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 B S T R A C T 

amma-ray bursts (GRBs), can be employed as standardized candles, extending the distance ladder beyond Type Ia supernovae
SNe Ia, z = 2.26). We standardize GRBs using the three-dimensional (3D) Fundamental Plane relation (the Dainotti relation)
mong the rest-frame end time of the X-ray plateau emission, its corresponding luminosity, and the peak prompt luminosity.
ombining SNe Ia and GRBs, we constrain �M = 0.299 ± 0.009 assuming a flat � cold dark matter ( � CDM) cosmology
ith and without correcting GRBs for selection biases and redshift evolution. Using a 3D optical Dainotti correlation, we find

his sample is as efficacious in the determination of �M as the X-ray sample. We trimmed our GRB samples to achieve tighter
lanes to simulate additional GRBs. We determined how many GRBs are needed as stand-alone probes to achieve a comparable
recision on �M to the one obtained by SNe Ia only. We reach the same error measurements derived using SNe Ia in 2011
nd 2014 with 142 and 284 simulated optical GRBs, respectively, considering the error bars on the variables halved. These
rror limits will be reached in 2038 and in 2047, respectively. Using a doubled sample (obtained by future machine learning
pproaches allowing a light-curve reconstruction and the estimates of GRB redshifts when z is unknown) compared to the current
ample, with error bars halved we will reach the same precision as SNe Ia in 2011 and 2014, now and in 2026, respectively. If
e consider the current SNe precision, this will be reached with 390 optical GRBs by 2054. 

ey words: gamma-ray burst: general – supernovae: general – cosmological parameters. 

 INTRODUCTION  

he tension on the Hubble constant cosmological parameter between different measurements is at the centre of the debate in the astronomical
nd cosmological communities, and asks for a firm theoretical background at fundamental level (Capozziello, Benetti & Spallicci 2020 ;
ainotti et al. 2021d , 2022b ). Using the Planck satellite to study the cosmic microwave background (CMB) radiation, distance measurements
ave been performed to derive the Hubble constant, H 0 , with a very high precision. The same measurements have been used to derive the matter
ontent of the Uni verse today, �M . Ho we ver, discrepancies in the range between 4 σ and 6 σ in H 0 arise when we compare the measurements of
hese quantities by the CMB, an early Universe probe, with those obtained by Type Ia supernovae (SNe Ia), or other late Universe probes, such
s Cepheids. For years, SNe Ia have been studied and used as standard candles, because their nearly uniform luminosities (absolute magnitude
 � −19; Carroll 2001 ) allow us to use them as reliable cosmological tools. Although they reach higher redshifts than other standard candles

uch as Cepheid variables (Riess et al. 2021 ) and the tip of the red-giant branch (TRGB; Chen, Kumar & Ratra 2017 ; Abbott et al. 2018 ;
eaton & Carnegie-Chicago Hubble Program Team 2018 ; Birrer et al. 2020 ; Efstathiou 2020 ; Freedman et al. 2020 ; Cao, Ryan & Ratra 2021 ;
reedman 2021 ; Khetan et al. 2021 ; Lin & Ishak 2021 ), which are the previous step in the so-called cosmological ladder, the y hav e still only
een observed up to z = 2.26 (Rodney et al. 2015 ). Although there are also many groups that find lo wer H 0 v alues with larger error bars
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rom low- z data that are reasonably consistent with the Planck 2018 value (Chen et al. 2017 ; Abbott et al. 2018 ; Birrer et al. 2020 ; Efstathiou
020 ; Cao et al. 2021 ; Freedman 2021 ; Khetan et al. 2021 ; Lin & Ishak 2021 ), to further try to resolve the issue of the Hubble tension, it is
rucial to develop new cosmological probes at high- z to test cosmological models even further. If we consider an evolutionary trend existing
n the SNe Ia data as it has been shown in Dainotti et al. ( 2021d , 2022b ), we may bridge the gap among these probes by employing additional,
tandardizable candles that can be detected at high redshifts: gamma-ray bursts (GRBs) and possibly quasi-stellar objects (QSOs; Lusso et al.
020 ; Bargiacchi et al. 2021 ). 

For the use of GRBs as cosmological tools, one of the correlations that can be employed to make them a standardizable candle is the
undamental Plane relation between the peak prompt luminosity, the rest-frame end time of the plateau, and its corresponding luminosity. In

his work, we do include a SNe Ia sample, although solely in conjunction with GRBs rather than as a calibrator. In the case of GRBs, there
ave been many attempts to use them as standard candles through a series of relationships among the prompt emission, the main explosion in
-rays, and in its counterpart in X-rays and optical. The caveat in the use of the quasars with the Risaliti–Lusso relation is that selection biases

n this correlation have only been addressed very recently (Dainotti et al. 2022a ). These results show that this correlation is indeed intrinsic to
he QSO physics and it is not due to selection biases, but it undergoes redshift evolution. Thus, these evolutionary effects need to be taken into
ccount for the application of quasars cosmology. Further, there is an ongoing discussion on the use of this correlation at high- z (beyond z =
.5) and its ef fecti veness; for details see Khadka & Ratra ( 2021 , 2022 ). 

Specifically, the application of GRBs as cosmological tools is worthwhile because they have been detected up to redshift z = 9.4
Cucchiara et al. 2011 ), and in principle, they can be detected up to z = 20 (Lamb 2003 ). Other cosmological probes cannot be seen so far
 way; ev en the record-setting quasar J0313 −1806, disco v ered v ery recently, reaches up to only z = 7.642 (Wang et al. 2021 ). Thus, GRBs have
ascinated the astrophysical community ever since their initial detection, and several attempts have been made to use them as cosmological
ools or distance estimators (Amati et al. 2008 ; Capozziello & Izzo 2008 , 2010 ; Kodama et al. 2008 ; Dainotti et al. 2011b ; Demianski et al.
012 , 2017a , b ; Wang et al. 2016 ; Luongo & Muccino 2020 ). Ho we ver, this is a complex task as GRBs are not yet standard candles in the
ense that their observed luminosities vary greatly from one another. This issue regarding the heterogeneity of GRB luminosities remains an
pen topic due to the ambiguous nature of their origins. Certain types of GRBs may originate from the core collapse of a very massive star,
s described by the ‘collapsar model’ (Woosley 1993 ; Paczy ́nski 1998 ; MacFadyen & Woosley 1999 ; MacFadyen, Woosley & Heger 2001 ),
hile other types may arise from the merger of two neutron stars (NSs) in a binary system, or a NS–black hole (BH) system merger. 

Studies are further complicated given the existence of many classes of GRBs. The scientific community began to categorize these objects
y adopting the short and long GRB identifications based on the duration of their prompt emission, T 90 , which indicates the time o v er which
 burst emits 5 per cent –95 per cent of its total measured counts (Mazets et al. 1981 ; Kouveliotou et al. 1993 ; Bromberg et al. 2013 ; L ̈u et al.
014 ). Short GRBs (SGRBs) are defined by T 90 ≤ 2 s, whereas long GRBs (LGRBs) have a T 90 > 2 s. Ho we ver, in recent years, the Neil
ehrels Swift Observatory (hereafter Swift ) has detected a subsequent phase following the prompt emission referred to as the afterglow phase.
urthermore, Swift has seen that 60 per cent of GRB light curves (LCs; Dainotti et al. 2020a , 2021b ) present a plateau in the afterglow emission
ollowed by a power-law (PL) decay phase, as pinpointed by O’Brien & Willingale ( 2007 ), Sakamoto et al. ( 2007 ), Willingale et al. ( 2007 ),
ang et al. ( 2019 ), and Zhao et al. ( 2019 ). Because of these added details, the two large classes of SGRBs and LGRBs have been scrutinized

nto many subclasses: X-ray flashes (XRFs) that have greater X-ray fluence (2–30 keV) than γ -ray fluence (30–400 keV), X-ray rich (XRR)
hat have the ratio of the X-ray fluence o v er the γ -ray fluence ranging to values peculiar to the regular GRBs and the XRFs, GRB-SNe Ib/c
ssociated (GRB-SNe), ultralong GRBs (ULGRBs) with T 90 > 2000 s (Gendre et al. 2013 ; Piro et al. 2014 ; Le v an 2017 ), and short GRBs
ith extended emission (SEEs; Norris & Bonnell 2006 ; Le v an et al. 2007 ; Norris, Gehrels & Scargle 2010 ), which are characterized by mixed

eatures between SGRBs and LGRBs. SEEs are harder in the spectrum than LGRBs, similarly to SGRBs, while intrinsically short (IS) GRBs
ave T 90 /(1 + z) < 2 s. The underlying physical differences between subclasses are still not completely understood, but are hypothesized
o come from different GRB progenitors or diverse environments, such as either a constant interstellar medium (ISM) or a wind medium
Dainotti et al. 2021b ). A more recent interpretation involves the sorting of these subclasses into a different classification system based on
reviously proposed GRB progenitor physics that can be deduced by phenomenological and physical features (Zhang et al. 2006 ); Type I
RBs occur when two compact objects collide, and Type II GRBs emerge from massive star collapse. LGRB, XRF, XRR, GRB-SNe, and
LGRB afterglo w observ ations are usually consistent with the Type II-defined origins. SGRBs, SEEs, and IS GRBs are similarly ascribed
ithin the Type I-defined origins. Still, there are some exceptions that do not allow us to match the two broad classifications exactly; for

nstance, some SGRBs have actually been classified as Type II (Zhang et al. 2009 ). In this study, we use a subclass of a well-defined sample
f Type II GRBs from Swift (with z range of 0.34–5.91) as a cosmological tool through a well-established correlation involving properties of
he plateau emission. 

Regarding the use of GRBs as cosmological tools, before the launch of Swift , Amati et al. ( 2002a ) analysed a small sample of 12 GRBs
ollected by BeppoSAX (Boella et al. 1997 ). They observed correlations that eventually led to their use as cosmological tools through the
wo-dimensional (2D) E p –E iso relation (the so-called Amati relation; Amati et al. 2002b , 2008 ), where E p is the peak of νF ( ν) spectrum, and
 iso is the isotropic energy of the prompt emission. Another prompt correlation has been disco v ered between E p –L p , where L p is the isotropic
eak luminosity of the prompt emission (Yonetoku et al. 2004 ). A similar correlation between the collimated-corrected energy ν and the peak
ux in the spectrum F ν has been determined by Ghirlanda, Ghisellini & Lazzati ( 2004 ) for a slightly larger sample of 40 pre- Swift GRBs.
et another correlation seen shortly thereafter is the Liang & Zhang ( 2005 ) relation between E p and E iso , and the break time of the optical
fterglow LCs, t b . All of these relations are focused on the prompt emission properties. Thus, the y hav e all also been employed in conjunction
ith SNe Ia data in attempts to constrain several cosmological parameters, such as H 0 , �M , and the dark energy parameter w. 
MNRAS 514, 1828–1856 (2022) 
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After the launch of Swift and the addition of many higher quality GRB detections, some of these aforementioned relations suffered increased
catter and became less reliable (Campana et al. 2007 ; Kocevski & Butler 2007 ). A no v elty in the application of GRBs as cosmological tools is
he use of correlations involving the plateau emission phase (Cardone, Capozziello & Dainotti 2009 ; Cardone et al. 2010 ; Dainotti et al. 2013a ;
ostnikov et al. 2014 ). The advantage of using correlations concerning the afterglow phase is that there exists less variability in its features
ompared to those of the prompt emission phase. In this paper, we leverage the plateau emission properties and use a tight multidimensional
elation built using Swift GRBs presenting a plateau with known redshift (Dainotti, Cardone & Capozziello 2008 ). The 2D correlation between
he X-ray rest-frame end time of the plateau T a, X and its corresponding luminosity L a, X defines the so-called Dainotti relation (Dainotti et al.
008 ) that has been used to study and standardize GRB luminosities. This relation has been e xtensiv ely confirmed in the following works:
ainotti et al. ( 2011b , 2013a , 2015b , 2017a ) and Del Vecchio, Dainotti & Ostrowski ( 2016 ). The disco v ery of the 2D Dainotti relation in X-rays
arked the first time an afterglow correlation had been used as a cosmological tool (Cardone et al. 2009 , 2010 ; Dainotti et al. 2013b ; Postnikov

t al. 2014 ). The 2D correlation in X-rays has been interpreted within several models such as the accretion on to the black hole (Cannizzo &
ehrels 2009 , 2010 ), as powered by a fast spinning NS (Rowlinson et al. 2013 , 2014 ; Stratta et al. 2018 ; Hu, Wang & Dai 2021 ; Xu et al. 2021 ;
ao, Khadka & Ratra 2022a ; Cao, Dainotti & Ratra 2022b ; Wang et al. 2022 ) or as a modification of the microphysical parameters models

Leventis, Wijers & van der Horst 2014 ; van Eerten 2014a , b ; Varela et al. 2016 ), which consider jets viewed slightly off-axis (Beniamini et al.
020 ). Although these works deal strictly with the Dainotti relation in X-ray, recently it has been found that there exists also a 2D relationship
n optical wavelengths for a sample of 102 GRBs between the optical rest-frame end time, T OPT , and the optical luminosity at the end of the
lateau, L OPT (Dainotti et al. 2020b ). An extension of the L OPT –T OPT relation, obtained by adding the energy in the prompt emission, E iso ,
as been investigated with a sample of 50 GRBs (Si et al. 2018 ). Other correlations in optical have been discussed, which could possibly be
elated to the optical 2D Dainotti relation (Oates et al. 2015 , 2017 ). This correlation resembles, in its slope, the X-ray Dainotti luminosity–time
elation, and it can be interpreted within the magnetar model as well (Rowlinson et al. 2014 ; Bernardini 2015 ; Gompertz et al. 2015 ; L ̈u et al.
015 ; Rea et al. 2015 ; Knust et al. 2017 ; Rowlinson, Patruno & O’Brien 2017 ; Yu et al. 2017 ; Li et al. 2018 ). Other attempts have been made to
nvestigate the prompt–afterglow correlations between the luminosity at the end of the plateau emission, L a, X , and the peak prompt luminosity
t 1 s ( L peak, X ; Dainotti, Ostrowski & Willingale 2011a ; Dainotti et al. 2015b ). 

