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ABSTRACT

Globular clusters (GCs) are old massive star clusters that serve as ‘fossils’ of galaxy formation. The advent of Gaia observatory
has enabled detailed kinematics studies of the Galactic GCs and revolutionized our understanding of the connections between
GC properties and galaxy assembly. However, lack of kinematic measurements of extragalactic GCs limits the sample size of
GC systems that we can fully study. In this work, we present a model for GC formation and evolution, which includes positional
and kinematic information of individual GCs by assigning them to particles in the Illustris TNG50-1 simulation based on age
and location. We calibrate the three adjustable model parameters using observed properties of the Galactic and extragalactic GC
systems, including the distributions of position, systemic velocity, velocity dispersion, anisotropy parameter, orbital actions, and
metallicities. We also analyse the properties of GCs from different origins. In outer galaxy, ex sifu clusters are more dominant
than the clusters formed in situ. This leads to the GC metallicities decreasing outwards due to the increasing abundance of
accreted, metal-poor clusters. We also find the ex-situ GCs to have greater velocity dispersions and orbital actions, in agreement

with their accretion origin.
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1 INTRODUCTION

Globular cluster (GC) systems are widely considered as ‘fossils’ of
galaxy formation and evolution (Searle & Zinn 1978; Harris 1991).
A typical GC consists of 10°~10° stars, which are formed within
a relatively short time interval less than a few Myr (Lada & Lada
2003; Mac Low & Klessen 2004; Hartmann, Ballesteros-Paredes &
Heitsch 2012). Therefore, a GC can be regarded as a snapshot of
the stellar population that records the local physical and chemical
environment at the time of formation. This has motivated multi-
wavelength observations of galactic and extragalactic GC systems
and helped the development of theories of galaxy formation and
evolution. Based on the photometric studies of red giants in galactic
GCs, Searle & Zinn (1978) discovered a significant age spread of
GCs at different regions of the Milky Way (MW). In addition to the
traditional photometric studies of GC systems, kinematic studies of
MW GCs (Cudworth & Hanson 1993; Dinescu, Girard & van Altena
1999) further revealed the hierarchical nature of the formation of
the MW GC system and the MW galaxy itself (see a recent review
by Helmi 2020). Recently, the launch of the Gaia space observatory
(Gaia Collaboration 2016, 2018, 2021) has enhanced our knowledge
of the kinematics and structure of the MW GC system in the 6-
dimensional phase space, which has improved our understanding of
how GCs are formed and brought to the MW (Massari et al. 2017;
Helmi et al. 2018; Koppelman et al. 2019; Massari, Koppelman &
Helmi 2019).

It is much harder to measure the 3D velocities of extragalactic GC
systems, which limits the sample size of GC systems that we can
fully study observationally. However, a larger sample set is crucial
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for understanding the origin of GC systems, as the statistical noise
of a small sample set can conceal connections between physical
properties. Therefore, an alternate approach is gaining polarity: nu-
merical modeling. High-resolution simulations that can fully resolve
giant molecular clouds (GMCs), which are commonly believed to be
the cradles of star clusters, have revealed likely scenarios of cluster
formation and evolution (see, e.g. Howard, Pudritz & Harris 2018;
Grudic et al. 2019, 2021; Li et al. 2019; Ma et al. 2020; Chen,
Li & Vogelsberger 2021). These simulations, with mass resolution
down to sub- Mg scale, have provided fruitful information on the
kinematic and structural properties of star clusters. However, these
simulations mostly focus on isolated GMCs over a relatively short
time interval of several Myr. It is therefore hard to include the effects
of the cosmological environment on cluster formation and evolution
with GMC-scale simulations. To study the origin of GC systems
in the cosmological context, one can either run galaxy formation
simulations with detailed implementation of cluster formation (e.g.
Li, Gnedin & Gnedin 2018; Li & Gnedin 2019), or post-process
outputs of existing simulations with analytical models. The former
can better track the evolution of clusters but is computationally
expensive. Consequently, the sample size of GC systems in these
simulations is usually small, leading to difficulty in characterizing
scaling relations between cluster properties.

In contrast, post-processing methods enable us to study the effects
of various physical parameters on the origin and disruption of GC
systems in a simplified but efficient way. There are several implemen-
tations of the post-processing approach, including the MOSAICS
model (Kruijssen & Lamers 2008; Kruijssen 2009; Kruijssen et al.
2011), our previous models (Muratov & Gnedin 2010; Li & Gnedin
2014; Choksi, Gnedin & Li 2018; Choksi & Gnedin 2019a, b), and
other implementations (e.g. Renaud, Agertz & Gieles 2017; Creasey
et al. 2019; Phipps et al. 2020; Halbesma et al. 2020). These models
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need to carefully handle two issues: how to model GC formation
and how to model GC evolution. The formation rate of GCs can be
calculated from either the local gaseous environment or the global
properties of host galaxies. Once a population of GCs is formed,
the model determines the mass of each GC following some initial
mass function. Next, the model needs to track the mass loss of each
GC due to stellar evolution and dynamical disruption. The interplay
of formation and evolution shapes the present-day properties of a
GC system. By applying the GC formation and evolution model
to existing cosmological simulations, we can greatly increase the
sample size of GC systems without requiring too many computational
resources. Also, the post-processing method is more robust since it
separates the prescriptions for GC formation and evolution from the
still-uncertain sub-grid models of star formation and feedback in
cosmological simulations.

Choksi & Gnedin (2019b) developed such an analytical model
which can be applied to dark matter-only simulations. By linking
GC formation to the mass growth of the host halo, this model has
successfully reproduced important observed scaling relations of GC
systems with a broad range of galaxy mass. However, the model did
not incorporate modeling of the spatial distribution or kinematics of
GC systems. This motivates us to develop a new model that links GCs
to particles in an underlying simulation. We still keep the dependence
on the adopted simulations to a minimal level to preserve the clarity
of our model. This new model enables a more detailed description
of the dynamical disruption of GCs. In addition, it can be extended
to study the assembly of extragalactic GC systems by accretion of
satellite galaxies. As we show below, compared with similar works
that can also model the spatial distribution of GCs in cosmological
simulations (e.g. Ramos-Almendares et al. 2020; Trujillo-Gomez
et al. 2021), our model produces a better match to the observed
spatial distribution and kinematics of the MW GCs.

The paper is organized as follows. In Section 2, we outline the
modeling of GC formation and evolution and introduce the sampling
of cluster particles from a cosmological simulation. Then we describe
the calibration of model parameters using observed scaling relations
in Section 3. In Section 4, we compare the spatial distribution
and kinematics of model GC systems with observations. Next, we
investigate the properties of GCs from different origins in Section 5.
We discuss how different modeling of GC disruption influences the
radial distribution of GC systems, GC mass function, and comparison
with other studies in Section 6. Finally, we summarize our results in
Section 7.

2 MODEL FOR CLUSTER FORMATION AND
EVOLUTION

In this work, we propose a new GC formation and evolution
model, which post-processes snapshots of cosmological simulations
and produces a catalog of GCs without rerunning the simulation.
This catalog provides such properties as the mass, metallicity, age,
position, and velocity of each surviving GC at the present time.
To follow the spatial and kinematic distributions of GCs, we use
snapshots of the hydrodynamic simulation Illustris TNG50-1 (Nelson
et al. 2019; Pillepich et al. 2019; Nelson et al. 2021, hereafter
TNGS50). A detailed description of the model follows in Section 2.2.

2.1 Background cosmological simulation

Our model can be applied to any cosmological simulation, whether
purely collisionless or with modeling of gas dynamics and star
formation. In this work, we base the model on the simulation suite

GC kinematics 4737

TNGS50, which is performed with the moving mesh, finite-volume
hydrodynamic code AREPO (Springel 2010). TNG50 adopts a flat
ACDM universe with cosmological parameters given by the Planck
Collaboration (2016): 2, = 0.0486, 2, =0.3089, 2, = 0.6911,h =
0.6774, 0 = 0.8159, and ny = 0.9667. For consistency, we adopt the
same cosmology in our model. TNG50 is initiated with 21603 dark
matter particles and the same number of gas cells within a 51.7 Mpc
comoving box. The mass of each gas cell is 8.5 x 10* Mg, and
the typical size of gas cells is around 100 pc in star-forming regions
(Pillepich et al. 2019).

The haloes in TNG50 are identified with the friends-of-friends
algorithm, and the subhaloes are identified as gravitationally bound
systems with the SUBFIND algorithm (Springel et al. 2001). We use the
terms ‘galaxy’ to refer to TNGS50 ‘subhalo’ hereafter. Once galaxies
are identified, TNG50 applies the SUBLINK algorithm (Rodriguez-
Gomez et al. 2015) to construct merger trees based on the identified
galaxies.

2.2 Modeling cluster formation and evolution

We model GC formation and evolution via three steps:

(i) Cluster formation: calculate the total mass and metallicity of
GCs based on the assembly history of the host galaxy.

(ii) Cluster sampling: compute the initial mass of each individual
cluster and assign it to a collisionless particle.

(iii) Cluster evolution: evaluate the mass loss of clusters due to
tidal disruption and stellar evolution.

Below, we describe these three steps in detail.

2.2.1 Cluster formation

The cluster formation algorithm is similar to the previous versions of
the model (Choksi et al. 2018; Choksi & Gnedin 2019a, b). First, we
trigger a GC formation event when the galaxy mass grows suddenly.
To quantify the rate of mass growth, we introduce the specific mass
accretion rate, Ry, as the fractional change of galaxy mass between
two adjacent snapshots:

Rm _ Mnow - Mprog . 1

. ey
Mprog Inow — Iprog
where t,4y and #,;0, stand for the cosmic times of the current snapshot
and the progenitor snapshot, respectively. Similarly, the masses of
the current galaxy and the progenitor galaxy are represented by
M ow and Mpoe. If the current galaxy has more than one progenitor
galaxies, we define My, as the main progenitor galaxy mass. GC
populations form when R,, exceeds a threshold value, p3, which
is an adjustable parameter. It is worth noting that the SUBFIND
algorithm does not work robustly during mergers. In rare cases,
the mass of the incoming galaxy may rise dramatically when it
approaches the main galaxy, as a result of miss-identification. To
fix this problem, we skip the snapshots when incoming galaxies
suddenly gain mass during mergers. Once a GC formation event
is triggered, we calculate the total mass of a newly formed GC
population using the linear cluster mass—gas mass relation (Kravtsov
& Gnedin 2005):

My = 1.8 x 107 py M, 2)
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where M, is the cold gas mass of the host, and p, is another
adjustable parameter.! The cold gas mass is approximated by the
gas mass—stellar mass relation of Choksi et al. (2018):

M M —npr(My) 142 nz(z)
M,, 7)) = —£ =0.35 x 3%7 * 3
M= 5 x <109M@) ( 3 ) ¥

based on the observations of Lilly et al. (2013), Genzel et al. (2015),
Tacconi et al. (2018), Wang et al. (2022). The mass-dependent
power-law indices are

0.33, for M, > 10° Mo,
nu(M.) = {0.19, for M, < 10° Mo, @
and the redshift dependency is characterized by
1.4, forz > 2,
n:(2) = {2.7, for z < 2. )

Following Choksi et al. (2018), the metallicity of the newly formed
cluster population is directly drawn from the metallicity of the
interstellar medium of the host galaxy, which is also treated as a
double power-law function of stellar mass and redshift:

M 0.35
[Fe/H] = log {() 1+ z)°‘9] ) (6)
10 10105 Mo

We employ a 0.35 slope for the stellar mass dependency as suggested
by Ma et al. (2016). The 0.9 slope of the redshift dependency
accounts for the 0.6 dex drop of [Fe/H] from z = 0 to ~4 (Mannucci
et al. 2009). Equations (3) and (6) both depend on the stellar mass of
the host galaxy. To calculate the stellar mass from galaxy mass, we
use a modified stellar mass—halo mass (SMHM) relation proposed by
Behroozi, Wechsler & Conroy (2013). The modified relation extends
the original SMHM relation to z > 8 and adds additional scatter to
the original relation; see Choksi et al. (2018) for detailed discussion.
The galaxy mass is taken directly from the TNG50 catalogs.

