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ABSTRACT

We present a suite of galaxy formation simulations that directly model star cluster formation and disruption. Starting from a
model previously developed by our group, here we introduce several improvements to the prescriptions for cluster formation
and feedback, then test these updates using a large suite of cosmological simulations of Milky Way mass galaxies. We perform a
differential analysis with the goal of understanding how each of the updates affects star cluster populations. Two key parameters
are the momentum boost of supernova feedback f,qost and star formation efficiency per free-fall time €. We find that fi,0s has a
strong influence on the galactic star formation rate, with higher values leading to less star formation. The efficiency g does not
have a significant impact on the global star formation rate, but dramatically changes cluster properties, with increasing e leading
to a higher maximum cluster mass, shorter age spread of stars within clusters, and higher integrated star formation efficiencies.
We also explore the redshift evolution of the observable cluster mass function, finding that most massive clusters have formed at
high redshift z > 4. Extrapolation of cluster disruption to z = 0 produces good agreement with both the Galactic globular cluster
mass function and age—metallicity relation. Our results emphasize the importance of using small-scale properties of galaxies to
calibrate subgrid models of star cluster formation and feedback.
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1 INTRODUCTION

Most stars form in clustered environments (Lada & Lada 2003), and
young massive clusters (YMCs) are found in the Milky Way (MW)
and other star-forming galaxies. The properties of young clusters
are sensitive tracers of the star formation process. Young clusters
show a well-defined mass function typically described as a Schechter
(1976) function with a low-mass slope of —2 (Bastian 2008; Portegies
Zwart, McMillan & Gieles 2010). The cutoff mass scales with the
star formation rate of the host galaxy, as does the maximum cluster
mass (Larsen 2002).

Globular clusters (GCs) are also ubiquitous within galaxies, as
they are found in all nearby galaxies with stellar masses above
10° My, (Brodie & Strader 2006). GCs are typically old, with ages
above 10 Gyr (Puzia et al. 2005; Strader et al. 2005), and have
sizes of a few parsecs that are consistent with YMCs found in the
local universe (Brown & Gnedin 2021b). This naturally leads to the
hypothesis that GCs are the surviving subset of a larger population
of YMCs that formed at high redshift. However, the mass function
of GCs is well characterized by a lognormal distribution with a
peak mass of around 2 x 10° Mg, (Harris 1991; Jordan et al. 2007),
in contrast to the Schechter (1976) function commonly used to
describe YMCs. This transformation of the mass function over
cosmic time requires a preferential destruction of low-mass clusters
(Fall & Zhang 2001; Vesperini et al. 2003; Prieto & Gnedin 2008;
Elmegreen 2010; Kruijssen 2015).
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The dynamical evolution of clusters results from a combination
of stellar evolution, two-body relaxation, tidal truncation, and tidal
shocks (Spitzer 1958; Gnedin & Ostriker 1997; Elmegreen 2010;
Gieles & Renaud 2016). While stellar evolution and internal two-
body relaxation can be well understood by studying isolated clusters,
dynamical evolution depends on the tidal field and requires more
detailed modelling. Throughout their lifetime, clusters experience
tidal interactions with their natal giant molecular clouds (GMCs),
the galactic structure, and other GMCs, leading to complex evolution
that is not well approximated by idealized models (Meng & Gnedin
2022).

Simulations of galaxy formation are well suited for a detailed
investigation of cluster formation and disruption (Renaud, Agertz &
Gieles 2017; Pfeffer et al. 2018). By situating clusters within their
galactic context, their formation and evolution can be realistically
tracked. However, few cosmological simulations have the resolution
required to directly resolve cluster formation or disruption, so they
must rely on subgrid models (although see Kim et al. 2018; Lahén
et al. 2019; Benincasa et al. 2020; Ma et al. 2020; Hislop et al.
2022). As cluster formation is terminated by feedback from the
newly formed stars, simulations must self-consistently determine this
feedback to obtain reliable properties of star clusters. Prescriptions
for stellar feedback, particularly supernova feedback, have under-
gone many revisions over the years as they are calibrated against
observations (Katz 1992; Springel & Hernquist 2003; Stinson et al.
2006; Agertz, Teyssier & Moore 2011; Agertz et al. 2013; Hopkins
etal. 2014, 2018; Keller et al. 2014). However, these feedback models
are often only tested against galaxy-scale properties, such as the
global star formation rate or Kennicutt—Schmidt relation (Schmidt
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1959; Kennicutt 1998). To properly model star cluster formation,
these feedback prescriptions must be calibrated on smaller scales.

In Li et al. (2017) and Li, Gnedin & Gnedin (2018, hereafter
L18), our group introduced a suite of cosmological simulations
that directly models star cluster formation and disruption. The high
spatial resolution of these simulations (3—6 pc) allows us to resolve
GMCs where star cluster formation occurs. Star particles are seeded
within GMCs and accrete material from their surroundings until
feedback from the newly formed stars stops further accretion. The
final masses of these star particles are set self-consistently and
represent the masses of individual star clusters. These simulations
were able to reproduce many aspects of the observed young cluster
populations, including the shape of the initial cluster mass function,
the total mass of stars contained in bound clusters, the relationship
between the maximum cluster mass and the star formation rate
surface density, and the formation time-scales of star clusters. Some
of the central clusters in satellite galaxies have properties consistent
with nuclear star clusters in the local universe (Brown, Gnedin & Li
2018). Star formation sites in the modelled galaxies at high redshift
are temporarily contained in giant clumps, which dissolve after
~100 Myr (Meng & Gnedin 2020). In addition, these simulations
resolve dense irregular structures within the thick galactic disc (Meng
& Gnedin 2021), allowing for an accurate calculation of the tidal field
and therefore the tidal disruption of clusters (Li & Gnedin 2019;
Meng & Gnedin 2022).

While these simulations advanced our modelling of star cluster
formation in cosmological simulations, they still had several limita-
tions. First, they reached only redshift z = 1.5. This precludes a direct
comparison to the GCs of the Milky Way (MW), as the disruption
up to z = 0 must be estimated. Secondly, these simulations include
only one MW-mass galaxy and its satellites, decreasing the statistical
power of the results and potentially making the results dependent on
the specific initial condition (IC) used.

In this paper, we present the next generation of simulations based
on the prescriptions of L18. These simulations use two Local Group-
like ICs, with the goal of reaching z = 0 with four MW-mass
galaxies. In Section 2 we describe improvements to the formation
and feedback schemes, then describe the new suite of simulations.
This suite includes nine runs using Local Group-like ICs and 20
using the MW-like IC from L18. These runs vary a wide range of
feedback and cluster formation parameters, allowing us to explore
how different prescriptions affect the resulting cluster properties
in Section 3. We perform a differential analysis, systematically
exploring each of the parameters we vary. In Section 4, we present an
application of these simulations by presenting the redshift evolution
of the observable cluster mass function. We discuss remaining
uncertainties and compare our results with observations in Section 5,
then summarize our results in Section 6.

2 SIMULATION CODE AND SETUP

In this section, we describe the ART code and the properties
of the simulations. Throughout this section, we introduce several
parameters of the code, which we list for convenience in Table 1.

2.1 The ART code

For our simulations we use the Adaptive Refinement Tree (ART) code
(Kravtsov, Klypin & Khokhlov 1997; Kravtsov 1999; Rudd, Zentner
& Kravtsov 2008; Liet al. 2017, 2018). The ART code includes many
physical processes that are important for modelling the formation of
galaxies. Radiative transfer is calculated using an improved version
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Table 1. Key parameters of the star formation and feedback prescriptions
with the values used in this paper.

Parameter Value(s)

Molecular fraction threshold for cluster creation 50 per cent
Maximum virial parameter for cluster creation 10

Density threshold for cluster creation and growth 1000 cm ™3

Star formation efficiency per freefall time (e¢f) 1, 10, 100 per cent

Radius of GMC 5 pe

Clumping factor (Cp) 3,10, 30

Stellar IMF range 0.08-50 Mg
Stellar mass range for SNII 8-50 Mg

Stellar mass range for HN 20-50 Mg

Initial hypernova fraction (fun, o) 0, 5, 20, 50 per cent
SNII momentum boost (fyoost) 1,2,3,5

Stellar mass range for AGB 0.08-8 Mg,
Number of SNIa per unit stellar mass 1.6 x 1073 M51

of the Optically Thin Variable Eddington Tensor method (Gnedin &
Abel 2001), which has been revised to minimize numerical diffusion
(Gnedin 2014). Radiation from both stars and the extragalactic
background (Haardt & Madau 2001) are included. A non-equilibrium
chemistry network of molecular hydrogen is used to identify star-
forming regions within GMCs. It was calibrated using observations
in nearby galaxies (Gnedin & Kravtsov 2011) and updated to include
line overlap in computing self-shielding of molecular hydrogen
(Gnedin & Draine 2014). This chemical network also calculates
the ionization states of hydrogen and helium. This model uses
the local abundance of all these species to calculate the heating
and cooling functions self-consistently, without any assumptions of
photoionization equilibrium or collisional equilibrium. The ART
code also includes a subgrid-scale (SGS) model for numerically
unresolved turbulence developed by Semenov, Kravtsov & Gnedin
(2016), which follows the results of the MHD simulations of Padoan,
Haugbglle & Nordlund (2012).

A particularly novel aspect of the ART code is the direct modelling
of time-resolved star cluster formation (Li et al. 2017, 2018; Li
& Gnedin 2019). Star cluster particles are seeded in dense gas,
and accrete gas from a surrounding region until feedback from the
new cluster terminates gas accretion. This region, which we refer
to as the ‘GMC,” has a radius of 5 pc and is fixed in physical
size at all cosmic epochs. With the maximum spatial resolution
of our simulations being set in the range of 3-6 pc, the GMC
can extend past the central cell, allowing the cluster to accrete
gas from neighbour cells. Specifically, the growth rate of a given
cluster is

. Eff
M= TZfGMC vcell sz Pgas, (1)

cell

where €y is the local star formation efficiency per free-fall time #,
Jomc 1s the fraction of cell volume V¢ included within the GMC
sphere, fy, is the local mass fraction of molecular gas, and pgq
is the local total gas density. This mass growth is accumulated at
each local time-step, which is typically in range of 10>—10% yr.
As long as the local gas density is above the threshold, clusters
can continue accreting gas. This accretion stops either when it has
accreted no material in the last 1 Myr or when it has reached an age
of 15 Myr.

To avoid the spurious creation of many small clusters, we impose
a threshold such that clusters must have an expected mass (defined as
the initial M times the maximum allowed formation time of 15 Myr)
of at least 6000 Mg. As clusters typically form over a few Myr,
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rather than the full 15 Myr, this results in the elimination of small
clusters below about 1000 Mg.