Since these disco v eries, a third correlated GRB parameter has been found in X-ray wavelengths, thus defining the now three-dimensional
3D) X-ray Dainotti relation. The addition of the peak luminosity in the prompt emission, L peak, X , yields a significant decrease in the intrinsic
catter with respect to the correspondent 2D correlation. A very precise plane with small intrinsic scatter in a 3D space of (log T ∗a,X , log L a, X ,
og L peak, X ) is thus defined, and is known as the GRB Fundamental Plane . This more reliable X-ray correlation has also been e xtensiv ely
tudied: Dainotti et al. ( 2016 , 2017b , 2020a , 2021b , c ) and Srini v asaragav an et al. ( 2020 ). More precisely, in Dainotti et al. ( 2017b ) it has been
iscussed that the Fundamental Plane relation is a tool for discriminating among several classes of GRBs. In Stratta et al. ( 2018 ), it has been
iven a reliable physical grounding by explaining it within the magnetar model. In Srini v asaragav an et al. ( 2020 ), the X-ray Fundamental
lane has been used as a tool to discriminate among several scenarios of slow or fast cooling in a wind or a constant ISM. It has been shown

hat the GRBs observed by Fermi -Large Area Telescope (LAT) and detailed in the second Fermi GRB catalogue (Ajello et al. 2019 ), which
hows the existence of the plateau in γ -rays, obey this correlation as well (Dainotti et al. 2021c ). 

It is rele v ant here to briefly discuss other attempts in the literature to use both the Amati and Dainotti correlations to probe the ef fecti veness
f constraints by GRBs on other cosmological parameters as well. For example, Khadka & Ratra ( 2020 ) and Khadka et al. ( 2021 ) validate
he Amati relation among six different cosmological models and show that the results obtained by using only GRBs for the constraint of all
f the associated cosmological parameters are consistent with those by baryon acoustic oscillations (BAOs) and SNe Ia. Further, the Dainotti
elation (which this paper employs) has been used by Wang et al. ( 2022 ) to constrain � cold dark matter ( � CDM) model parameters, and
hey present results consistent with the predictions of the flat � CDM model at high GRB redshifts. Hu et al. ( 2021 ) combine a SGRB sample
ith the Wang et al. ( 2022 ) LGRB sample to further constrain both �M and �� using the Dainotti correlation. The results are again consistent
ith a flat � CDM model. More recently, Cao et al. ( 2022a , b ) have combined both Wang et al. ( 2022 ) and Hu et al. ( 2021 ) GRB data sets

longside the Amati-correlated GRBs and the results are in agreement with the Hubble parameter ( H ( z )) and BAO data-derived constraints.
ery recently, the 2D Dainotti relation has also been investigated in radio emission (Levine et al. 2022 ) and it holds with parameters that are
ompatible with X-rays and optical when we correct for selection biases and redshift evolution (Dainotti et al. 2021a ). 

Given this series of papers (nine since 2016 dealing with the X-ray Fundamental Plane relation, the 2D relation in optical, and selection
iases) we believe we are now ready to use the Fundamental Plane in X-rays and optical wavelengths as a cosmological tool. In this paper,
e test, for the first time in this research field, the no v el 3D optical correlation as the extension of the 3D X-ray Fundamental Plane as a

osmological tool, and check its applicability compared to that of the confirmed X-ray relation. The goal is to employ the Fundamental Plane
s a mean to use GRBs in X-rays and optical as standard candles to constrain cosmological quantities, in analogy to what has been done with
Ne Ia. One important question to answer is to what extent the precision on cosmological parameters can be increased by these new probes,
lone and with SNe Ia. 

We show in this paper how the 3D Dainotti correlation has achieved a comparable or smaller intrinsic scatter ( σ int = 0.20 ± 0.06) than
he aforementioned attempts. In particular, we show the most updated scatter for the discussed alternative correlations: σ = 0.41 ± 0.03 is
chieved with the E p –E iso correlation (Amati et al. 2019 ; Cao et al. 2022a ). This scatter comes from the highest data quality compilation, which
s the A118 compilation of Khadka & Ratra ( 2020 ) and Khadka et al. ( 2021 ), based on Wang et al. ( 2016 ) and Fana Dirirsa et al. ( 2019 ). When
he GRB sample is calibrated using H ( z ) data, σ = 0.20 ± 0.01 is achieved using the same correlation. Furthermore, after correcting for the jet
pening angle, the scatter is reported to be 0.09 (Ghirlanda et al. 2007 ). Even more recently, Wang et al. ( 2018 ) found a wider scatter for this
NRAS 514, 1828–1856 (2022) 
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orrelation; a dispersion value is not explicitly given in this report, but the normalization parameter is shown to hold a very high error. Lastly,
or the E p –E iso –t b correlation, a dispersion equal to 0.15 has been found (Wang et al. 2018 ). The main advantage of our method o v er these is
hat the 3D correlation here proposed has already been corrected for both selection biases and redshift evolution (Dainotti et al. 2013a , 2015a ,
020a ; Dainotti & Amati 2018 ) with the reliable statistical Efron & Petrosian ( 1992 ) method. This is contrary to other relationships that have
ot been corrected for such biases; see Collazzi et al. ( 2012 ) on this topic. For re vie ws on the topic of GRB correlation both in the prompt
nd afterglow emission see Grupe et al. ( 2013 ), Dainotti & Del Vecchio ( 2017 ), Dainotti, Del Vecchio & Tarnopolski ( 2018 ), Dainotti ( 2019 ).
ecause our data are corrected in this manner, we can be sure that the correlation is intrinsic to the GRBs’ physics and not due to selection
iases. 

The main goal of this work is to investigate the possibility of using GRBs as cosmological tools, together with SNe Ia as well as alone.
o achieve this goal, we need to have the smallest possible scatter in the GRB Fundamental Plane correlation, given the difficulty in their
tandardization. To this end, we consider the data currently available, and data expected to be gathered in the next years by present and future
eep-space observational missions and campaigns. In Section 2 , we describe the GRB and SNe Ia data samples. In Section 3 , we detail the
alculations regarding �M and its error measurements. In Section 4 , we present the results using the same methodology shown in Section 3 , but
onsidering a GRB sample in optical wavelengths. We perform redshift evolution and bias correction on all GRB samples in Section 5 . We then
escribe the techniques used to simulate additional GRBs in X-ray and in optical to constrain �M with the same precision reached by the SNe
a (Section 6 ), and define the minimum number of GRBs needed to do so at the end of Section 6.1 . In Section 7 , we use this number to define
 timeline in which we will reach it through current and proposed deep-space satellite surv e ys. Finally, in Section 8 , we abridge our findings
nd conclusions. In Appendix A , methods concerning the quantification of numerical Markov chain Monte Carlo (MCMC) sampling error are
iscussed to assert the validity of our results. In Appendix B , we present more specific details on the sample selection process concerning the
ection 6 simulations. 

 SAMPLE  SELECTION  FOR  GRBS  AND  SNE  IA  

e select our X-ray GRB sample from an initial set of all 372 GRBs observed by Swift from 2005 January to 2019 August for which a redshift
as been observed. From these, only those that are successfully fit by the Willingale et al. ( 2007 ) model and showing a reliable plateau are
hosen. This reduces the starting sample to one of 222 GRBs. Furthermore, it is imperative to define phenomenological GRB categories to reach
 reduction in the intrinsic scatter within this 3D relation. Thus, we focus only on the use of LGRBs from which XRFs, XRR, GRB-SNe Ib/c,
nd ULGRBs are remo v ed. This is because Dainotti et al. ( 2016 , 2017b , 2020a ) have shown that the segregation in classes is essential for (a)
inpointing a more homogeneous physical mechanism, and (b) reducing the scatter of the correlation at the minimal point. Alongside these
nitial efforts to find a suitable sample, within the chosen LGRB class we also apply morphological criteria to the GRB LCs. This defines our
nal, ‘platinum’ subsample, as also defined in Dainotti et al. ( 2020a ), hereafter called the PLAT sample. To build this set, we hav e e xcluded

he LCs of all the GRBs with at least one of the following features: 

(i) an ill-defined onset point of the plateau phase, starting from its beginning; 
(ii) an observed time at the end of the plateau, T a , that falls within a large observational gap; 
(iii) a short-duration plateau ( < 500 s); 
(iv) flares at any time during the plateau phase; 
(v) less than five observational points before the plateau phase; 
(vi) an inclination of the plateau larger than 41 ◦, similarly to what has been done in previous papers (Dainotti et al. 2016 , 2017b , 2020a ). 

After these exclusions, a sample of 50 GRBs remains and defines our PLAT sample, with redshift range 0.055 < z < 5. As a consequence
f this choice, the PLAT Fundamental Plane will produce increasingly accurate estimates on cosmological parameters, and in this specific case,
 better constraint on �M . Regarding the optical data, we select all GRBs taken from Dainotti et al. ( 2020b ), the GRB Coordinates Network
GCN), and from pri v ate communication from Liang and Kann presenting both a plateau and a peak in the optical prompt emission (Dainotti
t al. 2022c ). In total, these sources provide a full optical sample of 45 GRBs. Details of the data gathering and the selection and fitting criteria
re presented in Dainotti et al. ( 2020b ). The fitting procedure for determining the presence of the optical plateaus is again determined based on
he phenomenological Willingale et al. ( 2007 ) function, as it was for the X-ray sample. In regards to a similar ‘platinum’ trim for these optical
Cs, we find that the optical sample so far is still too small to allow such scrutiny. Future analysis will allow us to increase the sample size
nd to uniformly use the definition of the platinum sample in optical too. Besides the morphological investigation, we account for biases in
ur selection process and redshift e volutionary ef fects using the Efron & Petrosian ( 1992 ) methodology, as it has been done in previous works
Lloyd 2000 ; Dainotti et al. 2013a , 2015a , 2020a ; Petrosian, Kitanidis & Kocevski 2015 ). 

Regarding the use of other cosmological probes in this study, our SNe Ia sample is the ‘Pantheon sample’ (PS) built by Scolnic et al.
 2018 ); it is an aggregation of 1048 SNe Ia that ranges 0.01 < z < 2.3. It is worth noting that our 50 PLAT GRBs have been selected from a
otal number of 1305 GRBs observed by Swift from 2005 January up to August 2019. In comparison, the PS has been slimmed down from a
otal of 3473 SNe Ia events from the full samples of each surv e y used in the catalogue. The total number of SNe Ia events is almost three times
s large as the total number of GRBs. Our selection of the PLAT sample trims drastically the full data set to the 30 per cent of the total sample,
hile the SNe Ia trim the sample of 4 per cent (Scolnic et al. 2018 ). 
MNRAS 514, 1828–1856 (2022) 



1832 M. G. Dainotti et al. 

M

Table 1. This table shows the p -values for each variable achieved by 
the KS test when comparing the full population of GRBs to the chosen 
sampling distribution. The first row shows the p -values for the X-ray 
GRB parameters, and the second row shows the same for the optical 
GRB parameters. 