Note that we apply analytic relations to calculate the gas mass,
stellar mass, and metallicity of the host galaxy, although these
values can be taken directly from a hydrodynamic simulation such
as TNGS50. However, different simulations employ different sub-
grid prescriptions to model multiple physical processes. These sub-
grid models, which are not the focus of our work, can significantly
influence the formation and evolution of star clusters. By keeping
minimal use of cosmological simulations, our model is less sensitive
to such sub-grid models and can better reveal the link between GC
systems and the assembly history of the host galaxy.

2.2.2 Cluster sampling

To determine the number of newly formed clusters in a GC formation
event, we stochastically sample clusters from a Schechter (1976)
initial cluster mass function (ICMF) with the ‘optimal sampling’
method (Schulz, Pflamm-Altenburg & Kroupa 2015). Following
Choksi & Gnedin (2019a), the truncation mass of ICMF is set to
M, = 10" Mg,

Next, we link the newly formed GCs to collisionless particles in
the simulation by the following assignment technique. Considering
N GCs that are formed within a galaxy at cosmic time f,,,, We
randomly assign them to N young stellar particles that belong to the
galaxy. We set two constraints on candidate stellar particles to ensure
they can correctly represent GCs.

!For consistency with previous work, we keep the notations of p; and p3 as
in Li & Gnedin (2014), although we introduce them in opposite order.
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First, we select only inner particles as GCs since observations of
young star clusters (e.g. Adamo et al. 2015, 2020; Randriamanakoto
etal. 2019) show that massive clusters preferentially form in the inner
regions of host galaxies. As both observations (van der Wel et al.
2014; Shibuya, Ouchi & Harikane 2015) and simulations (Pillepich
et al. 2019) suggest that the effective radii of stars in galaxies are
around 1.5 kpc when GCs are actively forming (z = 2-5), we include
only stellar particles within twice the effective radius: 3 kpc. This
setup is also supported by observations of nearby dwarf galaxies
that show the effective radii of their GC systems are only marginally
larger than the effective radii of field stars (Carlsten et al. 2022).
Second, we select only stellar particles formed within a narrow time
interval Az prior to #,0w. This interval characterizes a typical time for
cluster formation and is set to At = 10 Myr.

For most cases, we have more than N candidate particles that meet
the two constraints, and we randomly select N of them to represent
GCs. However, in rare cases when there is an insufficient number of
stellar particles formed within A¢, we adopt all of them and select the
next most recently formed stellar particles until we have N clusters.
To prevent selecting stellar particles that are too old to be related
to the GC formation event, we only adopt stellar particles younger
than half of the time interval between adjacent outputs. In a very
small number of cases, we still do not find enough stellar particles
satisfying this criterion. In this case, we assign the remaining required
number of GCs to dark matter particles located closest to the center
of the dark matter halo, where the star-forming region is located.
Only about 0.3 per cent of surviving GCs are represented by dark
matter particles.

We do not use gas particles/cells (or ‘particles’ in brief) for two
reasons: 1) gas particles experience pressure forces and thus cannot
correctly probe the kinematics of collisionless GCs; 2) in AREPO
simulations gas particles sometimes merge with other gas particles,
making it difficult to trace them throughout cosmic time.

2.2.3 Cluster evolution

After the formation of GCs, we evaluate their mass loss due to tidal
disruption and stellar evolution. The tidal disruption rate of a cluster
with mass M can be expressed as
dM(@@) M(1)
dt (M, D)’

where fq 1s the tidal disruption timescale. As suggested by Gieles &
Baumgardt (2008), t;q depends significantly on the local tidal field
parametrized by the orbital angular frequency, Q4. In this work, we
follow Li & Gnedin (2019) to calculate t;4 as

O]

Mt 23 Quia(t -1
t6a(M, 1) = 10 Gyr ) ) 17 ©
2x10°Mg 100 Gyr~!
The frequency a can be approximated by
Am A
Qﬁd:QiE——ma)q | ©

37 3
Variables A; are the eigenvalues of the tidal tensor T(xy, ¢), which is
defined as

2D (x, 1)

Tij(xp, 1) = — —— (10)

8xl~ 8)Cj x=xo

where i and j are the orthogonal directions in the Cartesian coordinate
system, and x, stands for the location of the cluster.

To numerically calculate the tidal tensor in the TNG50 simulation,
we first place a 3 x 3 x 3 cubic grid centered on the cluster. The side
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length of the grid is 2d. The potential at each grid point is linearly
interpolated from 8 nearby particles with known potentials stored in
the simulation snapshot. Finally, we approximate the diagonal terms
of the tidal tensor via

T = —%[CD(XO +&d) + P(xo — &;d) — 2(xo)], 11

where é; is the unit vector along the i direction. Similarly, the non-
diagonal terms are given by
1
442
~®(xg +&;d — ;d) — D(xg — &:d + &;d)). (12)

T, = [®(xo + &d + &;d) + P(xg — &id — &;d)

Knowing the 9 terms of the tidal tensor, we can compute the three
eigenvalues numerically. Plugging the eigenvalues into equation (9),
we get an estimate for 2, denoted as Q; . It is important to choose a
proper d to calculate the tidal tensor accurately. A too-large d tends to
underestimate the tidal field in the central dense region of a galaxy,
whereas a too small d tends to overestimate the tidal field in the
outer region where the density is lower. By performing a detailed
test described in Appendix A, we suggest that d = 0.3 kpc can best
approximate the tidal tensor for MW mass galaxies in TNGS50.

An alternative approach to approximate €24 is to link the tidal
tensor with the average mass density p via Poisson’s equation:

4 Gpxo, 1) = V2O, )|, = —tr[T(xo, D] ==Y A (13)

Therefore, another approximation for €24 is given by

4n G

Q> = 3'0. (14)
We introduce here a factor of 3 such that Q, = Q; if Ay, = D> ;A
= 47 Gp, which happens for an isothermal density profile (see the
analytical derivation in Appendix A). Numerically, the mass density
is estimated by using a standard SPH kernel over all particle species.
We denote the orbital angular frequencies given by this approach as
a,.

We must approximate either the tidal tensor or the mass density
on a spatial scale comparable to the tidal radius of GCs, i.e. at
20-50 pc. However, this scale is beyond the spatial resolution of
most cosmological simulations, including TNGS50. To take into
account systematic deviations between the actual orbital angular
frequencies and the derived values, we introduce a new adjustable
model parameter « as a correction:

Qisp = knsp - Saspe (15)

Another important reason for introducing « is insufficient time
resolution of simulations (there are only 20 ‘full” snapshots in
TNG50), which does not allow us to follow the tidal disruption
in the initial phase after GC formation or during violent interactions.
As suggested by high-resolution cluster formation simulations (e.g.
Li & Gnedin 2019; Li et al. 2022; Meng & Gnedin 2022), tidal
disruption rate peaks at these rare phases. Calculating the tidal field
only from the simulation snapshots usually ignores these phases and
underestimates the disruption. Therefore, we need k¥ > 1 to balance
this underestimate.

We find that Q¢ = ) and Qg = 2, produce GC catalogs with
similar statistics in most aspects since the two estimates give similar
values for most GCs, see Appendix A. For simplicity, we only display
results from the Q24 = €2, case throughout the rest of the work, unless
specified otherwise.

Plugging Q4 = 2y, into equation (7) and (8), we get the present-
day mass of a GC due to tidal disruption as M (¢). Assuming the time
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scale of stellar evolution is much shorter than #,4, the final mass of
the GC is given by

M(t) = M'(1) [1 — /[ Vee(7) dt’} , (16)
0

where v, is the mass loss rate due to stellar evolution given by Prieto
& Gnedin (2008).

3 MODEL CALIBRATION

There are three adjustable parameters in our model: p, (Sec-
tion 2.2.1), ps (Section 2.2.1), and « (Section 2.2.3). To find
best values for the three parameters, we calibrate the model with
observations. We run the model multiple times on Ny, typical TNG50
galaxies with different (p,, p3, k) configurations to find the best
one that minimizes a merit function. In Sections 3.1 and 3.2 we
introduce the observational data and merit function, respectively.
Next, we show the best parameter configurations for the two cases
of tidal disruption: Qg = €2, and Qyiq = 2.

3.1 Observational data

The observational data for extragalactic GC systems are the same
as the data used in Choksi et al. (2018). They included samples
from the Virgo Cluster Survey (VCS, Peng et al. 2006), 7 brightest
cluster galaxies (BCGs, Harris et al. 2014), and M31 (Huxor et al.
2014). To calibrate the kinematic properties of model GCs, we
use the observations of the Galactic GC system, which has been
extensively studied (e.g. Sollima & Baumgardt 2017; Sollima,
Baumgardt & Hilker 2019; Baumgardt & Vasiliev 2021; Vasiliev
& Baumgardt 2021). We use the Galactic GC catalog? presented by
Hilker et al. (2019). This catalog utilizes Hubble Space Telescope
(HST) photometry and Gaia EDR3 proper motions to provide phase
space information for 162 Galactic GCs.

3.2 Merit function

We employ the following merit function to optimize model parame-
ters:

2

M—XAZMr L2 +<UZ)2+X’%+ %o (17)
" M Gu Gy oz No  Nuw

There are six terms in this function. The first three terms are identical
to the merit function in Choksi et al. (2018). The first term is the
reduced yx? of the total mass of GC system at z = 0, defined as

@ _ L Z (logm Mgc — logy, Mobs)2

= , 18
Ny Ny 0.35% 18
where Mgc represents the total mass of GC system, and
Moy = 3.4 x 1075 M,,, (19)

is the observed GC system mass—halo mass relation (Harris, Harris
& Hudson 2015) with the scatter of 0.35 dex. The sum is over Ny
modeled halo systems.

The second and third terms represent the ‘goodness’ of the present-
day GC mass and metallicity distributions, respectively. Following
Li & Gnedin (2014), we link observed galaxies to simulated galaxies
with similar masses and compute the Kolmogorov—Smirnov (KS)
test for each pair of linked galaxies. The terms Gy and Gz represent

Zhttps://people.smp.ug.edu.au/HolgerBaumgardt/globular/
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the fraction of pairs with pxs > 0.01, which can be taken as an
acceptable match.

As suggested by Choksi et al. (2018), the model tends to underes-
timate the observed value of metallicity scatter 0 = 0.58 dex. We
introduce the fourth term as a penalty for such underestimation,
where o7 is the average scatter of metallicity for modeled GC
systems.