Due to the complex dynamical evolution that occurs throughout
the process of cluster formation, not all stars in a given star-forming
region will be bound to the fully formed cluster. To model this,
star cluster particles include a variable tracking the fraction of mass
that is gravitationally bound. This is set at cluster formation (see
Section 2.2) and is updated as clusters undergo dynamical disruption
throughout their lifetime.

2.2 Updates to the cluster formation modelling

We implement several updates to the ART code to improve the star
cluster formation algorithm. In the implementation of L18, a cluster
particle is created if the gas density in a cell reaches nz; > 1000 cm ™3
and the local H, mass fraction is larger than 0.5, meaning the
cell contains mostly dense molecular gas. Here, we introduce an
additional criterion based on the local virial parameter of the gas,
intended to select gravitationally bound gas. Generally, the virial
parameter is

50%R
ir = 3o @
where o is the local gas velocity dispersion, R is the radius of the
sphere we consider, and M is the mass within this sphere. We calculate
this locally in any cell meeting the other star formation criteria,
assuming a sphere with a diameter equal to the size of the cell (I =
2R), giving

502

= —. 3
7'[Gpgaslz ©)

Ayir
We use both the turbulent velocity and sound speed when calculating
the velocity dispersion (6 = vZ,, + ¢2), but do not include cell-to-
cell velocity differences. We require «;; < 10 to seed star clusters.
This threshold is near the typical value for observed GMCs in the
MW (Miville-Deschénes, Murray & Lee 2017). Star formation is
allowed on the four finest refinement levels.

We also use a new prescription for the initial bound fraction of star
clusters, as determined by Li et al. (2019). These authors performed
simulations of 80 isolated molecular clouds with a range of mass,
size, velocity configuration, and feedback strength. After feedback
terminates star formation, they calculate the integrated star formation
efficiency €y, Which is the fraction of the initial gas mass that formed
stars, as well as the fraction of stars that are bound to the final
cluster fyouna- They then determine the relation between these two
parameters:

3e€in 12¢;, 3€in
erf< € t> _ € ‘exp (_6‘)] fuats 4)
o, V T, o,

where a, = 0.48 and f;, = 0.94 are free parameters the authors fitted.
Determining €, in our simulations is not trivial. The initial gas mass
when the cluster was seeded is not an accurate representation of the
available gas mass, as GMCs accrete material over time. To account
for this, we define €;,, as the ratio of the final stellar mass to the
maximum value of the stellar mass plus gas mass at any time during
cluster formation:

M*,ﬁnal
max (M,(t) + Mg(t))

f bound =

(&)

€int =

We then use this directly in equation (4) to calculate the initial bound
fraction for each star cluster.
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2.3 Cluster disruption modelling

Our model for cluster disruption is unchanged from that described in
detail in Li & Gnedin (2019), but we summarize the key points here.
At each global time-step of the simulation (the length of the global
time-step is typically a few Myr, with a maximum of 50 Myr), we
calculate the tidal tensor around all fully formed clusters using the
second-order finite difference of the gravitational potential across
a3 x 3 x 3 cell cube centred on the star particle. To determine
cluster disruption in runtime, we calculate the three eigenvalues of
the tidal tensor A; > A, > A3, which describe the strength of the tidal
field in the direction of their corresponding eigenvectors. We use the
maximum of the absolute value of the eigenvalues to determine the
dynamical time-scale within the Roche lobe of the cluster:

Am

Qi) = 5 ©)
where
Am = max |2 @)
We then use it to determine the cluster disruption time-scale:
M(t *% 100 Gyr™!
foa = 10 Gyr @ b ®)
2 x 10° Mg Qea(®)

Finally, we use this cluster disruption time-scale to decrease the
mass bound to each cluster. We track it with the variable f4y,, which
describes the fraction of cluster mass bound to the cluster after
accounting for dynamical disruption. At the nth global time-step
of length dt,, we update this fraction as follows:

Fal = exp (—dtn/tia) fin, .

We also output the full tidal tensor for each star particle at each
global time-step, allowing us to post-process star cluster disruption
and explore how different prescriptions for tidal disruption, including
capturing tidal shocks, may change cluster properties.

2.4 Updates to the stellar feedback modelling

2.4.1 Abundances of individual elements

We have implemented runtime tracking of most important individual
elements (C, N, O, Mg, S, Ca, Fe) and ejecta of AGB stars. This
gives 10 total fields tracking chemical enrichment (C, N, O, Mg,
S, Ca, Fe, Zgni, Zsni, and Zagp) in both gas and stars. These
elements are some of the most abundant in the universe, have
reliable yields, and enable comparisons with both gas-phase and
stellar abundance measurements at a variety of redshifts. N, O, and
S are commonly used to measure gas-phase metallicity (e.g. Kewley
& Dopita 2002; Maiolino & Mannucci 2019). Fe, Mg, and Ca are
commonly measured in stellar spectra, with Fe representing total
metallicity and Mg and Ca being representative « elements (Gallazzi
et al. 2005; Kirby et al. 2013; Hayden et al. 2015).

2.4.2 Discrete supernova events

We have updated the supernova (SN) feedback prescriptions in the
ART code to include discrete SN explosions at rate calculated from
the stellar lifetimes, IMF, and total stellar mass of the particle.
Conceptually, we use the stellar lifetimes to calculate the mass
range of stars leaving the main sequence during a given time-
step, then integrate the IMF over this range to determine the
total number of stars leaving the main sequence. We explode
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an integer number of these as SN, leaving any fractional SN to
accumulate to the next time-step. This leads to only an integer
number of SN exploding in a given time-step while also appropriately
conserving the total number of SN over the life of the stellar
population.

We calculate the number of SN in a given time-step:

NSN(.C) + NSN.leflover(T + dt) -
M(z+dr)

M,((T) CD(M)dM + NSN,leflover(r)v (10)

M(r)

where 7 is the age of the stellar population (discussed in more detail
in Section 2.4.7), dr is the length of the current time-step, M, is the
total mass of the cluster particle, M(7) is the mass of the star leaving
the main sequence at age t, (M) is the IMF normalized such that
M, = f MP(M)AM, and Nsn jefiover 1 the fractional number of
SN not exploded in the previous time-step. Ny is always an integer
value, and 0 < NsN, iefiover < 1. We use a Kroupa (2001) IMF with a
mass range of 0.08 to 50 M, and use 8 M, as the minimum mass to
explode as an SN. We use the metallicity-dependent analytic stellar
lifetimes from Raiteri, Villata & Navarro (1996).

When SN explode, we inject energy and mass into the surround-
ings. The mass of different elements is taken directly from the stellar
yield tables of Kobayashi et al. (2006). We use the yield for a star
of mass M = 0.5 (M(t) + M(z + dt)), and use the metallicity of
the star particle. We linearly interpolate the yield tables in both mass
and metallicity to determine the yields at arbitrary stellar masses and
metallicities.

2.4.3 Introduction of hypernovae

Hypernovae (HN) are SN explosions with significantly more energy
than a typical SN, and may be associated with gamma-ray bursts
(e.g. Iwamoto et al. 1998). The Kobayashi et al. (2006) yield tables
include stellar yields and energies for HN so we include them in
our feedback model. We model both the energy and yields from HN
self-consistently. SN with progenitor stellar masses above 20 M, are
eligible to explode as HN. Each explosion is randomly assigned
to be either HN or SN, depending on a metallicity-dependent
HN fraction. We use the functional form proposed by Grimmett
et al. (2020):

V4
fun = max (j}mﬁ exp (—m> ,0.001) (11)

These authors suggest that fyn o = 0.5, but we leave it as a free
parameter to test how varying it affects galaxy properties. SN
explosions always inject E5; = 10°! ergs of energy, while for HN we
use the mass—energy relation from Kobayashi et al. (2006), where
the energy ranges from 10 to 30 Es;, with high-mass stars releasing
the most energy. We linearly interpolate the energy released by HN
for stellar masses between those given in Kobayashi et al. (2006).
Increasing fyn significantly changes the energy injected into the
simulation. Fig. 1 shows the cumulative energy injected from SN as
a function of cluster age. Different lines show different metallicity
and therefore different fiyn. As HN are only active for stars with
masses above 20Mg, the difference in fyy is apparent at early
times, while at later times SN energy injection is the same. As
our stellar lifetimes are metallicity-dependent, the age of the onset
of SN and the age at which HN end changes as well. Of note,
the Raiteri et al. (1996) lifetimes give an onset of SN in this new
prescription that is always later than the constant 3 Myr onset adopted
by L18.
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Figure 1. Cumulative energy injected by SN per unit stellar mass in units
of 10°! erg Mél as a function of time since beginning of star formation
for different prescriptions. Four lines show the model used in this set of
simulations, while the last shows that used by L18. The new prescription is
plotted at several metallicities, with HN fractions following equation (11)
with fin, 0 = 0.5. The metallicity-dependent stellar lifetimes also change
the time of the onset of SN. The line with fyn = 0.1 per cent is visually
indistinguishable from a line with fijy = 0.

2.4.4 Momentum boost

To model SN feedback, we use the prescriptions from Martizzi,
Faucher-Giguere & Quataert (2015). They used simulations of
inhomogeneous turbulent medium to parametrize the partition of
the SN remnant energy into the thermal, kinetic, and turbulent
components. The resulting energy and momentum input depend on
the ambient gas density and spatial resolution of the simulation.
However, their simulations of isolated SN explosions underestimate
the effect for star clusters. Cluster-forming regions usually produce
a large number of massive stars that undergo simultaneous SN
explosion. Gentry et al. (2017) found that such clustering of SN can
enhance momentum feedback by an order of magnitude relative to
that delivered by an isolated SN. L18 tested a boost to the momentum
feedback from SN remnants by a factor fyoosy = 3—10 and found that
the value fioost = 5 can reproduce the galactic star formation history
expected from the abundance-matching technique. As fiyos 18 @ key
parameter of our feedback model, we explore its ideal value in our
new simulations below in Section 3.2. The momentum created by
stellar particles is distributed spherically to 26 nearest-neighbour
cells surrounding the parent cell of the particle, as in Li et al. (2017).

2.4.5 Supernovae type la

We have updated the SNIa feedback prescription, implementing
discrete SN and a new delay-time distribution (DTD). We use the
power-law DTD for field galaxies from Maoz & Graur (2017):

dNsnia _
o g3

dr (12)

normalized to produce 1.6 x 1073 SNIa per M, of stellar mass.
Similarly to how we integrate over the IMF to produce the number
of SNII, we integrate over the DTD to produce the number of SNIa.
We model these as discrete events as we do for SNII, and use the
yields from Nomoto & Leung (2018). The feedback from SNIa is
modelled simply as an injection of 2Es; of thermal energy.
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2.4.6 AGB feedback

Our final addition to the feedback prescription is chemical enrich-
ment from AGB stars, defined to be the last stages of evolution of
stars with masses below 8 M. The prescription for AGB stars is
analogous to that for SNII as described by equation (10). However,
we abandon the requirement for integer numbers and simply use
the full integral in equation (10). This is justified by the fact that
this phase of stellar evolution is not instantaneous like an SN. We
use the yields from Ritter et al. (2018). We only inject mass from
AGB feedback. We do not inject the energy or momentum, as their
wind velocities are small and have little impact on the total feedback
budget (Goldman et al. 2017; Hopkins et al. 2018).