GRB sample KS( L a ) KS( L peak ) KS( T ∗a ) KS( z) 

X-ray 0.460 0.068 0.240 0.340 
Optical 0.670 N/A 0.004 0.960 
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.1 Comparison of the X-ray and optical chosen samples versus the full X-ray and optical sample 

e here show how much the properties of the X-ray and optical chosen samples are representative of population of GRBs if we select a sample
omposed of bright GRBs. Bright GRBs o v ercome the problem of selection biases because GRBs with a high luminosity will be less affected
y the Malmquist bias effect (Malmquist 1922 ) induced by the missing population of faint events. Thus, we perform a cut in luminosity
ithin the full X-ray GRB sample so that log L a, X > 46.5 erg s −1 and log L peak, X > 49.5 erg s −1 . These values do not change their respective

uminosity functions significantly ev en if the y are not corrected for selection biases (for details on the computation of the luminosity functions
orrected for selection biases see Dainotti et al. 2013a ; Petrosian et al. 2015 ). To ensure that the PLAT sample is representative of the entire
opulation, we perform the two-sample Kolmogoro v–Smirno v (KS) test distribution of the L a, X , T ∗a,X , and L peak, X of the PLAT sample. The
esulting KS statistic highlights whether or not the two samples come from the same parent distribution. The cuts of log T ∗a,X / s = 1 . 76 and z =
.54 are performed so that we choose the sample to have plateaus that are not too short, so that there is no ambiguity on the existence of the
lateau itself. Indeed, LCs with very small plateaus could be in principle compatible with a simple PL fit. We choose the minimum redshift of
he PLAT sample. We perform the same comparison between the L a, OPT , T ∗a,OPT of the chosen sample versus the full sample of 181 optical LCs
ith plateaus. The cut for the full optical sample is log L a, OPT = 43.5 erg s −1 , log T ∗a,OPT / s = 2 . 41 , and z = 0.34. 

With these cuts in time, luminosity, and redshift, we then perform the KS test on each data set to compare the chosen samples used in
his paper with respect to the full samples from which we have chosen them from. This test was performed on each aforementioned trimmed
ariable set, and the resulting p -values are shown in Table 1 . 

The KS test was performed with a null hypothesis stating that the underlying continuous distributions are identical. Before testing, we
efined the p -value for which we will either reject or fail to reject the null hypothesis: p = 0.05. Table 1 shows that for all cases excluding the
ptical T ∗a,OPT values, we fail to reject the null hypothesis and thus we can conclude that these chosen samples are indeed well representative of
heir populations. It is important to note first that there was no testing performed on the L peak, OPT values for the optical set because our chosen
ptical sample are only those GRBs whose L peak, OPT have been measured, so there are no additional values of L peak, OPT to be compared with.
ur current chosen optical sample is the largest in the literature to date with L peak, OPT measurements. Therefore, in noting the fact that we must

eject the null hypothesis for the optical T ∗a,OPT values, it must be recognized that the optical sample is nevertheless the largest analysed so far
ith current GRB data. In the near future, when additional analysis of new data is available we will be able to increase the chosen optical

ample for the 3D correlation and thus o v ercome the differences in the rest-frame end-time population. We conclude that, with the current
ample, all X-ray variables and optical luminosities are compatible with their respective parent populations. 

 DERIVING  �M WITH  THE  FULL  X-RAY  GRB  SAMPLE  + SNE  IA  DATA  

e begin this analysis using GRB emission data in X-ray in conjunction with SNe Ia data, utilizing the samples defined in the previous section.
e here describe the methodology regarding the analysis of GRBs and SNe Ia to derive �M keeping H 0 fixed at H 0 = 70 km s −1 Mpc −1

nd w = −1. In particular, we present the computations performed to derive this cosmological parameter by using the Fundamental Plane
orrelation built with the PLAT sample, both with and without the correction of selection biases and redshift evolution. First, we describe the
RB Fundamental Plane used in combination with the SNe Ia data. In all subsections below, the driving methodology is the same: we aim

o find the best-fitting 3D coefficients of the Fundamental Plane together with the best-fitting value for �M using a Bayesian approach. We
ow start by describing the equation of the Fundamental Plane for a given fixed cosmological model. Later in our calculations, we vary �M

ogether with the other Fundamental Plane variables. In order to build the likelihood pertaining to the GRBs, we start from the 3D Dainotti
orrelation which is described by the following equation: 

log 10 L a = a log 10 T 
∗

a + b log 10 L peak + c, (1) 

here c is the normalization parameter, and a and b are the best-fitting scaling parameters for the PLAT sample, related to log 10 T 
∗

a and
og 10 L peak , respectively. The equation above is general and is used for the other planes described in the paper. We here use different notations
or the parameters according to the sample used, such as in X-rays or in optical or the full sample or trimmed. Here, T ∗a,X refers to the X-ray
est-frame end time of the plateau, and L a, X refers to its corresponding luminosity. We retrieve these parameters L peak, X and L a, X by selecting
irectly from our sample LCs once they have been fit to the phenomenological Willingale et al. ( 2007 ) model. This model’s functional form for
 LC contains the parameters of the fluxes and times at the end of the plateau emission that do not depend on any assumption of a cosmological
odel nor SNe Ia calibration. 
NRAS 514, 1828–1856 (2022) 
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Bayesian, rather than frequentist, methods are utilized to derive precise estimates of the resulting Fundamental Plane parametric values.
pecifically, we fit and compute all following parameters using the D’Agostini ( 2005 ) method because it takes into account all variable
ncertainties, both statistical and systematic, and it directly infers the intrinsic scatter. We here write a generic function for the likelihood
hat can be applied to any plane (X-rays, optical for the full sample and for a trimmed one). The fitting algorithm is defined by the following
unction of log-likelihood: 

 ( a, b, c, σint ) = −1 

2 

(
ln 
(
σ 2 

int + b 2 log 2 10 

(
L peak err 

) + a 2 log 2 10 

(
T ∗a err 

) + log 2 10 ( L a err ) 
))

−1 

2 

(
log 10 

(
L a,th 

) − log 10 ( L a ) 
)2 

σ 2 
int + b 2 log 2 10 

(
L peak err 

) + a 2 log 2 10 

(
T ∗a err 

) + log 2 10 ( L a err ) 
, (2) 

here T ∗a err , L peak err , and L a err are the errors on the rest-frame time corresponding to the end of the plateau, the peak luminosity of the emission,
nd the luminosity at the end of the plateau, respectively, and L a, th is the theoretically computed luminosity at the end of the plateau as shown
n equation ( 1 ); σ int is the intrinsic scatter on the plane that depends on an unknown source of scatter. To calculate a , b , c , and σ int , we make use
f MCMC sampling. We use the PYTHON MCMC sampler COBAYA (Torrado & Lewis 2019 , 2021 ) to allow the plane parameters and the scatter
f the plane to vary together. This is a crucial point in our methodology, since it a v oids the so-called circularity problem. We also define very
easonable priors, so that we do not risk to incur in parameters that are not physically possible and not pertinent to the physical parameter space
f the Fundamental Plane relation. The results we have obtained by using this method on the PLAT sample (denoted by ‘X, PLAT’ subscripts)
re as follows: a X, PLAT = −0.88 ± 0.12, b X, PLAT = 0.55 ± 0.12, and c X, PLAT = 22.56 ± 6.37. The only assumption we make to derive these
alues is that the Fundamental Plane exists and is reliable along with its parameters. As computed for this plane, σint X,PLAT = 0 . 36 ± 0 . 04.
hese results are visualized in Fig. 1 (upper left). 

To use these relations for computing the best-fitting value for �M , we begin by comparing the observed distance modulus, μobs, GRB , to
he theoretical μtheory value. We first define the theoretical distance modulus: 

theory = 5 × log 10 d L ( z, H 0 , �M ) + 25 , (3) 

here d L is the luminosity distance, and z is redshift. Using a flat � CDM model, we define 

H z 

H 0 
= 

√ 

�r (1 + z) 4 + �M (1 + z) 3 + �k (1 + z) 2 + �� , (4) 

here �r is the radiation energy density, the curvature of the Universe �k is considered flat, and H 0 = 70 km s −1 Mpc −1 . We choose to neglect

r in our computations because the Universe seems to be closely represented by �r = 0. Finally, we define the theoretical luminosity distance
s 

 L ( z, H 0 , �M ) = (1 + z) 
c 

H 0 

∫ z 

0 

d z ′ √ 

�M (1 + z ′ ) 3 + �� 

, (5) 

here the dark energy density �� = 1 − �M given this flat cosmological model in the Friedmann–Lemaitre–Robertson–Walker metric. Using
his definition of luminosity distance, we hereby define the likelihood for the full GRB sample. We compare equation ( 3 ) with the observed
istance modulus that we can derive from the Fundamental Plane correlation in equation ( 1 ), by isolating the luminosity distance in the
ollowing way: 

log 10 ( d L ) = 

a log 10 T 
∗

a 

2(1 − b) 
+ 

b ( log 10 F peak + log 10 K peak ) 

2(1 − b) 
+ 

( b − 1) log 10 (4 π) + c 

2(1 − b) 
− log 10 F a + log 10 K a 

2(1 − b) 
, (6) 

here K peak and K a are the K -corrections for cosmic expansion (Bloom, Frail & Sari 2001 ) computed for the prompt and the afterglow,
espectively. This relation was achieved by defining L a as 4 πd 2 L F a , with F a as the flux at T ∗a , and defining L peak as 4 πd 2 L F peak , with F peak as the
eak flux in the prompt emission. Using now the definition of the distance modulus and the new variables definitions: a 1 = a /(2(1 − b )); b 1 =
 /(2(1 − b )); c 1 = (( b − 1)log 10 (4 π) + C )/(2(1 − b )); d 1 = −1/(2(1 − b )); F peak, cor = F peak K peak ; and F a, cor = F a K a , we obtain 

obs, GRB = 5 ( a 1 log 10 ( T 
∗

a ) + b 1 log 10 ( F peak,cor ) + c 1 + d 1 log 10 ( F a,cor )) + 25 . (7) 

his allows us to define the following likelihood that has the advantage to use the distance modulus directly, as the one related to SNe Ia does: 

 GRB = 

∑ 

i 

(
ln 

(
1 √ 

2 πσμ,i 

)
− 1 

2 

(
μth,GRB, i − μobs,GRB, i 

σμ,i 

)2 )
, (8) 

here σμ, i is the error on the observed distance moduli. The observed distance moduli obtained by the GRBs through the variables pertinent
o the Fundamental Plane is compared with the theoretical GRB distance moduli. Specifically, the observed quantities of the GRBs do not
epend on cosmology, since they are the observed flux, F a , its rest-frame time at the end of the plateau emission, T ∗a , and the peak prompt
ux, F peak . The parameters a 1 , b 1 , and c 1 are defined from a , b , and c that are left free to vary and converge to the theoretical distance of the
RBs. They are completely independent from the distance of the SNe Ia. We calculate the theoretical distance within large priors of 0 < �M 

 1. The parameters that minimize the difference between the theoretical and observational moduli then provide the most probable values of

M . We fix reasonable priors of the a , b , and c and implicitly in a 1 , b 1 , and c 1 so that the parameters of the Fundamental Plane remain roughly
MNRAS 514, 1828–1856 (2022) 
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Figure 1. This figure compares the trimmed platinum sample (PLATtrim) o v er PLAT when both are paired with SNe Ia data. The upper panels show the 
Fundamental Plane fitting for the full GRB PLAT sample (upper left) and the PLATtrim (upper right) calculated with COBAYA . The bottom panels show the 
deri v ation of the �M correspondent to the upper panels by the SNe Ia combined with both the full PLAT and PLATtrim samples. Each plot shows the 2D 

posterior contours. 
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onstant in ranges compatible with the expected underlying physics of the correlation. By keeping these reasonable ranges the reliability of
he plane is thus preserved. In this regard, GRBs through the Fundamental Plane relation can be considered standardizable candles because
he parameters of the correlations are left to vary within physical allowed ranges. For example, we cannot allow the a parameter to be greater
han zero, because it would then imply a different physics and as a consequence the energy reservoir of the plateau would not be constant (see
he magnetar model for the e v aluation of this parameter being closer to −1; Stratta et al. 2018 ). Similarly, we cannot allow the b parameters
o be less than zero. This would not respect the physical observations that the more kinetic energy is transferred in the prompt, the more to the
fterglow as it is demonstrated in Dainotti et al. ( 2011c , 2015b ). This assumption is supported by theoretical modelling (van Eerten 2014a , b ).

