., 2020) (more details
in Section 3.4.1) and employ cosine similarity distance to re-
trieve similar images from the pool of unlabeled data.
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