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A B S T R A C T 

Globular clusters (GCs) are old massive star clusters that serve as ‘fossils’ of galaxy formation. The advent of Gaia observatory 

has enabled detailed kinematics studies of the Galactic GCs and revolutionized our understanding of the connections between 

GC properties and galaxy assembly. Ho we ver, lack of kinematic measurements of extragalactic GCs limits the sample size of 
GC systems that we can fully study. In this work, we present a model for GC formation and evolution, which includes positional 
and kinematic information of individual GCs by assigning them to particles in the Illustris TNG50-1 simulation based on age 
and location. We calibrate the three adjustable model parameters using observed properties of the Galactic and extragalactic GC 

systems, including the distributions of position, systemic v elocity, v elocity dispersion, anisotropy parameter, orbital actions, and 

metallicities. We also analyse the properties of GCs from different origins. In outer galaxy, ex situ clusters are more dominant 
than the clusters formed in situ . This leads to the GC metallicities decreasing outwards due to the increasing abundance of 
accreted, metal-poor clusters. We also find the ex-situ GCs to have greater velocity dispersions and orbital actions, in agreement 
with their accretion origin. 

K ey words: galaxies: e volution – galaxies: formation – galaxies: star clusters: general. 
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 INTRODUCTION  

lobular cluster (GC) systems are widely considered as ‘fossils’ of
alaxy formation and evolution (Searle & Zinn 1978 ; Harris 1991 ).
 typical GC consists of 10 5 –10 6 stars, which are formed within
 relatively short time interval less than a few Myr (Lada & Lada
003 ; Mac Low & Klessen 2004 ; Hartmann, Ballesteros-Paredes &
eitsch 2012 ). Therefore, a GC can be regarded as a snapshot of

he stellar population that records the local physical and chemical
nvironment at the time of formation. This has moti v ated multi-
avelength observations of galactic and extragalactic GC systems

nd helped the development of theories of galaxy formation and
volution. Based on the photometric studies of red giants in galactic
Cs, Searle & Zinn ( 1978 ) disco v ered a significant age spread of
Cs at different regions of the Milky Way (MW). In addition to the

raditional photometric studies of GC systems, kinematic studies of
W GCs (Cudworth & Hanson 1993 ; Dinescu, Girard & van Altena

999 ) further revealed the hierarchical nature of the formation of
he MW GC system and the MW galaxy itself (see a recent re vie w
y Helmi 2020 ). Recently, the launch of the Gaia space observatory
Gaia Collaboration 2016 , 2018 , 2021 ) has enhanced our knowledge
f the kinematics and structure of the MW GC system in the 6-
imensional phase space, which has impro v ed our understanding of
ow GCs are formed and brought to the MW (Massari et al. 2017 ;
elmi et al. 2018 ; Koppelman et al. 2019 ; Massari, Koppelman &
elmi 2019 ). 
It is much harder to measure the 3D velocities of extragalactic GC

ystems, which limits the sample size of GC systems that we can
ully study observ ationally. Ho we ver, a larger sample set is crucial
 E-mail: ybchen@umich.edu 
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or understanding the origin of GC systems, as the statistical noise
f a small sample set can conceal connections between physical
roperties. Therefore, an alternate approach is gaining polarity: nu-
erical modeling. High-resolution simulations that can fully resolve

iant molecular clouds (GMCs), which are commonly believed to be
he cradles of star clusters, have revealed likely scenarios of cluster
ormation and evolution (see, e.g. Howard, Pudritz & Harris 2018 ;
rudic et al. 2019 , 2021 ; Li et al. 2019 ; Ma et al. 2020 ; Chen,
i & Vogelsberger 2021 ). These simulations, with mass resolution
own to sub- M � scale, have provided fruitful information on the
inematic and structural properties of star clusters. Ho we ver, these
imulations mostly focus on isolated GMCs o v er a relativ ely short
ime interval of several Myr. It is therefore hard to include the effects
f the cosmological environment on cluster formation and evolution
ith GMC-scale simulations. To study the origin of GC systems

n the cosmological context, one can either run galaxy formation
imulations with detailed implementation of cluster formation (e.g.
i, Gnedin & Gnedin 2018 ; Li & Gnedin 2019 ), or post-process
utputs of existing simulations with analytical models. The former
an better track the evolution of clusters but is computationally
 xpensiv e. Consequently, the sample size of GC systems in these
imulations is usually small, leading to difficulty in characterizing
caling relations between cluster properties. 

In contrast, post-processing methods enable us to study the effects
f various physical parameters on the origin and disruption of GC
ystems in a simplified but efficient way. There are several implemen-
ations of the post-processing approach, including the MOSAICS
odel (Kruijssen & Lamers 2008 ; Kruijssen 2009 ; Kruijssen et al.

011 ), our previous models (Muratov & Gnedin 2010 ; Li & Gnedin
014 ; Choksi, Gnedin & Li 2018 ; Choksi & Gnedin 2019a , b ), and
ther implementations (e.g. Renaud, Agertz & Gieles 2017 ; Creasey
t al. 2019 ; Phipps et al. 2020 ; Halbesma et al. 2020 ). These models
© 2022 The Author(s) 
lished by Oxford University Press on behalf of Royal Astronomical Society 
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eed to carefully handle two issues: how to model GC formation 
nd how to model GC evolution. The formation rate of GCs can be
alculated from either the local gaseous environment or the global 
roperties of host galaxies. Once a population of GCs is formed, 
he model determines the mass of each GC following some initial 

ass function. Next, the model needs to track the mass loss of each
C due to stellar evolution and dynamical disruption. The interplay 
f formation and evolution shapes the present-day properties of a 
C system. By applying the GC formation and evolution model 

o existing cosmological simulations, we can greatly increase the 
ample size of GC systems without requiring too many computational 
esources. Also, the post-processing method is more robust since it 
eparates the prescriptions for GC formation and evolution from the 
till-uncertain sub-grid models of star formation and feedback in 
osmological simulations. 

Choksi & Gnedin ( 2019b ) developed such an analytical model 
hich can be applied to dark matter-only simulations. By linking 
C formation to the mass growth of the host halo, this model has

uccessfully reproduced important observed scaling relations of GC 

ystems with a broad range of galaxy mass. Ho we ver, the model did
ot incorporate modeling of the spatial distribution or kinematics of 
C systems. This moti v ates us to de velop a ne w model that links GCs

o particles in an underlying simulation. We still keep the dependence 
n the adopted simulations to a minimal level to preserve the clarity
f our model. This new model enables a more detailed description 
f the dynamical disruption of GCs. In addition, it can be extended
o study the assembly of extragalactic GC systems by accretion of
atellite galaxies. As we show below, compared with similar works 
hat can also model the spatial distribution of GCs in cosmological 
imulations (e.g. Ramos-Almendares et al. 2020 ; Trujillo-Gomez 
t al. 2021 ), our model produces a better match to the observed
patial distribution and kinematics of the MW GCs. 

The paper is organized as follows. In Section 2 , we outline the
odeling of GC formation and evolution and introduce the sampling 

f cluster particles from a cosmological simulation. Then we describe 
he calibration of model parameters using observed scaling relations 
n Section 3 . In Section 4 , we compare the spatial distribution
nd kinematics of model GC systems with observations. Next, we 
nvestigate the properties of GCs from different origins in Section 5 .

e discuss ho w dif ferent modeling of GC disruption influences the
adial distribution of GC systems, GC mass function, and comparison 
ith other studies in Section 6 . Finally, we summarize our results in
ection 7 . 

 MODEL  FOR  CLUSTER  FORMATION  AND  

VOLUTION  

n this work, we propose a new GC formation and evolution 
odel, which post-processes snapshots of cosmological simulations 

nd produces a catalog of GCs without rerunning the simulation. 
his catalog provides such properties as the mass, metallicity, age, 
osition, and velocity of each surviving GC at the present time. 
o follow the spatial and kinematic distributions of GCs, we use 
napshots of the hydrodynamic simulation Illustris TNG50-1 (Nelson 
t al. 2019 ; Pillepich et al. 2019 ; Nelson et al. 2021 , hereafter
NG50). A detailed description of the model follows in Section 2.2 .

.1 Background cosmological simulation 

ur model can be applied to any cosmological simulation, whether 
urely collisionless or with modeling of gas dynamics and star 
ormation. In this work, we base the model on the simulation suite
NG50, which is performed with the moving mesh, finite-volume 
ydrodynamic code AREPO (Springel 2010 ). TNG50 adopts a flat 
 CDM universe with cosmological parameters given by the Planck 
ollaboration ( 2016 ): �b = 0.0486, �m = 0.3089, �� = 0 . 6911, h =
.6774, σ 8 = 0.8159, and n s = 0.9667. F or consistenc y, we adopt the
ame cosmology in our model. TNG50 is initiated with 2160 3 dark
atter particles and the same number of gas cells within a 51.7 Mpc

omoving box. The mass of each gas cell is 8 . 5 × 10 4 M �, and
he typical size of gas cells is around 100 pc in star-forming regions
Pillepich et al. 2019 ). 

The haloes in TNG50 are identified with the friends-of-friends 
lgorithm, and the subhaloes are identified as gravitationally bound 
ystems with the SUBFIND algorithm (Springel et al. 2001 ). We use the
erms ‘galaxy’ to refer to TNG50 ‘subhalo’ hereafter. Once galaxies 
re identified, TNG50 applies the SUBLINK algorithm (Rodriguez- 
omez et al. 2015 ) to construct merger trees based on the identified
alaxies. 

.2 Modeling cluster formation and evolution 

e model GC formation and evolution via three steps: 

(i) Cluster formation: calculate the total mass and metallicity of 
Cs based on the assembly history of the host galaxy. 
(ii) Cluster sampling: compute the initial mass of each individual 

luster and assign it to a collisionless particle. 
(iii) Cluster evolution: e v aluate the mass loss of clusters due to

idal disruption and stellar evolution. 

Below, we describe these three steps in detail. 

.2.1 Cluster formation 

he cluster formation algorithm is similar to the previous versions of
he model (Choksi et al. 2018 ; Choksi & Gnedin 2019a , b ). First, we
rigger a GC formation event when the galaxy mass grows suddenly.
o quantify the rate of mass growth, we introduce the specific mass
ccretion rate, R m , as the fractional change of galaxy mass between
wo adjacent snapshots: 

 m = 

M now − M prog 

M prog 
· 1 

t now − t prog 
, (1) 

here t now and t prog stand for the cosmic times of the current snapshot
nd the progenitor snapshot, respectively . Similarly , the masses of
he current galaxy and the progenitor galaxy are represented by 
 now and M prog . If the current galaxy has more than one progenitor

alaxies, we define M prog as the main progenitor galaxy mass. GC
opulations form when R m exceeds a threshold value, p 3 , which
s an adjustable parameter. It is worth noting that the SUBFIND

lgorithm does not work robustly during mergers. In rare cases, 
he mass of the incoming galaxy may rise dramatically when it
pproaches the main galaxy, as a result of miss-identification. To 
x this problem, we skip the snapshots when incoming galaxies 
uddenly gain mass during mergers. Once a GC formation event 
s triggered, we calculate the total mass of a newly formed GC
opulation using the linear cluster mass–gas mass relation (Kravtsov 
 Gnedin 2005 ): 

 tot = 1 . 8 × 10 −4 p 2 M g , (2) 
MNRAS 514, 4736–4755 (2022) 
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here M g is the cold gas mass of the host, and p 2 is another
djustable parameter. 1 The cold gas mass is approximated by the
as mass–stellar mass relation of Choksi et al. ( 2018 ): 

( M ∗, z) = 

M g 

M ∗
= 0 . 35 × 3 2 . 7 

(
M ∗

10 9 M �

)−n M ( M ∗) (1 + z 

3 

)n z ( z) 

, (3) 

ased on the observations of Lilly et al. ( 2013 ), Genzel et al. ( 2015 ),
acconi et al. ( 2018 ), Wang et al. ( 2022 ). The mass-dependent
ower-law indices are 

 M ( M ∗) = 

{
0 . 33 , for M ∗ > 10 9 M �, 

0 . 19 , for M ∗ < 10 9 M �, 
(4) 

nd the redshift dependency is characterized by 

 z ( z) = 

{
1 . 4 , for z > 2 , 
2 . 7 , for z < 2 . 

