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1. Introduction

Varying coefficient models (VCMs) introduced by Hastie and Tibshl" ani| (1993)

are commonly applied regression models to examine the interactive associations

between the response and predictors. The appeal of Is is that the r

of interest to detect non-linear interactions. Because O

v rates change with median household income levels. This
leads to model the effect of food retail environment as functions of household
income levels. However, considering the geographic dependence, the classical

VCM is not sufficient.
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In this work, we propose the varying coefficient geo model (VCGM) to solve

the above motivating application. To be more specific, assume S; = (S;1, Sig)T

be location for i-th subject, ¢ = 1,...,n. The location S ranges (\%r a two-

dimensional bounded domain 2 € R? of any arbitrary shape. \ observe data ¢

Y; = X/ B(%) +\<S,->+s,-, S AP (1.1)

)"

where 3(Z) = (51(2), ..., Bk

coefficient functior\a(Si) i

5 an unknown varying-
aing bivariate function rep-
resenting the spatialjgompoge r¢ independent and identically dis-
) and Var(g;) = o2 are independent of
* is to estimate and make inference for 3(-) and
servations {(Y;, Z;, X;, S;) .

CGM, when the spatial component «(-) is ignored, the

model Zraditional VCM. There have been a plenty number of pro-

posals for fitting the VCM, for example, the local linear method [Fan and Zhang]

(1999), the spline method Huang et al.| (2002) and the two-stage methods Wang|
and Yang| (2007); [Liu et al| (2013)). There are also several methods for esti-
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mating bivariate functions defined over 2D domains. Within the nonparametric

framework, it includes bivariate P-splines (Marx and Eilers, 2005)), thin plate

splines 2003)) and bivariate splines (Wang et al., 2020; [Yu et\., [2020).

Here, we apply bivariate splines over triangulations (Lai and §humaker, 200

because it can handle irregular 2D domains with co

computationally efficient.

(1.2)

< (2011)) for some explicit examples of non-linear

hypotheses.

In contrast with estimation, less work has been done for the inference of

varying coefficient functions, with a few exceptions. For example, |Huang et al.
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(2002)) proposed a goodness-of-fit test based on the comparison of the weighted

residual sum of squares. It is a specific incidence of generalized likelihood

ratio studied by [Fan et al| (2001). More recently, [Yu et al. (2020\)r0posed

spline backfitted local polynomial to estimate and make simultgeous inferen

(2020). Recently, Wang et al.| (2018) considered test procedures based on

the EL to conduct inferences for a class of functional concurrent linear mod-
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els. However, when they applied the method for the Google flu trend data, the

spatial information contained in the dataset has been ignored. Bandyopadhyay|

et al.| (2015)); [Van Hala et al.| (2015) considered EL method for infer&te over a

broad class of spatial data exhibiting stochastic spatial pattem\But they neit

ing VCGMs 'L ratio test for spatial data, which is a nontrivial
per is organized as follows. We propose the spline esti-
mators for both univariate and bivariate functions and develop their asymptotic
consistency in Section[2] The pointwise and simultaneous EL tests are studied in

Section[3] where we investigate the asymptotic distributions of the test statistics
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under both the null hypothesis and local alternatives. In Section ] we address

implementation issues such as triangulation, number of univariate spline knots

and kernel bandwidth selection. Simulation studies are presented ir\ection Bl

\3 summarize tW

prion[7} Majory,

followed by analysis of the real data example in Section

proposed methodology and discuss the future work i

details are included in the supplementary material.

2. Univariate and bivariate splines estimations

In the estimation stage, we al‘roximate each v coefficient by univariate

polynomial splines. The geographical funggon (- pproximated via bivari-
ate penalized splin\over triangu cst introduce some notations

for univariate spline and bivariat

s distributed on a compact interval [a, b]. Due to
omputation, we approximate the univariate components
nomial splines. Define a partition of [a, b] with .J,, inte-
rior knots as v = {a = vop < v; < ... < vy, = b}. For some p > 1,

the polynomial splines of order o + 1 are polynomial functions with o-degree

on intervals [v;,v;11), 7 = 0,...J, — 1, and [v;,,v,,.,], and have o — 1 con-
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2.1 Setup

tinuous derivatives globally and let &/ = U([a,b]) be the space of such poly-

nomial splines. Let U;(2), j = 1,...,J, + 0 + 1, be the original B-spline

basis functions for the coefficient functions. Suppose for z € [a, A,@k(z) ~

S Uy () = U(E) e where U(z) = (U1(2), N ()T )

T
Ne = (nlka ce 777Jn+Q+17k) .