The last two terms are new in this work. The fifth term measures
the deviation of modeled GC system size—galaxy mass relation
from observations. Hudson & Robison (2018) and Forbes (2017)
suggested that the effective radius of GC system can be described
as a power-law function of the host galaxy mass. However, these
two papers provided very different power-law indices of 0.88 and
0.33, based on partially-overlapping data sets. To reconcile this
discrepancy, we combine the two data sets and perform a new power-
law fit, which yields

M,
1og,o Re = 0.76 + 0.62log,, (W) : (20)
O]

where R, is given in kpc. The details of the fit are described later in
Section 4.1. Note that this relation is more commonly given in terms
of the viral mass My instead of the halo mass My, although they
are used interchangeably in many studies. We make a distinction
here because M,y and My, are typically not the same in TNGS50:
log0(Mpo/My) varies from 0.05 — 0.25 dex, with a mean value of
0.1 dex. Therefore, we apply logio(Mapo/Mp) = 0.1 to connect the
two masses throughout the work. Based on the R.—M,, relation, we
introduce the fifth term as the reduced x> of modeled GC systems
matching this relation:
Xe _ 1

1
= — — {loglO R. —0.62 (

M, 2
—0.76| , (21
Ny~ Ny 5= 0222 ) ] @b

1012 M,

where 0.22 dex is the intrinsic scatter of the fit.

Finally, the sixth term is the reduced 2 for 3D velocity dispersion
in MW mass galaxies, defined as galaxies with total masses between
10'? and 1022 Mg:

(22)

2 2
Xo 1 Z (logm o3p — 10g10 03D,MW)

Nvw  Nuw 0.22

8

The 3D velocity dispersion takes into account all three dispersion
components in the cylindrical coordinate system, o3p = (03 + Uqf +
02)!/2. The axis of the cylindrical system is constructed along the
net angular momentum vector of all stellar particles in the galaxy.
We calculate o3p as the total dispersion for all GCs in the galaxy.
We also define o3p mw = 200 km s7!' to represent the 3D velocity
dispersion of the Galactic GC system. The intrinsic scatter of o3p
can be approximated by 0.2 dex.

3.3 Parameter selection

To calibrate our model with observations, we randomly pick 32
central galaxies with total mass between 10'' — 102 M, and 32
central galaxies with total mass between 10'> — 1023 M, from the
TNGS50 simulation. There are Nyw = 13 galaxies that match our
definition of MW mass galaxies, i.e. M, = 10'> — 10'>2Mg. By
minimizing the merit function M on the 64 sample galaxies, we find
a large region in the 3D parameter space can produce relatively good
results with similar M. In Appendix B, we show that these different
configurations only influence the final results sightly. Without loss
of generality, we apply (p2, p3, k5.) = (8, 0.5 Gyr‘l, 4) for the Qg =
2, case, and (pa, p3, k,) = (8,0.5 Gyrfl, 5) for the Q¢ = 2, case
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Figure 1. Surface number density profiles of model GC systems in MW
mass galaxies. Models with the two implementations of tidal disruption are
shown as blue circles (R2iiq = €2;) and red squares (Qq = €2,), respectively.
Symbols represent the median value of 13 MW mass galaxies, while vertical
errorbars correspond to the 16-84th percentiles. For comparison, the surface
number density profile of the MW GC system is shown as grey diamonds
with errorbars: vertical errorbars show the Poisson error, horizontal errorbars
indicate the bin width. Curves show the corresponding de Vaucouleurs fits,
with vertical dashed lines marking the best-fitting effective radii Re.

throughout the rest of the paper. To build some intuition about the
value of k, we provide an analytical estimate of the cluster lifetime for
the Qg = 22, model. For a GC with initial mass M = 2 x 10° M, a
typical value of the tidal strength is A,, = 10* Gyr~2, corresponding
to the distance of 3 kpc from the center of a MW-like galaxy at
z = 0, as shown in Fig. A2. This gives Q4q = 230 Gyr~' for «;
= 4. According to equation (8), the tidal disruption timescale of
this cluster is 4.3 Gyr. Assuming 244 to be a constant and using
equation (16), we find that such a cluster would lose all its mass after
6.5 Gyr.

4 SPATIAL AND KINEMATIC DISTRIBUTIONS

In this section, we describe new results and predictions made possible
by inclusion of the spatial information in our model.

4.1 Radial profiles

The observed surface number density profiles of GC systems can be
well fitted by the de Vaucouleurs law (Rhode & Zepf 2004; Hudson
& Robison 2018), which is the n = 4 case of the Sérsic profile

R 1/n
E(R):Eeexp{—bn (R—) -1 } (23)

where R, stands for the effective radius, and . for the surface density
at R.. The factor b, can be approximated by b, = 1.9992n — 0.3271
(Capaccioli 1989) for 0.5 < n < 10.

With the model GC systems projected on to the face-on planes of
host galaxies, in Fig. 1, we show the surface density profiles in the
13 model MW mass galaxies at z = 0. We define the face-on plane to
be perpendicular to the net angular momentum vector for all stellar
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Figure 2. Best-fitting de Vaucouleurs effective radii of modeled GC systems
as a function of host halo mass, with fitting uncertainties of R. shown
as vertical errorbars. The observed GC systems from Hudson & Robison
(2018) and Forbes (2017) are plotted as magenta crosses. The power-
law fits from maximum likelihood for the model (R, o M}?jgio‘og) and
observations (R. MI?'()ZiO'13 ) are shown as the shaded regions, whose
widths represent the 1-o confidence levels. MW is highlighted as the grey
diamond: the horizontal errorbar shows the uncertainty of the total mass of
MW: 10! — 10'?2 M,; while the vertical errorbar corresponds to the fitting
error of R mw. Both errorbars are hard to observe as they are smaller than
the marker size.

particles in the galaxy. The density profiles of both Q4 = €2, and
Qiq = 2, cases almost perfectly match the observed relation within
the 16—84 per cent confidence level over a wide range of radii. Both
models can be well fitted by the de Vaucouleurs law from 1 to 100 kpc
with R. ~ 6kpc, which is close to the effective radius of the MW
GC system, R.mw = S kpc.

To explore the spatial distribution of GCs in galaxies in a wider
mass range, we plot the best-fitting R. as a function of the host halo
mass for all sample galaxies in Fig. 2. For clarity, we show the R.—M},
relation only for the Qi = €2, case, as all conclusions also stand for
the Qg = 2, case. Within the halo mass range of 10''°—10'° M,
our model predicts the effective radii of GC systems to grow from 1
to 10 kpc, roughly following a power-law shape.

We perform a standard power-law fit using the maximum likeli-
hood method, which takes into account the uncertainties in both R,
and M}, and the intrinsic scatter of the relation. The fit function reads

log,y Re = a + blog,y My + €, (24

where the intrinsic scatter is represented by a random variable €,
which follows a Gaussian distribution N(0, o;,). Correspondingly,
the likelihood is given by

1 82
L= — ¢ — L , 25
H 021 . ( 201'2) *

where 07 = 0, g ; + D05y + Oy and 8; = logioRe, i — a —
blog oMy, ;is the ‘vertical” deviation. We introduce o'jog g, ; and o'jog pz, i
as the observed uncertainties of log;oR. ; and logoM, ;, respectively,
with subscript i corresponding to the i-th data point. Additionally,
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we apply bootstrap resampling 5000-10000 times until all fitting
parameters converge to estimate the standard deviations of a, b, and
Oint, denoted by o, 05, and o,. By assuming the fitting parameters to
be random variables following Gaussian distributions (e.g. the slope
follows N (b, 03)), the predicted logioR. can also be described as a
Gaussian distribution, whose mean value is given by equation (24),
and uncertainty is given by alf)g r = 02+ (oplog,o My)? + o2,. For
our model data, the uncertainty of log;oMj, is set to zero since M, is
directly taken from TNG50. Maximizing the likelihood £ yields

log,o Re = (0.75 +0.03)

+(0.79 + 0.09) log,, < (26)

My
1012 M, ) ’
where R. is given in kpc. We also obtain an intrinsic scatter of oy
=0.18 £ 0.02.

By minimizing the ‘vertical’ deviations §;, the above fit assumes
one variable to be dependent (R.) and the other independent (Mj,).
Alternatively, one may perform an orthogonal fit to the two-
dimensional distribution, treating both variables as independent. It
describes situations where both variables are the result of many
complex processes, such as those operating in galaxy formation.
With the same fit function, equation (24), the orthogonal fit aims to
minimize the perpendicular deviation of data points from the best-
fitting line. The likelihood function in this case is

1 A?
Lortho = H ﬁ exp <— 222) . (27)

The perpendicular deviation is A; = (logoR., ; — a)cos  — M, ;sin 6,
where & = tan~'b is the inclination angle. Similarly, we write
the perpendicular uncertainty £} = alf)g R cos® 6 + alﬁg M sin® 0 +
o2, cos? 6. Maximizing this likelihood Lo, for the modeled GCs
relation yields

log,, RO™ = (0.77 £ 0.06)

+ (1.29 £ 0.55) log,, ( (28)

My
1012 My ) ’
with an intrinsic scatter oj,; = 0.26 £ 0.16. The slope of the
orthogonal fit is significantly higher than that of the standard fit,
as noted by various studies (e.g. Linnet 1993). The discrepancy is
due to the two methods handling uncertainties differently. In general,
there is a priori preference for either method: the standard fit can more
clearly show how the dependent variable changes with independent
variables, while the orthogonal fit is more appropriate to show the
relation between two independent variables. Since we start with
known M), and model the prediction for R., the standard fit is more
appropriate in this work. We also provide the results from orthogonal
fit for completeness.

We compare our model results with the observations of extra-
galactic GC systems presented in Forbes (2017) and Hudson &
Robison (2018). These samples include early type galaxies, massive
cD galaxies, and three ultra diffuse galaxies (UDGs). Many galaxies
overlap in the two samples. We combine the galaxies in both samples,
exclude galaxies without any measure of halo mass, and update
the mass estimate of DF 44. Saifollahi et al. (2021) suggested that
DF44 is much less massive and has a more compact GC system than
previously believed. It is worth noting that the masses of the three
UDGs are obtained differently from other galaxies: the masses of
UDGs are inferred from their GC mass/counts, while the masses of
most other galaxies are derived from the SMHM. This may introduce
systematic errors when fitting them with a single power-law relation.

MNRAS 514, 4736-4755 (2022)
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We show the R.—M, relation for this combined observational
sample in Fig. 2 and note that the observational data roughly follow
a power-law relation. By performing a fit on these observational data
with the standard likelihood, we obtain

10og;o Re.obs = (0.76 £ 0.10)

+(0.62 £ 0.13) log,, ( (29)

My
102 My > ’
with an intrinsic scatter oy, = 0.22 £ 0.06. The slope of 0.62 lies
between the values of 0.88 and 0.33 quoted by Hudson & Robison
(2018) and Forbes (2017), respectively. Note that equation (29) gives
R. = 6.6 kpc for a MW mass (10'>! M) system. In comparison,
the MW GC system has R. = 5 kpc, which is by 0.12 dex more
compact than the average MW mass system. It is not surprising that
the model also tends to overestimate the size of MW GC system by
similar amount since the model is calibrated with the R.—M,, relation
by equation (29). Moreover, this overestimation can be adjusted by
applying lower strengths of tidal disruption (i.e. lower «, as discussed
in Appendix. B) or different schemes of tidal disruption (e.g. constant
disruption rate, as discussed in Section 6.1).