We then also compare μtheory to the observed distance modulus of the SNe Ia sample, μobs, SNe , and finally compute the likelihood for the
ull sample. We add SNe Ia by allowing the total likelihood to encompass all samples: 

 Tot = L GRB + L SNe , (9) 
NRAS 514, 1828–1856 (2022) 
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Table 2. The first column refers to the sample used, 
while the second column refers to the results of 
�M . Results are obtained without the correction for 
evolution. The errors reported in this table are the 
corresponding to the 68 per cent confidence limit. 

Sample �M 

SNe 0.299 ± 0.008 
PLAT + SNe Ia 0.299 ± 0.009 
PLATtrim + SNe Ia 0.299 ± 0.009 
OPT + SNe 0.299 ± 0.009 
OPTtrim + SNe Ia 0.299 ± 0.009 

Table 3. The table shows the coefficient of evolutionary func- 
tions for the luminosity at the end of the plateau emission, L a , its 
correspondent rest frame, T ∗a , and the peak prompt luminosity, 
L peak , for both X-ray (first row) and optical (second row). 

Sample kL a kT ∗a kL peak 

X-ray 2.42 ± 0.58 −1.25 ± 0.28 2.24 ± 0.30 
Optical 3.96 ± 0.43 −2.11 ± 0.49 3.10 ± 1.60 
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here L SNe is the minimizing functions defined canonically for the SNe Ia sample: 

 = −1 

2 

∑ 

i 

(
μi 

obs − μi 
theory 

)2 

(
εi 
μobs 

)2 . (10) 

e generalize the abo v e equation into 

 = −1 

2 
	μT C 

−1 	μ, (11) 

here C is the covariance matrix, including both statistical uncertainties diagonally and systematic contributions in the opposed diagonal. 
We no w allo w �M to v ary together with the Fundamental Plane parameters with a uniform prior in the interval 0 ≤ �M ≤ 1. When we

se this GRB sample in conjunction with the SNe Ia, we observe an �M = 0.299 ± 0.009. Conversely, previous results for this cosmological
arameter, probing only with SNe Ia data, yield an �M = 0.298 ± 0.008. Slightly increased error bars on �M exist due to the addition of the
rrors carried out from the GRB sample. Ho we ver, we sho w in the follo wing sections ho w the sample can be resized so that we can reduce the
RB scatter to produce the smallest error bars on �M yet when we consider evolution (see Section 5 ). 

.1 Deriving �M with the trimmed X-ray GRB sample + SNe Ia 

o make the errors on the parameters computed in this analysis as small as possible, we now look for the tightest Fundamental Plane correlation
y considering a subset of the X-ray PLAT sample composed of only the GRBs whose plane has an intrinsic scatter near zero. The goal is
o reduce the error bars on �M from what was computed before with SNe Ia + PLAT. This is done by calculating the closest GRBs to the
-ray Fundamental Plane. We choose this number to be 10 GRBs from the full PLAT sample, and hereby refer to this subsample as the

rimmed platinum sample (PLATtrim). These 10 GRBs constitute a large enough sample to define a plane, yet still give a σint X, trim near zero.
y increasing the sample, σint X, trim also increases. In these calculations, a near-zero intrinsic scatter is one on the order of 10 −2 or smaller. In

his section, we consider this new subsample of the X-ray GRBs using GRBs + SNe Ia to again derive �M . 
The results for this new plane fitting of the PLATtrim sample are as follows: a X, trim = −0.89 ± 0.08, b X, trim = 0.54 ± 0.005, c X, trim =

0.14 ± 4.05, and σint X, trim = 0 . 05 ± 0 . 05. These results are seen in Fig. 1 (upper right). By the trimming of the PLAT sample, we use this newly
efined Fundamental Plane for which a smaller intrinsic scatter exists in comparison to the full PLAT sample. Again, we perform cosmological
omputation together with SNe Ia data, and we obtain �M = 0.299 ± 0.009. It should be noted that the errors on the uncertainties on �M 

etermined by the MCMC calculations are one order of magnitude less than the uncertainties on �M itself; for details, see Appendix A . 
The full compilation of results is compared in Table 2 . With the inclusion of the SNe Ia, we do not yet see an impro v ement in the results by

he combination of probes by trimming the PLAT sample down to the 10 GRBs closest to the plane. The table makes clear that the PLATtrim
ample has yet to be more efficacious in the reduction of the o v erall scatter, and consequently, in the error on �M . We reach the same precision
n �M as the one obtained by the SNe Ia when the evolutionary parameters shown in Table 3 are considered (see Table 4 ). In Section 6 , the
rue effects of the PLATtrim sample become visible and efficacious when we run simulations; the precise plane that the PLATtrim sample
efine is used successfully as a base for simulating additional GRBs. 

As a final note, we must also stress that there is no calibration of the PLAT sample related to the SNe Ia, but we do fix the flat � CDM
odel to perform a comparison with the uncertainties derived with SNe Ia. Ho we ver, it is important to note that the goal of this paper is to
MNRAS 514, 1828–1856 (2022) 
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Table 4. The first column shows the evolution- 
corrected (EV) sample, while the second column 
shows the correspondent values of �M . The errors 
reported here are variances, corresponding to the 
68 per cent confidence limit. 

Sample �M 

PLAT + SNe Ia (EV) 0.299 ± 0.009 
PLATtrim + SNe Ia (EV) 0.299 ± 0.008 
OPT + SNe Ia (EV) 0.299 ± 0.008 
OPTtrim + SNe Ia (EV) 0.299 ± 0.009 
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xplore the reliability of the Fundamental Plane as a cosmological tool in comparison with SNe Ia, and not comparing different cosmological
odels. We additionally point out that this procedure of trimming the sample is meant to show how many GRBs should be used in the future

nce more data are available. This is the reason why the trimmed sample is the basis of our MCMC simulations and will inform us on how
any of these GRBs close to the Fundamental Plane need to be chosen in order to have similar precision on the �M parameter compared to

he SNe Ia. 

 EXPLORING  THE  EFFICACY  OF  DERIVING  �M WITH  OPTICAL  GRB  SAMPLES  + SNE  IA  DATA  

n this section, we shift from the use of the X-ray GRB emission data to test the reliability of optical GRB data. Similarly to the methodology
sed in the case of the X-ray Fundamental Plane, we calculate the number of GRBs closest to the optical plane that hold the intrinsic scatter
o near-zero values. We investigate the 3D Dainotti relation at optical wavelengths to see how tight the plane is for a sample of 45 GRBs. The
bility of this subsample to infer the parameters is then compared to that of the entire optical sample. 

Once again using the D’Agostini methodology, we compute the 3D Fundamental Plane parameters and the correspondent intrinsic
catter of the full optical GRB sample. The results are the following: a OPT = −0.87 ± 0.11, b OPT = 0.37 ± 0.08, c OPT = 31.46 ± 4.07,
nd σint OPT = 0 . 53 ± 0 . 04, and are shown in Fig. 2 (upper left). Combining the full optical sample (OPT) with SNe Ia data, we obtain �M =
.299 ± 0.009 (Fig. 2 , lower left). This analysis has been performed fixing the value of the parameter c OPT = 30 following the same strategy of
mati et al. ( 2019 ). This result is no v el and beneficial; the error is on par with that obtained by X-ray GRB samples. This means that the use
f optical GRB samples may pro v e just as or perhaps more efficacious in constraining cosmological parameters with a future larger sample.
his leads us to perform a similar trim on this optical data as to the one performed on the X-ray sample in an attempt to better understand the
ehaviour of the optical data. 

We find and consider only the optical GRBs closest to the plane with the aim to produce a sample with near-zero intrinsic scatter, hereby
eferred to as the optical trimmed sample (OPTtrim). We determine through testing that the maximum number of optical GRBs that maintain
his level of accuracy is 10, as it was also in X-ray, and the best-fitting results are as follows: a OPT, trim = −0.84 ± 0.07, b OPT, trim = 0.40 ± 0.09,
 OPT, trim = 29.87 ± 4.12, and σint OPT,trim = 0 . 11 ± 0 . 08 (Fig. 2 , upper right). 

Again, σint OPT,trim peaks around zero. We again include SNe Ia, resulting in an �M = 0.299 ± 0.009 (Fig. 2 , lower right). We here note in
able 2 that the error bars derived by the optical emission data are comparable with that of the X-ray sample, asserting that optical GRB data
an be just as serviceable as X-ray ones in constraining cosmological parameters. Therefore, we continue the computations considering both
avelengths independently. 

 CONSIDERING  REDSHIFT  EVOLUTION  CORRECTION  

n this section, we perform the same analysis on all the combinations of samples studied in the previous sections, although now we account for
edshift evolutionary effects. Because we deal with astronomical objects observed at large distances ( z ≥ 0.033), and because there also exists
 dependence between GRB luminosity and redshift, we are aware of the data truncation due to the Malmquist bias and the Eddington effect
Eddington 1913 ; Malmquist 1922 ). To correct for these, we employ techniques as described by the Efron & Petrosian ( 1992 ) methodology
n the full sample of 222 GRBs presenting X-ray plateaus. The Efron–Petrosian (EP) method allows us to o v ercome the problems of redshift
volution and selection biases by introducing a modification of the Kendall rank correlation coefficient. This coefficient can be written in the
ollowing way: 

˜ = 

n c − n d 
1 
2 n ( n − 1) 

, (12) 

here n c is the number concordant and n d is the number discordant. The EP test statistic is a similar non-parametric test, but the main
mpro v ement it makes upon Kendall’s (Kendall 1938 ) is that it can work with both one-sided and doubly truncated data. It is defined as
ollows: 

= 

∑ 

i ( R i − E i ) √ ∑ 

i V i 

, (13) 
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Figure 2. The upper panels show the Fundamental Plane fitting for the full GRB OPT sample (upper left) and the OPTtrim (upper right) calculated with 
COBAYA . The bottom panels sho w the deri v ation of the �M correspondent to the upper panels by the SNe Ia combined with both the full optical and the trimmed 
optical sample. Each plot shows the 2D posterior contours. 
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here E is the expectation value, V is the variance, and R is rank. In order to use the EP method, we need to define the associated sets for
hich we will calculate the τ values. On the other hand, the associated sets are defined given a limiting value of a particular distribution. In
ur case we have a three-variate distribution among L peak , T ∗a , and L a . Thus, we define limiting fluxes for L peak, X and L a, X in X-ray as 1.54 ×
0 −8 and 1.5 × 10 −12 erg s −1 , respectively, and for L peak, OPT and L a, OPT in the optical as 1.40 × 10 −12 and 1.50 × 10 −14 erg s −1 , respectively.
hese limits have been chosen in a conserv ati ve way so that no more than the 10 per cent of the total sample for each physical parameter is cut
ia the EP method. This allows us to compute the uncertainty of the e volutionary ef fects without af fecting the statistical significance of the
amples. Simulations in Dainotti et al. ( 2013b ) have shown the reliability of this method. The distribution of the limiting fluxes in X-ray and
ptical is shown in the two uppermost plots of Figs 3 and 4 , respectively; the limiting times in X-rays and optical are shown in the lower plots
f the same figures. Once we correct for redshift evolution, we define new variables for GRB luminosities and times. These are the de-evolved
ariables, indicated with 

′ 
. We define L 

′ = L X / (1 + z ) g( z) , where g ( z ) = (1 + z) k is the function that mimics the redshift evolution for the
-ray luminosity at the end of the plateau emission. The same procedure has been applied for the peak luminosity in the prompt emission
MNRAS 514, 1828–1856 (2022) 
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Figure 3. This figure shows how the limiting luminosities and the Kendall τ versus the slope of the evolutionary functions for the full X-ray GRB sample. 
The panels show the evolution of L a, X , T ∗a,X , and L peak, X versus redshift. The limiting line is plotted in red. The right-hand panels show the evolution of τ . The 
middle dashed line is τ = 0, and the dashed lines are the defined bounds of + 1 σ and −1 σ , while the red line corresponds to the best-fitting value of τ . 