(5) 

ollowing Choksi et al. ( 2018 ), the metallicity of the newly formed
luster population is directly drawn from the metallicity of the
nterstellar medium of the host galaxy, which is also treated as a
ouble power-law function of stellar mass and redshift: 

Fe / H] = log 10 

[ (
M ∗

10 10 . 5 M �

)0 . 35 

(1 + z) −0 . 9 

] 

. (6) 

e employ a 0.35 slope for the stellar mass dependency as suggested
y Ma et al. ( 2016 ). The 0.9 slope of the redshift dependency
ccounts for the 0.6 dex drop of [Fe/H] from z = 0 to ∼4 (Mannucci
t al. 2009 ). Equations ( 3 ) and ( 6 ) both depend on the stellar mass of
he host galaxy. To calculate the stellar mass from galaxy mass, we
se a modified stellar mass–halo mass (SMHM) relation proposed by
ehroozi, Wechsler & Conroy ( 2013 ). The modified relation extends

he original SMHM relation to z > 8 and adds additional scatter to
he original relation; see Choksi et al. ( 2018 ) for detailed discussion.
he galaxy mass is taken directly from the TNG50 catalogs. 
Note that we apply analytic relations to calculate the gas mass,

tellar mass, and metallicity of the host galaxy, although these
alues can be taken directly from a hydrodynamic simulation such
s TNG50. Ho we ver, dif ferent simulations employ dif ferent sub-
rid prescriptions to model multiple physical processes. These sub-
rid models, which are not the focus of our work, can significantly
nfluence the formation and evolution of star clusters. By keeping

inimal use of cosmological simulations, our model is less sensitive
o such sub-grid models and can better reveal the link between GC
ystems and the assembly history of the host galaxy. 

.2.2 Cluster sampling 

o determine the number of newly formed clusters in a GC formation
vent, we stochastically sample clusters from a Schechter ( 1976 )
nitial cluster mass function (ICMF) with the ‘optimal sampling’

ethod (Schulz, Pflamm-Altenburg & Kroupa 2015 ). Following
hoksi & Gnedin ( 2019a ), the truncation mass of ICMF is set to
 c = 10 7 M �. 
Next, we link the newly formed GCs to collisionless particles in

he simulation by the following assignment technique. Considering
 GCs that are formed within a galaxy at cosmic time t now , we

andomly assign them to N young stellar particles that belong to the
alaxy. We set two constraints on candidate stellar particles to ensure
hey can correctly represent GCs. 
NRAS 514, 4736–4755 (2022) 
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First, we select only inner particles as GCs since observations of
oung star clusters (e.g. Adamo et al. 2015 , 2020 ; Randriamanakoto
t al. 2019 ) show that massive clusters preferentially form in the inner
egions of host galaxies. As both observations (van der Wel et al.
014 ; Shibuya, Ouchi & Harikane 2015 ) and simulations (Pillepich
t al. 2019 ) suggest that the ef fecti ve radii of stars in galaxies are
round 1.5 kpc when GCs are actively forming ( z = 2–5), we include
nly stellar particles within twice the ef fecti ve radius: 3 kpc. This
etup is also supported by observations of nearby dwarf galaxies
hat show the effective radii of their GC systems are only marginally
arger than the ef fecti ve radii of field stars (Carlsten et al. 2022 ).
econd, we select only stellar particles formed within a narrow time

nterval � t prior to t now . This interval characterizes a typical time for
luster formation and is set to � t = 10 Myr. 

For most cases, we have more than N candidate particles that meet
he two constraints, and we randomly select N of them to represent
Cs. Ho we ver, in rare cases when there is an insufficient number of

tellar particles formed within � t , we adopt all of them and select the
ext most recently formed stellar particles until we have N clusters.
o prevent selecting stellar particles that are too old to be related

o the GC formation event, we only adopt stellar particles younger
han half of the time interval between adjacent outputs. In a very
mall number of cases, we still do not find enough stellar particles
atisfying this criterion. In this case, we assign the remaining required
umber of GCs to dark matter particles located closest to the center
f the dark matter halo, where the star-forming region is located.
nly about 0 . 3 per cent of surviving GCs are represented by dark
atter particles. 
We do not use gas particles/cells (or ‘particles’ in brief) for two

easons: 1) gas particles experience pressure forces and thus cannot
orrectly probe the kinematics of collisionless GCs; 2) in AREPO

imulations gas particles sometimes merge with other gas particles,
aking it difficult to trace them throughout cosmic time. 

.2.3 Cluster evolution 

fter the formation of GCs, we e v aluate their mass loss due to tidal
isruption and stellar evolution. The tidal disruption rate of a cluster
ith mass M can be expressed as 

d M( t) 

d t 
= − M( t) 

t tid ( M, t) 
, (7) 

here t tid is the tidal disruption timescale. As suggested by Gieles &
aumgardt ( 2008 ), t tid depends significantly on the local tidal field
arametrized by the orbital angular frequency, �tid . In this work, we
ollow Li & Gnedin ( 2019 ) to calculate t tid as 

 tid ( M, t) = 10 Gyr 

[
M( t) 

2 × 10 5 M �

]2 / 3 [
�tid ( t) 

100 Gyr −1 

]−1 

. (8) 

he frequency �tid can be approximated by 

2 
tid � �2 

λ ≡ λm 

3 
= 

max | λi | 
3 

. (9) 

ariables λi are the eigenvalues of the tidal tensor T ( x 0 , t), which is
efined as 

 ij ( x 0 , t) ≡ − ∂ 2 
 ( x , t) 
∂ x i ∂ x j 

∣∣∣∣
x = x 0 

(10) 

here i and j are the orthogonal directions in the Cartesian coordinate
ystem, and x 0 stands for the location of the cluster. 

To numerically calculate the tidal tensor in the TNG50 simulation,
e first place a 3 × 3 × 3 cubic grid centered on the cluster. The side
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ength of the grid is 2 d . The potential at each grid point is linearly
nterpolated from 8 nearby particles with known potentials stored in 
he simulation snapshot. Finally, we approximate the diagonal terms 
f the tidal tensor via 

 ii = − 1 

d 2 
[ 
 ( x 0 + ̂  e i d) + 
 ( x 0 − ˆ e i d) − 2 
 ( x 0 )] , (11) 

here ˆ e i is the unit vector along the i direction. Similarly, the non-
iagonal terms are given by 

 ij = − 1 

4 d 2 
[ 
 ( x 0 + ̂  e i d + ̂  e j d) + 
 ( x 0 − ˆ e i d − ˆ e j d) 

−
 ( x 0 + ̂  e i d − ˆ e j d) − 
 ( x 0 − ˆ e i d + ̂  e j d)] . (12) 

nowing the 9 terms of the tidal tensor, we can compute the three
igenvalues numerically. Plugging the eigenvalues into equation ( 9 ), 
e get an estimate for �λ, denoted as ˜ �λ. It is important to choose a
roper d to calculate the tidal tensor accurately. A too-large d tends to
nderestimate the tidal field in the central dense region of a galaxy,
hereas a too small d tends to o v erestimate the tidal field in the
uter region where the density is lower. By performing a detailed 
est described in Appendix A , we suggest that d = 0.3 kpc can best
pproximate the tidal tensor for MW mass galaxies in TNG50. 

An alternative approach to approximate �tid is to link the tidal 
ensor with the average mass density ρ via Poisson’s equation: 

 πGρ( x 0 , t) = ∇ 
2 
 ( x , t) 

∣∣
x = x 0 

= −tr [ T ( x 0 , t) ] = −
∑ 

i 

λi . (13) 

herefore, another approximation for �tid is given by 

2 
tid � �2 

ρ ≡ 4 πGρ

3 
. (14) 

e introduce here a factor of 3 such that �ρ = �λ if λm = 

∑ 

i λi 

 4 πG ρ, which happens for an isothermal density profile (see the
nalytical deri v ation in Appendix A ). Numerically, the mass density
s estimated by using a standard SPH kernel o v er all particle species.

e denote the orbital angular frequencies given by this approach as
˜ 

ρ . 
We must approximate either the tidal tensor or the mass density 

n a spatial scale comparable to the tidal radius of GCs, i.e. at
0–50 pc. Ho we ver, this scale is beyond the spatial resolution of
ost cosmological simulations, including TNG50. To take into 

ccount systematic deviations between the actual orbital angular 
requencies and the deri ved v alues, we introduce a ne w adjustable
odel parameter κ as a correction: 

λ/ρ = κλ/ρ · ˜ �λ/ρ. (15) 

nother important reason for introducing κ is insufficient time 
esolution of simulations (there are only 20 ‘full’ snapshots in 
NG50), which does not allow us to follow the tidal disruption

n the initial phase after GC formation or during violent interactions. 
s suggested by high-resolution cluster formation simulations (e.g. 
i & Gnedin 2019 ; Li et al. 2022 ; Meng & Gnedin 2022 ), tidal
isruption rate peaks at these rare phases. Calculating the tidal field 
nly from the simulation snapshots usually ignores these phases and 
nderestimates the disruption. Therefore, we need κ > 1 to balance 
his underestimate. 

We find that �tid = �λ and �tid = �ρ produce GC catalogs with 
imilar statistics in most aspects since the two estimates give similar
alues for most GCs, see Appendix A . For simplicity, we only display
esults from the �tid = �λ case throughout the rest of the work, unless
pecified otherwise. 

Plugging �tid = �λ/ ρ into equation ( 7 ) and ( 8 ), we get the present-
ay mass of a GC due to tidal disruption as M 

′ 
( t ). Assuming the time
cale of stellar evolution is much shorter than t tid , the final mass of
he GC is given by 

( t) = M 
′ ( t) 

[
1 −

∫ t 

0 
νse ( t 

′ ) d t ′ 
]

, (16) 

here νse is the mass loss rate due to stellar evolution given by Prieto
 Gnedin ( 2008 ). 

 MODEL  CALIBRATION  

here are three adjustable parameters in our model: p 2 (Sec- 
ion 2.2.1 ), p 3 (Section 2.2.1 ), and κ (Section 2.2.3 ). To find
est values for the three parameters, we calibrate the model with
bservations. We run the model multiple times on N h typical TNG50
alaxies with different ( p 2 , p 3 , κ) configurations to find the best
ne that minimizes a merit function. In Sections 3.1 and 3.2 we
ntroduce the observational data and merit function, respectively. 
ext, we show the best parameter configurations for the two cases
f tidal disruption: �tid = �λ and �tid = �ρ . 

.1 Obser v ational data 

he observational data for extragalactic GC systems are the same 
s the data used in Choksi et al. ( 2018 ). They included samples
rom the Virgo Cluster Surv e y (VCS, Peng et al. 2006 ), 7 brightest
luster galaxies (BCGs, Harris et al. 2014 ), and M31 (Huxor et al.
014 ). To calibrate the kinematic properties of model GCs, we
se the observations of the Galactic GC system, which has been
 xtensiv ely studied (e.g. Sollima & Baumgardt 2017 ; Sollima,
aumgardt & Hilker 2019 ; Baumgardt & Vasiliev 2021 ; Vasiliev
 Baumgardt 2021 ). We use the Galactic GC catalog 2 presented by
ilker et al. ( 2019 ). This catalog utilizes Hubble Space Telescope

 HST ) photometry and Gaia EDR3 proper motions to provide phase
pace information for 162 Galactic GCs. 

.2 Merit function 

e employ the following merit function to optimize model parame- 
ers: 

 ≡ χ2 
M 

N h 
+ 

1 

G M 

+ 

2 

G Z 

+ 

(
σZ 

σZ 

)2 

+ 

χ2 
R 

N h 
+ 

χ2 
σ

N MW 

. (17) 

here are six terms in this function. The first three terms are identical
o the merit function in Choksi et al. ( 2018 ). The first term is the
educed χ2 of the total mass of GC system at z = 0, defined as 

χ2 
M 

N h 
= 

1 

N h 

∑ 

h 

(
log 10 M GC − log 10 M obs 

)2 

0 . 35 2 
, (18) 

here M GC represents the total mass of GC system, and 

 obs = 3 . 4 × 10 −5 M h , (19) 

s the observed GC system mass–halo mass relation (Harris, Harris 
 Hudson 2015 ) with the scatter of 0.35 dex. The sum is o v er N h 

odeled halo systems. 
The second and third terms represent the ‘goodness’ of the present-

ay GC mass and metallicity distributions, respectiv ely. F ollowing 
i & Gnedin ( 2014 ), we link observed galaxies to simulated galaxies
ith similar masses and compute the Kolmogoro v–Smirno v (KS) 

est for each pair of linked galaxies. The terms G M and G Z represent
MNRAS 514, 4736–4755 (2022) 
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Figure 1. Surface number density profiles of model GC systems in MW 

mass galaxies. Models with the two implementations of tidal disruption are 
shown as blue circles ( �tid = �λ) and red squares ( �tid = �ρ ), respectively. 
Symbols represent the median value of 13 MW mass galaxies, while vertical 
errorbars correspond to the 16–84th percentiles. For comparison, the surface 
number density profile of the MW GC system is shown as grey diamonds 
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indicate the bin width. Curves show the corresponding de Vaucouleurs fits, 
with vertical dashed lines marking the best-fitting ef fecti ve radii R e . 
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he fraction of pairs with p KS > 0.01, which can be taken as an
cceptable match. 