Alternatively, the orthogonal fit gives

log,y RO = (0.66 + 0.20)

My
+(0.83 £0.31)log, (m) , (30)
with an intrinsic scatter o, = 0.26 £ 0.17. Similarly to the fits
for modeled systems, the slope of the orthogonal fit is significantly
higher than that of the standard fit.

Considering the uncertainties of fitting parameters and large
intrinsic scatter, the model results and observations are consistent
with each other, although the two slopes are formally different. We
will investigate the power-law slope of the R.—M), relation further in
Section 6.1, where we focus on how tidal disruption alters the sizes of
GC systems. We find that a model with location-sensitive disruption
(such as in this work) tends to have steeper R.—M}, relation compared
with location-independent models.

4.2 Kinematics

Since now, we have observational measurements of 3D velocities for
most Galactic GCs, we can compare them with the kinematics of the
modeled GC systems for MW mass galaxies. We project the velocity
of each GC on to the cylindrical coordinate system centered on the
host galaxy and calculate the three perpendicular components: the
radial component, vg; the azimuthal component, v,; and the axial
component, v,. The axis of the coordinate system is aligned with the
net angular momentum vector of all stellar particles in the galaxy.
For each of these components, we define velocity dispersions as the
standard deviations after subtracting the mean.

Fig. 3 shows the radial profiles of the 3D velocity dispersion,
o = (03 + 0, 4 02)!/2. The dispersion is a decreasing function of
radius: between 1 and 100 kpc, o3p drops from 230 to 100 km s!,
with a scatter of 20 —50kms~'. The model o3p profile is in
agreement with the observations of the Galactic GCs except at R
=~ 10-30 kpc, where the observed dispersion jumps dramatically
to 220 km s~!. This bump is mainly created by the GCs associated
with the Sagittarius stream (Vasiliev 2019b). These GCs with similar
radii have large velocities, which significantly inflates the velocity
dispersion at R 2~ 30 kpc. In fact, such random bumps are not rare
in the modeled systems, but we do not observe any obvious bump in
Fig. 3 since the uncertainties of the o3p profile are represented by

MNRAS 514, 4736-4755 (2022)
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Figure 3. Radial profile of 3D velocity dispersion for model GC systems
in MW mass galaxies (black curve). The dispersion profile for all stellar
particles in TNGS50 galaxies is shown by the magenta curve. Shaded regions
correspond to the 16-84th percentiles of 13 MW mass galaxies. The observed
dispersion profile of the MW GC system is shown as grey diamonds
with errorbars: vertical errorbars represent the 16—84 percent confidence
levels from bootstrap resampling, and horizontal errorbars correspond to the
bin width. We repeat bootstrap resampling 1000 times until the estimated
confidence levels converge.

16—84th percentiles. For the 13 MW-mass galaxies, we can observe a
clear bump only if there are more than 2 galaxies presenting bumps at
the same radius, which is rather rear. It is worth noting that the good
agreement with observations is not a trivial outcome of optimizing
the merit function (Section 3.2). We emphasize that the model result
accurately reproduces the observed radial distribution of o 3p, while
the merit function only takes into account the total o 3p of all GCs in
a galaxy.

We also compare the GC dispersion profile with the dispersion
profile of all stellar particles. The velocity dispersion of GCs is about
10 per cent higher than that of the stellar component at the same
radius, suggesting that GCs are more supported by random motion.
However, this difference is smaller than the scatters and may be
difficult to detect in observations.

In addition to the dispersion profiles of GCs in MW mass
galaxies, we investigate the kinematics of GC systems in galaxies
of other mass. The top panel of Fig. 4 shows the median velocity
components for all modeled galaxies as a function of halo mass. For
all components, the median velocities are insensitive to the halo mass
between M, = 10'°—10'23 Mg. The median vg and v, of model
GC systems are consistent with zero, with a rather small scatter of
~ 10kms~!. On the other hand, the median azimuthal (rotational)
velocity is vy 50 = (40 30) kms~!, which is systematically non-
zero with larger scatter. This reveals that the GC system is also
rotating alongside the stellar component of the host galaxy. For
quantitative comparison with the MW, we present in Table 1 the
16—50—84 per cent values of the three median velocity components
for the 13 modeled MW mass galaxies as well as the MW GC
systems. In addition, we list also the percentiles of MW properties
in the modeled MW mass galaxies. These percentiles indicate how
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Figure 4. Median systemic velocity components (top panel) and velocity
dispersions (bottom panel) as functions of host halo mass for model GC

systems. Curves with shaded regions represent the 16-50-84th percentiles
of each component (note that the curves in the fop panel are medians of

median values). The median systemic velocities and velocity dispersions of

the Galactic GC system are overplotted as diamonds with errorbars: vertical

errorbars represent uncertainties via bootstrap resampling, and horizontal

errorbars represent the uncertainty of the MW mass.

much the model can represent the MW properties: a percentile >50
(<50) means that this property of the MW is greater (smaller) than

the median value of the 13 MW mass galaxies. For statistical signif-

icance, only percentiles >84 (<16) can be interpreted as the model
systematically underestimating (overestimating) the corresponding

properties of the MW. The model predictions of median vg and vy are
consistent with the observations as these two properties of the MW
overlap the 15—90 per cent and 53—93 per cent (intersecting with
the 16—84 per centrange) values of the modeled values, respectively.
Although the median v yw of 19ﬂ  kms™! is systematically non-

zero, which is inconsistent with the model prediction that median v,
is around zero, we still find some model systems to have an even
greater median v, as the percentile of v, mw in model systems is

smaller than 100. It is not surprising that the systemic velocities can
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Figure 5. Radial profiles of anisotropy parameter for modeled GC systems
in MW mass galaxies. The anisotropy parameter profile of all stellar particles
in TNGS50 galaxies is shown by the magenta curve. Shaded regions represent
the 16-84th percentiles of the corresponding components. We also show
the anisotropy parameter profiles for the MW GC system as diamonds with
errorbars: vertical errorbars represent the 16—84 per cent confidence levels
via bootstrap resampling, and the horizontal errorbars correspond to the bin
width.

deviate from the average values since different dynamical histories
of galaxies can lead to different kinematics of GCs. For example,
Vasiliev (2019b) suggested that the Sagittarius stream clusters have
high polar velocities, which can significantly alter the distribution of
systemic velocities.

In the bottom panel of Fig. 4, we compare the velocity dispersion
of each component for the modeled galaxies with the MW GCs.
We find that the dispersion of all three components increases
significantly with halo mass. From M; = 10" to 10" Mg, the
three components rise from ~70 to ~ 130kms~'. As presented
in Table 1, the model predictions are in good agreement with
observations as the observed median oy, 04, and o, overlap the
41—80 per cent, 61—98 per cent, and 29—59 per cent values of the
modeled MW mass galaxies, respectively; all percentiles intersect
with the 16—84 per cent confidence level.

We note that the radial dispersion oy is generally greater than
the tangential component o, for galaxies with M, = 10'5 —
1023 Mg, Quantitatively, the anisotropy of radial and tangential
motions can be characterized by the anisotropy parameter (Binney
1980). Here, we apply the definition of anisotropy parameter in cylin-
drical system by Tonry (1983), § =1 — crq% /o2. Negative (positive)
values of B correspond to a tangentially (radially) anisotropic velocity
distribution. The case of B = 0 corresponds to an isotropic velocity
distribution. We plot the radial profile of 8 for model GC systems in
Fig. 5. The model g profile for all GCs rises gradually from g >~ 0 to
0.5 at R =1-100 kpc. The model profile mostly matches the observed
profile within the 16—84 per cent confidence level. Although model
GCs are mainly represented by stellar particles, the entire stellar
components in TNG50 galaxies tend to acquire lower B values at R
= 2-20kpc, indicating that the GCs at this region are in general more
radially biased than the field stars. Additionally, unlike the increasing
B of GCs, the stellar B decreases with radius until R >~ 5 kpc, where

MNRAS 514, 4736-4755 (2022)

the anisotropy profile of field stars shows a dip, which may be related
to past mergers of galaxies, as suggested by Loebman et al. (2018).

4.3 Orbital actions

Recent studies (Trujillo-Gomez et al. 2021; Wu et al. 2021; Calling-
ham et al. 2022) focusing on the kinematics of GCs and halo stars
have shown that orbital actions and integral of motions are useful
probes of the dynamical histories of galaxies. These quantities are
generally conserved during the slow evolution of the gravitational
potential (Binney & Tremaine 2008). To study the orbits of our
GCs, we use the AGAMA package (Vasiliev 2019a) to compute their
pericenter and apocenter radii (7peri, 7apo) and orbital actions (Jg, Jg,
J.). The actions of a closed orbit are defined as

1 Dy
J, = — ¢ —dgq, 31
4 anmq @D

where ¢ € {R, ¢, z} corresponds to the radial, azimuthal, and
vertical coordinates in a cylindrical system. The actions have the
same dimension as the specific angular momentum. In fact, the
azimuthal action J, is equivalent to the specific angular momentum
along the z-axis, L,. The sum |J4| + J; equals the total specific
angular momentum L.

Orbit calculation requires analytical modeling of the gravitational
potential of TNG50 galaxies. We achieve it by employing the
AGAMA functionality, which approximates the potential with the
multipole expansion method (for details, see Vasiliev 2019a). Since
the potential of MW can be described by spheroids and disks (e.g.
McMillan 2017), we model the present-day potentials of TNGS50
galaxies with these two components. A largely spherical dark matter
potential is modeled by spherical harmonic expansion, while the
disky baryonic (star + gas) potential is modeled by azimuthal
harmonic expansion. The radial and vertical coordinates in the two
expansion schemes are approximated by quintic splines. We find the
multipole expansion approximation to be accurate, as it deviates
from the simulation-provided potential by less than 2 per cent.
Such a deviation is so small that we can ignore its influence on
the subsequent calculation of orbital parameters. Next, we input
the z = 0 positions and velocities of GCs to AGAMA and perform
orbit integration to obtain the pericenter/apocenter radii and orbital
actions. Note that these parameters are observable since we can
apply the same procedure to MW GCs with the full 3-dimensional
positions and velocities, assuming the McMillan (2017) model for
the MW potential.

We listin Table 1 the pericenter and apocenter radii for the modeled
systems as well as the MW GCs. The modeled values of the two
radii are greater than the observed median values by ~0.2 dex.
This is because the model is calibrated with equation (29), where
the MW GC system is more compact by 0.12 dex than an average
MW mass system, see Section 4.1. However, the median rpe;; of the
MW overlaps the 16—23 per cent (within 16—84 per cent) levels of
the model predictions, meaning that the model can still match this
property of the MW GCs. Although the model tends to over-predict
the pericenter and apocenter radii for the MW GC system, it can
match the observed orbital eccentricity, which is defined as e = (74po
— Fperi)/(Fapo + Tperi). We find the median eccentricity of the model to
be e = 0.62 £ 0.04 for MW mass galaxies, in good agreement with
the observed value e = 0.60 £ 0.02.

We also list in Table 1 the median actions of the 13 modeled
MW mass galaxies and the MW. The model can match the three
observed median actions of the MW GC system as the radial,
azimuthal, and vertical median actions of the MW intersect with the
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Figure 6. Surface number density profile of modeled GC systems in MW
mass galaxies, for the case Qg = 2. The in situ and ex situ GCs are plotted as
red and blue curves, respectively. The 16-84th percentiles of each component
are shown as shaded regions. For comparison with observations, we plot the
dispersion profile of the in situ and ex situ GCs from MW as diamonds with
errorbars: vertical errorbars show the Poisson error, and horizontal errorbars
correspond to the bin width.