It has been proved bivariate penalized splines metf

detailed introducti‘ of the tria 2 M and how to construct the

bivariate spline basis functions o

the Bernstein polynomials of degree d relative to trian-

_d
=

b, bgb’g. The spatial domain €2 is a polygon of arbitrary
shape, which can be partitioned into finitely many triangles. Let a collection

N ={7,..., 75} of N triangles be a triangulation of {2 = UY , 7; provided that
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2.2 Penalized least-squares estimators

any nonempty intersection between a pair of triangles in A is either a shared

vertex or a shared edge. For any triangle 7 € A\, denote 7T, as the radius of

the largest disk contained in 7. Let |7| be the length of the longest §lge. De-

a\ integer d >\

Pot degree legsWa

note the size of A as |A| = max{|r| : 7 € A}. For

and triangle 7, let P4(7) be the space of all polyno
equal to d on 7. Then, any polynomial { € Py(7)
Clr = X isjibmd ’YiTjkBiTjg’ where the coefficients v, = {7, i +j + k
are called B-coefficients of (. For any integer » > 0, let

lection of all r-th continuousl\differentiable fu as over (). Given a trian-

gulation A, define the spline space of degree d thness r over A as
Sy(A) ={¢ € CTV) (| € \ { B }mer be the set of bi-
variate Bernstein basis polynomiZ Y ‘here M is an index set with car-

we rewrite any function ¢ € S};(A) us-

= > em Bn(8)ym = B(s)"~, where

2.2 Penalized le quares estimators

General re are three approaches to conduct spline estimation: smoothing

y
splines, regression splines, and penalized splines. Smoothing splines request as

many parameters as the number of observations. Regression splines only need a
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2.2 Penalized least-squares estimators

small number of knots placed judiciously, but appropriate algorithms are needed

for knots selection. Penalized splines combine the features of smoothing splines

and regression splines. A roughness penalty is incorporated with a re\'ive large

creasing the number of triang‘ may overfit the
whilst decreasing the number of triangle

function that has r‘e bias. Con
reduce the computation comple

lowing penalized leas

-y [

TeNYT i+j=2

2 ) ;
(z) (VL VL a)’dsids,
is the r Wity for a(-), and )\, is the roughness penalty parameter and
V., 18 the v-th order derivative in the direction s, at the point s, ¢ = 1, 2.

For smooth join between two polynomials on adjoining triangles, we impose

some linear constraints on the spline coefficients v : ¥~ = 0, where W is the
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2.2 Penalized least-squares estimators

matrix that collects the smoothness conditions across all the shared edges of

triangles. An example of W can be found in|Yu et al.|(2020). Thus, the penalized

least-squares problem (2.3)) becomes

n p Jntotl
Z {Yi — Z Z njkU;i(Z:) Xig — Z B,.(s)
k=1 j=1

=1 meM

subject to W+ = 0, where P is the block diagonal pe'
~ TP~y = £(B#~). In the following, let Y = (Y7,...,Y,

Y;’s. Denote

(2.4), is now converted to a conventional penalized regression problem without

any constraints:

min {[[Y = Wn - BQ:O|* + A.(Q:0) "P(Q:0)}



Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

2.2 Penalized least-squares estimators

where = (7711, o ,np(Jn+g+1)) and Q20 = ~. For a fixed penalty parameter

An, We have
n WT'w WT'BQ, 0
= +
0 QJB'™W QJB'BQ;
Define
V p— pr—
Vo1 Voo QQTBTW QQT(BTB + A P)Q:

» Ay Ay ~ 11Vl2V2_21
V7 =A= ,
A22
where
Al =V — VoWV, {Q;(B'B+\,P)Q:} 'Q, B'|W

OB (1 -WW'W)'W'1B + \,P|Q..