As suggested by Choksi et al. ( 2018 ), the model tends to underes-
imate the observed value of metallicity scatter σ Z = 0.58 dex. We
ntroduce the fourth term as a penalty for such underestimation,
here σZ is the average scatter of metallicity for modeled GC

ystems. 
The last two terms are new in this work. The fifth term measures

he deviation of modeled GC system size–galaxy mass relation
rom observations. Hudson & Robison ( 2018 ) and Forbes ( 2017 )
uggested that the ef fecti ve radius of GC system can be described
s a power-law function of the host galaxy mass. Ho we ver, these
wo papers provided very dif ferent po wer-law indices of 0.88 and
.33, based on partially-o v erlapping data sets. To reconcile this
iscrepancy, we combine the two data sets and perform a new power-
aw fit, which yields 

log 10 R e = 0 . 76 + 0 . 62 log 10 

(
M h 

10 12 M �

)
, (20) 

here R e is given in kpc. The details of the fit are described later in
ection 4.1 . Note that this relation is more commonly given in terms
f the viral mass M 200 instead of the halo mass M h , although they
re used interchangeably in many studies. We make a distinction
ere because M 200 and M h are typically not the same in TNG50:
og 10 ( M 200 / M h ) varies from 0.05 − 0.25 dex, with a mean value of
.1 dex. Therefore, we apply log 10 ( M 200 / M h ) = 0.1 to connect the
wo masses throughout the work. Based on the R e –M h relation, we
ntroduce the fifth term as the reduced χ2 of modeled GC systems

atching this relation: 

χ2 
R 

N h 
= 

1 

N h 

∑ 

h 

1 

0 . 22 2 

[
log 10 R e − 0 . 62 

(
M h 

10 12 M �

)
− 0 . 76 

]2 

, (21) 

here 0.22 dex is the intrinsic scatter of the fit. 
Finally, the sixth term is the reduced χ2 for 3D velocity dispersion

n MW mass galaxies, defined as galaxies with total masses between
0 12 and 10 12 . 2 M �: 

χ2 
σ

N MW 

= 

1 

N MW 

∑ 

g 

( log 10 σ3D − log 10 σ3D , MW ) 2 

0 . 2 2 
. (22) 

he 3D velocity dispersion takes into account all three dispersion
omponents in the cylindrical coordinate system, σ3D = ( σ 2 

R + σ 2 
φ +

2 
z ) 

1 / 2 . The axis of the cylindrical system is constructed along the
et angular momentum vector of all stellar particles in the galaxy.
e calculate σ 3D as the total dispersion for all GCs in the galaxy.
e also define σ3D , MW = 200 km s −1 to represent the 3D velocity

ispersion of the Galactic GC system. The intrinsic scatter of σ 3D 

an be approximated by 0.2 dex. 

.3 Parameter selection 

o calibrate our model with observations, we randomly pick 32
entral galaxies with total mass between 10 11 . 5 − 10 12 M � and 32
entral galaxies with total mass between 10 12 − 10 12 . 5 M � from the
NG50 simulation. There are N MW = 13 galaxies that match our
efinition of MW mass galaxies, i.e. M h = 10 12 − 10 12 . 2 M �. By
inimizing the merit function M on the 64 sample galaxies, we find
 large region in the 3D parameter space can produce relatively good
esults with similar M . In Appendix B , we show that these different
onfigurations only influence the final results sightly. Without loss
f generality, we apply ( p 2 , p 3 , κλ) = (8, 0.5 Gyr −1 , 4) for the �tid =
λ case, and ( p 2 , p 3 , κρ) = (8, 0.5 Gyr −1 , 5) for the �tid = �ρ case
NRAS 514, 4736–4755 (2022) 
hroughout the rest of the paper. To build some intuition about the
alue of κ , we provide an analytical estimate of the cluster lifetime for
he �tid = �λ model. For a GC with initial mass M = 2 × 10 5 M �, a
ypical value of the tidal strength is λm = 10 4 Gyr −2 , corresponding
o the distance of 3 kpc from the center of a MW-like galaxy at
 = 0, as shown in Fig. A2 . This gives �tid = 230 Gyr −1 for κλ

 4. According to equation ( 8 ), the tidal disruption timescale of
his cluster is 4.3 Gyr. Assuming �tid to be a constant and using
quation ( 16 ), we find that such a cluster would lose all its mass after
.5 Gyr. 

 SPATIAL  AND  KINEMATIC  DISTRIBUTIONS  

n this section, we describe new results and predictions made possible
y inclusion of the spatial information in our model. 

.1 Radial profiles 

he observed surface number density profiles of GC systems can be
ell fitted by the de Vaucouleurs law (Rhode & Zepf 2004 ; Hudson
 Robison 2018 ), which is the n = 4 case of the S ́ersic profile 

( R) = � e exp 

{
−b n 

[ (
R 

R e 

)1 /n 

− 1 

] }
, (23) 

here R e stands for the ef fecti ve radius, and � e for the surface density
t R e . The factor b n can be approximated by b n = 1 . 9992 n − 0 . 3271
Capaccioli 1989 ) for 0.5 < n < 10. 

With the model GC systems projected on to the face-on planes of
ost galaxies, in Fig. 1 , we show the surface density profiles in the
3 model MW mass galaxies at z = 0. We define the face-on plane to
e perpendicular to the net angular momentum vector for all stellar
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Figure 2. Best-fitting de Vaucouleurs ef fecti ve radii of modeled GC systems 
as a function of host halo mass, with fitting uncertainties of R e shown 
as vertical errorbars. The observed GC systems from Hudson & Robison 
( 2018 ) and Forbes ( 2017 ) are plotted as magenta crosses. The power- 
law fits from maximum likelihood for the model ( R e ∝ M 

0 . 79 ±0 . 09 
h ) and 

observations ( R e ∝ M 
0 . 62 ±0 . 13 
h ) are shown as the shaded regions, whose 

widths represent the 1- σ confidence levels. MW is highlighted as the grey 
diamond: the horizontal errorbar shows the uncertainty of the total mass of 
MW: 10 12 − 10 12 . 2 M �; while the vertical errorbar corresponds to the fitting 
error of R e,MW . Both errorbars are hard to observe as they are smaller than 
the marker size. 
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articles in the galaxy. The density profiles of both �tid = �λ and 
tid = �ρ cases almost perfectly match the observed relation within 

he 16 −84 per cent confidence lev el o v er a wide range of radii. Both
odels can be well fitted by the de Vaucouleurs law from 1 to 100 kpc
ith R e ∼ 6 kpc, which is close to the ef fecti ve radius of the MW
C system, R e,MW = 5 kpc. 
To explore the spatial distribution of GCs in galaxies in a wider
ass range, we plot the best-fitting R e as a function of the host halo
ass for all sample galaxies in Fig. 2 . For clarity, we show the R e –M h 

elation only for the �tid = �λ case, as all conclusions also stand for
he �tid = �ρ case. Within the halo mass range of 10 11 . 5 −10 12 . 5 M �,
ur model predicts the ef fecti ve radii of GC systems to grow from 1
o 10 kpc, roughly following a power-law shape. 

We perform a standard power-law fit using the maximum likeli- 
ood method, which takes into account the uncertainties in both R e 

nd M h and the intrinsic scatter of the relation. The fit function reads 

log 10 R e = a + b log 10 M h + ε, (24) 

here the intrinsic scatter is represented by a random variable ε, 
hich follows a Gaussian distribution N (0 , σint ). Correspondingly, 

he likelihood is given by 

 ≡
∏ 

i 

1 

σi 

√ 

2 π
exp 

(
− δ2 

i 

2 σ 2 
i 

)
, (25) 

here σ 2 
i = σ 2 

log R,i + b 2 σ 2 
log M,i + σ 2 

int , and δi = log 10 R e, i − a −
 log 10 M h, i is the ‘vertical’ deviation. We introduce σ log R , i and σ log M , i 

s the observed uncertainties of log 10 R e, i and log 10 M h, i , respectively,
ith subscript i corresponding to the i -th data point. Additionally, 
e apply bootstrap resampling 5000–10 000 times until all fitting 
arameters converge to estimate the standard deviations of a , b , and
int , denoted by σ a , σ b , and σσ . By assuming the fitting parameters to
e random variables following Gaussian distributions (e.g. the slope 
ollows N ( b, σb )), the predicted log 10 R e can also be described as a
aussian distribution, whose mean value is given by equation ( 24 ),

nd uncertainty is given by σ 2 
log R = σ 2 

a + ( σb log 10 M h ) 2 + σ 2 
int . For

ur model data, the uncertainty of log 10 M h is set to zero since M h is
irectly taken from TNG50. Maximizing the likelihood L yields 

log 10 R e = (0 . 75 ± 0 . 03) 

+ (0 . 79 ± 0 . 09) log 10 

(
M h 

10 12 M �

)
, (26) 

here R e is given in kpc. We also obtain an intrinsic scatter of σ int 

 0.18 ± 0.02. 
By minimizing the ‘vertical’ deviations δi , the abo v e fit assumes

ne variable to be dependent ( R e ) and the other independent ( M h ).
lternatively, one may perform an orthogonal fit to the two- 
imensional distribution, treating both variables as independent. It 
escribes situations where both variables are the result of many 
omplex processes, such as those operating in galaxy formation. 
ith the same fit function, equation ( 24 ), the orthogonal fit aims to
inimize the perpendicular deviation of data points from the best- 
tting line. The likelihood function in this case is 

 ortho ≡
∏ 

i 

1 

� i 

√ 

2 π
exp 

(
− � 

2 
i 

2 � 
2 
i 

)
. (27) 

he perpendicular deviation is � i = (log 10 R e, i − a )cos θ −M h, i sin θ ,
here θ = tan −1 b is the inclination angle. Similarly, we write

he perpendicular uncertainty � 
2 
i = σ 2 

log R,i cos 2 θ + σ 2 
log M,i sin 2 θ + 

2 
int cos 2 θ . Maximizing this likelihood L ortho for the modeled GCs 
elation yields 

log 10 R 
ortho 
e = (0 . 77 ± 0 . 06) 

+ (1 . 29 ± 0 . 55) log 10 

(
M h 

10 12 M �

)
, (28) 

ith an intrinsic scatter σ int = 0.26 ± 0.16. The slope of the
rthogonal fit is significantly higher than that of the standard fit,
s noted by various studies (e.g. Linnet 1993 ). The discrepancy is
ue to the two methods handling uncertainties differently. In general, 
here is a priori preference for either method: the standard fit can more
learly show how the dependent variable changes with independent 
ariables, while the orthogonal fit is more appropriate to show the
elation between two independent variables. Since we start with 
nown M h and model the prediction for R e , the standard fit is more
ppropriate in this work. We also provide the results from orthogonal
t for completeness. 
We compare our model results with the observations of extra- 

alactic GC systems presented in Forbes ( 2017 ) and Hudson &
obison ( 2018 ). These samples include early type galaxies, massive
D galaxies, and three ultra diffuse galaxies (UDGs). Many galaxies 
 v erlap in the two samples. We combine the galaxies in both samples,
xclude galaxies without any measure of halo mass, and update 
he mass estimate of DF 44. Saifollahi et al. ( 2021 ) suggested that
F44 is much less massive and has a more compact GC system than
re viously belie ved. It is worth noting that the masses of the three
DGs are obtained differently from other galaxies: the masses of 
DGs are inferred from their GC mass/counts, while the masses of
ost other galaxies are derived from the SMHM. This may introduce

ystematic errors when fitting them with a single power-law relation. 
MNRAS 514, 4736–4755 (2022) 
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Figure 3. Radial profile of 3D velocity dispersion for model GC systems 
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levels from bootstrap resampling, and horizontal errorbars correspond to the 
bin width. We repeat bootstrap resampling 1000 times until the estimated 
confidence levels converge. 