a  

f  

s

s  

s
 

−  

w  

σ  

f  

a  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/514/2/1828/6607504 by U
niversirty of M

ichigan user on 02 N
ovem

ber 2022
nd for the time at the end of the prompt emission. The value of the exponent k is determined by the EP method (right-hand panels of Fig. 3
or X-rays and Fig. 4 for optical). With the new evolutionary functions computed, we can then write the corrected by redshift evolution and
election bias Fundamental Plane relation: 

log 10 

(
L a,theory 

) = c + a 
(

log 10 

(
T ∗a 

) − log 10 

(
( 1 + z ) k T ∗a 

))
+ b 

(
log 10 

(
L peak 

) − log 10 

(
( 1 + z ) k L peak 

))
+ log 10 

(
( 1 + z ) k L a 

)
, (14) 

o that L 

′ 
a , L 

′ 
peak , and T ∗

′ 
a become independent of redshift. Here, the k -corrections derived by the EP methodology for both X-ray and optical

amples are defined in Table 3 . 
The Fundamental Plane fitting for the full OPT GRB sample, including evolution correction, produces the following parameters: a OPT, ev =

0.74 ± 0.11, b OPT, ev = 0.22 ± 0.08, c OPT, ev = 37.52 ± 3.78, and σint OPT,ev = 0 . 41 ± 0 . 06. When we consider the optical trimmed sample
ith evolution the parameters are the following: a OPT, trim, ev = −0.77 ± 0.15, b OPT, trim, ev = 0.22 ± 0.15, c OPT, trim, ev = 37.61 ± 2.97, and

int OPT,trim,ev = 0 . 13 ± 0 . 12. Furthermore, we compute the plane fitting for the full X-ray GRB sample with evolution corrections and find the
ollowing: a X, PLAT, ev = −0.85 ± 0.12, b X, PLAT, ev = 0.48 ± 0.12, c X, PLAT, ev = 25.64 ± 6.55, and σint X,PLAT,ev = 0 . 20 ± 0 . 06. The X-rays trimmed
nd corrected with evolution has the following parameters: a X, trim, ev = −0.79 ± 0.17, b X, trim, ev = 0.49 ± 0.19, c X, trim, ev = 25.29 ± 9.87, and
NRAS 514, 1828–1856 (2022) 
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Figure 4. This figure shows how the limiting luminosities and the Kendall τ versus the slope of the evolutionary functions for the full optical GRB sample. 
The panels show the evolution of L a, OPT , T ∗a,OPT , and L peak, OPT versus redshift. The limiting line is plotted in red. The right-hand panels show the evolution of 
τ . The middle dashed line is τ = 0, and the dashed lines are the defined bounds of + 1 σ and −1 σ , while the red line corresponds to the best-fitting value of τ . 
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int X,trim,ev = 0 . 13 ± 0 . 09. The percentage decrease regarding σint X,trim,ev for the OPT sample considering the evolutionary effects is 68 per cent ,
hile for the X-ray one is 35 per cent . It is interesting to note that the coefficient of the X-ray planes and the scatter results shown here, for
hich the most updated sample has been used, are within the σ int = 0.22 ± 0.10 presented in Dainotti et al. ( 2020a ). 

All evolution-corrected results are displayed in Table 4 for comparison and some of the results for the full platinum and the optical
amples and for their respective trimmed samples are shown in Fig. 5 . We note that they are very similar to the ones without correction; this
ould be due to the fact that the results with evolution carry a larger uncertainty on the variables, and this may lead to comparable results. More
RB data must be gathered so that the corrections for selection biases and redshift evolution carry less uncertainty. Thus, in the following

ections when we consider the simulated data, we limit ourselves to the non-evolutionary cases. 

 SIMULATING  GRBS  FROM  THE  FULL  SAMPLE  FUNDAMENTAL  PLANES  

e now use the 3D fundamental planes in X-ray as defined by the 50 GRBs of the PLAT sample, and in optical (all 45 GRBs) as a base for
imulating GRB events. We first perform these simulations to compute the number of GRBs in X-rays needed to achieve closed contours around
he mean value computed for �M , without requiring any upper limit on the error. We begin by simulating Gaussian distributions resembling the
MNRAS 514, 1828–1856 (2022) 
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Figure 5. The upper panels show the Fundamental Plane fitting for the full GRB PLAT sample (upper left) and the OPT sample (upper right) with evolution 
performed contemporaneously with SNe Ia to derive the �M values. The bottom panels show the same derivation of �M with both the PLAT and optical trimmed 
samples (left- and right-hand panel, respectively). Each plot shows the 2D posterior contours and the 1D histograms for each parameter. 
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bserved T ∗a,X , L a, X , and L peak, X , and the K -correction distributions from all GRBs belonging to the PLAT X-ray Fundamental Plane. The errors
n all of these variables have also been simulated in this way. We run this data through PYTHON ’s MCMC sampler EMCEE (F oreman-Macke y
t al. 2013 ) to randomly simulate different numbers of GRBs. The EMCEE sampler has been chosen for simulation production due to its ease of
arallelization o v er COBAYA . We find that only 150 GRBs are needed to pro vide a reasonable �M v alue of 0.387 ± 0.473, as sho wn in bottom
eft of Fig. 6 . Ho we ver, the error bars on this value are undesirable; much greater accuracy has been achieved by using SNe Ia as sole probes.

e define three desired error limits as those determined by SNe Ia data as a stand-alone standard candle: Conley et al. ( 2011 ) determined a
ymmetrized error of σ = 0.10 from 472 SNe Ia; Betoule et al. ( 2014 ) obtained a standard deviation of σ = 0.042 from 740 SNe Ia; and Scolnic
t al. ( 2018 ) obtained a standard deviation of σ = 0.022 from 1048 SNe Ia. The goal with simulating differently trimmed data is to reach a
alue for the error that is less than or equal to these error limits using GRBs as a stand-alone probe. We then use the number of GRBs needed
o achieve this to infer the number of years needed, given present and future deep-space surv e y missions, to make this constraint possible.

e start by choosing the errors found by Conley et al. ( 2011 ), because it has a sample size of SNe Ia more comparable to our sample size of
22 GRBs than other, more recent studies. Thus, we explore methods of reaching this error limit first by increasing the number of simulated
NRAS 514, 1828–1856 (2022) 
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Figure 6. This figure shows the progression of closing contours around an �M value for 50 (top left), 100 (top right), 150 (bottom left), and 200 (bottom right) 
GRBs simulated off the PLAT Fundamental Plane. 
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RBs off of the full PLAT sample, and then in the following subsections, trimming our PLAT sample to reach SNe Ia accuracies and define
he smallest error on �M yet. 

Using all 50 PLAT GRBs in X-ray as the simulation base first, we test for a large range of simulated GRBs. We ran multiple simulations
o see what it is the optimal number of GRBs simulated to increase the precision on our cosmological computation until the desired error
imit is reached. We note the convergence of the �M parameter to a value about 0.3 (see Fig. 7 a), as expected. Ho we ver, we also change the
rrors on the simulated L a, X , T ∗a,X , and L peak, X to test simulated samples of varying quality. The first simulations were run by considering the
riginal errors, and then halving those, resulting in increasingly better quality samples. As predicted, the samples simulated from the GRBs
ith halved error bars show a convergence to an �M value with smaller standard deviations, see Fig. 7 (b), than those with undivided errors, as

een in Fig. 7 (a). In comparison to the previously stated �M value for a sample of 150 simulated n = 1 GRBs, for the same-sized sample of
50 simulated n = 2 GRBs, we now achieve �M = 0.416 ± 0.177. This represents a near 63 per cent decrease on the error in �M . 

We constructed a probability map on the value of �M as computed by the simulations. This was created by taking the Monte Carlo
hains and computing the probability density function (PDF) on each simulation, and then converting this density to a probability. The PDFs
ere then linearly interpolated in the 3D space of the number of GRBs, �M , and the probability density from each simulation run to create a
robability map. As is evident from Fig. 7 (c), we see no highly probabilistic closed contours for a number of GRBs less than 2100. Ho we ver,
MNRAS 514, 1828–1856 (2022) 
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Figure 7. Upper left-hand panel: the mean values of �M versus the numbers of GRBs obeying the X-ray Fundamental Plane to converge upon a value of �M 

using GRBs as the stand-alone probe by considering the observed error bars. Upper right-hand panel: the same as the left-hand panel, but considering the error 
bars divided by 2. The lower left- and right-hand panels show the corresponding probability distributions of the upper left- and right-hand panels, respectively. 
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f we are to focus our attention only on achieving the desired precision of Conley et al. ( 2011 ) of σ = 0.10, we reach this goal considering
89 GRBs. This error limit is represented by the bright green line in the left-hand panel of Fig. 8 . Thus, we can focus on the plots that show
he error on �M versus the correspondent number of simulated GRBs rather than �M itself. 789 GRBs are needed to be able to use them as
tand-alone standard candles when the errors that enter the likelihood remain undivided. Further, the grey line in the left-hand panel of Fig. 8
hows that the Betoule et al. ( 2014 ) limit is reached for a minimum of 2653 simulated GRBs. The Scolnic et al. ( 2018 ) limit shown by the
lack line in Fig. 8 is not reached if we limit to a maximum number of 3000 GRBs. 

Considering now the predictions if the errors are divided by 2 (Fig. 7 b), we build a new probability map and observe the minimum width
n the distribution, corresponding to the probability peak, beginning at around 2100 GRBs (Fig. 7 d). We here stress that the abo v e-mentioned
idth of the distribution is correlated with the normalized standard deviation we see in the upper panels of Fig. 7 . It should be noted that
DFs for both maps in the lower two panels of Fig. 7 are normalized with respect only to the simulations used in each respective map. What

s important in the comparison between the two maps is the spread of the PDF for the number of GRBs that give the most probabilistic value
or �M . For the map of Fig. 7 (c) ( n = 1), the standard deviation on the normalized PDF of �M is calculated as σ pdf = 0.037, whereas the
ap of Fig. 7 (d) ( n = 2), it is correspondent to σ pdf = 0.022. When the errors are halved, the �M values present a smaller uncertainty, for
 smaller number of simulated GRBs. Although this result is e xpected, we nev ertheless perform simulations to investigate to which extent
he number of GRBs needed to achieve the desired uncertainty on �M is reduced as much as possible without the need of a relatively great
NRAS 514, 1828–1856 (2022) 
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Figure 8. Left- and right-hand panels show the error plots for undivided and halved error bars, respectively, for the PLAT sample. The green, grey, and black 
lines identify the Conley et al. ( 2011 ), Betoule et al. ( 2014 ), and Scolnic et al. ( 2018 ) errors on �M , respectively. The blue line in the right-hand panel denotes a 
polynomial fitting function used for the extrapolation. 
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ncrease in the initial number of GRBs observ ed. Moreo v er, it is also important to note from Fig. 7 that the probability increases and, thus, the
tandard deviation decreases consistently for �M values approaching 0.30. Specifically, for undivided errors, the most probable value is for

M = 0.308 ± 0.042 at 2700 GRBs, and for halved errors, �M = 0.300 ± 0.027 at 2600 GRBs. Furthermore and as expected, as the errors
hat enter the likelihood decrease, the number of GRBs needed to reach an �M with the required accuracy also decreases. We again reco v er
 lower number of GRBs needed if we look only to the number that falls under the σ = 0.10 error cut-off. All of the simulations we ran for
alved errors had symmetrized errors below this error limit (see Fig. 8 ). As for the Betoule et al. ( 2014 ) limit, Fig. 8 shows that we reach a
= 0.042 for 1452 GRBs. We here stress that in Fig. 8 , as in the following ones with the exception of the figures in the appendices, we obtain

he limiting numbers of GRBs by extrapolation the polynomial fitting functions that are of various order from order fourth to order seventh.
oreo v er, the Scolnic et al. ( 2018 ) limit is reached with 2724 simulated GRBs in X-ray. These studies have been completed for a number of
RB samples of varying quality as defined by the division of the errors that enter the likelihood equation; we present only the two most likely

cenarios of unchanged errors and halved ones both for conciseness and probability of utility. It is reasonable to assume a sample this large of
RBs with halved error bars can be built in a relatively small amount of time due to the recent and rapid progression of efforts in the statistical

econstruction of GRB LCs, proving significant error bar reductions (Dainotti et al. 2022c ). Dainotti et al. ( 2022c ) tested that with the current
ample a mean error reduction of 47 . 5 per cent is viable with LC reconstruction (LCR) when we consider the error bars on the time at the end
f the plateau, T a , and its correspondent flux. This is why we consider the scenario with confidence in this paper. 