,{Q; (B'B + /\nP)Qz}*lQQTBT} Y, and 0 —
)"'WT}Y. Thus, the estimators of 3(-) and af(-)

are
Be(2) =U(2) 1, and @a(s) = B(s)T4, where 7 = Q0. (2.5)

We now investigate the asymptotic properties of the spline estimates Ek(z)

and @(s). To avoid the confusion, let 5y () and ay(-) be the true functions of
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2.2 Penalized least-squares estimators

Bi(+) and «(-) in model (2.5). For any Lebesgue measurable function ¢(s) on a

domain D where D = [a, b] or Q C R?, let ||¢]|7, = [, #*(s)ds.

Theorem 1 (Rate of Convergence). Suppose that Assumptions (Al )—(X6 ) in the

supplementary material hold, the spline estimators B\ Misfy that

o = aoll,

A
_ TN ~1/2 A1 n 1 n
Op{Jn Al +n" 74 A] +n|A|3+( +—n\A|5

p
Z 1Bk = Boslles = Op (R V2T 2+n AT+ T2
k=1

Remark 1. This consistency\sult echoes simi ena discovered by

yeduced to the same model in Wang et al.
Qlels, the convergence rate of & developed above

ren in [Lai and Wang| (2013) and [Wang et al.| (2020),

) n|/\£_|3 + (1 + nﬁ&s) |A|d+1}. When the geo function

Op(nfl/ 242 4 J e71). If By have bounded second order derivatives (0 = 1)
and J, = n'/® we have ||By — BoxllL, = Op(n~2/%) achieving the optimal

nonparametric rate (1982).
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Given these consistency results of the proposed univariate and bivariate

spline estimators, we can build hypothesis testing statistics based on these es-

timators in the next section.

3. Empirical likelihood ratio tests for varying c

There are extraordinarily challenges to derive the asy

penalized spline es\nators plug
To test (1.2) and constryct afile. dion for 3(z), we first introduce

an auxiliary random v
Q(Z)TXz — on(Sz)) XlKh(Zz — Z),

: a continuous kernel function and A is a bandwidth, and
a rescaling of K. Note that Fg;{3(z),ap} is close to
zero if B(z) = (Bo(z). Hence, the problem of testing whether (3(z) is the true
function By(z) is equivalent to testing whether F¢g;{3(z), ap} is close to zero,

fori = 1,2,...,n. According to (2001)), this can be done by using the
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EL, that is, we can define the profile EL ratio function

R{B(2), 0} = . {ani 10<p < 1,21% =1, Z;Pigi{&(z),ao} = 0} :

The rich EL literature has shown that —2log R{By(z), ao‘s asymptotica{ly
chi-squared with p degrees freedom. However, R{ -annot bexdire
used to make statistical inference on (3(z) because

unknown function ap(-). A natural way is to replace ag(-) by the

a(S;) given in (2.5), i.e.,

(3.6)

Proposition 1. Under Assumptions (Al)-(AS), (A6°), (A7) and (A8) in the sup-

plementary material, we have

Elgi{Bo(2)}] = O(h*)
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and

Varlgi{Bo(2)}] = 0*Q(2) f (2) pzoh™" {1+ o(1)},

where f(z) is the probability density function of Z.

Remark 2. To investigate the EL tests for the geo s
is to check the asymptotic property of ¢;{30(z)}.
first and second moments of ¢;{3(z)} have the same orders

9i{Bo(z), ap}, the asymptotic distribution of —2log R{3(z)

with careful choice\' the lower bou NG her bound of |A\|. The details

. the supplementary material.

> define the EL function

P 0<p<LY pi=1) pgi{B(2)} = 0} :
i=1 =1
3.7
The ¥ (3.7) can be solved by Lagrange multiplier technique,

which leads to the following log-EL:

log L{B(2)} = = ) _log {1+ 8" (2)9:{B(2)}} — nlogn,
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where d(z) is determined by the equation: > | g;{B8(2)}1+d" (2)g:{B(2)}*
= 0. Therefore, the negative log-EL ratio statistic for testing Hy : H{B(z)} =
01is \

l(z) = Zlog {1+ 07 (2)g:{B(»

H{ﬁ Z)} 0

To investigate the power of the tests, we conside

H{Bu(2)} = b,d(z), where b, is a sequence of nu

b, depicts the order of signals that a test can detect. The sma of b,

has been discovered in |Chen ¥pd Zhong| (2010), s has shown that the EL

method can detect alternatives of ord \—1/2 vintwise tests and order

n~12p=1/4 for siu\taneous te\

148 he asymptotic distribution of 2¢(z) un-

: larger than the parametric

| thS null hypothesis H for each fixed z.

tion d(z), under the alternative hypothesis Hy : H{By(2)} = (nh)~/2d(z), we
have

20(z) % x2 (d7(2)R(2)d(2)),
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where R(z) = 02u20f(z){C(z)ﬂ(z)CT(z)}_l, and C(z) = C(B(2)) =

0H (B(2))/0B(2)".