1  

c  

t  

a  

t  

a  

t  

a
 

p  

1  

r  

H  

d
 

g  

o  

c  

a  

b  

G  

∼  

v  

z  

r  

q  

1  

f  

s  

i  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/514/4/4736/6609500 by U
niversity of M

ichigan user on 26 August 2022
We show the R e –M h relation for this combined observational
ample in Fig. 2 and note that the observational data roughly follow
 power-law relation. By performing a fit on these observational data
ith the standard likelihood, we obtain 

log 10 R e , obs = (0 . 76 ± 0 . 10) 

+ (0 . 62 ± 0 . 13) log 10 

(
M h 

10 12 M �

)
, (29) 

ith an intrinsic scatter σ int = 0.22 ± 0.06. The slope of 0.62 lies
etween the values of 0.88 and 0.33 quoted by Hudson & Robison
 2018 ) and Forbes ( 2017 ), respectively. Note that equation ( 29 ) gives
 e = 6.6 kpc for a MW mass (10 12 . 1 M �) system. In comparison,

he MW GC system has R e = 5 kpc, which is by 0.12 dex more
ompact than the average MW mass system. It is not surprising that
he model also tends to o v erestimate the size of MW GC system by
imilar amount since the model is calibrated with the R e –M h relation
y equation ( 29 ). Moreo v er, this o v erestimation can be adjusted by
pplying lower strengths of tidal disruption (i.e. lower κ , as discussed
n Appendix. B ) or different schemes of tidal disruption (e.g. constant
isruption rate, as discussed in Section 6.1 ). 
Alternatively, the orthogonal fit gives 

log 10 R 
ortho 
e , obs = (0 . 66 ± 0 . 20) 

+ (0 . 83 ± 0 . 31) log 10 

(
M h 

10 12 M �

)
, (30) 

ith an intrinsic scatter σ int = 0.26 ± 0.17. Similarly to the fits
or modeled systems, the slope of the orthogonal fit is significantly
igher than that of the standard fit. 
Considering the uncertainties of fitting parameters and large

ntrinsic scatter, the model results and observations are consistent
ith each other, although the two slopes are formally different. We
ill investigate the power-law slope of the R e –M h relation further in
ection 6.1 , where we focus on how tidal disruption alters the sizes of
C systems. We find that a model with location-sensitive disruption

such as in this work) tends to have steeper R e –M h relation compared
ith location-independent models. 

.2 Kinematics 

ince now, we have observational measurements of 3D velocities for
ost Galactic GCs, we can compare them with the kinematics of the
odeled GC systems for MW mass galaxies. We project the velocity

f each GC on to the cylindrical coordinate system centered on the
ost galaxy and calculate the three perpendicular components: the
adial component, v R ; the azimuthal component, v φ ; and the axial
omponent, v z . The axis of the coordinate system is aligned with the
et angular momentum vector of all stellar particles in the galaxy.
or each of these components, we define velocity dispersions as the
tandard deviations after subtracting the mean. 

Fig. 3 shows the radial profiles of the 3D velocity dispersion,
3D = ( σ 2 

R + σ 2 
φ + σ 2 

z ) 
1 / 2 . The dispersion is a decreasing function of

adius: between 1 and 100 kpc, σ 3D drops from 230 to 100 km s −1 ,
ith a scatter of 20 − 50 km s −1 . The model σ 3D profile is in

greement with the observations of the Galactic GCs except at R
 10–30 kpc, where the observed dispersion jumps dramatically

o 220 km s −1 . This bump is mainly created by the GCs associated
ith the Sagittarius stream (Vasiliev 2019b ). These GCs with similar

adii have large velocities, which significantly inflates the velocity
ispersion at R � 30 kpc. In fact, such random bumps are not rare
n the modeled systems, but we do not observe any obvious bump in
ig. 3 since the uncertainties of the σ 3D profile are represented by
NRAS 514, 4736–4755 (2022) 
6–84th percentiles. For the 13 MW-mass galaxies, we can observe a
lear bump only if there are more than 2 galaxies presenting bumps at
he same radius, which is rather rear. It is worth noting that the good
greement with observations is not a trivial outcome of optimizing
he merit function (Section 3.2 ). We emphasize that the model result
ccurately reproduces the observed radial distribution of σ 3D , while
he merit function only takes into account the total σ 3D of all GCs in
 galaxy. 

We also compare the GC dispersion profile with the dispersion
rofile of all stellar particles. The velocity dispersion of GCs is about
0 per cent higher than that of the stellar component at the same
adius, suggesting that GCs are more supported by random motion.
o we ver, this dif ference is smaller than the scatters and may be
ifficult to detect in observations. 
In addition to the dispersion profiles of GCs in MW mass

 alaxies, we investig ate the kinematics of GC systems in galaxies
f other mass. The top panel of Fig. 4 shows the median velocity
omponents for all modeled galaxies as a function of halo mass. For
ll components, the median velocities are insensitive to the halo mass
etween M h = 10 11 . 5 −10 12 . 5 M �. The median v R and v z of model
C systems are consistent with zero, with a rather small scatter of
10 km s −1 . On the other hand, the median azimuthal (rotational)

elocity is v φ, 50 = (40 ± 30) km s −1 , which is systematically non-
ero with larger scatter. This reveals that the GC system is also
otating alongside the stellar component of the host galaxy. For
uantitative comparison with the MW, we present in Table 1 the
6 −50 −84 per cent values of the three median velocity components
or the 13 modeled MW mass galaxies as well as the MW GC
ystems. In addition, we list also the percentiles of MW properties
n the modeled MW mass galaxies. These percentiles indicate how
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Figure 4. Median systemic velocity components ( top panel ) and velocity 
dispersions ( bottom panel ) as functions of host halo mass for model GC 

systems. Curves with shaded regions represent the 16–50–84th percentiles 
of each component (note that the curves in the top panel are medians of 
median values). The median systemic velocities and velocity dispersions of 
the Galactic GC system are o v erplotted as diamonds with errorbars: vertical 
errorbars represent uncertainties via bootstrap resampling, and horizontal 
errorbars represent the uncertainty of the MW mass. 
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uch the model can represent the MW properties: a percentile > 50
 < 50) means that this property of the MW is greater (smaller) than
he median value of the 13 MW mass galaxies. For statistical signif-
cance, only percentiles > 84 ( < 16) can be interpreted as the model
ystematically underestimating (o v erestimating) the corresponding 
roperties of the MW. The model predictions of median v R and v φ are
onsistent with the observations as these two properties of the MW 

 v erlap the 15 −90 per cent and 53 −93 per cent (intersecting with 
he 16 −84 per cent range) values of the modeled v alues, respecti vely. 
lthough the median v z, MW of 19 + 7 

−11 km s −1 is systematically non- 
ero, which is inconsistent with the model prediction that median v z 
s around zero, we still find some model systems to have an even
reater median v z as the percentile of v z, MW in model systems is
maller than 100. It is not surprising that the systemic velocities can
MNRAS 514, 4736–4755 (2022) 
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Figure 5. Radial profiles of anisotropy parameter for modeled GC systems 
in MW mass galaxies. The anisotropy parameter profile of all stellar particles 
in TNG50 galaxies is shown by the magenta curve. Shaded regions represent 
the 16–84th percentiles of the corresponding components. We also show 

the anisotropy parameter profiles for the MW GC system as diamonds with 
errorbars: vertical errorbars represent the 16 −84 per cent confidence levels 
via bootstrap resampling, and the horizontal errorbars correspond to the bin 
width. 
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eviate from the average values since different dynamical histories
f galaxies can lead to different kinematics of GCs. For example,
asiliev ( 2019b ) suggested that the Sagittarius stream clusters have
igh polar velocities, which can significantly alter the distribution of
ystemic velocities. 

In the bottom panel of Fig. 4 , we compare the velocity dispersion
f each component for the modeled galaxies with the MW GCs.
e find that the dispersion of all three components increases

ignificantly with halo mass. From M h = 10 11.5 to 10 12 . 5 M �, the
hree components rise from ∼70 to ∼ 130 km s −1 . As presented
n Table 1 , the model predictions are in good agreement with
bservations as the observed median σ R , σφ , and σ z o v erlap the
1 −80 per cent , 61 −98 per cent , and 29 −59 per cent values of the
odeled MW mass galaxies, respectively; all percentiles intersect
ith the 16 −84 per cent confidence level. 
We note that the radial dispersion σ R is generally greater than

he tangential component σφ , for galaxies with M h = 10 11 . 5 −
0 12 . 5 M �. Quantitatively, the anisotropy of radial and tangential
otions can be characterized by the anisotropy parameter (Binney

980 ). Here, we apply the definition of anisotropy parameter in cylin-
rical system by Tonry ( 1983 ), β ≡ 1 − σ 2 

φ /σ 2 
R . Ne gativ e (positiv e)

alues of β correspond to a tangentially (radially) anisotropic velocity
istribution. The case of β = 0 corresponds to an isotropic velocity
istribution. We plot the radial profile of β for model GC systems in
ig. 5 . The model β profile for all GCs rises gradually from β � 0 to
.5 at R = 1–100 kpc. The model profile mostly matches the observed
rofile within the 16 −84 per cent confidence level. Although model
Cs are mainly represented by stellar particles, the entire stellar

omponents in TNG50 galaxies tend to acquire lower β values at R
 2–20 kpc, indicating that the GCs at this region are in general more

adially biased than the field stars. Additionally, unlike the increasing
of GCs, the stellar β decreases with radius until R � 5 kpc, where
NRAS 514, 4736–4755 (2022) 
he anisotropy profile of field stars shows a dip, which may be related
o past mergers of galaxies, as suggested by Loebman et al. ( 2018 ). 

.3 Orbital actions 

ecent studies (Trujillo-Gomez et al. 2021 ; Wu et al. 2021 ; Calling-
am et al. 2022 ) focusing on the kinematics of GCs and halo stars
ave shown that orbital actions and integral of motions are useful
robes of the dynamical histories of galaxies. These quantities are
enerally conserved during the slow evolution of the gravitational
otential (Binney & Tremaine 2008 ). To study the orbits of our
Cs, we use the AGAMA package (Vasiliev 2019a ) to compute their
ericenter and apocenter radii ( r peri , r apo ) and orbital actions ( J R , J φ ,
 z ). The actions of a closed orbit are defined as 

 q = 

1 

2 π

∮ 
p q 

m 

d q, (31) 

here q ∈ { R , φ, z} corresponds to the radial, azimuthal, and
ertical coordinates in a cylindrical system. The actions have the
ame dimension as the specific angular momentum. In fact, the
zimuthal action J φ is equi v alent to the specific angular momentum
long the z-axis, L z . The sum | J φ | + J z equals the total specific
ngular momentum L . 

Orbit calculation requires analytical modeling of the gravitational
otential of TNG50 galaxies. We achieve it by employing the
GAMA functionality, which approximates the potential with the
ultipole expansion method (for details, see Vasiliev 2019a ). Since

he potential of MW can be described by spheroids and disks (e.g.
cMillan 2017 ), we model the present-day potentials of TNG50

alaxies with these two components. A largely spherical dark matter
otential is modeled by spherical harmonic expansion, while the
isky baryonic (star + gas) potential is modeled by azimuthal
armonic expansion. The radial and vertical coordinates in the two
xpansion schemes are approximated by quintic splines. We find the
ultipole expansion approximation to be accurate, as it deviates

rom the simulation-provided potential by less than 2 per cent.
uch a deviation is so small that we can ignore its influence on

he subsequent calculation of orbital parameters. Next, we input
he z = 0 positions and velocities of GCs to AGAMA and perform
rbit integration to obtain the pericenter/apocenter radii and orbital
ctions. Note that these parameters are observable since we can
pply the same procedure to MW GCs with the full 3-dimensional
ositions and velocities, assuming the McMillan ( 2017 ) model for
he MW potential. 

We list in Table 1 the pericenter and apocenter radii for the modeled
ystems as well as the MW GCs. The modeled values of the two
adii are greater than the observed median values by ∼0.2 dex.
his is because the model is calibrated with equation ( 29 ), where

he MW GC system is more compact by 0.12 dex than an average
W mass system, see Section 4.1 . Ho we ver, the median r peri of the
W o v erlaps the 16 −23 per cent (within 16 −84 per cent ) levels of

he model predictions, meaning that the model can still match this
roperty of the MW GCs. Although the model tends to o v er-predict
he pericenter and apocenter radii for the MW GC system, it can
atch the observed orbital eccentricity, which is defined as e = ( r apo 

r peri )/( r apo + r peri ). We find the median eccentricity of the model to
e e = 0.62 ± 0.04 for MW mass galaxies, in good agreement with
he observed value e = 0.60 ± 0.02. 