We also include two other sources of feedback, which are
unchanged from the implementation of L18: radiation pressure
from massive stars using the analytical fit by Gnedin (2014), and
momentum from stellar winds as an analytical fit to the results of
Leitherer, Robert & Drissen (1992).

2.4.7 Timing of cluster feedback

Since our star cluster particles accrete material over time, defining
a single age to use in the above feedback prescriptions is not
trivial. Without storing the full cluster growth histories, which are
prohibitively large, we must make some assumptions. One choice
would be to simply use the time 7 since the star particle was seeded:
Thirth (£) = 1. We refer to this as the ‘birth approach’, since it treats all
stars as forming at the same time as the first one in the cluster. This
prescription is problematic if the cluster has significant star formation
after the onset of SN at about 4 Myr. For example, consider some
stars formed 6 Myr after the birth of that cluster particle. The birth
approach assigns all stars in the cluster an age of 6 Myr, including
these newly formed stars with a true age of zero. As these newly
formed stars never had an age in the 0-6-Myr range, the feedback
they should contribute during that age range is skipped (particularly
SN feedback from 4—6 Myr). This prescription also gets the timing
of feedback wrong, as the assumption that all the mass of the cluster
formed at the initial time is incorrect.

An alternative is to adjust the age based on the mass-averaged
time of cluster formation: 7, (f) = t — f4(f). This average time for
cluster formation is calculated in runtime as

Jo t M(t)dt

- s 13
Jo M(t)dt 13)

tave(t) =
where M is the cluster star formation rate at time ¢ (L18). This
approach, which we refer to as the ‘average approach’, does a much
better job of reproducing the total amount of feedback. However,
this approach pushes back the onset of SN feedback, allowing
some clusters (particularly massive ones) to have unphysically
long formation time-scales before their growth is terminated by
feedback.

To solve this problem, we introduce a hybrid approach, where
we allocate a fraction of cluster feedback to use the birth approach
and the rest to use the average approach. Denoting the amount of
feedback generally as F, we set

Fiolt) = Soirn (1) F @oirn () 4+ [1 = foirn (D]F (Tave (1)) (14)

such that fyq, is the fraction of the cluster mass assigned to the
birth approach. This hybrid approach gives the best of both worlds,
as it gives the correct delay before the first SN explodes while also
accurately reproducing the total amount of feedback. Using idealized
test cases, we find that clusters with a larger age spread require
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Figure 2. The cumulative energy injected by SN per unit stellar mass as a
function of time since beginning of cluster formation for three approaches
for the timing of SN. The input star formation history is a constant star
formation rate for 4 Myr. The ‘True’ line shows the actual energy injection
produced by this stellar population, while the other lines show the energy
injection for different ways of treating this star formation history as a simple
stellar population, as described in the text. The hybrid approach is a weighted
combination of the other two.

a larger fuiun. Conceptually, this is because clusters with a large
age spread have a larger fraction of their feedback that comes from
stars formed away from the mean cluster age. We use the following
parametrization:

Tspread (t )

15
20 Myr’ (1)

Soirn () =

where the 20-Myr scale parameter was determined from idealized
test cases, and Tpe,q is the cluster age spread calculated in runtime
as

M@ M)

Topread (1) = = . (16)
pread (M) [ M)de
where (M) is the mass-weighted star formation rate:
(- 1oy
. M(t)dM M>*(t)dt
(M) = Jo M@ = Jo M) 17)

fodM M@

where dM = M (t)dz. As cluster age spreads are typically a few Myr,
this gives no more than 20 per cent of the feedback coming early,
with the majority using the average age. Fig. 2 shows an example
of this prescription for the feedback from a toy cluster consisting
of a 4 Myr period of constant star formation rate. To calculate the
true energy injection rate that this toy cluster would be expected to
give, we represent it with many simple stellar populations spaced
evenly between 0 and 4 Myr. The total energy injection is then the
sum of the energy injected by each simple stellar population. We
also compute 7,y (1) and 7 gpreaa(?) to compute the feedback that would
result when using the birth, average, and hybrid approaches. In Fig. 2,
the delayed onset of SN when using the average approach is clear,
as is the increased energy output when assuming all stars formed
at the birth of the cluster. As this hybrid approach is a weighted
sum of the two other approaches, there is a break in the hybrid
approach between 6 and 7 Myr due to the onset of SN in the average
approach.
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2.5 Hydrodynamics

When updating the code from the version used in L18 to a newer
version of the ART code (ART 2.0), we updated the modelling of the
energy equation that governs how thermal energy is calculated in the
presence of subgrid turbulence. This update more accurately tracks
thermal energy in shocks. It has little effect in the disc of the galaxy,
as the thermal energy generated by shocks is subdominant to other
process that govern energy balance such as heating, cooling, and
stellar feedback. However, we find that the circumgalactic medium
is affected by this update. In our new runs, there is significantly more
hot gas in the halo. This, in turn, leads to less cold gas accreting
on to the galaxy, leading to less star formation. The decrease in the
amount of cold gas requires changes to the parameters governing star
formation and feedback as we describe below. We describe the update
to the hydrodynamics in more detail in Appendix A. In our suite of
simulations, we used both this updated energy-based approach and
the new entropy-conserving scheme of Semenov, Kravtsov & Diemer
(2021). These authors found that the entropy-conserving scheme
is able to more accurately evolve non-thermal energy components.
They ran simulations of an L, galaxy and found differences between
the energy- and entropy-based schemes. However, these differences
are much smaller than those we find between the energy-based
schemes of L.18 and this paper.

2.6 Initial Conditions

In this work, we use three different ICs. One is the IC used by L18,
a periodic comoving box of size 4 Mpc that contains a single central
galaxy with a total mass of 10'> M, at z = 0, which we refer to
as Isolated MW. We also use two zoom-in ICs from the ELVIS
project (Garrison-Kimmel et al. 2014): Thelma & Louise and
Romeo & Juliet. Both of these ICs contain a Local Group
analogue with two MW-mass galaxies, which we describe in more
detail below. The Isolated MW box is much less computationally
expensive to run than the zoom-in runs, so we use it to explore a
broader range of parameter space.

Thelma & Louise is a desirable IC as it has qualitative
agreement with the accretion histories of the MW and M31. The less
massive (MW-like) halo has a quieter accretion history (Hammer
et al. 2007), with no significant mergers after z ~ 5, while the more
massive (M31-like) halo has more mergers at later times as expected
from observations (D’Souza & Bell 2018). Romeo & Juliet has
two galaxies with much quieter merger histories. Including two
different sets of ICs allows us to explore how our results vary with
galaxy merger histories.

To improve computational performance with the ART code, we
modify these zoom-in ICs following the prescription of Brown &
Gnedin (2021a). Our ICs have a small zoom region in a large box (50—
100 Mpc). This large box size with a small zoom region is difficult
for the ART code to parallelize well, so our method decreases the
box size and increases the resolution of the root grid. The ICs are
created using the MUSIC software (Hahn & Abel 2011), where a
white noise field is convolved with the matter power spectrum to
produce realistic matter overdensities. We regenerate the original
white noise field at higher resolution, then cut out a smaller volume
of interest. This smaller white noise cube is then convolved with
the matter power spectrum to produce the density within a smaller
volume. As the white noise is what seeds the resulting structures, this
method reduces the box size while preserving large-scale structure
and enforcing periodic boundary conditions. To avoid disturbing the
zoom region, the particles from this region are transplanted into the
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new box with a velocity offset to match the systemic velocity of this
region in the new box. We refer readers to figs 1 and 2 of Brown &
Gnedin (2021a) for a visual representation of the method. We find that
these modifications improve performance while minimally changing
central galaxy properties. Table 2 details some key properties of
these ICs, and Fig. 3 shows the halo mass growth of these galaxies
in collisionless runs.

‘We run an initial suite of nine simulations with these zoom-in ICs,
varying €, fun, 0, and fuoost. Table 3 details the parameters of these
runs. We also ran a large suite of 20 simulations on the Isolated
MW IC varying many aspects of stellar feedback, which are detailed
in Table 4.

2.7 Run setup

We keep the spatial resolution of the finest grid level between 3 and 6
physical pc at all times. To accomplish this, we add refinement levels
as the simulation progresses. The specific levels and when they are
added depend on the IC. In the Isolated MW box, we start with
nine levels of refinement on the 128 root grid, then add levels at
z =29, 4, and 1.5. For Thelma & Louise, we allow 11 levels
of refinement on the 2563 root grid, then add additional levels at z
~ 10.2, 4.6, 1.8, and 0.41. Romeo & Juliet also starts with 11
levels, but its slightly different box size requires adding levels at z ~
9.8,4.4,1.7, and 0.35.

We use three criteria to determine when to refine the grid. In
this section, we will illustrate the refinement criteria using specific
values from the Thelma & Louise IC, but the principles are
the same for all ICs. First, we use Lagrangian refinement for both
gas and dark matter. Cells are refined when their gas mass exceeds
approximately 1.6 x 103 Mg, or dark matter exceeds 3.9 x 10® Mg,
The gas refinement is active on all levels, while the dark matter
criterion is not active on the four finest levels. We also increase the
dark matter mass refinement threshold above that from the simple
baryon fraction scaling. These changes are for two reasons. First, the
discrete dark matter particles (of mass 1.5 x 10° M) do not allow
their mass to be distributed evenly, so their distribution cannot be
trusted on small scales. Second, we find that there are times when
the dark matter criterion will prevent a cell with very small gas
mass from derefining. If stellar momentum feedback is imparted on
this cell, it will acquire very high velocities due to its small mass,
leading to small time-steps and a slower runtime of the simulation.
Restricting the levels on which the dark matter Lagrangian criterion
is active and increasing the mass threshold for dark matter-triggered
refinement mitigates this situation. The final refinement criterion uses
a local Jeans length. Cells are refined if their size exceeds twice the
Jeans length. This criterion is applied only on the four deepest levels.
We find that with these refinement criteria, cell gas masses remain
around 2 x 10* M. Table 2 includes the typical baryonic cell masses
for all ICs.

While we do not record the level on which a star is formed
in runtime, we postprocess the outputs to see the levels on which
stars can form. In the runs using the Local Group ICs, we find that
15 per cent of the cells that satisfy the star formation criteria are on
the highest refinement level with sizes of 3-6 pc, 60 per cent have
sizes in the 6-12 pc range, 25 per cent are within 12-24 pc, and a
very small fraction are on the fourth level with sizes of 24-48 pc.
The lower mass resolution of the Isolated MW runs results in the
corresponding fractions of 10, 35, 50, and 5 per cent, respectively.