According to the Theorem [2] we can construct a pointwise corhience in-

\1 1s based on

terval for each 3;(z). The construction of the confide

zif 20(z) > x3 .. where x7 , is the upper a-quantile

confidence interval for j3;(z) is given by {3;(z) : 2((z) < x7,} -

Cramér-von Mises type test st‘stic. Since 2/(z jewed as the distance

between H{3(z)} and 0, we propose the

(3.9)

W=D, — ¢} % N (0,902,

where 03 = 215 fab w?(t)dt f_22{K ) (u)}2du. When the alternative hypothesis

H, : H{Bo(2)} = n~Y2h=Y4d(z) holds, we have

hil/z{Dn - Q} i> N (:u()v q0'(2]) )
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where 11y = fab d"(2)R(2)d(2)w(z)dz.

Although the above theorem guarantees the asymptotic normaﬁi/ of D,,

the convergence rate is h~'/2. According to the Assumption (A6’), the rate is
\c rate n%/”.

1 practice, we

o(n'/1%) which is much slower than the classical no

obtain accurate type I and type II errors probabilit

bootstrap procedure to generate the empirical quantile

steps. \

Step 1. For each subject, calculatqeesi A nZi) X; — a;(S;), with

local constant estimator 3 ) ute the sample variance of ¢;

1,..., B, construct observation Yi(b) =

()

ef), where €, ’’s are independently generated from

ion satisfying £/ <e,§b)) = 0and Var (61@)) = o2. Apply
w observations and compute bootstrapped version of D,

denoted by DS’);

B

Step 3. Calculate the 100(1 — «)% quantile of the bootstrap samples {Dg’)}
b=1

and denote it as (fa. Reject the null hypothesis if D,, > c?a.
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Remark 3. In the step 1, 3(z) is the solution to n=* >, g, (B(2),a) = 0.

We use (3(z) instead of spline estimator B(z) to generate residuals, as ((2) is

maximum empirical likelihood estimator involved in the construction & ¢(z) and

\

D,.

The following proposition provides the justifica

dure. The proof is similar to Theorem 4 in|Wang et al.

Proposition 2. Let X,, = {(Y;, Z;, X;, Si)},_, be the origina

di ve find that the selections of knots for uni-

variate splin d the choice of bandwidth is crucial, especially

e following, we discuss the selection procedures one
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4.1 Tuning parameters selection in univariate and bivariate splines smoothing

4.1 Tuning parameters selection in univariate and bivariate splines smooth-

ing

In this work, we do not need the spline estimator 3 (z) for the inference of 3(z)

. \sts (13.8) and 1

directly. However, a(s) is essential for constructing

estimating procedure involves B\(z) Hence, we ncflf to make sure
is estimated efficiently. For univariate spline smooth
knots on a grid of equally spaced sample quantiles. Assumption (A6’

supplementary material suggests that the number of knots .J,, n satisfy:

|A|V(e4) p2/GetD) < ] WA Pnlog™ (n). widely used cubic

When selecting the number of triangles, we need to balance the computa-

tional burden and the approximation accuracy. According to [Yu et al. (2020)

and Assumption (A6’), in practice, when the boundary of the spatial domain
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4.1 Tuning parameters selection in univariate and bivariate splines smoothing

is not extremely complicated, we suggest taking the number of triangles as the

4/(5d+5

following: N = min {[csn )|,n/4} + 1, for some tuning parameter c;.