We also list in Table 1 the median actions of the 13 modeled
W mass galaxies and the MW. The model can match the three

bserved median actions of the MW GC system as the radial,
zimuthal, and vertical median actions of the MW intersect with the
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Figure 6. Surface number density profile of modeled GC systems in MW 

mass galaxies, for the case �tid = �λ. The in situ and ex situ GCs are plotted as 
red and blue curv es, respectiv ely. The 16–84th percentiles of each component 
are shown as shaded re gions. F or comparison with observations, we plot the 
dispersion profile of the in situ and ex situ GCs from MW as diamonds with 
errorbars: vertical errorbars show the Poisson error, and horizontal errorbars 
correspond to the bin width. 
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 −38 per cent , 23 −47 per cent , and 15 −41 per cent values of model
redictions. Ho we ver, the median radial action J R of the MW has
arge uncertainties, with a lower boundary smaller than the median 
 R of any of the 13 modeled systems. This is likely due to the model’s
endency to overestimate the radii of GCs, enlarging the integral range 
n equation ( 31 ) to produce larger J R . 

 GLOBULAR  CLUSTERS  FROM  DIFFERENT  

RIGINS  

rigins of model GCs can be easily distinguished by looking at 
heir positions at birth in the galaxy merger tree. We define the GCs
ormed in the main progenitor branch as in situ clusters, and the other
Cs originally formed in satellite galaxies as ex situ clusters. The 
x situ clusters are later brought into the central galaxy via accretion
nd mergers. In this section, we compare multiple properties of the 
odel clusters formed in situ and ex situ to those of their observed

ounterparts. Ho we ver, since we do not have the actual merger tree
or the MW, the classification of MW GCs is not as straightforward
s the model GCs. Therefore, we adopt the criteria of Massari et al.
 2019 ) to classify the in situ and ex situ components of the MW GCs.
hese authors define GCs with apocenter radius less than 3.5 kpc 
s bulge clusters, and GCs with maximum height from the disc less
han 5 kpc and orbit circularity greater than 0.5 as disk clusters. The
ulge and disk clusters combined are the in situ GC population, while
he rest are ex situ clusters. This classification still has limitations 
nd cannot be regarded as the actual origins of MW GCs. We will
ention these caveats and their effects on various GC properties in 

his section. 
In Fig. 6 , we compare the radial profiles of in situ and ex situ

Cs in MW mass galaxies. For both samples the surface densities
ecrease sharply with galactocentric radius in outer regions, R � 

0 kpc. Some ex situ GCs can be found as far as 100 kpc from the
alaxy center. In the inner 3 kpc the in situ component dominates,
hile the ex situ profile forms a flat core in the center. 
Even though we do not specifically calibrate the merit function on

he bimodal split, the profiles of both model in situ and ex situ GCs
re consistent with their respective observed counterparts. In Table 1 ,
e present the 16 −84 per cent ef fecti ve radii of two GC populations

or the model and observations. Note that the radial distribution 
f in situ and ex situ GCs cannot be fitted by the de Vaucouleurs
a w an y longer, and therefore we use the face-on projected half
umber radius as the ef fecti ve radius, R e . The model predicts the
atio R e, in / R e = 0.35–0.99 (16–84th percentiles), indicating that the
n situ component is systematically more centrally concentrated than 
he whole GC system. The observed ratio ranges between 0.36–
.58, o v erlapping the 17–49th percentiles of the model prediction. In
ddition, the model yields R e,ex / R e = 1.36–2.69, while the observed
atio (1.38–2.14) o v erlaps the 20–68th percentiles of the model
rediction. Although the model results are statistically consistent 
ith observations, the model tends to predict systematically larger 
 e for both in situ and ex situ GCs since the MW GC system is more
ompact than average GC systems in the observational samples, as 
hown in Section 4.1 . Nev ertheless, the observ ed effectiv e radii still
 v erlap the 10 −21 per cent ( in situ ) and 9 −45 per cent ( ex situ ) values
f model predictions, indicating that the size of the MW GC system
s below average but still typical. 

We show the effective radii of in situ and ex situ GCs for all
odel galaxies as a function of host halo mass in Fig. 7 . Similarly

o the previous analysis of the R e –M h relation for all GCs, the
f fecti ve radii of both in situ and ex situ GCs scale as power-law
unctions of host halo mass, with power-law indices of 0.44 ± 0.07
nd 0.46 ± 0.08 (obtained from standard linear fit). The intrinsic 
catters of the in situ and ex situ components are 0.13 ± 0.02 dex
nd 0.15 ± 0.02 de x, respectiv ely. Moreo v er, the effectiv e radii of
MNRAS 514, 4736–4755 (2022) 
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Figure 8. Radial profiles of metallicity, [Fe/H], for modeled GC systems in 
MW mass galaxies ( top panel ) and for in situ (red) and ex situ (blue) GCs 
( bottom panel ). Shaded regions represent the 16–84th percentiles of each 
component. We also show the metallicity profiles for the MW GC system as 
diamonds with errorbars: vertical errorbars represent the 16–84th percentiles 
of [Fe/H] in each bin, and the horizontal errorbars correspond to the bin width. 
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he ex situ GCs are greater than the in situ ones by ∼0.5 dex, which
s significantly greater than their intrinsic scatter. The significant
iscrepancy indicates that in situ and ex situ GCs are distributed at
istinct regions. Ho we ver, since the radial spreads are large for both
opulations, it is still a big challenge to distinguish the progenitors
f GCs by looking merely at the radius. 
The significant different radial distributions of in situ and ex situ

Cs lead to an interesting phenomenon: the average GC metallicity
ecreases with radius. We plot the radial profile of metallicity, [Fe/H],
or the model GC systems in MW mass galaxies in the top panel of
ig. 8 . The metallicity profiles for the in situ and ex situ clusters are
hown in the bottom panel of Fig. 8 . For comparison, we also plot
he [Fe/H] profiles for the MW GCs provided by Harris ( 1996 , 2010
dition). The modeled ex situ GCs are systematically more metal-
oor than the in situ GCs by 0.5 to 1 dex. This is because ex situ GCs
re more likely to be formed in older and smaller galaxies, where
NRAS 514, 4736–4755 (2022) 
he metallicity is significantly lower than in the main progenitor
alaxy (see equation 6 ). In addition, we note that there is no clear
ependence on radius for metallicities of both in situ and ex situ
Cs, in agreement with the flat metallicity profile in the outer MW
alo (Searle & Zinn 1978 ). Ho we v er, the av erage metallicity of all
Cs drops significantly with radius because the proportion of ex situ
Cs grows at large radii. A similar trend also exists in the MW GC

ystem but is obscured by the relatively large scatter. It is reasonable
o suggest that the metallicity of GCs in a given radial range can be
iewed as a tracer of the abundance of in situ versus ex situ GCs. 
Ne xt, we inv estigate the radial profiles of 3D velocity dispersions

or in situ and ex situ clusters. Fig. 9 shows that both samples have
3D decreasing with radius. Although the trend can be easily noticed
y looking at the average σ 3D profile, the profiles for individual
alaxies can greatly deviate from the average as the intrinsic scatter
an be as large as 30 − 50 km s −1 . This is also true for the MW GCs.
lthough the predicted dispersion profiles are mostly consistent with
bservations at the 16 −84 per cent confidence level, the observed
ispersion profile of ex situ clusters peaks dramatically at R � 30 kpc.
s discussed in Section 4.2 , this bump is likely due to the high
elocities of Sagittarius stream clusters. Moreover, the σ 3D for in situ
Cs is systematically lower than the ex situ ones by ∼ 40 km s −1 in

he range where they overlap, R = 1–20 kpc. The higher dispersion
or ex situ clusters is likely because the ex situ GCs come from
everal satellite galaxies with distinct kinematics, and many of them
re brought into the main progenitor galaxy via violent gravitational
nteractions, leading to greater velocity dispersion. The migration
ature of the modeled ex situ clusters also results in their velocity
ispersions being systematically larger than the field stars at R = 1–
0 kpc, whereas the modeled in situ clusters have velocity dispersions
imilar to that of the field stellar component. The deviation between
n situ and ex situ clusters is even larger in the MW as the observed in
itu clusters have lower dispersions than the model median. This is
ikely because the classification of MW GCs is based on Massari et al.
 2019 ), in which in situ GCs are arbitrarily defined as clusters with
ow r apo (a.k.a. bulge clusters) or high circularity (a.k.a. disk clusters).
hese criteria fa v our GCs with greater b ulk rotational velocities

ather than random motions, leading to the selected in situ clusters
aving lower dispersions. 
Observationally, we cannot easily distinguish the origins of ex-

ragalactic GCs. It is therefore more applicable to compare the
ispersion of GCs split by the colour index instead of the in situ
ersus ex situ origins. Following Harris et al. ( 2006 ), we compute
he metallicity sensitive (B-I) colour via a linear relation: 

B − I) = 2 . 158 + 0 . 375 [Fe / H] . (32) 

ince the metallicity of GCs can serve as a tracer of in situ versus
x situ GCs, equation ( 32 ) indicates that the (B-I) colour can also
race the GC origins. For the modeled MW mass galaxies, we find
he median GC (B-I) varying between 1.5 and 1.9. Without loss of
enerality, we show the 3D velocity dispersions of red and blue GCs
plit at (B-I) = 1.7 in the right-hand panel of Fig. 9 . Again, the 3D
elocity dispersions decrease with radius. Compared with blue GCs,
ed GCs have ∼ 40 km s −1 lower velocity dispersion. The red clusters
av e v elocity dispersions similar to the stellar components, while the
lue clusters have velocity dispersions systematically larger than the
eld stars at the same radius. Although the MW GC system does
ot show exactly the same behaviour as the modeled trends, we still
bserve the blue GCs in the MW to have greater dispersion than
he red ones at R � 10 kpc. Velocity dispersion differences between
he red and blue GCs are observed more clearly in giant elliptical
alaxies, such as NGC 1399 (see Fig. 14 of Schuberth et al. 2010 ).
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Figure 9. Radial profiles of 3D velocity dispersion for different components of GCs in MW mass galaxies. In the left-hand panel , GCs are split into in situ 
(red) and ex situ (blue) components; whereas GCs are split as red [(B-I) > 1.7] and blue [(B-I) < 1.7] components in the right-hand panel . Other parameters 
are similar to those in Fig. 3 . 

Figure 10. Radial profiles of anisotropy parameter for in situ (red) and ex 
situ (blue) GCs ( bottom panel ) in MW mass galaxies. Other parameters are 
similar to those of Fig. 5 . 
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t is thus reasonable to suggest that the different origins of GCs can
ontribute to the observed dispersion difference between the red and 
lue components. 
We also study the radial profiles of the anisotropy parameter for in

itu and ex situ clusters. As shown in Fig. 10 , both GC populations
ave the anisotropy parameter consistent with zero at R = 1–10 kpc,
imilarly to field stellar particles in the same radial range. At R >

0 kpc, where ex situ GCs dominate, we find that the anisotropy
arameter of ex situ clusters is systematically positive, suggesting 
hat the motions of outer GCs are radially dominated, in agreement 
ith the accretion nature of ex situ GCs. The model predictions of in
itu and ex situ GCs are consistent with the observations within the
6 −84 per cent confidence level. 
Finally, we calculate the median pericenter/apocenter radii and 

rbital actions for in situ and ex situ GCs in 13 MW mass galaxies.
imilarly to the way we present data for all GCs, we present in
able 1 these properties for the modeled systems, the MW, and the
espective percentiles. The median pericenter and apocenter radii of 
he ex situ GCs are greater than those of the in situ ones, consistent
ith the migration nature of ex situ GCs. For the two median

adii, the 16 −84 per cent ranges of the two GC populations do not
 v erlap. This again supports that GCs from different progenitors have
ystematically different radial distributions. The deviations between 
he two GC systems are especially notable for the median r apo , which
s 3.5 times higher for the ex situ clusters. Ho we ver, note that what we
resent here are the median values. Since the spreads of the these radii
n individual galaxies are rather broad, it is still challenging to dis-
inguish the progenitors of each GC by looking only at r peri and r apo .