0—38 per cent, 23—47 per cent, and 15—41 per cent values of model
predictions. However, the median radial action Jg of the MW has
large uncertainties, with a lower boundary smaller than the median
Jr of any of the 13 modeled systems. This is likely due to the model’s
tendency to overestimate the radii of GCs, enlarging the integral range
in equation (31) to produce larger Jx.

5 GLOBULAR CLUSTERS FROM DIFFERENT
ORIGINS

Origins of model GCs can be easily distinguished by looking at
their positions at birth in the galaxy merger tree. We define the GCs
formed in the main progenitor branch as in situ clusters, and the other
GCs originally formed in satellite galaxies as ex situ clusters. The
ex situ clusters are later brought into the central galaxy via accretion
and mergers. In this section, we compare multiple properties of the
model clusters formed in situ and ex situ to those of their observed
counterparts. However, since we do not have the actual merger tree
for the MW, the classification of MW GCs is not as straightforward
as the model GCs. Therefore, we adopt the criteria of Massari et al.
(2019) to classify the in situ and ex situ components of the MW GCs.
These authors define GCs with apocenter radius less than 3.5 kpc
as bulge clusters, and GCs with maximum height from the disc less
than 5 kpc and orbit circularity greater than 0.5 as disk clusters. The
bulge and disk clusters combined are the in sitru GC population, while
the rest are ex situ clusters. This classification still has limitations
and cannot be regarded as the actual origins of MW GCs. We will
mention these caveats and their effects on various GC properties in
this section.

In Fig. 6, we compare the radial profiles of in situ and ex situ
GCs in MW mass galaxies. For both samples the surface densities
decrease sharply with galactocentric radius in outer regions, R =
10kpc. Some ex situ GCs can be found as far as 100 kpc from the
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Figure 7. Effective radii of in situ (red squares) and ex situ (blue triangles)
components of modeled GC systems. Similarly to Fig. 2, we show power-
law fits of the R.—Mj, relations as shaded regions. The in situ (red) and ex
situ (blue) components of the MW GC system are plotted as diamonds with
errorbars: the horizontal errorbars show the uncertainty of the total mass of
MW, and the vertical errorbars correspond to the uncertainties of effective
radii from bootstrap resampling.

galaxy center. In the inner 3 kpc the in situ component dominates,
while the ex situ profile forms a flat core in the center.

Even though we do not specifically calibrate the merit function on
the bimodal split, the profiles of both model in sifu and ex situ GCs
are consistent with their respective observed counterparts. In Table 1,
we present the 16—84 per cent effective radii of two GC populations
for the model and observations. Note that the radial distribution
of in situ and ex situ GCs cannot be fitted by the de Vaucouleurs
law any longer, and therefore we use the face-on projected half
number radius as the effective radius, R.. The model predicts the
ratio R in/R. = 0.35-0.99 (16-84th percentiles), indicating that the
in situ component is systematically more centrally concentrated than
the whole GC system. The observed ratio ranges between 0.36—
0.58, overlapping the 17-49th percentiles of the model prediction. In
addition, the model yields R.¢x/R. = 1.36-2.69, while the observed
ratio (1.38-2.14) overlaps the 20-68th percentiles of the model
prediction. Although the model results are statistically consistent
with observations, the model tends to predict systematically larger
R. for both in situ and ex situ GCs since the MW GC system is more
compact than average GC systems in the observational samples, as
shown in Section 4.1. Nevertheless, the observed effective radii still
overlap the 10—21 per cent (in sifu) and 9—45 per cent (ex situ) values
of model predictions, indicating that the size of the MW GC system
is below average but still typical.

We show the effective radii of in sifu and ex situ GCs for all
model galaxies as a function of host halo mass in Fig. 7. Similarly
to the previous analysis of the R.—M) relation for all GCs, the
effective radii of both in sifu and ex situ GCs scale as power-law
functions of host halo mass, with power-law indices of 0.44 4 0.07
and 0.46 £ 0.08 (obtained from standard linear fit). The intrinsic
scatters of the in situ and ex situ components are 0.13 + 0.02 dex
and 0.15 % 0.02 dex, respectively. Moreover, the effective radii of
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Figure 8. Radial profiles of metallicity, [Fe/H], for modeled GC systems in
MW mass galaxies (top panel) and for in situ (red) and ex situ (blue) GCs
(bottom panel). Shaded regions represent the 16-84th percentiles of each
component. We also show the metallicity profiles for the MW GC system as
diamonds with errorbars: vertical errorbars represent the 16-84th percentiles
of [Fe/H] in each bin, and the horizontal errorbars correspond to the bin width.

the ex situ GCs are greater than the in sifu ones by ~0.5 dex, which
is significantly greater than their intrinsic scatter. The significant
discrepancy indicates that in situ and ex situ GCs are distributed at
distinct regions. However, since the radial spreads are large for both
populations, it is still a big challenge to distinguish the progenitors
of GCs by looking merely at the radius.

The significant different radial distributions of in situ and ex situ
GCs lead to an interesting phenomenon: the average GC metallicity
decreases with radius. We plot the radial profile of metallicity, [Fe/H],
for the model GC systems in MW mass galaxies in the top panel of
Fig. 8. The metallicity profiles for the in situ and ex situ clusters are
shown in the bottom panel of Fig. 8. For comparison, we also plot
the [Fe/H] profiles for the MW GCs provided by Harris (1996, 2010
edition). The modeled ex sifru GCs are systematically more metal-
poor than the in situ GCs by 0.5 to 1 dex. This is because ex sifu GCs
are more likely to be formed in older and smaller galaxies, where
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the metallicity is significantly lower than in the main progenitor
galaxy (see equation 6). In addition, we note that there is no clear
dependence on radius for metallicities of both in situ and ex situ
GCs, in agreement with the flat metallicity profile in the outer MW
halo (Searle & Zinn 1978). However, the average metallicity of all
GCs drops significantly with radius because the proportion of ex situ
GCs grows at large radii. A similar trend also exists in the MW GC
system but is obscured by the relatively large scatter. It is reasonable
to suggest that the metallicity of GCs in a given radial range can be
viewed as a tracer of the abundance of in situ versus ex situ GCs.

Next, we investigate the radial profiles of 3D velocity dispersions
for in situ and ex situ clusters. Fig. 9 shows that both samples have
o 3p decreasing with radius. Although the trend can be easily noticed
by looking at the average oip profile, the profiles for individual
galaxies can greatly deviate from the average as the intrinsic scatter
can be as large as 30 — 50 km s~ This is also true for the MW GCs.
Although the predicted dispersion profiles are mostly consistent with
observations at the 16—84 per cent confidence level, the observed
dispersion profile of ex situ clusters peaks dramatically at R ~ 30 kpc.
As discussed in Section 4.2, this bump is likely due to the high
velocities of Sagittarius stream clusters. Moreover, the o 3p for in situ
GCs is systematically lower than the ex situ ones by ~ 40kms™' in
the range where they overlap, R = 1-20 kpc. The higher dispersion
for ex situ clusters is likely because the ex situ GCs come from
several satellite galaxies with distinct kinematics, and many of them
are brought into the main progenitor galaxy via violent gravitational
interactions, leading to greater velocity dispersion. The migration
nature of the modeled ex situ clusters also results in their velocity
dispersions being systematically larger than the field stars at R = 1—
20 kpc, whereas the modeled in situ clusters have velocity dispersions
similar to that of the field stellar component. The deviation between
in situ and ex situ clusters is even larger in the MW as the observed in
situ clusters have lower dispersions than the model median. This is
likely because the classification of MW GCs is based on Massari et al.
(2019), in which in situ GCs are arbitrarily defined as clusters with
low ryp, (a.k.a. bulge clusters) or high circularity (a.k.a. disk clusters).
These criteria favour GCs with greater bulk rotational velocities
rather than random motions, leading to the selected in situ clusters
having lower dispersions.

Observationally, we cannot easily distinguish the origins of ex-
tragalactic GCs. It is therefore more applicable to compare the
dispersion of GCs split by the colour index instead of the in situ
versus ex situ origins. Following Harris et al. (2006), we compute
the metallicity sensitive (B-I) colour via a linear relation:

(B —1I) = 2.158 + 0.375 [Fe/H]. (32)

Since the metallicity of GCs can serve as a tracer of in situ versus
ex situ GCs, equation (32) indicates that the (B-I) colour can also
trace the GC origins. For the modeled MW mass galaxies, we find
the median GC (B-I) varying between 1.5 and 1.9. Without loss of
generality, we show the 3D velocity dispersions of red and blue GCs
split at (B-I) = 1.7 in the right-hand panel of Fig. 9. Again, the 3D
velocity dispersions decrease with radius. Compared with blue GCs,
red GCs have ~ 40 km s~ lower velocity dispersion. The red clusters
have velocity dispersions similar to the stellar components, while the
blue clusters have velocity dispersions systematically larger than the
field stars at the same radius. Although the MW GC system does
not show exactly the same behaviour as the modeled trends, we still
observe the blue GCs in the MW to have greater dispersion than
the red ones at R >~ 10 kpc. Velocity dispersion differences between
the red and blue GCs are observed more clearly in giant elliptical
galaxies, such as NGC 1399 (see Fig. 14 of Schuberth et al. 2010).
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Figure 9. Radial profiles of 3D velocity dispersion for different components of GCs in MW mass galaxies. In the left-hand panel, GCs are split into in situ
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are similar to those in Fig. 3.
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Figure 10. Radial profiles of anisotropy parameter for in situ (red) and ex
situ (blue) GCs (bottom panel) in MW mass galaxies. Other parameters are
similar to those of Fig. 5.

It is thus reasonable to suggest that the different origins of GCs can
contribute to the observed dispersion difference between the red and
blue components.

We also study the radial profiles of the anisotropy parameter for in
situ and ex situ clusters. As shown in Fig. 10, both GC populations
have the anisotropy parameter consistent with zero at R = 1-10 kpc,
similarly to field stellar particles in the same radial range. At R >
10 kpc, where ex situ GCs dominate, we find that the anisotropy
parameter of ex sifu clusters is systematically positive, suggesting
that the motions of outer GCs are radially dominated, in agreement

with the accretion nature of ex situ GCs. The model predictions of in
situ and ex situ GCs are consistent with the observations within the
16—84 per cent confidence level.

Finally, we calculate the median pericenter/apocenter radii and
orbital actions for in situ and ex situ GCs in 13 MW mass galaxies.
Similarly to the way we present data for all GCs, we present in
Table 1 these properties for the modeled systems, the MW, and the
respective percentiles. The median pericenter and apocenter radii of
the ex situ GCs are greater than those of the in sifu ones, consistent
with the migration nature of ex situ GCs. For the two median
radii, the 16—84 per cent ranges of the two GC populations do not
overlap. This again supports that GCs from different progenitors have
systematically different radial distributions. The deviations between
the two GC systems are especially notable for the median r,,,, which
is 3.5 times higher for the ex situ clusters. However, note that what we
present here are the median values. Since the spreads of the these radii
in individual galaxies are rather broad, it is still challenging to dis-
tinguish the progenitors of each GC by looking only at rper; and rypo.