Typically, ¢, € [1,5] and is chosen by cross-validation. When the b\‘ndary of

lT\Ch larger than\

pomain precisgl

the spatial domain looks complicated, we suggest N to be

and the triangulation can approximate the complica

N is chosen, a typical triangulation method, Delauna

can provide enoug\accuracy fi

cost simultaneously. Similar settj N 1nd in|Lai and Wang| (2013);

et al. (2020)); Kim et

S(A\,) = WA;W' {I-BQ,{Q;(B'B+\,P)Q.} 'Q,B"}

+BQ:A»Q; B {I-W(W'W)'W'}.
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4.2 Bandwidth selection

We choose the smoothing parameter \,, by minimizing

GOV(A\) = nllY = Y[/ [n — tr {S(Aa)})* \

over a grid of values of )\,. We use the 10-point grid wifyre the values \f
log,y(An,) are equally spaced between —6 and 1 in

the above mentioned bivariate spline smoothing met

The performance of the EL pbmtwise and simu sts depend on the
choice of the bandxi‘dth h. WeRoply »SS®validation criterion and

choose the bandwidth £~ by mini

2

-B(Z) X, —ath(s)}

lex set for kth folder and |F}| denotes the car-
of values of h. In our numerical studies, we select
the bandwidth /. gl :n'/°| + 0.02 for pointwise tests and h = |c3n'/?] for

where c3 € {0.1,0.2,...,0.9,1}.
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5. Simulation

In this section, we conduct simulation studies to evaluate the finite ‘mple per-
formance of the proposed methodology. We generate the data from the following

VCGM:

Y = Xub(Zi) + Xiofo(Z;) + o(S;) + €,

ctangular domain [0, 1]*; 2)

. (2013)); Wang et al.| (2020).

To check the accuracy of the proposed spline estimators, we compute the
mean squared error (MSE) for «, (5, and (5. Figure [I| shows the surface and

the contour map of the true bivariate function «(+) and the estimated one when
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- the true function o (+) (first column) and the estima-
tors (secon ver square region (first row) and horseshoe region (second

Irow).
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sample size n = 2,000. The proposed estimates look visually close to the true

functions. Figure 2] shows the boxplot of the MSEs of spline estimators for

both regions. One can easily find that the MSEs and the correspondih standard

\

deviations are decreasing with the increasing of sample sizes

a > 0) at 5% nominal level. ‘igure shows th pirical sizes and powers
with two different domains of «(s) and different
each z, empirical \e 1S reasonaNgk ad nominal level 5% for all
different sample sizes, and powe

larger sample size lea

parentheses) for 51(z) at z = 0.3,0.4,0.6,0.7. From the table, we see that for
different z, the coverage rates are increasing with sample size, and are around

95% when n = 2,000. It can also been seen that the length of confidence inter-
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A
ol
L 0.16-
0.09- l
0.12-
L L
0.06 - .
(2] D o8-
= J =
0.03-
; 0.04 -
0.00- . . . g
n=500 n=1000 n=2000 n=1000
sample size sample size
A A
1 B4

A0 ) Ll
D 0.0a- ]
= =
0.02- I
=500 n=1000 n=1000 n=2000
\mple size

sample size
B2

A

B2

— !

n=1000 n=2000
sample size

Figure 2: Mea d error of spline estimators. First column: square region;

Second column: horseshoe region.
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Figure 3: Empirical size and power for the pointwise test Hy : 51(z) = [a2(2)

at 5% nominal level. ---: n = 500; ---: n = 1,000; — : n = 2,000. First

column: square region; Second column: horseshoe region.
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vals is decreasing as the sample size is increasing.

Finally, we consider simultaneous inference. We test Hy : (1(z) = [2(2)

for all z € [0,1] versus H; : 51(z) # [2(z) for some z, where we s& 1(z) =

(2 4+ a)sin(27z) and fa(z) = 2sin(27z) for a € {0,0.1,0.29.3, 0.4, 0.5, 0.8

is around nominal §vel 5%, and are reasonably controlled.

ament (FRE) has been recognized as a critical
to geographic disparities in the obesity. However,
usion on the relationship between FRE and obesity due
FRE and socioeconomic disparities. In order to resolve
this challenge, this study included multiple types of food stores, restaurants,
and Supplemental Nutrition Assistance Program stores to assess FRE from two

important perspectives of FRE, X7, availability and X5, healthfulness. In partic-



Statistica Sinica: Newly accepted Paper
(accepted author-version subject to English editing)

Table 1: Coverage rate and average length (in parentheses) of confidence inter-

vals.