The ART code uses adaptive time-stepping, such that the finest
levels have much shorter time-steps than the coarse root grid. For
the Thelma & Louise runs with e = 100 per cent, the global
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Table 2. Description of key properties of the ICs used here. For zoom-in ICs, the mass resolution quantities refer to the zoom region.

Box size
(comoving h~' Mpc)

Initial Condition

Dark matter particle
mass (Mg)

Typical baryonic Qm QA Qp h
cell mass (Mg)

Thelma & Louise 25.0
Romeo & Juliet 23.12

Isolated MW 4.0 1.0 x 10°

1.57 x 10°
1.53 x 10°

2 x 10* 0.266 0.734 0.0449 0.71
2 x 10* 0.31 0.69 0.048 0.68
4 x 10* 0.304 0.696 0.0479 0.681

Redshift
1 0.5

1012 4

1011 4

—— + Thelma
Louise

—— A Romeo
Juliet

—— ® |solated MW

Halo Mass [M ]

1010

2 4 6 8 10 12 14
Cosmic Time [Gyr]

Figure 3. Mass growth of the central haloes from collisionless runs with
three ICs. Markers show major mergers with a mass ratio less than 4:1, and
are placed at the maximum virial mass of the satellite and the time at which
it reached this maximum mass before merging with the central galaxy. Note
that Thelma and Isolated MW have major mergers at z < 2, while the
other three galaxies have quiet merger histories.

Table 3. The runs using the Local Group ICs included in this simulation
suite. zje 1S the redshift of the last output of each run. All runs use average
approach for SN timing, C, = 10, and the energy-based hydrodynamics
scheme. The clumping factor C,, will be discussed further in Section 3.3.

Initial Condition Eff Jhoost JHN, 0 Zlast
Thelma & Louise 1 per cent 5 20percent  3.32
Thelma & Louise 10 per cent 5 20percent  2.36
Thelma & Louise 100 per cent 1 0 per cent 3.17
Thelma & Louise 100 per cent 3 0 per cent 2.80
Thelma & Louise 100 per cent 5 0 per cent 1.83
Thelma & Louise 100 per cent 5 5 per cent 1.86
Thelma & Louise 100 per cent 5 20percent  2.66
Romeo & Juliet 10 per cent 5 20percent  2.78
Romeo & Juliet 100 per cent 5 20percent  1.87

time-step of the root grid is restricted to be less than 10 Myr. We
write outputs at each global time-step. For all other runs, the output
spacing is allowed to be at most 50 Myr. The time-step for the finest
level is similar for all runs, typically between 100-1000 yr.

3 EFFECTS OF CLUSTER FORMATION AND
FEEDBACK MODELLING

In this section, we analyse the large suite of simulations laid out in
Tables 3 and 4 to test the implementation of code updates and explore
how parameter variation affects our results. We will primarily focus
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on the galaxy star formation rate, cluster mass function, and the
time-scales of cluster formation. In this section, we exclusively use
the particle mass at the end of its star formation episode, which
does not account for the initial bound fraction, stellar evolution, or
dynamical disruption of a star cluster represented by that particle. We
explore those quantities and the observable cluster mass function in
Section 4. We also note that when examining star cluster populations,
we include all clusters from the central galaxies in the simulations
(the one MW-mass galaxy in Isolated MW, and the two galaxies
in the Local Group-like environments of Thelma & Louise and
Romeo & Juliet). When plotting the star formation rate of these
galaxies we plot the two central galaxies in the Local Group-like IC
separately, but when plotting cluster properties of a given run we
group these two galaxies together.

3.1 Timing of supernova feedback

In Section 2.4.7, we describe how the finite length of cluster
formation makes it difficult to create an accurate prescription for
the timing of stellar feedback. We ran simulations with the birth
approach, the average approach, and the hybrid approach. We also
compared these to the feedback model of L18, which has SNe that
start earlier (see Fig. 1). We found no significant differences in
any galaxy-scale properties between these prescriptions. However,
we did find that the cluster formation lifetimes were different
between these prescriptions. In particular, the average approach gave
significantly longer time-scales for massive clusters. Fig. 4 shows
the cumulative distribution of the length of star formation within
clusters formed using different timing choices, for the local efficiency
e = 100 per cent. Note that the quantity we plot here is the duration
of star formation, defined as the age difference between the birth of
the cluster and its last accretion event. This iS nOt e OF Tgpread aS
defined in Section 2.4.7. We use this quantity as it clearly demarcates
when feedback ends cluster formation.

With all the approaches to SN feedback, the majority of low-
mass clusters have finished their accretion before the onset of SNe
at 3—4 Myr, leading to little difference in the durations between our
approaches. Such short durations indicate that the other sources of
feedback are able to terminate cluster formation before the start of
SN feedback (Kruijssen et al. 2019; Grudi¢ et al. 2022). SN feedback
remains more relevant for massive clusters.

We do see a difference in the high-mass clusters. The feedback
prescriptions of L18 produce the shortest durations of star formation.
Among the three new models of determining the timing of SN
feedback, the average approach produces clusters with the longest
duration, the birth approach gives clusters with the shortest duration,
and the hybrid approach is in the middle. As the birth approach
has the most early feedback and the average approach has the least
early feedback, these results indicate that delaying the start of SN
feedback tends to increase the time over which massive clusters
can accrete material. This matches what we see in the L18 model,
which allows SN feedback begin earlier and stop cluster growth
earlier.
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Table 4. The runs using the Isolated MW ICs included in this simulation suite. In the ‘Hydro Scheme’ column, ‘S21’ refers to the entropy-based scheme
of Semenov et al. (2021), ‘Energy’ refers to the updated energy-based scheme, and ‘L18’ is the hydro scheme used in L18. The schemes mentioned in the
‘SN Timing’ column are described in Section 2.4.7. Simulations are grouped by the attribute that is varied, although some simulations are used in multiple
subsections. All runs progressed to z = 1.5 except for the two runs with egr < 100 per cent and fyoost = 2, Which reached z =~ 2.

€ff Jooost JHN, 0 C, SN timing Hydro scheme  Other comments
100 per cent 1 0 10 Average S21 Used in all subsections below
Section 3.1
100 per cent 1 0 10 Hybrid S21
100 per cent 1 0 10 Birth S21
Section 3.1.1
100 per cent 1 0 10 Average S21 Continuous energy injection from SN
Section 3.2
100 per cent 1 50 per cent 10 Average S21
100 per cent 2 0 10 Average S21
100 per cent 3 0 10 Average S21
100 per cent 5 0 10 Average S21
Section 3.3
100 per cent 1 0 3 Average S21
100 per cent 1 0 3 Average S21 Changed shielding to Gnedin & Kravtsov (2011)
100 per cent 1 0 30 Average S21
Section 3.4
1 per cent 1 0 10 Average S21
10 per cent 1 0 10 Average S21
1 per cent 2 0 10 Average S21
10 per cent 2 0 10 Average S21
Section 3.5
100 per cent 1 0 10 Average S21 No virial parameter criterion for star formation
Appendix A
100 per cent 5 0 10 Average Energy Analogous to Local Group runs
100 per cent 5 0 10 Average Energy Feedback scheme of L18.
100 per cent 5 0 10 Average L18
1.0 1.0
M < 10°M, M > 10°M

0.8
c c
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Figure 4. The cumulative distribution of the duration of cluster formation for different approaches to determining the timing of SN feedback, as described in
Section 2.4.7. The left-hand panel shows clusters less massive than 10° Mg, while the right-hand panel shows clusters more massive than 10° M. The dotted
line shows the longest median duration of cluster formation. Cluster growth is algorithmically truncated at 15 Myr. Note that here we use a new run with the
L18 feedback model, not the L18 simulations themselves. The L18 prescription uses fhoost = 5, while all other runs use fyoost = 1. All runs use the Isolated
MW IC, e = 100 per cent, fin, o = 0, and show all clusters formed before z = 1.5.

These trends are also reflected in the integrated star formation
efficiency €, defined in equation (5). Fig. 5 shows the distribution
of €, for the runs with variations in the timing of SN feedback. The
L18 feedback model has the earliest SN feedback and the lowest

mean value of €, (15 per cent), while the average approach has the
latest SN feedback and the highest mean value of €;,, (35 per cent).
Interestingly, the hybrid approach and birth approach are very similar,
with mean values at e & 25 per cent. This may be because early
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Figure 5. Kernel density estimation for the distribution of integrated star
formation efficiency for clusters in the runs with variations in the timing of
SN feedback, as described in Section 2.4.7. We use a Gaussian kernel with a
width of 0.05 dex. Each curve is normalized to the same area for comparison
purposes. Note that here we use a new run with the L18 feedback model,
not the L18 simulations themselves. The L18 prescription uses fhoost = 3,
while all other runs use fyoost = 1. All runs use the Isolated MWIC, e =
100 per cent, fyn, 0 = 0, and show all clusters formed before z = 1.5.

SN feedback (present in both variations to some extent) is important
for dispersing gas before it can be accreted by the cluster. While the
simulation with the L.18 model uses fioosr = 5 instead of fipost = 1,
other runs varying fioost Show no little difference in either the duration
of star formation or €;,, indicating that the SN timing is responsible.

Despite these differences in the duration of star formation and €y,
we see no significant differences in the star particle mass functions.

3.1.1 Discreteness of supernova

In addition to multiple runs with different prescriptions for SN feed-
back, we also ran one simulation with continuous energy injection
from SN. This run uses the Isolated MW IC, €5 = 100 per cent,
fooost = 1, and fin. o = 0. The number of SN still follows the IMF
integral as in equation (10), but with the modification that we do not
require there to be an integer number of SN in each time-step. We
find that this change makes little difference to galaxy properties. The
star formation rate was not affected, and neither were star cluster
properties, including their mass function and age spread.

We note that the similarity between these two runs is despite
real differences in how the energy is injected over time. The
SN rate changes with time, but is within the range of (2 —
6) x 107" Now Mg yr™'. Our typical time-steps on the highest
refinement levels are below 103 yr, so even massive clusters with
M = 10°M,, do not have an SN every time-step. Clusters of mass
M = 10> Mg, have only 10 SN over the ~40 Myr time-scale for SN
feedback, resulting in significant gaps between SNe. The onset of
SN can also be delayed in low-mass clusters, as the decrease in the
normalization of the IMF means we need to integrate to lower stellar
masses to reach one star (equation 10). These results indicate that the
total injected energy and the timing of the onset of SN cause larger
differences than does discretizing SN events.