The observed median 7y mw Overlaps the 15—70 percent (in
situ) and O—10percent (ex situ) values of model predictions.
And, the median ryp,, mw overlaps the 7—27 percent (in situ) and
12—52 per cent (ex situ) values of model predictions. Except for the
model systematically over-predicting median 7, the model can
mostly match the observed values. We also note that the median
Tapo Of the ex situ MW GCs is greater than ry,, in situ by a factor
of 5, which is even larger than the predicted difference. However,
note that the Massari et al. (2019) classification arbitrarily defines
in situ GCs as clusters with low r,y, or high circularity. The former
criterion increases the discrepancy between ryp, of the in situ and in
situ GCs. The latter favors GCs with more circular orbits. Therefore,
the orbits of remaining ex situ clusters are more eccentric. That is to
say, GCs with small rp; and large r,p, are more likely to be classified
as ex situ clusters. This bias explains why the model over-predicts
the median r; for ex sifru GCs. The difference between our results
and the results from Massari et al. (2019) suggests that these authors
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might underestimate the effects of dynamical evolution on the orbits
of MW GCs. The actual orbits of in situ GCs may be more eccentric
and have higher r,p, than expected.

The median orbital actions (Jg, |Jy|, J;) for in situ and ex situ
GCs are also presented in Table 1. The difference between the
two GC populations is the largest for J; and the smallest for [Jy],
indicating that Jg can be a useful parameter to distinguish GCs
from different progenitors. Compared with the model predictions,
the observed median Jg mqw overlaps the 0—21percent (in situ)
and 54—92 percent (ex situ) values, the median |/, mw| overlaps
the 22—92percent (in situ) and O—12percent (ex situ) values,
and the median J, mqw overlaps the 16—30percent (in sifu) and
29—43 per cent (ex situ) values of the 13 modeled MW mass galaxies.
Most of the model predictions can match the observed values, except
for the overestimation for in situ Jg and ex situ |Jy|. As discussed
before, the overestimation for in sifu Jg is because the model in situ
GCs have larger ry0, enlarging the integral range in equation (31) to
produce larger Jg. Also, since the Massari et al. (2019) classification
tends to select ex situ GCs with more eccentric orbits, their ex situ
GCs are likely to have lower |L.| (recall that J, = L;) than reality.
Consequently, our model over-predicts the median |J,4| for ex situ
GCs.

6 DISCUSSION

6.1 Comparison with cases of constant disruption rate

In section 4.1, we note that the effective radii of model GC systems
can be described as a power-law function of galaxy mass: R,
M}?”im. Here, we investigate the effects of different prescriptions
for tidal disruption on the R.—M), relation. In addition to the 24
= Q, and Q¢ = 2, cases, we introduce another prescription with
Q¢ = constant, which is employed by our previous models (Choksi
& Gnedin 2019b). Due to the lack of spatial information, Choksi
& Gnedin (2019b) simply set Q49 = 200 Gyr‘1 for all clusters at
all times.® Taking this setup as a reference, we examine the values
Q¢ = 100, 200, and 300 Gyr~! for completeness and compare these
models with the Qg = 2, and Qg = 2, cases. Note that « is no
longer a model parameter since 24 is now fixed. By performing
the same calibration as in section 3 to search for the two remaining
model parameters, we find p, = 6, 12, and 20 for Q4 = 100, 200,
and 300 Gyr~!, respectively; while p3 = 0.6 Gyr~! works well for all
of them. The R.—M), relations for these cases are shown in Fig. 11.
Compared with the disruption prescriptions employed in this work,
the R.—M,, relations of all constant Qg cases have flatter slopes
ranging from 0.5 to 0.6, which are flatter than the 0.7-0.8 slopes
from the Qi = 2y, cases. Compared with observations, the three
Q¢ = constant cases also agree with the 0.62 £ 0.13 slope within the
error range. However, the three constant €24 cases have significantly
smaller normalization by a factor of ~3 compared to the Qiq = €2,/,
cases and observations.

The present-day radial distribution of a GC system can signif-
icantly differ from the initial distribution. For example, systemic
radial motions can bring GCs inwards or outwards, shifting the radial
distribution from the initial one. Different dependence of disruption
on local environment can also lead to different radial distribution of
surviving GCs. Compared with the environment-dependent models
(R4 = 2,/,), the Qiq = constant cases tend to produce stronger tidal

) -1
31n their notation, P = 0.5, where P = (10090%) .
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Figure 11. Best-fitting de Vaucouleurs effective radii, R., of modeled GC
systems as a function of host halo mass. The Qg = 2 and Qg = 2, cases
are shown as blue and red lines, while the constant disruption rate cases of
Qg = 100, 200, and 300 Gyr’l are shown as cyan, orange, and green lines,
respectively. Other parameters are as in Fig. 2.

disruption in the outer galaxy since they do not take into account the
strength of tidal disruption decreasing with radius (see Appendix A
for more details of the decreasing trend). This directly leads to higher
disruption rate in the outer galaxy for in situ clusters. On the other
hand, the ex siru GCs also experience systematically stronger tidal
disruption in the outer region after merging with the central galaxy.
Therefore, the €24 = constant cases have a tendency to form more
centrally concentrated GC systems. We also note that the Q2 = @,
case produces generally larger R, than the 2 = 2; case. This is due
to the larger disruption rate at small radii for the 2 = 2, case (see
Appendix A). Since more central GCs are disrupted, the Q& = Q,
case has a tendency to form more spread-out GC systems than the
Qg = Q, case.

Nevertheless, we cannot assert either of the Q4q = €2;, cases to
be more appropriate than the constant disruption cases, since the
initial spatial distribution of GCs in our model is not guaranteed to
be correct. A more dispersed initial radial distribution may raise the
effective radius to a more reasonable range for the ;4 = constant
cases.

6.2 GC mass function

Starting with a Schechter ICME, the tidal and stellar evolution of
GCs reshapes the mass distribution into the present-day GC mass
function (GCMF). In our model, stellar evolution is included as an
instantaneous mass loss after the formation of GCs. Since the fraction
of mass lost by stellar evolution is independent of GC mass (see
equation 16), only tidal disruption is important for transforming the
shape of ICMF to GCMEF. According to equation (8), the high-mass
end of the ICMF is less affected by tidal disruption and can preserve
its initial shape, while the low-mass end can turn over because of
the very efficient disruption of small GCs. In Fig. 12 we show that
the GCMFs predicted by our model for the MW mass galaxies have
similar shape and normalization to the observed MW GCME. Our
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Figure 12. GC mass function of GC systems in MW mass galaxies. The two
descriptions of tidal disruption, Qg = 2, and Qq = €2, are shown as blue
and red curves, with shaded regions representing the 16-84th percentiles
of the 13 galaxies. For comparison, the mass function of the MW GC
system is overplotted as diamonds with errorbars: vertical errorbars show
the 16—84 per cent confidence level computed via bootstrap resampling,
and horizontal errorbars correspond to the bin width. We repeat bootstrap
resampling 1000 times until the estimated confidence levels converge.

GCMFs also agree with Hughes et al. (2022), who conducted a study
on the high-mass end GCMFs in the E-MOSAICS simulation. They
suggested that the high-mass end of GCMF preserves the initial
Schechter shape, with a truncation mass of ~ 10° M, (for MW mass
galaxies). Our model can produce similar results when following the
same analysis as in their work. On the other hand, there is a small
deviation between the peaks of the modeled and observed GCMF:
the model GCMF peaks at M = 10*° — 10° M, whereas the MW
GCMF peaks at M = 10° — 10> M,. Therefore, the model tends
to overestimate the number of M < 10° Mg GCs and underestimate
the number of GCs with higher mass.

It may be expected that this discrepancy could be resolved by ad-
justing the three model parameters (Section 2.2), as the combination
of p, and p3 controls the total number of GCs formed in the model,
i.e. the normalization of the ICMF; and « controls the strength of
disruption, which bends the low mass tail of the ICMF. However, we
find that even though increasing « can shift the peak mass of GCMF
to higher values, the change in peak mass is small compared to the
increase of «. Setting ¥ = 10 still cannot produce a GCMF matching
the observations at the low-mass end, but can significantly affect the
radial distribution of GCs by disrupting too many inner GCs. Since
the low-mass GCs cannot be effectively disrupted with the current
tidal disruption prescription, a more realistic prescription is needed
to model the mass loss of M < 10° M, GCs due to tidal shocks.

6.3 How GCs migrate from the current locations

The present-day distribution of GCs is shaped by the interplay of
initial distribution, dynamical disruption, and migration. Here, we
investigate how GCs migrate from the original positions to the current
ones, and the different disruption in the inner/outer parts of galaxies.
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Figure 13. Comparison between radii at z = 0 and at formation for in situ
(red) and ex situ (blue) GCs in the 13 MW mass galaxies (bottom panel). The
grey line represents r; — o = rpirth. We plot the average radial distribution of
surviving (solid) and all (i.e. surviving + disrupted, dashed) GCs at formation
in the top panel.

In Fig. 13, we compare the present-day radii to the radii at formation
for all GCs from the 13 MW mass galaxies. Since the orientation of
the galaxy plane is not well defined at the early time when GC form,
here we use spherical radii r instead of cylindrical radii R, which we
use for the rest of this work. The ex situ GCs form mostly at ryn =
20-500 kpc from the galaxy center, while the in situ clusters form in
the inner region ryiy = 0.1 — 3 kpc. The hard cut for in situ clusters
at 3 kpc is imposed in Section 2.2.2.

Most in situ clusters migrate outwards to as far as r, — o =~ 100 kpc,
whereas ex sifu clusters get accreted by the main progenitor galaxy
and move inwards. Although formed in distinct regions, both GC
populations relocate to similar present-day regions between r, — o =
1 and 100 kpc. By comparing the distribution of surviving and all
(i.e. surviving + disrupted) GCs in Fig. 13, we also note that the
most efficient disruption of in situ clusters happens in inner regions
where the tidal field is stronger.

6.4 Comparison with other work

First, we compare our numerical setup and results with the E-
MOSAICS project (Pfeffer et al. 2018; Kruijssen et al. 2019). The
E-MOSAICS project re-simulated the EAGLE (Schaye et al. 2015)
suite of galaxy simulations with the MOSAICS (Kruijssen & Lamers
2008; Kruijssen 2009; Kruijssen et al. 2011) star cluster formation
and evolution model. This model treats star clusters as a sub-grid
component of stellar particles. When a stellar particle is formed, the
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MOSAICS model turns a fraction of its mass into star clusters with a
cluster formation efficiency based on the local gas density, velocity
dispersion, and the sound speed of the cold interstellar medium.
In contrast, in our model, the masses of newly formed clusters are
determined only by the global properties of the host galaxy. Similar
to the particle assignment technique in our work, star clusters in the
E-MOSAICS project inherit the spatial and kinematic information
from the simulation particles. They also inherit metallicity from the
stellar particles, while in our model cluster metallicity is set by
the global galaxy metallicity. The E-MOSAICS project requires a
very fine time resolution to identify gravitational tidal shocks, which
would result in over 10* output snapshots with a correspondingly
large amount of data storage. To reduce the storage requirement, the
E-MOSAICS project applies the cluster model in the runtime of the
simulation.