We now perform the same simulations and analysis on the full optical GRB sample. In Fig. 9 , the upper panels show the convergence
lots, the lower panels show the probability maps, and Fig. 10 shows for which number of simulated optical GRBs we reach the Conley et al.
 2011 ), Betoule et al. ( 2014 ), and Scolnic et al. ( 2018 ) limits. These plots are surprising yet beneficial; despite a smaller sample size and
ncreased σ int on the optical Fundamental Plane, simulations using the full optical sample of 45 GRBs as a base produce clearly and abundantly

ore precise values for �M than what the X-ray sample achieves. In fact, the optical sample with errors undivided trumps the X-ray sample
ith halved errors. The reason for this behaviour is still unclear and additional investigation alongside a larger sample is needed for a deeper

xplanation. The comparisons between the two wavelengths’ results are shown in Table 5 . The optical sample pro v es itself to be 47 . 6 per cent
ore precise than the X-ray sample when we consider n = 1 and 44 . 4 per cent for n = 2 for 2700 simulated GRBs. Similarly, if we consider

he cases with evolution the optical sample has a decrease in the scatter in determining �M of 44 . 2 per cent compared to the X-ray sample. 
Furthermore, we find out from Fig. 10 that we only require 1031 optical GRBs to reach the Betoule et al. ( 2014 ) precision limit (left-hand

anel), and 284 when errors are halved (right-hand panel). The Scolnic et al. ( 2018 ) limit is reached with 2718 and with 1086 GRBs for the
ndivided errors and divided by two errors scenarios, respectively (left- and right-hand panel of Fig. 10 ). We have extended this analysis by
erforming redshift evolution and selection bias corrections on the simulated GRBs in both wavelengths as was done in Section 5 . Ho we ver,
s seen in Table 5 , this correction results in less precise deri v ations of �M . The behaviour of the simulation results in general becomes less
niform in terms of convergence, as shown in Fig. 11 . This is because we now must also consider the larger error bars on the evolutionary
unction slope for each variable. 

Whereas before the optical samples provided the most precision, we find that after bias corrections, the X-ray GRB data remain the most
eliable. This is because the slope of the optical evolutionary functions has larger uncertainties than their X-ray counterparts, given that the
PT sample is slightly smaller with a Fundamental Plane having a higher σ int . 

Discussion on the methodology we employed to determine the error estimate on the MCMC sampler is drawn out in Appendix A . 

.1 Simulated trimmed samples as increasingly precise cosmological tools 

e now explore ways of trimming the X-ray and optical samples to derive smaller error bars on the value of �M than the ones derived by
he full samples. The o v erall methodologies can indeed be repeated for future works as our observed sample sizes increase. First we use the
MNRAS 514, 1828–1856 (2022) 
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Figure 9. Upper left-hand panel: the mean values of �M versus the numbers of GRBs obeying the optical Fundamental Plane to converge upon a value of 
�M using GRBs as the stand-alone probe by considering the observed error bars. The upper right-hand panel: the same as the left-hand panel, but considering 
the error bars divided by 2. The lower left- and right-hand panels show the corresponding probability distributions of the upper left- and right-hand panels, 
respectively. 
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D Fundamental Plane in X-ray as defined in Section 3.1 by the 10 GRBs that hold the intrinsic scatter of the plane near zero as a base for
imulations. 

By looking at the initial simulation results for a PLATtrim set of 10, we note a less smooth convergence than in the previous section where
he full samples were instead used; fluctuating values are evident in Fig. 12 . Although less uniform, the advantage to this model is that we do
chieve smaller error bars than could be done with the full samples. In fact, it is by this trim in X-ray that we reach the smallest uncertainty
et with the X-ray sample for only 2300 GRBs (left-hand panel of Fig. 13 ). All comparisons of the trimmed samples to the full samples in
etermining �M are detailed in Table 6 . 

In addition to trimming the samples by those that hold the intrinsic scatter of the Fundamental Plane near-zero, we also choose to analyse
n alternative method (called a posteriori) to the PLAT and OPT sample trimming to impro v e our results even further. We now run an array of
imulations for varying PLATtrim and OPTtrim selections, looking for the number of GRBs used as a base for our simulations that optimizes
ur current sample. The criteria for which we consider a trimmed sample to be optimized follow from the computation of the smallest standard
eviation on �M for a given number of simulated GRBs. Although more time (and processor) expensive to test, this a posteriori sample
rimming has potential to decrease the computed uncertainty significantly. We find that drawing from the full 50 X-ray and 45 optical GRBs,
rimmed samples containing 20 and 25 GRBs, respectively, optimize our calculations. The plots from which we determined these values can
e found in Appendix B . 
NRAS 514, 1828–1856 (2022) 
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Figure 10. The plots show the number of simulated GRBs versus the error on �M derived by the simulations starting from the full optical sample. On the 
left-hand panel we have the undivided errors for the physical quantities related to the GRBs, while on the right-hand panel we have divided these error by 2. The 
green, grey, and black lines identify the Conley et al. ( 2011 ), Betoule et al. ( 2014 ), and Scolnic et al. ( 2018 ) errors on �M , respectively. 

Table 5. The first column is the X-ray and optical samples used, respec- 
tively, with ‘ n ’ the number by which the sample errors are divided before 
entering the simulations. The second column is the number of GRBs. The 
third column shows the most probable value of �M . The forth column is the 
standard deviation of the probability density functions (PDFs) correspondent 
to the numbers of simulated GRBs in the second column. 

Sample # GRBs Most probable �M σ pdf 

X-ray n = 1 2700 0.308 ± 0.042 0.037 
Optical n = 1 2700 0.299 ± 0.022 0.018 
X-ray n = 2 2600 0.300 ± 0.027 0.022 
Optical n = 2 2600 0.301 ± 0.015 0.012 
X-ray (EV) n = 1 2700 0.312 ± 0.052 0.043 
Optical (EV) n = 1 2900 0.311 ± 0.029 0.023 

Figure 11. The probability map for the X-ray (left-hand panel) and optical (right-hand panel) Fundamental Planes, both corrected for evolution. 
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Fig. 12 compares the different trimmings and confirms our initial inference; although the trim done a priori with 10 GRBs (Fig. 12 c)
educes uncertainties better than a posteriori trim with 20 GRBs, fluctuations in the a priori conv ergence e xist already for n = 1. Therefore,
hen we choose to test n = 2, our a posteriori trimming choice (Fig. 12 d) is more reliable. For details see Table 6 . The best estimates from

hese trims are depicted in Fig. 13 . For both trims, the Conley et al. ( 2011 ), Betoule et al. ( 2014 ), and Scolnic et al. ( 2018 ) error limits are
eached with a smaller number of GRBs. All error limit results can be seen in Table 7 . 
MNRAS 514, 1828–1856 (2022) 
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Figure 12. Upper left-hand panel: the mean values of �M versus the numbers of GRBs obeying the optical Fundamental Plane simulated with 10 GRBs. Upper 
right-hand panel: the same as the left-hand panel, but considering the plane simulated with 20 GRBs instead of 10. The lower left- and right-hand panels show 

the corresponding probability distributions of the upper left- and right-hand panels, respectively. 

Figure 13. The plots show the number of simulated GRBs versus the error on �M derived by the simulations. On the left-hand panel we start from the PLAT 

sample trimmed with 10 GRBs and halved errors, while on the right-hand panel we start from the PLAT sample trimmed with 20 GRBs and halved errors. The 
green, grey, and black lines identify the Conley et al. ( 2011 ), Betoule et al. ( 2014 ), and Scolnic et al. ( 2018 ) errors on �M , respectively. 
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Table 6. The first column shows the samples used, the second column 
shows the number of GRBs used, with ‘ n ’ the number by which the 
sample errors are divided before entering the simulations. A trimmed 
sample ‘a priori’ refers to the sample of the 10 closest GRBs to their 
respective Fundamental Planes that yield an intrinsic scatter near-zero. 
The uncertainties reported are standard deviations. These results do not 
take into account redshift evolution or selection biases. 

Sample # GRBs �M 

PLAT; n = 1 2700 0.308 ± 0.042 
PLAT; n = 2 2600 0.300 ± 0.027 
OPT; n = 1 2700 0.299 ± 0.022 
OPT; n = 2 2600 0.301 ± 0.015 
PLATtrim (a priori); n = 1 2400 0.299 ± 0.035 
PLATtrim (a posteriori); n = 1 2400 0.300 ± 0.042 
OPTtrim (a priori); n = 1 2900 0.306 ± 0.024 
OPTtrim (a posteriori); n = 1 2700 0.305 ± 0.021 
PLATtrim (a priori); n = 2 2300 0.299 ± 0.026 
PLATtrim (a posteriori); n = 2 2700 0.302 ± 0.027 
OPTtrim (a priori); n = 2 2600 0.301 ± 0.016 
OPTtrim (a posteriori); n = 2 2600 0.301 ± 0.014 
OPTtrim (a priori); n = 2 2900 0.300 ± 0.015 
OPTtrim (a posteriori); n = 2 2900 0.299 ± 0.012 

Table 7. The first column shows the sample, while the successive ones the numbers of 
GRBs needed for the limits set by Conley et al. ( 2011 ), Betoule et al. ( 2014 ), and Scolnic 
et al. ( 2018 ) for the full error bars and the halved ones. We put a dash when the limit is 
not reached. 

Number of GRBs with plateaus needed 
GRB sample Conley ( 2011 ) Betoule ( 2014 ) Scolnic ( 2018 ) 

n = 1 n = 2 n = 1 n = 2 n = 1 n = 2 

PLAT 789 357 2653 1452 – 2724 
OPT 271 142 1031 284 2718 1086 
PLATtrim (a priori) 847 399 2705 1788 2839 2649 
OPTtrim (a priori) 330 112 829 393 2870 1513 
PLATtrim (a posteriori) 646 354 2699 1466 – 2719 
OPTtrim (a posteriori) 244 36 685 350 2104 822 
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We find the smallest error bars, considering the optical sample, for an a posteriori-decided OPTtrim of 25 GRBs in both error division
ases. And in fact, out of both wavelengths and trimming methodologies, this sample yields our best results yet in both error division scenarios
nd for three error limit definitions we considered in comparison with the literature (Fig. 14 ). We also note that in Table 6 , for all instances
f the optical GRB sample, we not only fall below the Betoule et al. ( 2014 ) standard deviation limit, but also near or even below the Scolnic
t al. ( 2018 ) error limit (as again determined by SNe Ia only) of σ = 0.022. Scolnic et al. ( 2018 ) arrived at such a high precision using a large
ample of 1048 SNe Ia, and the data we produce in the correspondent extrapolation (Fig. 15 ) suggest that, in the case of halved errors, we only
eed 36, 350, and 822 GRBs with plateaus to reach the Conley et al. ( 2011 ), Betoule et al. ( 2014 ), and Scolnic et al. ( 2018 ) limits, respectively.
t is remarkable that the Conley et al. ( 2011 ) limit is already reachable now. 

Taking this a posteriori approach to trimming, we rerun our previous computations involving the trimmed samples in both wavelengths
ncluding SNe Ia data. These results are displayed in Table 8 . We see no noticeable difference in either the values of �M themselves, or in
heir uncertainties. We performed the same a posteriori trimming on the evolution-corrected data, and similarly reperformed our computations
onsidering the most efficacious cut of both wavelengths with SNe Ia. Therefore, we can conclude that the evolution-corrected simulations
resented in Table 8 below are the most precise deri v ations of the matter density of the Universe we can possibly achieve today given that the
rrors on �M remain the same, but the treatment allows us to correct for selection biases and redshift evolution. 

 FUTURE  DEEP-SPACE  SURVEYS  AND  THEIR  DETECTION  POWER  

xtrapolating minimum numbers of GRBs dependent upon error becomes useful in predicting which precision on �M we can achieve in the
uture as current and future satellite missions observe increasingly detailed and more numerous data. One of these planned launches, studying
-ray emissions from GRBs, is the Space Variable Objects Monitor ( SVOM ; Wei et al. 2016 ). The proposed launch date is 2023 June, and it is

o act as a pathfinder for a later mission, i.e. the Transient High Energy Sources and Early Universe Surveyor ( THESEUS ; Amati et al. 2018 ).
MNRAS 514, 1828–1856 (2022) 
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M

Figure 14. Upper left-hand panel: the mean values of �M versus the numbers of GRBs obeying the optical Fundamental Plane simulated with 25 GRBs. Upper 
right-hand panel: the same as the left-hand panel, but considering the error bars divided by 2. The lower left- and right-hand panels show the corresponding 
probability distributions of the upper left- and right-hand panels, respectively. 
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VOM is expected to detect around 80 GRBs per year, and for a planned 3-yr mission, this means it should gather ∼240 GRBs throughout the
ourse of its lifetime with ∼1–2 triggers per week expected (Cordier et al. 2018 ). 