To summarize, we find that different prescriptions to change the
onset of SN (without changing the total energy injection) do not
affect any galaxy-scale properties, but do affect the properties of
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Figure 6. A comparison of the star formation history for the central galaxy
in the Isolated MW IC when varying fyoost and fun, 0. The shaded region
shows the expected star formation history as given by UNIVERSEMACHINE.
All runs use e = 100 per cent.
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Figure 7. Same as Fig. 6, but for the Thelma & Louise IC and only
showing variations in fyo0st. There are two main galaxies in each run. Circles
represent the MW analogue, with squares representing M31. All runs use €
= 100 per cent and fin, 0 = 0.

star clusters. When SN feedback is delayed, massive clusters have
longer formation time-scales, and all clusters have higher €;,,. When
comparing disretized SN to continuous energy injection, we find no
significant differences.

3.2 Strength of supernova feedback

Our simulations have two main parameters to control the strength of
SN feedback: fuoost and fun, 0. In this section, we explore how those
parameters affect our results.

In Figs 6 and 7, we show the impact of these two parameters on the
star formation history of the main galaxies. In Fig. 6, we show the star
formation history of the single central galaxy of the Isolated MW
IC, while in Fig. 7, we show two lines for each run representing the
two main galaxies in a Local Group-like environment. We also show
the expected star formation history as given by UNIVERSEMACHINE
(Behroozi et al. 2019). However, we note that the MW assembly
history may be atypical for haloes of its mass, as both the ancient
merger of Gaia—Enceladus Sausage and the current infall of the LMC
influence its evolution (Evans et al. 2020).
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First, we find that fi,.s has a strong impact on the global star
formation rate. Higher values of fios result in generally lower star
formation rates. In the Isolated MW runs shown in Fig. 6, the run
with fieost = 5 matches the UNIVERSEMACHINE prediction well until
roughly z & 4, at which point the star formation rates start to decline
significantly. This is similar to what we see for the fyoosr = 5 run in
Thelma & LouiseinFig.7. The star formation rate is reasonable
until z &~ 4, with a significant decline afterwards. A value of fioost
= 3 matches UNIVERSEMACHINE more closely in both ICs, but in
the Isolated MW IC the star formation rate drops off significantly
after z = 3. The fuoosr = 3 run using Thelma & Louise has only
progressed to z = 2.8 at the time of writing, so it remains possible
that its star formation rate will drop as it did in the Isolated
MW run. However, we must be careful making direct comparisons
between different ICs, as it is likely that they will have different
star formation histories. In particular, Santistevan et al. (2020) found
that Local Group-like galaxies form earlier than isolated galaxies.
They conclude that the denser environment of Local Group-like pairs
causes the initial collapse of haloes to happen earlier (Gallart et al.
2015). This leads to more mass forming earlier, and this buildup of
stellar mass may affect how feedback affects the galaxy at later times.

A slightly lower value of fi,ox = 2 matches UNIVERSEMACHINE
well up to z =~ 2 before decreasing greatly. Finally, runs with fyoost =
1 have the highest levels of star formation in both ICs. This high level
has persisted in Thelma & Louise until the last available output,
butin Isolated MW the star formation rate dropped dramatically
starting at z = 2. Even this low value of fi0s 1S not able to produce
reasonable galactic star formation histories over the full time range
spanned by these simulations.

L18 calibrated foos in their simulations, finding a preferred value
of foeost = 5. The difference in our result is due to the changes in
hydrodynamics. As described above in Section 2.5, that change led
to a decrease in the amount of cold gas that reaches the galaxy. This
requires changes to the feedback modelling to compensate. Without
decreasing fuoost, the galaxies have lower total gas mass and less
cold gas, which leads to less molecular gas. Since molecular gas is
required by our star formation prescription, this decrease leads to
less star formation.

While we find that fi05 has a strong impact on the star formation
rate, we find that fiyn o does not. In Fig. 6, runs with fuos = 1
have similar star formation histories, regardless of the value of fin, 0.
While we do not show runs varying fyn, o in Fig. 7 for clarity, runs with
Jfun,0 = 0, 5 per cent, and 20 per cent all show similar star formation
rates (all using fyoost = 5)-

This is likely due to the metallicity dependence of the hypernova
fraction fun (see equation 11). The value of fyy is highest at low
metallicity, but decreases rather quickly with metallicity. Fig. 8 shows
the metallicity of stars forming at different times and their fyn. This
plot uses the run on the Isolated MW IC with maximum fyn, o =
50 per cent, yet the quick enrichment means that the bulk of clusters
have fiyn < 10 per cent. As shown in Fig. 1, this small fijy produces
energy injection rates not too dissimilar from fyn = 0. This small
change is in contrast to the large changes in momentum feedback
that come from varying fioos by a factor of 5, explaining why fioost
has a strong impact on galactic properties while fin, o does not.

While changes in fyo0s lead to dramatic changes in global galaxy
properties, the changes to the cluster mass function are more subtle.
Fig. 9 shows the initial cluster mass function for the Isolated
MW IC when varying fuoost and fun, 0. We show all clusters formed
before z = 4, as this higher redshift reduces the differences caused
by variations in the star formation rate and includes a higher fraction
of low-metallicity clusters where fyn could potentially make a
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Figure 8. The stellar metallicity Z (not scaled to solar metallicity) of clusters
forming across cosmic time in the run using the Isolated MW IC, e =
100 per cent, fyoost = 1, and fun, 0 = 50 per cent. The shaded region shows
the interquartile range at a given age, while the solid line shows the median.
The right axis labels shown the hypernova fraction at a given metallicity.
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Figure 9. A comparison of the initial cluster mass function for runs with
varied fioost and fin; o at z = 4. Black dashed lines indicate power-law slopes
of —2 and —3. The lower limit of the plot corresponds to one cluster. All runs
use the Isolated MW IC and eg = 100 per cent.

difference. The normalization changes reflect the change in total
stellar mass. Interestingly, the high mass end is less affected by fooost
than the low-mass end. A lower fio0s Serves to increase the number
of low-mass particles without systematically increasing the number
of massive clusters or the maximum cluster mass. While not shown
in Fig. 9, we see the same trends when examining the runs using the
Local Group ICs.

We find little difference in the cluster mass function when changing
fun, 0. Fig. 9 shows little difference between fin, o = 50 per cent and
Jun.0o = 0 for fioost = 1 for masses below 100 M. However, the
run with fiy, o = 0 has several clusters with masses above 10° Mg,
while the run with fyn, o = 50 per cent does not. There are very few
clusters in these mass ranges, so stochasticity may play a role in these
results. We also examined the low-metallicity clusters separately,
again finding no difference. This is true as well of the runs with the
Local Group ICs.
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To quantitatively evaluate the shape of the mass functions, we
fit them with a power law. As our mass functions do not show a
power-law behaviour down to low masses, we restrict our fit to
masses above 10° M, where it is approximately a power-law. Again
we note that we are using the particle masses without including
the bound fraction, so these results are not directly comparable
to observations. Including the bound fraction generally makes the
mass function shallower, as high-mass clusters have a higher bound
fraction (see Section 4). For fyn,0 = 0, we find slopes of —2.94,
—2.48, —2.16, and —2.31 for fyoost = 1, 2, 3 and 5, respectively. For
Sfun.0 = 50 per cent and fioosx = 1, we find —2.78. Lower values
of fhoost tend to have steeper slopes due to the higher number of
low-mass clusters. The fyoose = 3 run has the shallowest slope due
to the large number of clusters at &~ 5 x 10° Mg, that deviate from a
pure power-law fit and draw the fit toward a shallower slope. This
feature becomes less prominent at z = 1.5 as more clusters form and
fill out the mass function more evenly. We see similar trends in the
Local Group runs, where the slope takes values of —2.62, —2.40,
and —2.22 for foeost = 1, 3, and 5 respectively.

Lastly, we examined the visual appearance of the gas distribution
in these galaxies. L.18 found that reducing fi,os to 3 led to a dramatic
increase in star formation and the formation of an axisymmetric disc,
while runs with fi0 = 5 produced very irregular galaxies (Meng,
Gnedin & Li2019). Here, we find that all of our runs produce irregular
galaxies, even with fypos = 1.

In summary, we find that higher values of f,os can greatly decrease
the galactic star formation rate by decreasing the number of low-
mass clusters that form, without changing the number of massive
clusters. Increasing the initial hypernova fraction fin o has little
effect on galaxy properties. The fraction quickly approaches zero
as metallicity increases, leading to little difference in the injected
energy and momentum.

3.3 Molecular gas prescription

A key ingredient in modelling star formation in our simulations is the
amount of molecular gas, as we require a given cell to have a mass
fraction of molecular gas greater than 50 per cent to seed a cluster
particle.

As discussed in Gnedin & Draine (2014) and appendix A7 of
Gnedin & Kravtsov (2011), the clumping factor C, is one of the
tunable parameters of the molecular gas model. This factor accounts
for the fact that gas is clustered on scales that are not resolved in a
given simulation, so H, formation would be missed. Larger values of
the clumping factor produce more molecular gas at a given surface
density. Numerical simulations of turbulent molecular clouds find
lognormal density distributions with widths that imply C, ~ 3—10
(McKee & Ostriker 2007). Gnedin & Kravtsov (2011) and Gnedin
& Draine (2014) calibrated the clumping factor in the ART code
based on simulations, finding that values in the range of 10 to 30
work well. However, those simulations had lower resolution than our
runs. This would imply that our runs should prefer a lower clumping
factor, because they are resolving more substructure and leaving less
on subgrid scales.

Motivated by the disagreement between our simulations and the
observed global galactic star formation history (e.g. Fig. 6), we
explored a range of molecular gas prescriptions. We ran simulations
with a range of clumping factors, using C,, = 3, 10, and 30. L18 used
10, as do all other runs presented in this paper. We also used one run
with C, = 3 where we changed the prescription for shielding from
that of Gnedin & Draine (2014) to that of Gnedin & Kravtsov (2011).
The Gnedin & Draine (2014) model includes the effects of line
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overlap in the Lyman—Werner bands, increasing self-shielding, which
is particularly relevant in low-metallicity environments with less dust
shielding. However, both models for self-shielding were calibrated
using runs with lower resolution than our runs (>50 pc compared
to 3—6 pc) and with a different feedback model. These differences
in simulation setup can affect the performance of the H, formation
model, so we decided to explore both shielding prescriptions. All
runs used fioost = 1, fiin,0 = 0, and e = 100 per cent.

As expected, the only significant differences caused by C, were
in the amount of molecular gas. While the mass of molecular gas
in each run varies greatly with time, we find a general trend that
larger values of C, produce more molecular gas. We see little change
in molecular gas masses when changing the shielding prescription.
These differences in the amount of molecular gas when changing C,
led to some differences in star formation histories. The total stellar
mass at z = 1.5 for the run with C, = 3 is 3 x 10° M, while the
mass for the run with C, = 301is 6 x 10° M. In particular, a higher
clumping factor leads to more late-time star formation.

3.4 Star formation efficiency

The local star formation efficiency per free-fall time ey is a key
parameter of our model (see equation 1). As L18 showed, this pa-
rameter strongly influences many star cluster properties, particularly
the mass function, while not strongly affecting the global galaxy
properties. We continue that exploration here.