The observed median r peri, MW overlaps the 15 −70 per cent ( in 
itu ) and 0 −10 per cent ( ex situ ) values of model predictions.
nd, the median r apo, MW o v erlaps the 7 −27 per cent ( in situ ) and
2 −52 per cent ( ex situ ) values of model predictions. Except for the
odel systematically o v er-predicting median r peri , the model can
ostly match the observed values. We also note that the median

 apo of the ex situ MW GCs is greater than r apo in situ by a factor
f 5, which is even larger than the predicted difference. However, 
ote that the Massari et al. ( 2019 ) classification arbitrarily defines
n situ GCs as clusters with low r apo or high circularity. The former
riterion increases the discrepancy between r apo of the in situ and in
itu GCs. The latter fa v ors GCs with more circular orbits. Therefore,
he orbits of remaining ex situ clusters are more eccentric. That is to
ay, GCs with small r peri and large r apo are more likely to be classified
s ex situ clusters. This bias explains why the model o v er-predicts
he median r peri for ex situ GCs. The difference between our results
nd the results from Massari et al. ( 2019 ) suggests that these authors
MNRAS 514, 4736–4755 (2022) 
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Figure 11. Best-fitting de Vaucouleurs ef fecti ve radii, R e , of modeled GC 

systems as a function of host halo mass. The �tid = �λ and �tid = �ρ cases 
are shown as blue and red lines, while the constant disruption rate cases of 
�tid = 100, 200, and 300 Gyr −1 are shown as cyan, orange, and green lines, 
respectively. Other parameters are as in Fig. 2 . 
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ight underestimate the effects of dynamical evolution on the orbits
f MW GCs. The actual orbits of in situ GCs may be more eccentric
nd have higher r apo than expected. 

The median orbital actions ( J R , | J φ | , J z ) for in situ and ex situ
Cs are also presented in Table 1 . The difference between the

wo GC populations is the largest for J R and the smallest for | J φ | ,
ndicating that J R can be a useful parameter to distinguish GCs
rom different progenitors. Compared with the model predictions,
he observed median J R , MW overlaps the 0 −21 per cent ( in situ )
nd 54 −92 per cent ( ex situ ) values, the median | J φ, MW | o v erlaps
he 22 −92 per cent ( in situ ) and 0 −12 per cent ( ex situ ) values,
nd the median J z, MW o v erlaps the 16 −30 per cent ( in situ ) and
9 −43 per cent ( ex situ ) values of the 13 modeled MW mass galaxies.
ost of the model predictions can match the observed values, except

or the o v erestimation for in situ J R and ex situ | J φ | . As discussed
efore, the o v erestimation for in situ J R is because the model in situ
Cs have larger r apo , enlarging the integral range in equation ( 31 ) to
roduce larger J R . Also, since the Massari et al. ( 2019 ) classification
ends to select ex situ GCs with more eccentric orbits, their ex situ
Cs are likely to have lower | L z | (recall that J φ = L z ) than reality.
onsequently, our model o v er-predicts the median | J φ | for ex situ
Cs. 

 DISCUSSION  

.1 Comparison with cases of constant disruption rate 

n section 4.1 , we note that the ef fecti ve radii of model GC systems
an be described as a power-law function of galaxy mass: R e ∝
 
0 . 79 ±0 . 09 
h . Here, we investigate the effects of different prescriptions

or tidal disruption on the R e –M h relation. In addition to the �tid 

 �λ and �tid = �ρ cases, we introduce another prescription with
tid = constant, which is employed by our previous models (Choksi
 Gnedin 2019b ). Due to the lack of spatial information, Choksi
 Gnedin ( 2019b ) simply set �tid = 200 Gyr −1 for all clusters at

ll times. 3 Taking this setup as a reference, we examine the values
tid = 100, 200, and 300 Gyr −1 for completeness and compare these
odels with the �tid = �λ and �tid = �ρ cases. Note that κ is no

onger a model parameter since �tid is now fixed. By performing
he same calibration as in section 3 to search for the two remaining
odel parameters, we find p 2 = 6, 12, and 20 for �tid = 100, 200,

nd 300 Gyr −1 , respectively; while p 3 = 0.6 Gyr −1 works well for all
f them. The R e –M h relations for these cases are shown in Fig. 11 .
ompared with the disruption prescriptions employed in this work,

he R e –M h relations of all constant �tid cases have flatter slopes
anging from 0.5 to 0.6, which are flatter than the 0.7–0.8 slopes
rom the �tid = �λ/ ρ cases. Compared with observations, the three

tid = constant cases also agree with the 0.62 ± 0.13 slope within the
rror range. Ho we v er, the three constant �tid cases hav e significantly
maller normalization by a factor of ∼3 compared to the �tid = �λ/ ρ

ases and observations. 
The present-day radial distribution of a GC system can signif-

cantly differ from the initial distribution. F or e xample, systemic
adial motions can bring GCs inwards or outwards, shifting the radial
istribution from the initial one. Different dependence of disruption
n local environment can also lead to different radial distribution of
urviving GCs. Compared with the environment-dependent models
 �tid = �λ/ ρ), the �tid = constant cases tend to produce stronger tidal
NRAS 514, 4736–4755 (2022) 

 In their notation, P = 0.5, where P = 

(
�tid 

100 Gyr −1 

)−1 
. 

i  

t  

t  

s  
isruption in the outer galaxy since they do not take into account the
trength of tidal disruption decreasing with radius (see Appendix A
or more details of the decreasing trend). This directly leads to higher
isruption rate in the outer galaxy for in situ clusters. On the other
and, the ex situ GCs also experience systematically stronger tidal
isruption in the outer region after merging with the central galaxy.
herefore, the �tid = constant cases have a tendency to form more
entrally concentrated GC systems. We also note that the � = �ρ

ase produces generally larger R e than the � = �λ case. This is due
o the larger disruption rate at small radii for the � = �ρ case (see
ppendix A ). Since more central GCs are disrupted, the � = �ρ

ase has a tendency to form more spread-out GC systems than the
tid = �λ case. 
Nevertheless, we cannot assert either of the �tid = �λ/ ρ cases to

e more appropriate than the constant disruption cases, since the
nitial spatial distribution of GCs in our model is not guaranteed to
e correct. A more dispersed initial radial distribution may raise the
f fecti ve radius to a more reasonable range for the �tid = constant
ases. 

.2 GC mass function 

tarting with a Schechter ICMF, the tidal and stellar evolution of
Cs reshapes the mass distribution into the present-day GC mass

unction (GCMF). In our model, stellar evolution is included as an
nstantaneous mass loss after the formation of GCs. Since the fraction
f mass lost by stellar evolution is independent of GC mass (see
quation 16 ), only tidal disruption is important for transforming the
hape of ICMF to GCMF. According to equation ( 8 ), the high-mass
nd of the ICMF is less affected by tidal disruption and can preserve
ts initial shape, while the low-mass end can turn o v er because of
he very efficient disruption of small GCs. In Fig. 12 we show that
he GCMFs predicted by our model for the MW mass galaxies have
imilar shape and normalization to the observed MW GCMF. Our
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Figure 12. GC mass function of GC systems in MW mass galaxies. The two 
descriptions of tidal disruption, �tid = �λ and �tid = �ρ , are shown as blue 
and red curves, with shaded regions representing the 16–84th percentiles 
of the 13 galaxies. For comparison, the mass function of the MW GC 

system is o v erplotted as diamonds with errorbars: vertical errorbars show 

the 16 −84 per cent confidence level computed via bootstrap resampling, 
and horizontal errorbars correspond to the bin width. We repeat bootstrap 
resampling 1000 times until the estimated confidence levels converge. 
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surviving (solid) and all (i.e. surviving + disrupted, dashed) GCs at formation 
in the top panel . 
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CMFs also agree with Hughes et al. ( 2022 ), who conducted a study
n the high-mass end GCMFs in the E-MOSAICS simulation. They 
uggested that the high-mass end of GCMF preserves the initial 
chechter shape, with a truncation mass of ∼ 10 6 M � (for MW mass
alaxies). Our model can produce similar results when following the 
ame analysis as in their work. On the other hand, there is a small
eviation between the peaks of the modeled and observed GCMF: 
he model GCMF peaks at M = 10 4 . 5 − 10 5 M �, whereas the MW
CMF peaks at M = 10 5 − 10 5 . 5 M �. Therefore, the model tends

o o v erestimate the number of M � 10 5 M � GCs and underestimate
he number of GCs with higher mass. 

It may be expected that this discrepancy could be resolved by ad-
usting the three model parameters (Section 2.2 ), as the combination 
f p 2 and p 3 controls the total number of GCs formed in the model,
.e. the normalization of the ICMF; and κ controls the strength of
isruption, which bends the low mass tail of the ICMF. Ho we ver, we
nd that even though increasing κ can shift the peak mass of GCMF

o higher values, the change in peak mass is small compared to the
ncrease of κ . Setting κ = 10 still cannot produce a GCMF matching
he observations at the low-mass end, but can significantly affect the 
adial distribution of GCs by disrupting too many inner GCs. Since 
he low-mass GCs cannot be ef fecti vely disrupted with the current
idal disruption prescription, a more realistic prescription is needed 
o model the mass loss of M � 10 5 M � GCs due to tidal shocks. 

.3 How GCs migrate from the current locations 

he present-day distribution of GCs is shaped by the interplay of
nitial distribution, dynamical disruption, and migration. Here, we 
nvestigate how GCs migrate from the original positions to the current 
nes, and the different disruption in the inner/outer parts of galaxies. 
n Fig. 13 , we compare the present-day radii to the radii at formation
or all GCs from the 13 MW mass galaxies. Since the orientation of
he galaxy plane is not well defined at the early time when GC form,
ere we use spherical radii r instead of cylindrical radii R , which we
se for the rest of this work. The ex situ GCs form mostly at r birth =
0–500 kpc from the galaxy center, while the in situ clusters form in
he inner region r birth = 0.1 − 3 kpc. The hard cut for in situ clusters
t 3 kpc is imposed in Section 2.2.2 . 

Most in situ clusters migrate outwards to as far as r z = 0 � 100 kpc,
hereas ex situ clusters get accreted by the main progenitor galaxy

nd mo v e inwards. Although formed in distinct re gions, both GC
opulations relocate to similar present-day regions between r z = 0 = 

 and 100 kpc. By comparing the distribution of surviving and all
i.e. surviving + disrupted) GCs in Fig. 13 , we also note that the
ost efficient disruption of in situ clusters happens in inner regions
here the tidal field is stronger. 

.4 Comparison with other work 

irst, we compare our numerical setup and results with the E-
OSAICS project (Pfeffer et al. 2018 ; Kruijssen et al. 2019 ). The

-MOSAICS project re-simulated the EAGLE (Schaye et al. 2015 ) 
uite of galaxy simulations with the MOSAICS (Kruijssen & Lamers 
008 ; Kruijssen 2009 ; Kruijssen et al. 2011 ) star cluster formation
nd evolution model. This model treats star clusters as a sub-grid
omponent of stellar particles. When a stellar particle is formed, the
MNRAS 514, 4736–4755 (2022) 
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OSAICS model turns a fraction of its mass into star clusters with a
luster formation efficiency based on the local gas density, velocity
ispersion, and the sound speed of the cold interstellar medium.
n contrast, in our model, the masses of newly formed clusters are
etermined only by the global properties of the host galaxy. Similar
o the particle assignment technique in our work, star clusters in the
-MOSAICS project inherit the spatial and kinematic information

rom the simulation particles. They also inherit metallicity from the
tellar particles, while in our model cluster metallicity is set by
he global galaxy metallicity. The E-MOSAICS project requires a
ery fine time resolution to identify gravitational tidal shocks, which
ould result in o v er 10 4 output snapshots with a correspondingly

arge amount of data storage. To reduce the storage requirement, the
-MOSAICS project applies the cluster model in the runtime of the
imulation. 

Using the E-MOSAICS results, Trujillo-Gomez et al. ( 2021 )
nalyzed the kinematics of modeled GCs in 25 MW mass galaxies.
hey found that the radial velocity dispersion of GC systems is
ystematically larger than the tangential components, leading to a
ositive anisotropy parameter, which agrees with our conclusion
hat the GC orbits are more radially biased. Ho we ver, most ( >
4 per cent ) GC systems in their work have lower systemic velocity
ispersions than the observed values of the MW GCs. They therefore
rgue that MW is atypical compared to the E-MOSAICS galaxies.
e find instead that the observed median dispersions o v erlap the

1 −80 per cent ( σ R ), 64 −98 per cent ( σφ), and 29 −59 per cent ( σ z )
alues of the modeled MW mass galaxies, meaning that our sample
an better reproduce the kinematic properties of the MW GC system.
n addition, the y inv estigated the radial distribution of velocity
ispersions and found that the dispersions are almost flat, whereas
e disco v ered the v elocity dispersion to decrease significantly with

adius. In both studies, the scatter of the dispersion profile is large,
ndicating that it is hard to find regularity for a single MW mass
alaxy since the formation history of galaxies can be vastly different.
or the same reason, it is hard to compare the observed dispersion
rofile in the MW to either of the two studies. Moreo v er, Trujillo-
omez et al. ( 2021 ) computed the median apocenter/pericenter radii
f GC orbits and found their results consistent with the observed
roperties of the MW. In contrast, our model tend to o v er-predict the
edian radii since our model is calibrated with a large observational

ample set of GC systems, where the MW GC system is by 0.12 dex
ore compact than the average MW mass systems. These authors

lso conducted analysis on different kinematics of in situ and ex situ
lusters. They found ex situ GCs have a stronger tendency to show
reater radial velocity dispersion, whereas the tangential dispersions
f in situ and ex situ clusters are similar. In combination, the ex situ
Cs have greater total velocity dispersion, which agrees with our
ndings. On the other hand, by splitting GCs into metal-rich and
etal-poor at [Fe/H] = −1.2, they found metal-poor GCs to have

reater systemic velocity dispersion. Similar results are also present
n our work when splitting by colour at (B − I) = 1 . 7, corresponding
o [Fe/H] ≈ −1.2 by equation ( 32 ). 