500 0.920(0.265) 0.935 (0.260)

Square 1000 0.931 (0.234) 0.947 (0.233)

2000 0.949 (0.135) 0.944 (0.134) 0.950 (0.165)

500 0.938(0.278) 0.942 (0.272) 0.948 (0.263) 0.945 (0.263)

Horseshoe 1000 0.940 (0.2\ 0.951 (0.208) 0.949 (0.199)

2000 0.944 (0.15

\

Table 2: Empirical size and pow, s taneous test Hy : 51(+) = fa().

0.949 (0.154)

0.868 0.984 1

0.997 1 1

1 1 1

500 0.046 0.078 0.280 0.597 0.879 0.975 1
Horseshoe 1000 0.049 0.140 0.561 0.937 0.999 1 1

2000 0.052  0.256 0.889 0.999 1 1 1
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ular, X; is a composite index of densities of food stores, restaurants, and Sup-

plemental Nutrition Assistance Program (SNAP) stores and X5 is a composite

index of ratios of healthy to unhealthy food stores, full service restau&wts to fast

food restaurants, and healthy to unhealthy SNAP stores. Data\e collected fr

3, 091 counties in the United States in 2018. For eac

taken by their geographical location, and Z; is taken

To check if two covariate®X; and X, are s \ model (6.11), we

first conduct two simultaneousyests I} , and Hpy : fa(z) = 0

for all z. For simuhneous test Hy

tigate the pointwi operties for these varying coefficient functions. Figure

r1se confidence bands and empirical maximum likelihood
estimators for 5y(-), 51(+), P2(+) and penalized bivariate spline estimator a(-).
From the pointwise confidence bands, we can conclude that food availability

(X1) and healthfulness (X5) have strong nonlinear effects on reducing county
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obesity rates given the higher household income level, especially when income

value is larger than $100, 000. Interestingly, the pointwise confidence bands and

zero lines together indicate that for those counties with the median\)usehold
income less than about $75, 000, food availability (X;) has no§gnificant imp
on the obesity rate. At the mean while, the comp index of heak
(X>) has significant negative impact on the obesity ra

household income less than about $100, 000. This finding suggests that inc

ing the value of healthfulness can help reducing adult obesity r

whose median household inc‘e is less than ab AL00, 000. As there are few

numbers of counties having household inggme gr $100, 000, the con-
fidence bands are ‘ch wider in\gaat the relative large variation,
food availability has negative eff “healthfulness has no significant
impact on the obesit As expected, Figure [4] also indicates
e traditional have large positive value of geo value «f-),
¥ higher obesity rates than other places with sim-
reflects that besides food retail environment, local food
- other factors have also influenced county obesity rates.

As the social scientists doubt the association of FRE and obesity may dif-

fer with the county median household income zy = 56,516. We perform the

pointwise hypothesis testing Hop : £1(20) = Pa2(20) vs. Hip : S1(z0) # B2(z0)
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to test if availability and healthfulness have the same contribution to the obesity

rates at 2. We use cubic B-splines for three univariate splines, and we consider

d = 2 and r = 1 for the bivariate spline smoothing. The corresponX1g point-

wise test statistics based on data is 0.137, which accepts H p.\'lllS we conclule

that availability and healthfulness does not have sig iy differenty

tion to obesity rate at the median household income
healthfulness, we derive the pointwise confidence interval separately, whic

[—0.552,0.099] and [—0.356, —0.235]. This indicates that at

level, we believe at 2y = 5()\516, availability 20 contribution to obesity

rates; nevertheless, healthfulness has negagve con |01t obesity rates. The

results reflect that, Vmpared to g thfulness is a more influen-

tial factor for shaping the spati ) >Sity rates across counties. The

ose both of pointwise and simultaneous tests for a gen-
eral hypothesis in a spatial VCM. Compared with classical VCMs, the proposed
VCGM is able to handle spatial information in any regular or irregular 2D do-

mains. Meanwhile, regression coefficients are allowed to vary systematically
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and smoothly in some variables. Due to advantages over normal approximation-

based methods, the EL. method is proposed for conducting the inference. We
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and fascinating properties that have not been investigated.
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