SVOM ’s successor, THESEUS , has a very tentative launch date in 2037. Although the THESEUS mission has not been selected under
hase A study by ESA as a candidate M5 mission (Amati et al. 2021 ), there is the intent and the effort by the community to apply for other
uture funding schemes and opportunities. The number of expected GRBs triggers per year can reach up to 1000 (Amati et al. 2017 ). So one
an expect up to three triggers per day (Frontera et al. 2018 ). THESEUS holds a hypothesized rate of GRB observation between 300 and
00 GRBs per year (Amati et al. 2018 ). 

We now use the calculated number of GRBs necessary to obtain ideal precision to predict, given the observing capability of both the
resent and the aforementioned future deep-space surv e y missions, to estimate the length of time until X-ray and optical GRB emissions can
e used in practice as stand-alone standard candles with limits on the errors on �M comparable with the ones obtained using SNe Ia. Although
he THESEUS team states that the mission will last for 3.45 yr, we work under the assumption that its lifetime will be prolonged, as it has
appened for many satellite missions. Specifically, we estimate its lifetime to endure as long as the Konus- WIND mission, which has been in
ervice for 27 yr, or the Chandr a X-r ay Observatory , which is now almost 23 yr old. Thus, our computation related to the lifetime of THESEUS
or simplicity is posed to be 27 yr. 
NRAS 514, 1828–1856 (2022) 
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Figure 15. The plots show the number of simulated GRBs versus the error on �M derived by the simulations. On the left-hand panel we start from the optical 
sample trimmed with 25 GRBs (a posteriori) and undivided errors, while on the right-hand panel we start from the same sample but with halved errors. The 
green, grey, and black lines identify the Conley et al. ( 2011 ), Betoule et al. ( 2014 ), and Scolnic et al. ( 2018 ) errors on �M , respectively. 

Table 8. The first column shows the samples used, 
while the second shows the results on �M with 
their errors, which are variances on the EMCEE 

chain, corresponding to the 68 per cent confidence 
limit. The asterisk ( ∗) on the trimmed GRB sample 
indicates that it has been trimmed a posteriori. All 
fits are considering redshift evolution effects. 

Sample �M 

PLATtrim 
∗ + SNe Ia 0.299 ± 0.009 

PLATtrim 
∗ + SNe Ia (EV) 0.299 ± 0.009 

OPTtrim 
∗ + SNe Ia 0.299 ± 0.009 

OPTtrim 
∗ + SNe Ia (EV) 0.299 ± 0.009 
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Given these estimates, the number of GRBs expected to be detected by THESEUS throughout the course of its mission is then 18 900. By
HESEUS , SVOM , and current rates of detection by Swift , we calculate the year in which the number of detected GRBs needed is achieved.
he number of needed GRBs taken from the simulated data is listed as the number of GRBs with observed plateaus [# GRBs (plateau)] in
able 9 for the estimates to reach the limits of Conley et al. ( 2011 ) and Betoule et al. ( 2014 ) and Table 10 for reaching the limit of Scolnic
t al. ( 2018 ). Ho we ver, we must also consider that our PLAT sample of GRBs is taken from the full 1064 GRBs presenting X-rays observed
y Swift -X-Ray Telescope (XRT) up until 2019 August, and that our OPT sample is taken from the full 761 GRBs with optical observations
rom 1997 January to 2018 December, including the ones without redshift measurements and detected plateaus. We must maintain these
roportionalities when considering a minimum number of GRBs because our simulated sample must have an observable plateau emission
hase and a detected redshift. So, more explicitly, we need to multiply the number of GRBs observable in X-rays by a factor of 1064 

50 (where
0 is the full PLAT sample) to compute how many GRBs with X-ray plateaus and with observed redshift will belong to the PLAT sample,
nd similarly by 761 

45 (where 45 is the full OPT sample) for the GRBs possessing an observed optical plateau with redshift. Multiplying by
hese ratios ensures that we account for these requirements. In addition, we need to consider the ratio of observations of the new missions. For
larity, we here summarize the assumptions and the rates underlying the forecasts of this section in numbered points. 

(i) Lifetime of THESEUS = 27 yr, with an estimated launch in 2037. 
(ii) Lifetime of SVOM = 15 yr, with an estimated launch in 2023. 
(iii) Total number of GRBs observed throughout the lifetime of THESEUS = 18 900. 
(iv) Total GRBs observed throughout the lifetime of SVOM = 1350. 
(v) Current rates of detection of Swift = 89.45 yr −1 . 
(vi) For X-ray wavelengths, we assume that the ratio (0.82) of the total number of GRBs observed by Swift -XRT (1064) from 2005 January

ntil 2019 August compared to the total number of GRBs observed by Swift (1305) will be the same ratio of GRBs observed by the ECLAIRs
4–120 keV) onboard the SVOM and the X-Gamma rays Imaging Spectrometer (XGIS, 2–20 MeV) and Soft X-ray Imager (SXI, 0.3–5 keV)
nboard the THESEUS . 
(vii) F or optical wav elengths, we assume that the ratio (0.39) of the total number of optical afterglows (761) observed from 1997 up to 2018

ecember, compared to the total number of GRBs by all missions (1942), is again the same as the one observed by the Infrared Telescope
IRT, 0.7–1.8 μm) onboard the THESEUS , and as the Visible Telescope (VT, 540–600 nm) onboard the SVOM . 
MNRAS 514, 1828–1856 (2022) 
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Table 9. The first column shows all of the samples used. The three rows associated with each sample definition show the number of GRBs needed that have 
plateau phases, the total number of GRBs needed once the chosen sample proportionality out of the total samples are considered, and lastly, the year in which 
that number of GRBs is achieved with observed data. These rows are repeated for samples with the errors undivided, the errors halved, the errors undivided 
considering LCR, and finally, the errors halved including LCR. The o v erarching columns three and four give these estimates considering the precision reached 
by Conley et al. ( 2011 ) and Betoule et al. ( 2014 ), respectively. A sample ‘ + ML’ implies that machine learning (ML) techniques are employed to double the 
initial sample size by redshift inference. 

GRB Conley ( 2011 ) Betoule ( 2014 ) 
Sample n = 1 n = 2 n = 1 n = 2 n = 1 n = 2 n = 1 n = 2 

(47.5 per cent LCR) (47.5 per cent LCR) (47.5 per cent LCR) (47.5 per cent LCR) 

# GRBs (plateau) 789 357 374 169 2653 1452 1260 689 

PLAT # GRBs (total) 16 789 7596 7975 3608 56 455 30 898 26 816 14 676 
Year achieved 2060 2044 2045 2037 2129 2085 2078 2056 
# GRBs (total) 8394 3798 3987 1804 28 227 15 449 13 408 7338 

PLAT + ML Year achieved 2045 2037 2038 2026 2080 2058 2054 2043 
# GRBs (plateau) 271 142 128 67 1031 284 489 134 

OPT # GRBs (total) 4582 2401 2176 1140 17 435 4802 8281 2281 
Year achieved 2046 2038 2038 2026 2093 2047 2060 2038 
# GRBs (total) 2291 1200 1088 570 8717 2401 4140 1140 

OPT + ML Year achieved 2038 2027 2025 Now 2061 2038 2045 2026 
# GRBs (plateau) 847 399 402 189 2705 1788 1284 849 

PLATtrim (10) # GRBs (total) 18 024 8490 8561 4033 57 562 38 048 27 342 18 073 
Year achieved 2062 2045 2046 2038 2131 2097 2078 2062 
# GRBs (total) 9012 4245 4280 2016 28 781 19 024 13 671 9036 

PLATtrim (10) + ML Year achieved 2046 2038 2038 2027 2081 2064 2054 2046 
# GRBs (plateau) 330 112 156 53 829 393 393 186 

OPTtrim (10) # GRBs (total) 5580 1894 2650 899 14 019 6646 6659 3156 
Year achieved 2050 2037 2039 2022 2081 2054 2054 2041 
# GRBs (total) 2790 947 1325 449 7009 3323 3329 1578 

OPTtrim (10) + ML Year achieved 2040 2023 2029 Now 2055 2042 2042 2032 
# GRBs (plateau) 646 354 306 168 2699 1466 1282 696 

PLATtrim (20) # GRBs (total) 13 746 7533 6529 3578 57 434 31 196 27 281 14 818 
Year achieved 2055 2044 2045 2037 2131 2085 2078 2057 
# GRBs (total) 6873 3766 3264 1789 28 717 15 598 13 640 7409 

PLATtrim (20) + ML Year achieved 2043 2037 2036 2025 2081 2058 2054 2044 
# GRBs (plateau) 244 36 115 17 685 350 325 166 

OPTtrim (25) # GRBs (total) 4126 608 1959 289 11 584 5918 5502 2811 
Year achieved 2045 2018 2037 Now 2072 2051 2050 2040 
# GRBs (total) 2063 304 979 144 5792 2959 2751 1405 

OPTtrim (25) + ML Year achieved 2037 Now 2024 Now 2051 2040 2040 2030 

Table 10. The first column shows all of the different optical GRB samples used. The three rows associated with each sample show the number 
of GRBs needed that have (1) plateau phases, (2) the total number of GRBs needed, and (3) the year in which that number of GRBs is achieved 
with observed data. These rows are repeated for samples with the errors undivided, the errors halved, the errors undivided considering LCR, and 
finally, the errors halved including LCR. These estimates are given considering the precision reached by Scolnic et al. ( 2018 ). A sample ‘ + ML’ 
implies that machine learning (ML) techniques are employed to double the initial sample size by redshift inference. 

GRB sample Scolnic ( 2018 ) 
n = 1 n = 2 n = 1 (47 . 5 per cent LCR) n = 2 (47.5 per cent LCR) 

# GRBs (plateau) 2718 1086 1291 515 

OPT # GRBs (total) 45 964 18 365 21 833 8723 
Year achieved 2197 2097 2140 2061 
# GRBs (total) 22 982 9182 10 916 4361 

OPT + ML Year achieved 2113 2063 2069 2046 
# GRBs (plateau) 2870 1513 1363 718 

OPTtrim (10) # GRBs (total) 48 534 23 054 12 153 19 840 
Year achieved 2207 2123 2114 2074 
# GRBs (total) 24 267 12 793 11 527 6076 

OPTtrim (10) + ML Year achieved 2118 2076 2072 2052 
# GRBs (plateau) 2104 822 999 390 

OPTtrim (25) # GRBs (total) 35 580 13 900 16 900 6602 
Year achieved 2159 2080 2091 2054 
# GRBs (total) 17 790 6950 8450 3301 

OPTtrim (25) + ML Year achieved 2094 2055 2060 2042 
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(viii) F or optical wav elengths, we assume that additional ground-based instruments will also be operative as they are at this time. This is
ecause, even if some of them will stop operating, we expect to have at least the same number and with the same capabilities as today from
he ground-based observations. We actually expect to have more, but we remain conserv ati ve in this estimate. 

Keeping these assumptions and rates in mind, we define in Tables 9 and 10 a second column describing the total number of GRBs needed
o achieve the error limit, considering both GRBs with and without plateau phases. We then calculate the year in which these simulated GRBs
re predicted to be observed considering four types of GRB samples: 

(i) all errors on the measured quantities undivided with no statistical reconstructions; 
(ii) all errors halved with no statistical reconstructions; 
(iii) all errors undivided initially, but by current LCR capabilities, 47 . 5 per cent of the sample’s errors are already halved; 
(iv) all errors halved initially, and by current LCR capabilities, 47 . 5 per cent of the sample’s errors are halved again. 