Using the E-MOSAICS results, Trujillo-Gomez et al. (2021)
analyzed the kinematics of modeled GCs in 25 MW mass galaxies.
They found that the radial velocity dispersion of GC systems is
systematically larger than the tangential components, leading to a
positive anisotropy parameter, which agrees with our conclusion
that the GC orbits are more radially biased. However, most (>
84 per cent) GC systems in their work have lower systemic velocity
dispersions than the observed values of the MW GCs. They therefore
argue that MW is atypical compared to the E-MOSAICS galaxies.
We find instead that the observed median dispersions overlap the
41-80 per cent (o), 64—98 percent (0 4), and 29—59 per cent (0';)
values of the modeled MW mass galaxies, meaning that our sample
can better reproduce the kinematic properties of the MW GC system.
In addition, they investigated the radial distribution of velocity
dispersions and found that the dispersions are almost flat, whereas
we discovered the velocity dispersion to decrease significantly with
radius. In both studies, the scatter of the dispersion profile is large,
indicating that it is hard to find regularity for a single MW mass
galaxy since the formation history of galaxies can be vastly different.
For the same reason, it is hard to compare the observed dispersion
profile in the MW to either of the two studies. Moreover, Trujillo-
Gomez et al. (2021) computed the median apocenter/pericenter radii
of GC orbits and found their results consistent with the observed
properties of the MW. In contrast, our model tend to over-predict the
median radii since our model is calibrated with a large observational
sample set of GC systems, where the MW GC system is by 0.12 dex
more compact than the average MW mass systems. These authors
also conducted analysis on different kinematics of in sifu and ex situ
clusters. They found ex situ GCs have a stronger tendency to show
greater radial velocity dispersion, whereas the tangential dispersions
of in situ and ex situ clusters are similar. In combination, the ex situ
GCs have greater total velocity dispersion, which agrees with our
findings. On the other hand, by splitting GCs into metal-rich and
metal-poor at [Fe/H] = —1.2, they found metal-poor GCs to have
greater systemic velocity dispersion. Similar results are also present
in our work when splitting by colour at (B — I) = 1.7, corresponding
to [Fe/H] &~ —1.2 by equation (32).

Also based on the E-MOSAICS results, Reina-Campos et al.
(2021) investigated the morphology of GC systems as tracers of
host galaxies and dark matter haloes. By fitting the de Vaucouleurs
profile to the projected GC number density, they discovered a strong
positive correlation between the effective radii R, and the stellar mass
of the host halo, which agrees with our conclusion that R. increases
as a power-law function of the halo mass M, (see Fig. 2). However,
these authors tend to overestimate the effective radius for the MW
GCs by ~0.3 dex. Although the MW GC system is more compact
than an average MW mass system by ~0.12 dex, the ~0.3 dex
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overestimation in their work is still significant. This overestimation
becomes more notable for lower mass galaxies when compared with
observations by Forbes (2017) and Hudson & Robison (2018). Since
the E-MOSAICS project tends to underestimate tidal disruption, as
discussed by Pfeffer et al. (2018), the overestimation of R. may be
even greater when more realistic disruption is included, as Section 6.3
suggests that most disrupted in situ GCs are in the inner galaxy.
On the other hand, in general our model predicts lower R., which
agrees better with observations. Since the differences between the
methods in the E-MOSAICS and this work are many, it is difficult
to point exact reason for discrepant R. predictions. One possible
reason is that our model applies a radius threshold of 3 kpc when
assigning GC particles at birth (Section 2.2.2), as recent observations
of young clusters (Adamo et al. 2015, 2020; Randriamanakoto
et al. 2019) suggest that massive clusters preferentially form in the
inner regions of galaxies. This threshold also prevents including
faraway particles that are not bound to the galaxy. Although the
initial distribution is largely modified by the dynamical evolution,
the present-day distribution of GCs can still get statistically more
centrally concentrated when applying the 3 kpc threshold.

We also compare our work with the GC formation and evolution
model by Ramos-Almendares et al. (2020), who used a ‘GC tagging’
technique similar to our GC assignment method. They selected some
simulation particles as tracers of GCs based on the merger history of
galaxies. In order to be compatible with dark matter-only simulations,
their selection criterion is unrelated to any baryonic properties: the
tracers are selected to be dark matter particles located within a
certain gravitational well. Also, they did not explicitly follow the
cluster mass loss due to dynamical disruption. By applying their
model to the Illustris simulation (Vogelsberger et al. 2014), these
authors performed a detailed analysis of the spatial distribution and
kinematics of GC systems. Like this work, they also found that
the in situ GCs have more concentrated distribution than the ex
situ counterparts, but the distinction between the two populations is
relatively small. When split by colour, the blue GCs agree with
observations, while the modeled red GCs are distributed much
more widely than observations. They attributed this deviation to
the insufficient intrinsic segregation between different components
of GCs. This problem is solved in our work as the predicted radial
distributions of both in situ and ex situ GCs are consistent with
observations. Additionally, they found that GC systems tend to have
positive anisotropy parameter §, in agreement with our conclusions.

7 SUMMARY

In this work, we present a GC formation and evolution model
which explicitly tracks the spatial distribution and kinematics of
GC systems. Without running new galaxy formation simulations,
we apply the model in post-processing of the TNG50 simulation
and select tracers of GCs from collisionless particles according to
their age and location. Next, we calculate the mass loss of GCs due
to the stellar and tidal evolution, by explicitly taking into account
the dependency of tidal disruption on the local environment. The
model produces a catalog of surviving GCs with full spatial and
kinematic information. There are only three adjustable parameters in
this model, and we calibrate them by comparing the GC catalog with
observations of the MW and a sample of extragalactic GC systems.

Our model succeeds in reproducing important properties of the
MW GC system. For example, the radial number density profile in
our model matches the observed distribution of MW GCs (Fig. 1).
We note that the radial distribution of GCs can be well fit by the
de Vaucouleurs law, which is parametrized by the effective radius,
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R.. Our model reveals a power-law scaling relation between R. and
the host galaxy mass, in the form R. M;”gio'og (equation 26).
The observational measurements of these variables have a very
large scatter and not a well-defined slope. Our predicted relation
is consistent with the data within the errors (Fig. 2). We argue
that the dependency of tidal disruption on the local environment
plays an important role in shaping the R.—M), relation. Compared
with the constant disruption model, the tidal field-based disruption
prescription tends to enhance disruption in the inner parts of galaxies
and increase the effective radius of GC systems (Fig. 11).

The kinematics of GC systems in our model is also consistent with
observations. Most median systemic velocities, velocity dispersions,
anisotropy parameter, pericenter/apocenter radii, and orbital actions
of the modeled GC systems are consistent with the observational
values of the MW (see, Table 1 and Figs 3, 4, and 5). However, the
model predicts the median vertical velocity v, to be consistent with
zero (=57} kms™"), whereas the MW GC system has systematically
NoON-zero v, sy = 142' kms~!. Nevertheless, we still find some
modeled systems to have even greater median v,. The model also
systematically overestimates the median r,, for the MW GC system.
This is likely because the MW GC system itself is more compact than
the average MW mass system in our observational sample set; the
model is more consistent with that average. The vso—M}, and o 50—M},
relations reveal that the systemic velocities of model GC systems
are largely independent of host galaxy mass, whereas the velocity
dispersions grow significantly as My, increases (Fig. 4). We also notice
that the MW mass GC systems have positive anisotropy parameters
growing from 8 >~ 0 to 0.5 at R = 1-100 kpc, indicating that the GC
motions are more radially biased in outer parts of galaxies (Fig. 5).

However, the GC mass function in our model peaks at lower mass
compared with the MW GC system (Fig. 12). This is possibly because
the tidal disruption prescription is still not accounting for all relevant
processes, including gravitational tidal shocks.

By using galaxy merger trees from the adopted simulation, we can
clearly identify the origins of GCs: in situ GCs form in the main
progenitor branch of a given galaxy, whereas ex situ GCs form in
satellite galaxies and later accrete on to the central galaxy. GCs with
the in situ origin are systematically more concentrated towards the
center, while ex situ GCs are found at larger radii out to 100 kpc
(Figs 6 and 7). The in situ GCs are significantly more metal-rich than
the ex situ ones because of the mass-metallicity relation for their host
galaxies. The decreasing abundance of in situ GCs with radius leads
to the metallicity gradient of the whole GC system (Fig. 8).

Our model also predicts notable differences between the kinemat-
ics of in situ and ex situ GCs. While the 3D velocity dispersion of both
components decreases with radius, ex situ GCs have ~ 40kms™!
higher velocity dispersion compared with the in sifu counterparts
at the same radius (Fig. 9). This higher dispersion is consistent
with the migration nature of ex sifu GCs, as they are brought
into the main progenitor galaxy via accretion and mergers that can
strongly perturb their original kinematics. Observationally, it is more
applicable to compare dispersions of GCs split by the (B — I) colour
index: blue GCs have ~ 40 km s~ higher velocity dispersion than the
red counterparts, in agreement with observations of giant elliptical
galaxies.

The in situ and ex situ GCs have systematically different median
apocenter/pericenter radii and orbital actions (Table 1). The deviation
is especially notable for the median apocenter radius r,p,, which is
3.5 times greater for the ex situ GCs. Among the three orbital actions,
the difference between the two GC populations is the largest for Jg
and the smallest for |/, indicating that J; can be a useful parameter
to distinguish GCs from different progenitors. However, note that
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we present here only the median values. Individual galaxies have a
wide spread of the action variables, which makes it challenging to
distinguish the progenitors of GCs. We will present more detailed
investigation of the MW assembly history using GCs in a follow-up
work.
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APPENDIX A: ACCURACY OF
APPROXIMATING THE TIDAL TENSOR

As mentioned in Section 2.2.3, we approximate the rate of tidal
disruption via two methods based on the tidal tensor and local mass
density, denoted as Q¢ = €2; and Qg = £2,, respectively. In this
appendix, we describe tests of how accurately we can calculate the
tidal tensor for the TNGS50 simulation.

A1 Numerical test

To numerically calculate the tidal tensor, we need to construct a
3 x 3 x 3 grid with a side length of d centered on a GC particle.
To obtain an order of magnitude estimate for d, we refer to the
resolution scale of the TNGS50 simulation: for MW mass galaxies
the median size of gas cells is around 0.1 kpc, and the gravitational
softening length of collisionless particles is 0.288 kpc (Pillepich et al.
2019). A too-large d tends to smear out potential fluctuations and
underestimate the strength of the tidal field, while a too-small d
differentiates the potential at a scale that is not numerically resolved,
leading to unreliable results. Therefore, we expect that an appropriate
d should have a similar value to the force resolution scale, varying
between 0.1 and 1 kpc.

To assess the performance of our method with different d
quantitatively, we introduce the following test. First, we fit the
mass distribution of the TNGS50 galaxies used in our model with
a parametric density profile, for which we can calculate the tidal
field analytically. We take a double power-law profile as sufficiently
general to describe most galaxy profiles:

F\ ¢ r —(B—a)
p(r) = po (—) (1 + 7) , (A1)
rS rS

where o measures the inner slope of profile for r <« ry, while B
measures the outer slope for r > . We include all matter components
(stars, gas, and dark matter) in the fit because they all contribute to
the tidal field. For MW mass galaxies at z = 0, the fitting result yields
a =0, =22, and ry = 0.1kpc. The very small ry indicates that
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Figure Al. Total mass density profiles of 13 MW mass galaxies in TNG50
at z = 1.5 (thin blue lines) and z = O (thin red lines). The median density
profiles are shown as thick solid lines. We also plot the double power-law fits
at both epochs as thick dashed curves.

the mass distribution roughly follows an isothermal profile over a
wide range of radii down to r >~ 0.1 kpc. We also perform the fitting
for the same galaxies at z = 1.5 to better compare with Meng &
Gnedin (2022), who analyzed in detail the tidal disruption rate for
star clusters at z 2~ 1.5 in mesh-based high-resolution simulations. For
these high-redshift galaxies we find @ = 1, B =2, and r, = 1.5kpc,
which describes a combination of an isothermal profile at large radii
and a flatter inner core. These profiles are shown in Fig. Al.