As e controls how fast star particles accrete material, we expect it
to be reflected in the duration of cluster formation episodes. We find
that to be the case. In particular, we find that runs with low values of
€4 often fail to finish forming massive clusters before the algorithmic
end to a star formation episode at 15 Myr. For example, in the run
using the Isolated MW IC, €5 = 1 per cent, fooost = 1, and fun. o
=0, only 20 per cent of clusters with masses above 10> M, finished
their formation before it was automatically stopped.

When this time cap is imposed, cluster formation ends even when
gas is available to continue accreting on to the cluster. Therefore,
we cannot interpret these particles as the end-products of cluster
formation. Their masses are not self-consistently determined by their
feedback. The masses we obtain are lower limits to the true masses
that would have formed over longer time-scales. However, as we
will discuss more in Section 5.3, such long age spreads of stars
within a single cluster are ruled out by observations. We define
runs as having failed cluster formation if more than 50 per cent
of clusters with masses above 10° M, have durations longer than
14 Myr. This applies to all runs with €4 = 1 per cent and the run
using the Isolated MW IC, ey = 10 per cent, fioox = 1, and
Jfun,0 = 0. While we still include these runs in plots, we indicate
the cluster mass ranges where they are unreliable using dashed lines
(namely Figs 11, 12, 16, and 19), or use completely dashed lines
when mass is not an explicit variable (namely Figs 17, 22, and
24). We defer a full investigation of this failed cluster formation to
Section 5.4.

To illustrate the difference in the time-scale of cluster formation,
Fig. 10 shows the cumulative distribution of age spread tgpreaq for
runs using the Isolated MW IC. The dependence on € is clear.
For massive clusters, the median age spread is 8.6 Myr for €5 =
1 per cent, while it is 2.4 Myr for € = 10 per cent and 0.9 Myr
for ey = 100 per cent. For € = 1 per cent many clusters have
unphysically long age spreads, some longer than 15 Myr. We note
that the age spread can be longer than the duration of star formation
in some cases, as it is a measure of the variance in the star formation
rate rather than simply its length. Atypical star formation histories,

220Z JagquisAoN Z0 uo Jasn uebiyoip Jo Auisiaaiun Aq 0955/59/082/1 /11 S/a10nde/seiuw/woo dno oiwapese//:sdiy woll papeojumod



Stellar feedback 291
1.0+ 1.0
M > 105M,
M < 105M,

0.8 0.8
c c
i .2
© k3]
© 0.6+ © 0.6
[ [T
v Qe
2 2
5 K
3 0.4+ S 0.4
£ £
=1 3
O O

027 €4=0.01 021

— Eff=0.1
: —_— =1 :
001 ; ; ; ; 0.0 ; ; ; - ; ; ;
0 1 2 3 4 0 2 4 6 8 10 12 14

Age Spread [Myr]

Age Spread [Myr]

Figure 10. The cumulative distribution of the star particle internal age spread Tspreaq for the Isolated MW IC runs with varied €. Note that this is not the
duration of star formation as plotted in Fig. 4, it is the age spread as defined in equation (16) evaluated at the end of cluster formation. The left-hand panel shows
clusters less massive than 10> M, while the right-hand panel shows clusters more massive than 10> M. Note the different range spanned by the two panels.
The dotted line shows the longest median age spread. All runs use fiyoost = 1, N, 0 = 0, and show all clusters formed before z = 1.5.
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Figure 11. A comparison of the star particle initial mass function for
the Isolated MW IC runs with varied €. For runs with failed cluster
formation, dashed lines indicate the range where more than 50 per cent
of clusters have formation durations longer than 14 Myr. Black dashed
lines indicate power-law slopes of —2 and —3. The lower limit of the plot
corresponds to one cluster. All runs use fhoost = 1, fin, 0 = 0, and show all
clusters formed before z = 1.5.

such as one with bursts of star formation at early and late times, can
lead to large values of Tpead- There is also a clear mass dependence.
Clusters with masses below 10° Mg and e > 10 per cent have
median age spreads less than 0.2 Myr, with all low-mass clusters
from those runs having age spreads less than 2 Myr. However, for
e = 1 per cent there is a clear tail to long age spreads even among
low-mass clusters, with some clusters having age spreads as long as
10 Myr.

We next investigate the effect of e on the cluster mass functions.
Fig. 11 shows the initial cluster mass function for runs using the
Isolated MW IC, and Fig. 12 shows the same for the Local Group
runs. Similar trends are seen in both plots. Higher values of e¢ lead
to more massive clusters and a higher maximum cluster mass, while
lower values of g produce more low-mass clusters. The exception
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Figure 12. A comparison of the star particle initial mass function for the
Local Group ICs with varied eg. For the g = 1 per cent run with failed
cluster formation, dashed lines indicate the range where more than 50 per cent
of clusters have formation durations longer than 14 Myr. Black dashed
lines indicate power-law slopes of —2 and —3. The lower limit of the plot
corresponds to one cluster. All runs use fhoost = 5, fun, 0 = 20 per cent, and
show all clusters formed before z = 3.3, the lowest redshift that all simulations
have reached.

to this is a handful of very massive clusters that formed in the
Isolated MW e = | per cent run, leading to a separate hump
in the high-mass end of the mass function. The indicates that even
with low values of eg, massive clusters are still possible, although
typically rare. We note that we do not see such hump in the Thelma
& Louise run with € = 1 per cent.

The slope of the high-mass end of the mass function varies with
€, with the mass function being shallower for higher values of €.
As with all calculations of the mass function slope, we restrict our fit
to clusters above 10° Mg, For e = 1 per cent, the slope is between
—3.78 and —4.41 for runs on the different ICs, while for e =
10 per cent it is between —2.94 and —3.42, and for € = 100 per cent
it is between —2.25 and —2.60.
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Figure 13. A comparison of the star formation rate of the central galaxy in
the Isolated MWIC when varying €. All runs use fyoosc = 1 and fun, o = 0.

The exact shape of the mass function is somewhat different
between the runs that use the Isolated MW IC and those that
use the Local Group ICs, with the Local Group runs having fewer
low-mass particles. These Local Group runs used fyoosr = 5, which
decreases the number of low-mass clusters compared to lower values
of fooost (see Fig. 9). The different redshift of these runs also likely
contributes. We find that the majority of massive particles form at
very high redshift or in galactic mergers, when the star formation
rate is high. This matches what was seen in L18, and agrees with
both observations and theoretical expectations (Portegies Zwart et al.
2010; Kruijssen 2014). In more quiescent epochs, high-mass particles
do not form, giving proportionally more low-mass particles. As time
progresses, more low-mass clusters are likely to form in the Local
Group runs, possibly making their mass functions more similar to
those seen in the Isolated Mw IC.

While e significantly affects cluster properties, it does not change
the galactic star formation rate appreciably. Fig. 13 shows the star
formation histories of runs when varying e while holding fyoost =
1 and fin 0 = O constant. Here, we find that lower values of e
lead to somewhat higher star formation rates at early times. These
star formation rates at z ~ 5 are significantly higher than predicted
by UNIVERSEMACHINE, and tend to decline with time rather than
increase. However, we find opposite trends during the major merger
at z &~ 2.6, when the high €4 runs show a stronger burst. In the runs
using the Local Group analogs, the star formation history does not
change significantly with €.

In summary, we find that e does not have a significant impact
on the galactic star formation rate, but does strongly influence star
cluster properties. In particular, higher values of ey lead to more
massive star clusters and shorter time-scales for cluster formation.
These results confirm those found in L18, indicating that they are
robust predictions of our simulations.

3.5 Virial criterion

One of the other changes to our star cluster formation prescription
was the addition of a criterion restricting star-forming gas to be gravi-
tationally bound (see the beginning of Section 2.2). To investigate the
difference this makes in cluster properties, we ran one simulation with
the virial criterion turned off. While we find no significant differences
in large scale galactic properties, we find differences in the star
cluster populations. Fig. 14 shows the mass function for runs with and
without the virial criterion. The addition of the virial criterion leads to
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Figure 14. A comparison of the initial cluster mass function for runs with
and without the virial criterion for seeding star formation. Black dashed lines
indicate power-law slopes of —2 and —3. Both runs used the Isolated MW
IC, efr = 100 per cent, fhoost = 1, fun, 0 = 0, and show all clusters formed
before z = 1.5.

more high-mass clusters and fewer low-mass clusters. Quantitatively,
the power-law slopes of the mass functions for clusters above 10° Mg,
are —2.60 for the run with the virial criterion and —3.30 for the run
without it. While the maximum cluster mass is similar between the
two runs, there are significantly more clusters with masses above
10° M, when the virial criterion is enabled.

The increase in the number of high-mass clusters is expected,
as equation (3) shows lower gas densities lead to higher virial
parameters. The cut on the virial parameter prevents these lower
density GMCs from forming stars until they accrete more gas and
collapse to higher density, leading to more total mass available for
star formation. The later onset of star formation also delays stellar
feedback, allowing more gas to accrete on to the cluster. These
processes shift many low-mass clusters to higher masses, explaining
the decrease in the number of low-mass clusters. In addition, as the
virial criterion allows more gas accretion on to the GMC, its larger
mass becomes more difficult to disperse with feedback, leading to
longer durations of star formation. As a consequence of these effects,
clusters have higher values of €;,, when the virial criterion is enabled.
In Fig. 15, we show the distribution of €;, with and without the
virial criterion. Both distributions have widths ~0.25 dex, but the
mean value for the run with the virial criterion is significantly higher
(35 per cent compared to 21 per cent).

In the run where we did not impose the virial criterion, we output
the virial parameter «y; of each cluster as it formed. Using this
information, we can post-process the results to see if there are any
correlations between the virial parameter and the resulting cluster
properties. We find that clusters with a;;, < 10 tend to have higher
initial masses, higher €;,, and higher initial bound fractions than
those with a;; > 10. The virial criterion acts in a biased fashion to
allow star formation to happen in regions that preferentially lead to
higher mass clusters. Additionally, regions with «;; > 10 are able to
accrete more material over time until they pass the o, < 10 thresh-
old, increasing the cluster mass that formed out of a given GMC.

In summary, we find that adding the requirement that star-forming
gas have a virial parameter «;; < 10 increases the number of massive
clusters, gives clusters a longer formation time-scale, and leads to
higher values of €;p.
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Figure 15. Kernel density estimation for the distribution of integrated star
formation efficiency for clusters in the runs with and without the virial
criterion. We use a Gaussian kernel with a width of 0.05 dex. Each curve
is normalized to the same area for comparison purposes. Both runs used the
Isolated MW IC, e = 100 per cent, fhoost = 1, fiin,0 = 0, and show all
clusters formed before z = 1.5.