Also based on the E-MOSAICS results, Reina-Campos et al.
 2021 ) investigated the morphology of GC systems as tracers of
ost galaxies and dark matter haloes. By fitting the de Vaucouleurs
rofile to the projected GC number density, the y disco v ered a strong
ositive correlation between the effective radii R e and the stellar mass
f the host halo, which agrees with our conclusion that R e increases
s a power-law function of the halo mass M h (see Fig. 2 ). Ho we ver,
hese authors tend to o v erestimate the ef fecti ve radius for the MW
Cs by ∼0.3 dex. Although the MW GC system is more compact

han an average MW mass system by ∼0.12 dex, the ∼0.3 dex
NRAS 514, 4736–4755 (2022) 
 v erestimation in their work is still significant. This o v erestimation
ecomes more notable for lower mass galaxies when compared with
bservations by Forbes ( 2017 ) and Hudson & Robison ( 2018 ). Since
he E-MOSAICS project tends to underestimate tidal disruption, as
iscussed by Pfeffer et al. ( 2018 ), the o v erestimation of R e may be
ven greater when more realistic disruption is included, as Section 6.3
uggests that most disrupted in situ GCs are in the inner galaxy.
n the other hand, in general our model predicts lower R e , which

grees better with observations. Since the differences between the
ethods in the E-MOSAICS and this work are many, it is difficult

o point exact reason for discrepant R e predictions. One possible
eason is that our model applies a radius threshold of 3 kpc when
ssigning GC particles at birth (Section 2.2.2 ), as recent observations
f young clusters (Adamo et al. 2015 , 2020 ; Randriamanakoto
t al. 2019 ) suggest that massive clusters preferentially form in the
nner regions of galaxies. This threshold also prevents including
 araw ay particles that are not bound to the galaxy. Although the
nitial distribution is largely modified by the dynamical evolution,
he present-day distribution of GCs can still get statistically more
entrally concentrated when applying the 3 kpc threshold. 

We also compare our work with the GC formation and evolution
odel by Ramos-Almendares et al. ( 2020 ), who used a ‘GC tagging’

echnique similar to our GC assignment method. They selected some
imulation particles as tracers of GCs based on the merger history of
alaxies. In order to be compatible with dark matter-only simulations,
heir selection criterion is unrelated to any baryonic properties: the
racers are selected to be dark matter particles located within a
ertain gravitational well. Also, they did not explicitly follow the
luster mass loss due to dynamical disruption. By applying their
odel to the Illustris simulation (Vogelsberger et al. 2014 ), these

uthors performed a detailed analysis of the spatial distribution and
inematics of GC systems. Like this work, they also found that
he in situ GCs have more concentrated distribution than the ex
itu counterparts, but the distinction between the two populations is
elatively small. When split by colour, the blue GCs agree with
bservations, while the modeled red GCs are distributed much
ore widely than observations. They attributed this deviation to

he insufficient intrinsic se gre gation between different components
f GCs. This problem is solved in our work as the predicted radial
istributions of both in situ and ex situ GCs are consistent with
bservations. Additionally, they found that GC systems tend to have
ositive anisotropy parameter β, in agreement with our conclusions.

 SUMMARY  

n this work, we present a GC formation and evolution model
hich explicitly tracks the spatial distribution and kinematics of
C systems. Without running new galaxy formation simulations,
e apply the model in post-processing of the TNG50 simulation

nd select tracers of GCs from collisionless particles according to
heir age and location. Next, we calculate the mass loss of GCs due
o the stellar and tidal evolution, by explicitly taking into account
he dependency of tidal disruption on the local environment. The
odel produces a catalog of surviving GCs with full spatial and

inematic information. There are only three adjustable parameters in
his model, and we calibrate them by comparing the GC catalog with
bservations of the MW and a sample of extragalactic GC systems. 
Our model succeeds in reproducing important properties of the
W GC system. F or e xample, the radial number density profile in

ur model matches the observed distribution of MW GCs (Fig. 1 ).
e note that the radial distribution of GCs can be well fit by the

e Vaucouleurs law, which is parametrized by the ef fecti ve radius,
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 e . Our model reveals a power-law scaling relation between R e and
he host galaxy mass, in the form R e ∝ M 

0 . 79 ±0 . 09 
h (equation 26 ).

he observational measurements of these variables have a very 
arge scatter and not a well-defined slope. Our predicted relation 
s consistent with the data within the errors (Fig. 2 ). We argue
hat the dependency of tidal disruption on the local environment 
lays an important role in shaping the R e –M h relation. Compared 
ith the constant disruption model, the tidal field-based disruption 
rescription tends to enhance disruption in the inner parts of galaxies 
nd increase the ef fecti ve radius of GC systems (Fig. 11 ). 

The kinematics of GC systems in our model is also consistent with
bservations. Most median systemic v elocities, v elocity dispersions, 
nisotropy parameter, pericenter/apocenter radii, and orbital actions 
f the modeled GC systems are consistent with the observational 
alues of the MW (see, Table 1 and Figs 3 , 4 , and 5 ). Ho we ver, the
odel predicts the median vertical velocity v z to be consistent with 

ero ( −5 + 11 
−10 km s −1 ), whereas the MW GC system has systematically 

on-zero v z, 50 = 14 + 11 
−7 km s −1 . Nevertheless, we still find some 

odeled systems to hav e ev en greater median v z . The model also
ystematically o v erestimates the median r apo for the MW GC system.
his is likely because the MW GC system itself is more compact than

he average MW mass system in our observational sample set; the 
odel is more consistent with that average. The v 50 –M h and σ 50 –M h 

elations reveal that the systemic velocities of model GC systems 
re largely independent of host galaxy mass, whereas the velocity 
ispersions grow significantly as M h increases (Fig. 4 ). We also notice
hat the MW mass GC systems have positive anisotropy parameters 
rowing from β � 0 to 0.5 at R = 1–100 kpc, indicating that the GC
otions are more radially biased in outer parts of galaxies (Fig. 5 ). 
Ho we ver, the GC mass function in our model peaks at lower mass

ompared with the MW GC system (Fig. 12 ). This is possibly because
he tidal disruption prescription is still not accounting for all rele v ant
rocesses, including gravitational tidal shocks. 
By using galaxy merger trees from the adopted simulation, we can 

learly identify the origins of GCs: in situ GCs form in the main
rogenitor branch of a given galaxy, whereas ex situ GCs form in
atellite galaxies and later accrete on to the central galaxy. GCs with
he in situ origin are systematically more concentrated towards the 
enter, while ex situ GCs are found at larger radii out to 100 kpc
Figs 6 and 7 ). The in situ GCs are significantly more metal-rich than
he ex situ ones because of the mass-metallicity relation for their host
alaxies. The decreasing abundance of in situ GCs with radius leads 
o the metallicity gradient of the whole GC system (Fig. 8 ). 

Our model also predicts notable differences between the kinemat- 
cs of in situ and ex situ GCs. While the 3D velocity dispersion of both
omponents decreases with radius, ex situ GCs have ∼ 40 km s −1 

igher velocity dispersion compared with the in situ counterparts 
t the same radius (Fig. 9 ). This higher dispersion is consistent
ith the migration nature of ex situ GCs, as they are brought

nto the main progenitor galaxy via accretion and mergers that can 
trongly perturb their original kinematics. Observationally, it is more 
pplicable to compare dispersions of GCs split by the (B − I) colour
ndex: blue GCs have ∼ 40 km s −1 higher velocity dispersion than the 
ed counterparts, in agreement with observations of giant elliptical 
alaxies. 

The in situ and ex situ GCs have systematically different median 
pocenter/pericenter radii and orbital actions (Table 1 ). The deviation 
s especially notable for the median apocenter radius r apo , which is
.5 times greater for the ex situ GCs. Among the three orbital actions,
he difference between the two GC populations is the largest for J R 
nd the smallest for | J φ | , indicating that J R can be a useful parameter
o distinguish GCs from different progenitors. However, note that 
e present here only the median v alues. Indi vidual galaxies have a
ide spread of the action variables, which makes it challenging to
istinguish the progenitors of GCs. We will present more detailed 
nvestigation of the MW assembly history using GCs in a follow-up
ork. 
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PPENDIX  A:  A  CCURA  CY  OF  

PPROXIMATING  THE  TIDAL  TENSOR  

s mentioned in Section 2.2.3 , we approximate the rate of tidal
isruption via two methods based on the tidal tensor and local mass
ensity, denoted as �tid = �λ and �tid = �ρ , respectively. In this
ppendix, we describe tests of how accurately we can calculate the
idal tensor for the TNG50 simulation. 

1 Numerical test 

o numerically calculate the tidal tensor, we need to construct a
 × 3 × 3 grid with a side length of d centered on a GC particle.
o obtain an order of magnitude estimate for d , we refer to the
esolution scale of the TNG50 simulation: for MW mass galaxies
he median size of gas cells is around 0.1 kpc, and the gravitational
oftening length of collisionless particles is 0.288 kpc (Pillepich et al.
019 ). A too-large d tends to smear out potential fluctuations and
nderestimate the strength of the tidal field, while a too-small d
ifferentiates the potential at a scale that is not numerically resolved,
eading to unreliable results. Therefore, we expect that an appropriate
 should have a similar value to the force resolution scale, varying
etween 0.1 and 1 kpc. 

To assess the performance of our method with different d
uantitatively, we introduce the following test. First, we fit the
ass distribution of the TNG50 galaxies used in our model with
 parametric density profile, for which we can calculate the tidal
eld analytically. We take a double power-law profile as sufficiently
eneral to describe most galaxy profiles: 

( r) = ρ0 

(
r 

r s 

)−α (
1 + 

r 

r s 

)−( β−α) 

, (A1) 

here α measures the inner slope of profile for r  r s , while β
easures the outer slope for r � r s . We include all matter components

stars, gas, and dark matter) in the fit because they all contribute to
he tidal field. For MW mass galaxies at z = 0, the fitting result yields
= 0, β = 2.2, and r s = 0.1 kpc. The very small r s indicates that
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Figure A1. Total mass density profiles of 13 MW mass galaxies in TNG50 
at z = 1.5 (thin blue lines) and z = 0 (thin red lines). The median density 
profiles are shown as thick solid lines. We also plot the double power-law fits 
at both epochs as thick dashed curves. 
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he mass distribution roughly follows an isothermal profile o v er a
ide range of radii down to r � 0.1 kpc. We also perform the fitting

or the same galaxies at z = 1.5 to better compare with Meng &
nedin ( 2022 ), who analyzed in detail the tidal disruption rate for

tar clusters at z � 1.5 in mesh-based high-resolution simulations. For 
hese high-redshift galaxies we find α = 1, β = 2, and r s = 1.5 kpc,
hich describes a combination of an isothermal profile at large radii 

nd a flatter inner core. These profiles are shown in Fig. A1 . 
Then we construct a mock particle realization of the density profile, 

ith the same mass of 2 . 7 × 10 5 M � as the average particle mass
n TNG50. For our fitting parameters, there are 2.7 million particles 
ithin 100 kpc at z = 0, and 2.4 million within 100 kpc at z = 1.5. 
Finally, we apply the same method we have described in Sec- 

ion 2.2.3 to particles in the mock galaxy and calculate the tidal
ensor with d = 0.1, 0.3, and 1.0 kpc. We plot the largest eigenvalue
f the tidal tensor as a function of the galactocentric radius in
ig. A2 . By comparing the calculated value to the analytical value
true 
m 