The year achieved is, of course, closer to the present for a simulated number of GRBs whose likelihood errors have been divided by 2. As
or the Betoule et al. ( 2014 ) limit, the earliest year in which we fall below the cut-off given current capabilities is in 2038 with the full OPT
ample and 2056 for the full PLAT X-ray sample. It is in the decade or so that we expect to have enough observational data to use GRBs as
tand-alone standard candles that produce errors on cosmological parameters less than or equi v alent to those produced by SNe Ia measures.
his time estimate is reduced, ho we ver, if we consider the applicability of current machine learning (ML) techniques including the LCR to
f fecti vely reduce the error bars on the measurement of the Fundamental Plane relation and the redshift inference to double the PLAT sample
f GRBs in X-ray that we can use for these calculations. Because such a small number of observed GRBs have had their redshift recorded
 � 

1 
3 ), ML techniques have been developed by Dainotti et al. ( 2019 ) to estimate the missing redshifts. Indeed, it is possible to determine the

edshift of GRBs possessing the plateau emission by completely non-parametric models or semiparametric models or a combination of the
wo. Considering also this research line, we find that we reach the full number of observed GRBs in X-ray necessary to use them as standard
andles by 2026 for the Conley et al. ( 2011 ) limit, and by 2043 for the Betoule et al. ( 2014 ) limit. The limit found by Betoule et al. ( 2014 ) with
he optical trimmed a posteriori (20 GRB) sample can be achieved much earlier, in 2025 (in just 3 yr from now), using the ML techniques. 

Furthermore, because of the particular efficacy of the OPTtrim sample in the constraint of �M , we can estimate similarly the time frame
n which the most recent and precise Scolnic et al. ( 2018 ) limit is achieved. From Table 10 , considering both current statistical LCR and the
edshift inference through the ML applications, GRBs will be just as ideal probes as SNe Ia reaching the Scolnic et al. ( 2018 ) limit in 2042,
f we instead consider the limit of Betoule et al. ( 2014 ) we are able to reach it with LCR and redshift inference in just 4 yr, in 2026. Both
stimates are performed with the OPT trimmed a posteriori (25 GRBs). 

We here point out that the value of �M can be measured as a guide. This forecast, although based on the flat � CDM model, can be
eneralized. In principle, we can use the Fundamental Plane for any cosmological model, and we do not need to restrict ourselves to a specific
umber of parameters. We can indeed use this data sample to constrain extended theories of gravity or more exotic cosmological models as
ell. The methodology that we have demonstrated is very general, and can be applied to any future cosmological model. The forecast in this
articular paper is restricted to the flat � CDM model, and we are interested in constraining only �M , as a benchmark quantity. Any additional
orecasts are interesting, but beyond the scope of this paper. 

 CONCLUSIONS  AND  INSIGHTS  

n this paper, we have defined a subsample of 222 GRBs with redshift measurements and LC plateaus from all 1064 GRBs detected by Swift -
RT, and in combination with SNe Ia measurements, we have calculated the matter content of the Universe today to be �M = 0.299 ± 0.009.
e arrive at this precision using GRB emission data in optical wavelengths as well, marking a significant step in the recognition and usability

f optical plateaus studies as cosmological tools. We have applied a procedure according to which a subsample of GRBs closer to the plane has
een chosen, so that we could reduce the scatter of the Fundamental Plane at the smallest possible. The Section 2.1 results wherein we compare
he distributions of the fluxes and times of the PLAT, OPT, PLATtrim, and OPTtrim samples assert that picking a smaller number of GRBs
oes not bias the sample. The KS test shows that the hypothesis that the two samples are drawn by the same distribution cannot be rejected at
he 5 per cent level for all cases, but for the optical sample for T ∗a . We also stress here that the cosmological computations performed do not
uffer of the circularity problem when we add GRBs and SNe Ia together GRBs are not calibrated o v er SNe Ia and do not assume any a priori
osmological models. We found that by trimming the X-ray sample to a sample of 10 (a priori) or 20 GRBs (a posteriori) in combination with
Ne Ia leads to the same error as with the full PLAT sample. The results were as follows: �M = 0.299 ± 0.009. 

For both GRB samples we account for redshift e volutionary ef fects using the EP methodology, thus achieving the smallest intrinsic scatter
n the X-ray 3D Fundamental Plane in the literature to date, yielding a 44 . 4 per cent reduction with respect to the one computed without
onsidering these corrections. Employing this correction and retrieving the same value of �M as stated abo v e, we can be sure that this is
he most precise determination of the density content yet. As was noted and is described in detail in Appendix A , all MCMC sampler errors
ave been quantified and determined to be an order of magnitude less than the order on which we compare the �M symmetrized errors and
tandard deviations. This is the first time in which GRBs have been attempted to be used as stand-alone standard candles through simulations,
ith an inferred precision higher than the one obtained by SNe Ia samples alone once a sufficient number of simulated GRBs are accounted

or. Because we do not currently have enough GRB data to achieve this goal, we run MCMC simulations to define a probabilistic minimum
umber needed to satisfy them. 
MNRAS 514, 1828–1856 (2022) 
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Simulating first using the full PLAT and OPT samples as the base, we find that a minimum of 150 GRBs is needed to provide closed
ontours around an �M value in our prior interv al. Ho we ver, to arri ve at a desirable error on this value comparable to the limit set by SNe
a, we instead simulate using as a base the PLATtrim and OPTtrim samples of 10 GRBs, because they yield intrinsic scatters near-zero. For
nstance, the PLATtrim gives a σint X, trim = 0 . 05 ± 0 . 05 (upper right-hand panel of Fig. 1 ), which is significantly less, 86 per cent than that of
he full PLAT, σint X,PLAT = 0 . 36 ± 0 . 04 (upper left-hand panel of Fig. 1 ), or even that of the evolution-corrected (EV) samples; PLAT (EV)
ields σint X,PLAT,ev = 0 . 20 ± 0 . 06 (44 per cent less than the PLA T); and PLA Ttrim (EV) gives σint X,trim,ev = 0 . 13 ± 0 . 09 (64 per cent less than the
LAT). 

We aim to seek how many GRBs are needed to yield a value of �M with a very high precision. For undivided errors on PLATtrim, the
robability of �M = 0.299 ± 0.035 approaches for 2400 GRBs (Table 6 ); in addition only 2705 X-ray GRBs are needed to reach the Betoule
t al. ( 2014 ) standard deviation limit (Table 9 ). Instead, with undivided errors on OPTtrim, only 829 optical GRBs are needed. Because we
ave to consider the proportionality of the sample, these estimates must be increased to account for the presence of the redshift and the plateau
n the sample. Therefore, in the attempt to decrease the GRBs numbers further, we e xplore alternativ e trimming techniques. By such, we trim
oth the optical and X-ray samples a posteriori and find more compelling uncertainties on the Fundamental Planes. Specifically, dividing the
ikelihood errors by 2 on PLATtrim (a posteriori) we find a most probable �M = 0.302 ± 0.027 for 2700 GRBs, and with halved errors on
PTtrim (a posteriori), we see a most probable �M = 0.299 ± 0.021 for 2700 GRBs (see Table 6 ). It is clear that the OPTtrim reaches an error
ar on the �M that is 22 per cent smaller compared to the one achieved by the PLAT with the same number of simulated GRBs. This allows
o safely state that the OPTtrim is more efficacious than the PLATtrim. 

We achieve the Betoule et al. ( 2014 ) limit with 1452 X-ray GRBs or 284 optical GRBs (see Table 9 ). We finally test for the more recent
colnic et al. ( 2018 ) error cut-off of σ = 0.022, and find that the OPTtrim (a posteriori with 25 GRBs) sample can achieve this limit with
22 GRBs with plateau and halved error bars (see Table 10 ). Because of this, we look into deep-space surv e y missions that will be collecting
his GRB data in coming years. By surv e ys such as SVOM , THESEUS , and the continued use of Swift , it is estimated that a number of 22 486
RBs will be gathered in their lifetimes. By factoring in the ability of ML techniques to derive redshifts and the successful halving of errors
y the statistical reconstruction of GRB LCs (currently we can achieve this for 47 . 5 per cent of a sample), we predict to arrive at the Scolnic
t al. ( 2018 ) limit by 2042, and to the Betoule et al. ( 2014 ) limit with only 134 optical GRBs by 2026. This will be the time frame in which
here will be enough observational data to effectively use GRBs as stand-alone standard candles, with SNe Ia comparable error deeming GRBs
deal cosmological probes. 

These results are interesting because, as the definition of GRBs as standard candles becomes more and more reliable, the addition of these
strophysical objects to SNe Ia data will soon give the most precise deri v ation of �M e ver achie ved. Furthermore, as it has been done previously
Dainotti et al., in preparation), we will also arrive at the most precise values for the dark energy parameter w, and for the Hubble constant
 0 . The inclusion of a larger X-ray PLAT sample or a platinum sample in optical to trim would decrease the intrinsic scatter of the plane even

urther and potentially lower our number of estimated GRBs. Not only this, but larger samples would allow for more constraining results on
he redshift e volutionary ef fects. This would again increase the accuracies of our measurements. Furthermore, as we keep investigating the
hysics of GRB progenitors, we will be able to better define GRB classes, samples, and, thus, continue to impro v e the precision on our results
nd shed more and more light on the mechanism behind GRBs. 
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PPENDIX  A:  MARKOV  CHAIN  MONTE  CARLO  SAMPLING  ERROR  PREDICTION  

n this appendix, we aim to quantify the numerical uncertainty that the Markov chain Monte Carlo (MCMC) sampling is inducing on the error
n �M . This will allow us to state that the errors provided on �M in the text are at least one order of magnitude larger than the uncertainty
n the MCMC sampling, thus confirming the reliability of the precision reached. We measure the numerical error introduced through COBAYA

CMC sampling by monitoring the chain convergence using the Gelman–Rubin statistic (G–R). But even placing restrictions on both the G–R
nd its defined confidence level leaves some undefined uncertainties on the sampler-derived �M and its error. Therefore, to make our results
ven more reliable, we loop all sampler runs 100 times until a Gaussian distribution of the inferred errors is produced to quantify those. From
uch, we derive the mean of both the �M and its error, and these are the values that we report for all samples and combinations of samples.
wo instances of this method are visualized in Fig. A1 . To have a precise estimate of the σ associated with the error on �M , we fit these
istributions with a Gaussian curve and we superimpose the fit with a red line. We note that the error obtained by our simulation is smaller
han the σ = 0.0005 of the errors of the distributions. This means that this fluctuation is one order of magnitude less than the uncertainties we
re comparing in the main text. 

When simulating additional GRBs, we control the numerical error innate to EMCEE by periodically computing the integrated autocorrelation
ime τ during sampling to manage the number steps taken. Because EMCEE uses parallel chains to reduce the variance, we can stop the sampling
nce the chains are longer than � 50 τ or 100 τ . This method ensures that we generate the minimum number of samples to ef fecti vely reduce
he relative error on our target integral. It is by these operations that we have confidence in not only our results, but also in their comparability
etween each other those by SNe Ia. 
MNRAS 514, 1828–1856 (2022) 

igure A1. The two upper panels depict the MCMC sampler results for �M (upper left) and its error (upper right) considering PLAT + SNe Ia probes together. 
he lower panels show the same considering instead PLATtrim + SNe Ia probes. The PLATtrim sample in this figure refers the a priori trim taken of the 10 
RBs closest to the Fundamental Plane. 
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M

Figure B1. The left-hand plots in this figure detail the trial simulations for varying PLATtrim values in the X-ray sample, whereas the right-hand plots do the 
same for varying OPTtrim in the optical sample. The two upper panels do not consider redshift evolutionary effects; the two lower panels make corrections for 
both selection and redshift evolution biases. 
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PPENDIX  B:  CHOOSING  A  POSTERIORI  TRIM  VALUES  

n this appendix, we detail the selection of the a posteriori sample trim number of GRBs. For a number of observed GRBs in the interval
etween 10 and 25, we ran test simulations with 2300 simulated GRBs to determine the trend of the standard deviation on �M for gradually
ncreasing σ int on the trimmed Fundamental Plane. This was performed for both optical and X-ray data, and with and without considering
edshift evolution corrections. Fig. B1 shows the general trend for the PLAT (left-hand panels) and OPT samples (right-hand panels); each
inimum shown both without (upper panels) and with (lower panels) accounting for redshift evolution is the number on which our a posteriori

rim is based upon. Our reasoning here is that running the simulations for a wide range of trim choices would allow for a better choice of the
umber of GRBs to be used as the base for simulations, rather than determining this value a priori (before simulating). This idea is confirmed
n Fig. B1 as we see that all of our a posteriori trims (minima) have significantly reduced uncertainties when simulated from our original choice
f 10 GRBs indicated with the green solid line in all the panels determined by σ int on their respective Fundamental Planes. 
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