4 EVOLUTION OF THE CLUSTER MASS
FUNCTION

In the previous section, we exclusively used the masses of the
star particles at the end of their formation process. As not all
stars are gravitationally bound to the newly formed cluster, we
must incorporate the initial bound fraction to obtain the observable
cluster masses. In addition, the plots in the previous section showed
the distributions of initial masses for all clusters formed over the
full time spanned by the simulation. This is not observable. In
this section, we include the cluster bound fraction and present the
instantaneous cluster mass function at a given redshift to allow for
more direct comparison with observations. While these are not true
mock observations, the results shown here accurately represent the
existing cluster populations at a given redshift in our simulations.

We start by examining the cluster initial bound fraction, which
is needed to turn raw particle masses into bound cluster masses.
Fig. 16 shows the initial bound fraction of clusters as a function of
mass. As in L18, we see the trend of higher mass clusters having
higher bound fraction. Additionally, runs with higher e have higher
bound fractions at a given particle mass.

Our prescription for the initial bound fraction (equation 4) makes
it solely dependent on the integrated star formation efficiency €jy. In
Fig. 17, we show the distributions of €;,,. Runs with lower e¢ have
lower €;,. For a given run, the spread is due to trends with mass,
where high-mass clusters have higher €;,, than low-mass clusters.
Quantitatively, the mean value of €;,, takes values of 1.2, 7.2, and
30 per cent for € = 1, 10, and 100 per cent, respectively. As €
increases, the widths of these distributions decrease, with values of
0.30, 0.24, and 0.17 dex, respectively.

The trend of higher €;,, with higher e is a direct consequence of ¢
controlling the cluster formation rate (equation 1). Higher e leads to
higher star formation rates, allowing the cluster to accrete more of the
gas from its surroundings. This is reflected in the duration of cluster
formation in runs with different 4. A lower value € causes clusters
to form more slowly. With a slow star formation rate, feedback also
starts before the cluster has accreted a significant fraction of the
surrounding gas, leading to lower €;,.. The different time-scales also
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Figure 16. The initial bound fractions for runs using the Thelma &
Louise IC and varying €. The solid line shows the median, with the shaded
region showing the interquartile range of the distribution of the initial bound
fraction at that mass. The mass plotted here is the particle mass at the end
of cluster formation, not the bound cluster mass, so that the plotted variables
are independent. For the e = 1 per cent run with failed cluster formation,
dashed lines indicate the range where more than 50 per cent of clusters
have formation durations longer than 14 Myr. We only show the Thelma &
Louise IC for clarity, but Romeo & Juliet and Isolated MW show
the same behaviour. All runs use fhoost = 35, fun, 0 = 20 per cent, and show all
clusters formed before z = 3.3, the lowest redshift that all simulations have
reached.
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Figure 17. Kernel density estimation for the distribution of integrated
star formation efficiency for clusters in the Thelma & Louise IC with
variations in €g. We use a Gaussian kernel with a width of 0.05 dex. Each
curve is normalized to the same area for comparison purposes. All runs use
Jooost = 3, fun,0 = 20 per cent, and show all clusters formed before z =
3.3, the lowest redshift that all simulations have reached. We plot the eg =
1 per cent run with a dashed line as that run had many clusters that failed to
finish forming.

likely lead to the change in width of the distributions. As low values
of e lead to longer time-scales of cluster formation, there is more
possibility for variation in the accretion history of the GMC. High
values of e form quickly, so they are forming mostly out of the gas
that was present at cluster birth.
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Figure 18. Evolution of the dynamical bound fraction fay, as a function
of cluster age for clusters in different mass ranges. Lines show the median,
with the shaded region showing the interquartile range. Clusters are grouped
according to their initial bound mass at formation. The plot shows clusters in
the central galaxy of the run using the Isolated MW IC, e = 100 per cent,
Jooost = 1, fin, 0 = 0, and shows all clusters formed before z = 1.5.

In addition to the initial bound fraction, we also need to account for
stellar evolution and dynamical disruption, which both cause clusters
to lose mass with time. These processes are calculated in simulation
runtime. In general, the mass M, bound to a cluster at time 7 can be
written as

My(t) = M; f; foe(t) fayn(?), (18)

where M; is the initial particle mass, f; is the initial bound fraction,
Jfse(?) accounts for mass loss due to stellar evolution, and fy, accounts
for mass lost due to tidal stripping (Li & Gnedin 2019; Meng &
Gnedin 2022). Our feedback scheme self-consistently decreases the
stellar mass of the cluster whenever mass is ejected into the ISM,
and dynamical disruption is calculated as described in Section 2.3.
In Fig. 18, we show the impact of disruption on clusters of different
mass, taking as an example the run using the Isolated MW IC,
e = 100 per cent, fioost = 1, and fun, o = 0. We choose a run using
the Isolated MW IC as it reached a lower redshift, so clusters
have more time to disrupt. Clusters with masses below 10* Mg
are entirely disrupted within 500 Myr. Clusters of intermediate
mass 10*—10° M, persist for a few Gyr, but do not survive until
the present. However, clusters with masses above 10° M, survive
throughout the lifetime of the simulation. Tidal disruption only
decreases the mass of these clusters by approximately 20 per cent
over the 4 Gyr length of this simulation.

Using these disruption calculations, we now present the mass
function of bound clusters at various redshifts. In Fig. 19, we show
the mass function of the surviving clusters at z =4 in the Local Group
runs with varied €. This figure shows trends similar to those seen
in Fig. 12, with several trends more exaggerated now that bound
cluster mass is included. First, we note similar shapes. Our mass
functions have a sharp cutoff at high masses, a peak, and a shallower
decrease to low masses. This shape is seen in all runs with € >
10 per cent. The position of the peak depends strongly on €. For e
= 100 per cent it is at approximately 10° My, while it is closer to
10* Mg, for e = 10 per cent. This is due to a combination of three
effects. First, as seen in Fig. 12, the initial particle masses are higher
for higher values of €. Second, higher values of e give higher
bound fractions, as shown in Fig. 16. The two effects magnify each
other, such that higher values of e result in cluster mass functions
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Figure 19. The bound mass function of all clusters present at z = 4 using
the Local Group ICs for different values of eg. For the €g = 1 per cent run
with failed cluster formation, dashed lines indicate the range where more
than 50 per cent of clusters have formation durations longer than 14 Myr.
Black dashed lines indicate power-law slopes of —2 and —3. The lower limit
of the plot corresponds to one cluster. All runs use fioost = 5 and fan, 0 =
20 per cent.

that reach to significantly higher masses. The disparity is further
increased by the effects of disruption, which preferentially removes
low-mass clusters (Fig. 18). These three effects combine to produce
dramatically different cluster mass functions when changing €. Of
note, the e; = 1 per cent run has no existing clusters above 10* M,
while the €5 = 10 per cent runs have no clusters above 3 x 10° Mg.

We also note that, as described in Section 3.2, the low-mass end
of the mass function is sensitive to fiyos, With higher values of fyoost
decreasing the number of low-mass clusters. The runs shown in
Fig. 19 were all run with fyo0e = 5. Lower values of figosr Would
increase the number of low-mass clusters and give it a shape more
similar to that seen in the local universe. Similarly, massive clusters
tend to form in epochs of intense star formation, while low-mass
clusters dominate in more quiescent epochs. As only the Thelma
IC has any significant mergers after the redshift shown in this plot,
we expect there to be more low-mass clusters as time progresses.

In Fig. 20, we show the evolution of the bound cluster mass
function from z = 6 to 1.9 for the run using the Romeo & Juliet
IC, e = 100 per cent, fhooss = 5, and fun o = 20 per cent. A
significant fraction of clusters with masses above 2 x 10° M, are
in place already at z = 6. More massive clusters form by z = 4,
but we see little change in the massive end of the mass function
beyond that redshift. At later epochs low-mass clusters dominate the
mass function, particularly increasing the number of clusters around
10* Mg,. Clusters of low mass that appear in this plot are mainly from
recent star formation. As Fig. 18 shows, clusters with masses below
10° Mg, disrupt within a few Gyr, and clusters below 10* Mg, disrupt
within several hundred Myr.

We also show an analytical evolution of star clusters from the last
output of this run at z = 1.9 to the present, following Li & Gnedin
(2019). The prescription for tidal disruption (equations 6—8) depends
on the galactic tidal field. In simulation runtime, we calculate it self-
consistently, but to extrapolate to z = 0 we simply assume a constant
value of Qg = 175 Gyr~!. This value was chosen to produce the
same final number of clusters as are observed in the MW. It results
in the disruption of most clusters with masses below 103 Mg, and
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Figure 20. The bound mass function of all clusters present at a range of
redshifts. All simulation lines are from the same run that uses the Romeo &
Juliet IC, e = 100 per cent, fioost = 5, and fun, 0 = 20 per cent. The
dotted line indicates the cluster population analytically evolved from z = 1.9
to 0. The shaded region shows the observed mass function of clusters in the
MW.

decreases the masses of all surviving clusters, shifting the distribution
to lower masses and decreasing the normalization. This calculation
also assumes that no new clusters form after z = 1.9.

Our chosen value of Qg = 175 Gyr~! is quite high. It is equivalent
to a maximum eigenvalue of the tidal tensor A, ~ 10> Gyr—2. Meng
& Gnedin (2022) examined the tidal field for the L18 simulations,
finding that clusters experience such strong tidal fields only shortly
after their birth. As they migrate away from the high-density star-
forming regions, the tidal field decreases significantly to typical
values An ~ 3 x 10° Gyr‘z, or Q4q ~ 30 Gyr‘l. Choosing this
low value of iy would significantly increase the number of low-
mass clusters surviving to z = 0 in our simulations. However, this
analysis was done at z > 1.5. The value of the tidal field may increase
over time as the galaxy grows. Our adopted value is also similar to
that used by Choksi & Gnedin (2019) in an analytic model for cluster
formation and destruction. These authors find that ;4 = 200 Gyr~!
can reproduce several observational results, including the GC mass
function at z = 0 and the relation between galaxy halo mass and
mass of its GC system.

We compare our results with the distribution of masses of the
observed MW GCs. We use the V-band absolute magnitude from
Harris (1996) along with the luminosity-dependent mass-to-light
ratio

M 4.5

— =13+ (19)
Ly 1 +exp(2My +21.4)

from Harris, Blakeslee & Harris (2017) to obtain GC masses. We find
good agreement between the two mass functions. While we match
the normalization by construction through our choice of 44, the
similarity of the MF shape to that in the MW system is a test of the
model. The maximum cluster mass matches the MW GCs well. We
note that the Harris (1996) catalogue includes both in situ and ex
situ clusters in the MW. As the simulation, z = 0 result comes from
analytic evolution of all clusters in the central galaxies at z = 1.9,
any later clusters that come in from later mergers would be missed.
However, Fig. 20 uses the Romeo & Juliet IC, which has quick
early growth with no significant mergers after z = 1.9 (Fig. 3). We
therefore expect few clusters from later infalling satellites, making a
comparison to the full MW population reasonable. We also note
that the Romeo & Juliet IC has more massive clusters than
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Figure 21. The age-metallicity relation for surviving simulated clusters and
MW GCs. Data points show MW GCs from VandenBerg et al. (2013) and
Leaman et al. (2013). Grey shaded regions and contours indicate simulated
clusters with masses above 3 x 103 Mg at z = 0 in the run using the The 1ma
& Louise IC, e = 100 per cent, fooost = 3, and fun, o = 0, with contours
enclosing 50 and 90 per cent of the sample. Clusters from both central galaxies
are included as there are no systematic differences between the two. The final
output of this run corresponds to an age of 10 Gyr, meaning that all regions
on the plot are accessible to the simulation.

the Thelma & Louise IC. This is likely becuase of its quick
early growth (Fig. 3), increasing the star formation density at early
times and leading to the formation of more massive clusters. For
the Thelma & Louise runs, a lower value of Qg4 is required
to reproduce the high-mass end of the Galactic GC mass function,
leading to too many simulated low-mass clusters.