, we find that different d work best at different radii. All three
ases underestimate λm when r � d since the details of the tidal
eld are smeared out on small scales. Moreo v er, the approximation
lso fails at large radii, because the average separation between 
articles becomes too large at r � 10 kpc. The tidal field gets
nder-resolved when the average separation is comparable to or even 
arger than d . In our model, majority of GCs particles (regardless
f whether they survive or disrupt) are located at r = 0.3–3 kpc
t z = 1.5 and r = 0.5–8 kpc at z = 0. We note that the tidal
ensor in both ranges can be approximated to within 0.1 dex by
dopting d = 0.3 kpc. This conclusion is confirmed by Meng 
 Gnedin ( 2022 ), who compared the time-averaged P parameter 

which can be considered as an indicator of tidal strength, see 
heir equation ( 4 ) and ( 6 )] of their simulations and this work with
 = 0.3 kpc. In their Fig. 12 , they plotted P of each cluster as
 function of the host halo mass at formation. Their results are
n good agreement with ours, both showing a decreasing trend 
ith large scatters. This consistency supports that setting d = 
.3 kpc can to a large extent approximate the tidal field in GC
isruption. 
Meng & Gnedin ( 2022 ) performed a similar analysis of the λm 

rofile. They calculated the tidal tensor of star clusters from a suite
f high-resolution cosmological simulations of Li et al. ( 2017 ), which
re run with adaptive mesh refinement with the finest refinement level
eaching 30 pc at z = 1.5. Therefore, they can resolve the tidal field
t a scale of 30 pc in the densest region of galaxies. We note that λm 

rom Meng & Gnedin ( 2022 ) have lo wer v alue at r � 0.3 kpc, since
he feedback in their work is stronger than TNG50, leading to flatter
ensity profiles and therefore weaker tidal field in the galaxy center.
evertheless, their λm are greater than that of the mock galaxy by
 factor of ∼3 at r � 1 kpc. This is because our isotropic density
rofile is too smooth to correctly show the asymmetric density 
uctuations revealed by higher-resolution simulations. Similarly, 
ince the gravitational softening length of TNG50 (0.288 kpc) is 
uch larger than the typical size of a GC, we tend to underestimate

m as the small-scale density fluctuations in TNG50 are also o v er-
moothed. The interplay of all factors mentioned abo v e moti v ates
s to apply the parameter κλ to correct the calculation of the tidal
ensor. 

As described in Section 2.2.3 , we also employ 4 πG ρ as an estimate
f λm . Fig. A2 shows that we can well estimate λm at large radii where
oth the z = 1.5 and z = 0 cases are nearly isothermal. Ho we ver,
t smaller radii, where the density profiles are flatter, 4 πG ρ tend to
 v erestimate λm by a factor of 2 to 3. It is therefore reasonable to
xpect smaller κρ than κλ if we want the two models to produce
imilar numbers of GCs. Ho we ver, this may not be the case since we
o not only take into account the number of GCs when performing
odel calibration, see Section 3.2 . 

2 Analytical approximation 

o better understand the deviation of λm from 4 πG ρ, we perform
n analytical analysis as follows. Usually, the tidal tensor is defined
n the Cartesian coordinate system, see equation ( 10 ). Since the
forementioned scenarios are spherically symmetric, it is convenient 
o analyse the tidal tensor in spherical coordinate systems. By 
efining μθ = cos θ , νθ = sin θ , μφ = cos φ, and νφ = sin φ, we can
rite the coordinate transformation as ⎧ ⎨ 

⎩ 

x = r μθμφ, 

y = r μθ νφ, 

z = rνθ . 

(A2) 

herefore, the Jacobian matrix is given by 

 ≡ ∂ x 
∂ x ′ 

= 

⎛ 

⎝ 

μθμφ −rνθμφ −r μθ νφ

μθμφ −rνθνφ r μθμφ

νθ r μθ

⎞ 

⎠ , (A3) 

here x = ( x , y , z) and x ′ = ( r, θ, φ). According to the chain rule
or partial deri v ati ves, we can write the Cartesian partial deri v ati ves
n spherical coordinates as 

∂ 

∂ x 
= ( J −1 ) T 

∂ 

∂ x ′ 
, (A4) 

here J −1 is the inverse of J : 

 
−1 = 

⎛ 

⎝ 

μθμφ μθνφ νθ

−νθμφ/r −νθνφ/r μθ/r 

−νφ/rμθ μφ/rμθ

⎞ 

⎠ . (A5) 
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M

Figure A2. Radial profiles of approximated λm ( top panels ) and the deviation from analytical results, λm /λ
true 
m 

( bottom panels ), calculated with d = 0.1 (red), 
0.3 (blue), and 1.0 kpc (black) for two mock galaxies, which are generated with double power-law profiles to represent MW mass galaxies in TNG50 at z = 1.5 
(left) and z = 0 (right). We plot three vertical dashed lines to represent the location of each d . Approximated density profile, rescaled by a factor of 4 πG , is shown 
as the cyan curve. The 16–84th percentiles of approximated values are shown as shaded regions. We also plot a grey dashed curve to show the analytical result, 
λtrue 

m 
. To compare with higher resolution simulations, we show the λm - r relation for MW galaxies at z � 1.5 from Meng & Gnedin ( 2022 ) orange solid curves. 

The pink shaded regions represent the 16–84th percentiles of the radial distribution of all modeled GCs (both surviving and disrupted) at z = 1.5 and z = 0. 
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imilarly, the second Cartesian partial deri v ati ves are 

∂ 

∂ x 

(
∂ 

∂ x 

)T 

= ( J −1 ) T 
∂ 

∂ x ′ 

[
( J −1 ) T 

∂ 

∂ x ′ 

]T 

. (A6) 

herefore, we can rewrite equation ( 10 ) as 

 = − ∂ 

∂ x 

(
∂
 

∂ x 

)T 

= −( J −1 ) T 
∂ 

∂ x ′ 

[
( J −1 ) T 

∂
 

∂ x ′ 

]T 

. (A7) 

ecall that the potential is spherically symmetric, i.e. ∂ 
 / ∂ θ =
 
 / ∂ φ = 0, and the abo v e equation simplifies to 

 = −
(
A · d 2 
 

dr 2 
+ B · 1 

r 

d
 

dr 

)
, (A8) 

here 

 = 

⎛ 

⎜ ⎝ 

μ2 
θμ

2 
φ μ2 

θμφνφ μθ νθμφ

μ2 
θμφνφ μ2 

θ ν
2 
φ μθ νθ νφ

μθ νθμφ μθ νθ νφ ν2 
θ

⎞ 

⎟ ⎠ , (A9) 
NRAS 514, 4736–4755 (2022) 
nd 

 = 

⎛ 

⎝ 

( μ2 
θ + 1) ν2 

φ −μ2 
θμφνφ −μθνθμφ

−μ2 
θμφνφ μ2 

φ + ν2 
θ ν

2 
φ −μθνθνφ

−μθνθμφ −μθνθνφ μ2 
θ

⎞ 

⎠ . (A10) 

he three eigenvalues of T are 

1 = −d 2 
 

dr 2 
, λ2 = λ3 = −1 

r 

d
 

dr 
. (A11) 

herefore, we obtain 

m ( r) ≡ max | λi | = max 

(∣∣∣∣d 2 
 

dr 2 

∣∣∣∣ , 
∣∣∣∣1 

r 

d
 

dr 

∣∣∣∣
)

. (A12) 

or a spherically symmetric density distribution, 

 ( r) = −4 πG 

[
1 

r 

∫ r 

0 
ρ( r ′ ) r ′ 2 dr ′ + 

∫ ∞ 

r 

ρ( r ′ ) r ′ dr ′ 
]

, (A13) 

e get 

m ( r) = max 

(∣∣∣∣4 πGρ − 2 GM( < r) 

r 3 

∣∣∣∣ , GM( < r) 

r 3 

)
, (A14) 
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igure A3. Analytical λm /4 πG ρ (black line) and λm /3 −1/2 ‖ T ‖ (red line) for
ower-law density profiles, ρ∝ r −n . Dashed lines indicate special cases of n
 1 and n = 2. 

here M ( < r ) denotes the mass enclosed within radius r . For a special
ase of power-law density profiles, ρ∝ r −n , 

m = 4 πGρ max 

(∣∣∣∣1 − n 

3 − n 

∣∣∣∣ , 
∣∣∣∣ 1 

3 − n 

∣∣∣∣
)

. (A15) 

e show this relation in Fig. A3 . For a special case of the isothermal
rofile with n = 2, the maximum eigenvalue is particularly simple: 
m = 4 πG ρ. For flatter profiles, 4 πG ρ tends to o v erestimate λm by
p to a factor of 2 at n = 1, in agreement with the results shown
n Fig. A2 . For a simulated galaxy with n ranging from 1 to 2,
e therefore expect κλ/κρ � 

√ 

2 , which agrees with the calibration 
esults in Section 3.3 . 

Another proxy for �tid is the Frobenius norm of the tidal tensor, 

 T ‖ ≡
⎛ 

⎝ 

∑ 

i 

∑ 

j 

| T ij | 2 
⎞ 

⎠ 

1 / 2 

= 

( ∑ 

i 

| λi | 2 
) 1 / 2 

. (A16) 

he last equality holds because T can be diagonalized. For power-law 

ensity profiles, we get 

 T ‖ = 4 πGρ

(
n 2 − 2 n + 3 

3 − n 

)1 / 2 

. (A17) 

n Fig. A3 , we show the ratio between λm and ‖ T ‖ rescaled by a
actor of 3 −1/2 . The two identities only differ by less than 50 per cent
or n = 0 − 3, meaning that we can also employ the Frobenius norm
s a proxy for �tid with similar results as the �tid = �λ case. 

PPENDIX  B:  TEST  OF  DIFFERENT  MODEL  

ARAMETERS  

n this work, we select model parameters ( p 2 , p 3 , κ) by minimizing
he merit function M . Ho we ver, a large region in the ( p 2 , p 3 , κ) space
esults in similarly small M . This is due to the p 2 –κ de generac y in
ur model. As mentioned in Section 2.2.1 , p 2 characterizes the total
igure B1. R e –M h relations for the �tid = �λ cases with ( p 2 , κλ) = (4, 3)
black), (8,4) (blue), and (16,5) (red). Other parameters are as in Fig. 2 . 

ass of GCs in each cluster formation event, i.e. the strength of
C formation. On the other hand, κ quantifies the strength of tidal
isruption, see Section 2.2.3 . Therefore, the effect of increasing p 2 
an be largely canceled by increasing κ . As a consequence, a wide
ange p 2 can lead to similarly small M by adjusting κ accordingly.
o test this de generac y, we fix p 3 to 0.5 Gyr −1 and try different ( p 2 ,
λ) configurations of (4,3), (8,4), and (16,5) for the �tid = �λ case.
he GC kinematics vary little with different ( p 2 , κλ), while the radial
istributions of the three cases are somewhat different, as illustrated 
n Fig. B1 . We note that the R e –M h relations have similar power-law
ndices in all three cases, whereas the larger κ prescriptions tend to
redict larger ef fecti ve radii R e . This is likely because higher fractions
f inner GCs are disrupted in the higher κ cases. 
Even though the three cases have vastly different p 2 varying from

 to 16, all the predicted R e –M h relations match the observations
ithin the 1- σ confidence level, indicating that all the configurations 

an serve as an appropriate choice for the model. Without loss of
enerality, we select the configuration ( p 2 , p 3 , κλ) = (8, 0.5 Gyr −1 ,
) for the �tid = �λ model throughout the paper. In the �tid = �ρ

ase, we note a similar de generac y and choose ( p 2 , p 3 , κρ) = (8,
.5 Gyr −1 , 5). 
An alternative prescription of tidal field takes into account ficti- 

ious forces: centrifugal, Euler, and Coriolis (see, Renaud, Gieles & 

oily 2011 ). Following Pfeffer et al. ( 2018 ), we can approximate
he ef fecti ve tidal strength as λ1, e ≈ λ1 − 0.5( λ2 + λ3 ), where
1 is the maximum eigenvalue of the tidal tensor (without using 
bsolute values). Similarly to the disruption models in this work, we
an approximate the tidal angular frequency by �2 

tid = κe λ1 , e . After 
alibration, we find the best-fitting parameters to be ( p 2 , p 3 , κe ) = (8,
.5 Gyr −1 , 2). Since the GC properties predicted by the �2 

tid = κe λ1 , e 

odel are consistent with the �tid = �λ case, we do not present the
esults of this model for brevity. 
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