Then we construct a mock particle realization of the density profile,
with the same mass of 2.7 x 10° My, as the average particle mass
in TNGS50. For our fitting parameters, there are 2.7 million particles
within 100 kpc at z = 0, and 2.4 million within 100 kpc at z = 1.5.

Finally, we apply the same method we have described in Sec-
tion 2.2.3 to particles in the mock galaxy and calculate the tidal
tensor with d = 0.1, 0.3, and 1.0 kpc. We plot the largest eigenvalue
of the tidal tensor as a function of the galactocentric radius in
Fig. A2. By comparing the calculated value to the analytical value
e we find that different d work best at different radii. All three
cases underestimate A, when r < d since the details of the tidal
field are smeared out on small scales. Moreover, the approximation
also fails at large radii, because the average separation between
particles becomes too large at r = 10 kpc. The tidal field gets
under-resolved when the average separation is comparable to or even
larger than d. In our model, majority of GCs particles (regardless
of whether they survive or disrupt) are located at » = 0.3-3 kpc
at z = 1.5 and r = 0.5-8kpc at z = 0. We note that the tidal
tensor in both ranges can be approximated to within 0.1 dex by
adopting d = 0.3kpc. This conclusion is confirmed by Meng
& Gnedin (2022), who compared the time-averaged P parameter
[which can be considered as an indicator of tidal strength, see
their equation (4) and (6)] of their simulations and this work with
d = 03kpc. In their Fig. 12, they plotted P of each cluster as
a function of the host halo mass at formation. Their results are
in good agreement with ours, both showing a decreasing trend
with large scatters. This consistency supports that setting d =
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0.3kpc can to a large extent approximate the tidal field in GC
disruption.

Meng & Gnedin (2022) performed a similar analysis of the A,
profile. They calculated the tidal tensor of star clusters from a suite
of high-resolution cosmological simulations of Li et al. (2017), which
are run with adaptive mesh refinement with the finest refinement level
reaching 30 pc at z = 1.5. Therefore, they can resolve the tidal field
at a scale of 30 pc in the densest region of galaxies. We note that A,
from Meng & Gnedin (2022) have lower value at r < 0.3 kpc, since
the feedback in their work is stronger than TNGS50, leading to flatter
density profiles and therefore weaker tidal field in the galaxy center.
Nevertheless, their A,, are greater than that of the mock galaxy by
a factor of ~3 at r = 1kpc. This is because our isotropic density
profile is too smooth to correctly show the asymmetric density
fluctuations revealed by higher-resolution simulations. Similarly,
since the gravitational softening length of TNGS50 (0.288 kpc) is
much larger than the typical size of a GC, we tend to underestimate
Am as the small-scale density fluctuations in TNG50 are also over-
smoothed. The interplay of all factors mentioned above motivates
us to apply the parameter «; to correct the calculation of the tidal
tensor.

Asdescribed in Section 2.2.3, we also employ 477 Gp as an estimate
of Ap. Fig. A2 shows that we can well estimate A, at large radii where
both the z = 1.5 and z = 0 cases are nearly isothermal. However,
at smaller radii, where the density profiles are flatter, 47 Gp tend to
overestimate A, by a factor of 2 to 3. It is therefore reasonable to
expect smaller «, than «; if we want the two models to produce
similar numbers of GCs. However, this may not be the case since we
do not only take into account the number of GCs when performing
model calibration, see Section 3.2.

A2 Analytical approximation

To better understand the deviation of A, from 47w Gp, we perform
an analytical analysis as follows. Usually, the tidal tensor is defined
in the Cartesian coordinate system, see equation (10). Since the
aforementioned scenarios are spherically symmetric, it is convenient
to analyse the tidal tensor in spherical coordinate systems. By
defining p19 = cos 0, vg =sin6, sy = cos ¢, and vy = sin ¢, we can
write the coordinate transformation as

X = righy,
y = riyvs, (A2)
Z =TrVy.

Therefore, the Jacobian matrix is given by

ox Hglty  —FVoly —THyVy
J= ap = | HoHe  TrVeVe  THoMy | (A3)
Vg 'y

where x = (x, y, z) and x’ = (r, 6, ¢). According to the chain rule
for partial derivatives, we can write the Cartesian partial derivatives
in spherical coordinates as

9 g @
a:(‘] )@, (A4)

where J~! is the inverse of J:

Mo Le Ko Ve Vo
I = | —veng/r —vove/r pe/r|. (AS5)
—Vg /e Mo /T
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Figure A2. Radial profiles of approximated An (fop panels) and the deviation from analytical results, Am /AN (bottom panels), calculated with d = 0.1 (red),
0.3 (blue), and 1.0 kpc (black) for two mock galaxies, which are generated with double power-law profiles to represent MW mass galaxies in TNG50 at z = 1.5
(left) and z = O (right). We plot three vertical dashed lines to represent the location of each d. Approximated density profile, rescaled by a factor of 47 G, is shown
as the cyan curve. The 16-84th percentiles of approximated values are shown as shaded regions. We also plot a grey dashed curve to show the analytical result,
e To compare with higher resolution simulations, we show the Apy-r relation for MW galaxies at z >~ 1.5 from Meng & Gnedin (2022) orange solid curves.
The pink shaded regions represent the 16-84th percentiles of the radial distribution of all modeled GCs (both surviving and disrupted) at z = 1.5 and z = 0.

Similarly, the second Cartesian partial derivatives are

d a\" pyr 9 jyr 0 !
— | — =) — ) — A6
ox <8x) = ox’ {(J ) Bx/} (A6)
Therefore, we can rewrite equation (10) as
3 [ad\" 3 1"
T=_2(22) — g7 % | (g 1yT . A7
ax(ax) A {(J ) ax,} (A7)

Recall that the potential is spherically symmetric, i.e. dP/00 =
d®/d¢ = 0, and the above equation simplifies to

T=-(A dzq)+B Ldo (A8)
- dr? rdr )’
where
HIMG  HiHgVp  HaVolty
A= | WGHevs  HZVG Hevevs | (A9)
HoVolty  HoVoVy vy
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and
(1§ + Vv —ngieve  —Hovelly
B = —M§M¢U¢ /quz& + ng(zb —MHoVoVy
— Mo Vo Ly —MoVoVyp u%
The three eigenvalues of T are
o d*® e e = 1do
T o TS T A
Therefore, we obtain
h() ] d*® 1do
ry=max |\ | =max | |—|, |-—1 | .
" dr? rdr

For a spherically symmetric density distribution,
1 r o0

O(r) = —47G [7 / p(ryr*dr’ + / p(r’)r’dr’] ,
rJo r

we get

2GM(<r)
73

4nGp — 3
,

Am(r) = max (

GM(< r))

(A10)

(A11)

(A12)

(A13)

(Al4)
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Figure A3. Analytical A,/47 Gp (black line) and Am/37 12 |IT|| (red line) for
power-law density profiles, pocr™". Dashed lines indicate special cases of n
=landn=2.

where M(< r) denotes the mass enclosed within radius r. For a special

case of power-law density profiles, pocr™,

1—n 1
3—n|’

Am = 47 Gp max (‘
3—n

) . (A15)

We show this relation in Fig. A3. For a special case of the isothermal
profile with n = 2, the maximum eigenvalue is particularly simple:
Am = 47w Gp. For flatter profiles, 4w Gp tends to overestimate X, by
up to a factor of 2 at n = 1, in agreement with the results shown
in Fig. A2. For a simulated galaxy with n ranging from 1 to 2,
we therefore expect «; /k, < V2, which agrees with the calibration
results in Section 3.3.
Another proxy for €4 is the Frobenius norm of the tidal tensor,

1/2
ITi= | > > 11| = <Z w) :
i i
The last equality holds because T can be diagonalized. For power-law

density profiles, we get

n>—2n+3 1/2
3—n ’

1/2

(A16)

IT|| =47Gp < (A17)
In Fig. A3, we show the ratio between A,, and | T|| rescaled by a
factor of 372, The two identities only differ by less than 50 per cent
for n = 0 — 3, meaning that we can also employ the Frobenius norm
as a proxy for Q4 with similar results as the Qg = €2; case.

APPENDIX B: TEST OF DIFFERENT MODEL
PARAMETERS

In this work, we select model parameters (ps, p3, ) by minimizing
the merit function M. However, a large region in the (py, p3, k) space
results in similarly small M. This is due to the p,—k degeneracy in
our model. As mentioned in Section 2.2.1, p, characterizes the total
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Figure B1. R.—Mj, relations for the Qg = 2 cases with (p2, k) = (4, 3)
(black), (8,4) (blue), and (16,5) (red). Other parameters are as in Fig. 2.

mass of GCs in each cluster formation event, i.e. the strength of
GC formation. On the other hand, x quantifies the strength of tidal
disruption, see Section 2.2.3. Therefore, the effect of increasing p,
can be largely canceled by increasing x. As a consequence, a wide
range p, can lead to similarly small M by adjusting « accordingly.
To test this degeneracy, we fix p3 to 0.5 Gyr~! and try different (p,,
k) configurations of (4,3), (8,4), and (16,5) for the Q4 = 2, case.
The GC kinematics vary little with different (p,, k), while the radial
distributions of the three cases are somewhat different, as illustrated
in Fig. B1. We note that the R.—M,, relations have similar power-law
indices in all three cases, whereas the larger x prescriptions tend to
predict larger effective radii R.. This is likely because higher fractions
of inner GCs are disrupted in the higher « cases.

Even though the three cases have vastly different p, varying from
4 to 16, all the predicted R.—M), relations match the observations
within the 1-o confidence level, indicating that all the configurations
can serve as an appropriate choice for the model. Without loss of
generality, we select the configuration (py, p3, k;) = (8, 0.5 Gyr™!,
4) for the Q¢ = €2, model throughout the paper. In the Q4 = €2,
case, we note a similar degeneracy and choose (p2, p3, «,) = (8,
0.5Gyr™ !, ).

An alternative prescription of tidal field takes into account ficti-
tious forces: centrifugal, Euler, and Coriolis (see, Renaud, Gieles &
Boily 2011). Following Pfeffer et al. (2018), we can approximate
the effective tidal strength as X, . ~ A; — 0.5(A, + A3), where
Ay is the maximum eigenvalue of the tidal tensor (without using
absolute values). Similarly to the disruption models in this work, we
can approximate the tidal angular frequency by Q2 = keAj .. After
calibration, we find the best-fitting parameters to be (p2, p3, k) = (8,
0.5Gyr™!, 2). Since the GC properties predicted by the Q%; = kehj.c
model are consistent with the Q4 = 2, case, we do not present the
results of this model for brevity.

This paper has been typeset from a TEX/I&TEX file prepared by the author.
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