In the runs with e = 100 per cent, our present-day mass functions
have more clusters with masses above 3 x 103 M, than seen in L18.
This is a consequence of our initial mass functions extending to
higher masses than in L18. These changes are primarily driven by
the addition of the virial criterion. As Fig. 14 shows, the addition of
this criterion significantly increases the number of massive clusters.
The increase in the number of massive clusters allows us to increase
the value of Qg from 50 Gyr~' (used by L18) to 175 Gyr~'. In that
work higher values of €24 would have disrupted too many clusters.
In the runs presented in this work, stronger disruption is required to
produce an agreement for the massive end of the mass function while
reducing the number of low-mass clusters.

Similarly to the mass function at z = 4, the mass functions of
surviving clusters at z = 0 depend strongly on €. For all runs with
e < 10 per cent (not shown), we find no clusters above 4 x 10° Mg,
and the overall distributions shift to lower masses. That is clearly
inconsistent with the observed mass function of MW GCs.

Another important relation found in observations is the age-
metallicity relation of MW GCs (e.g. VandenBerg 2000; Marin-
Franch et al. 2009; Dotter et al. 2010). Metal-rich clusters form
systematically later than metal-poor clusters, as the galaxy enriches
its interstellar medium with time. In Fig. 21, we show the age-
metallicity relation for simulated clusters that survive to z = 0 in the
run using the Thelma & Louise IC, e = 100 per cent, froost =
5, and fun, o = 0 and compare to observations of MW GCs presented
in VandenBerg et al. (2013) and Leaman, VandenBerg & Mendel
(2013). We find broad agreement between the simulated cluster
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population and the MW GCs. While the plot shows only one run using
the Thelma & Louise IC, we see similar trends in all ICs. We
note that the value of €24 used in the analytical disruption calculation
slightly affects this result. A change in the disruption rate would affect
which clusters that survive to the present. In particular, as most of
the highest mass clusters form early, increased disruption tends to
remove younger, higher metallicity clusters. While the shape of the
age—metallicity relation changes little, the distribution of clusters
within it does.

5 DISCUSSION

5.1 Timing of supernova feedback

In Section 2.4.7, we discussed several prescriptions for the timing of
SN, then in Section 3.1 we examined how these prescriptions affect
the properties of star clusters. We find that later SN feedback leads
to longer time-scales for cluster formation and higher values of the
integrated star formation efficiency. In this formalism, we assume
that there is no difference in the formation time of low- and high-
mass stars within a cluster. Individual stars of all masses have the
same age. However, this assumption may be incorrect. For example,
using a simulation of a star cluster forming out of a 2 x 10* Mg
GMC, Grudi¢ et al. (2022) find that massive stars (m > 10 M)
finish accreting 1 Myr later than the average star. Padoan et al.
(2020) find a similar result using a simulation of 2 x 10°® Mg, of gas
in a (250 pc)® box with several star-forming regions. The delay in
massive star formation in turn delays the onset of feedback. While
our simulations account for the stellar age spread within the cluster
when determining the timing of SN, they do not account for this
systematic delay in the formation of individual stars.

As shown in Fig. 2, our hybrid approach to the timing of SN
feedback approximates well the delay in SN feedback due to the age
spread of the stars, so it is our preferred model for future simulations.
However, it may need to be further refined to account for the delay in
massive star formation. In particular, one possible approach would
be to calibrate a subgrid model for the timing of cluster feedback to
the results of GMC-scale simulations such as in Grudi¢ et al. (2022).
Further delays in the onset of massive star feedback may increase
the time-scales of cluster formation and the integrated star formation
efficiency, but these effects are likely to be small compared to the
effects of other parameters, namely €.

5.2 Strength of stellar feedback

In Figs 6 and 7, we showed how the star formation rate of the
central galaxies in our simulations changed when varying fioost. We
found that f0ese = 5 produces too little star formation in the current
simulation setup. In the Isolated MW runs we find that fyoos =
1—2 matches the UNIVERSEMACHINE predictions fairly well, as do
Jfooost = 1—31inthe Thelma & Louiseruns. Aswe discuss morein
Appendix A, updates to the hydrodynamics are primarily responsible
for the change in preferred values of fyoost- Such low values of fioost
are unexpected. L18 calibrated fioos, finding fooose = 5 to be their
preferred value. Numerical tests in Semenov, Kravtsov & Gnedin
(2017) have also shown that values of fiose = 5 best account for
numerical losses of momentum as an SN shell moves across the
simulation grid. Theoretical grounds for fi.s > 1 also exist, with
Gentry etal. (2017) finding that clustered SN can enhance momentum
feedback by up to an order of magnitude relative to an isolated SN.

We also note that all of these runs, even with fy,os = 1, show a
large decrease in the star formation rate at z < 2, in conflict with
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Figure 22. The distribution of €jy/egr for different values of e in the
Thelma & Louise IC. All runs used fhoost = 5, fan,0 = 20 per cent,
and show all clusters formed before z = 3.3, the lowest redshift that all
simulations have reached. We plot the € = 1 per cent run with a dashed line
as that run had many clusters that failed to finish forming.

the abundance matching expectation. Both the hydrodynamics and
feedback models have been updated to be more physically realistic
than those used in L18, but produce worse agreement in the star
formation histories. This may indicate that there is additional relevant
physics that needs to be included in our simulation.

Our model assumes that all stars above 8 Mg explode as SN.
However, this assumption may not hold. Simulations of SN find
that some progenitors collapse directly to a black hole without
an SN explosion (Heger et al. 2003; Horiuchi et al. 2014; Pejcha
& Thompson 2015). If we were to include such scenarios in the
feedback scheme, it would decrease the total energy and momentum
from SN. We would therefore require a higher value of fio0s to Obtain
reasonable star formation rates. Additionally, changing the minimum
progenitor mass for SN makes a large difference in the energy
injected by SN (Keller & Kruijssen 2022). We assume M i, = 8 Mg,
but this value is uncertain. Increasing it would decrease the number
of SN, again requiring a higher fi,os to compensate.

5.3 Constraints on star formation efficiency

Fig. 17 shows the distribution of €, for the runs varying eg. While
we find a clear trend that decreasing ey decreases €j,, we can also
examine the ratio €;,/€s. Fig. 22 shows this ratio for the Thelma &
Louise runs, which can be directly compared with Fig. 8 of L18.
For all values of e we consider, we find higher values of €;, /€ than
did L18. Two of the changes discussed in Section 3 are responsible.
First, the modified SN feedback prescription delays SN feedback
compared to L18, which results in higher €;,, (Fig. 5). Second, the
introduction of the virial criterion leads to higher €;,, at a given
eg (Fig. 15). Combined, these two effects shift our distributions of
€/€in to higher values.

We still see the same trend with e as did L18, where higher values
of € lead to smaller €, /e ratios. Quantitatively, the mean value
of this ratio drops from 1.15 to 0.57 to 0.30 for €5 = 1, 10, and
100 per cent, respectively. Conceptually, this ratio is proportional
to the number of freefall times over which the cluster accreted
material. As discussed in Section 3.4, lower values of €5 lead to
longer formation time-scales, in accordance with this result.
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As we have discussed throughout Section 3, the duration of a star
formation episode is sensitive to cluster feedback and formation pre-
scriptions. While difficult to constrain precisely, current observations
indicate that the age spread within clusters is less than ~6 Myr (see
the compilation of age data in L18). These age spreads can still be
significantly larger than . One example is the Orion Nebula Cluster
(ONCQ), where star formation appears to have occurred over several
freefall times (Da Rio, Tan & Jaehnig 2014; Caldwell & Chang
2018; Kounkel et al. 2018). In contrast, simulations of individual
molecular clouds generally show star formation ending after one #
(e.g. Grudic etal. 2022). Our simulated age spreads, shown in Fig. 10,
are consistent with the observations for e > 10 per cent. We see a
strong mass trend, but even for massive clusters the vast majority
have age spreads smaller than 6 Myr. However, our results rule out
eg = 1 per cent, which has unphysically long age spreads for clusters
of all masses.

The shape of the initial cluster mass function is another key
observable. YMCs in the MW and nearby galaxies are found to
follow the functional form of Schechter (1976), with a power-law
slope of —2 at the low-mass end (Portegies Zwart et al. 2010). Our
mass functions have a positive power-law slope at low mass, peak at a
mass that depends on € (10° Mg, for e = 100 per cent), then decline
in a manner consistent with a power law. In essence, our simulations
are missing low-mass clusters. While our cluster formation algorithm
only seeds clusters if they have an expected mass of 6 x 10° Mg,
runs with e = 100 per cent show the increasing mass function
above this mass. This may indicate that ez = 100 per cent forms
stars too efficiently, leading to too few low-mass clusters. However,
€ < 10 per cent results in too few massive clusters, with no clusters
projected to reach z = 0.

Lastly, €5 has been measured in observations with several methods
(Evans, Heiderman & Vutisalchavakul 2014; Usero et al. 2015;
Lee, Miville-Deschénes & Murray 2016; Ochsendorf et al. 2017;
Utomo et al. 2018). While the observations have somewhat different
medians, uncertainties, and intrinsic scatter in €¢, a value of €5 ~
1 per cent is typical. However, we find that this value does not
produce reasonable star cluster properties in our simulations. The
time-scales of cluster formation reach our algorithmically imposed
limit of 15 Myr. Such time-scales are in conflict with observations.
Low values of € also produce few massive clusters. Even a value
of e = 10 per cent produces few clusters with high enough mass
to reach z = 0 as GCs. Our simulations prefer higher values of €.
Among the runs presented here, € = 100 per cent produced the most
realistic cluster properties, as it did in L18.

To compare with observations more directly, we postprocess the
simulations to calculate an effective value of €4 in a way analogous
to how it is derived in observations. First, we identify clusters that
are actively forming in several simulation snapshots. Within a sphere
of radius r centred on the cluster, we calculate the inferred value of
€ as
&) = t(r) M(< r)! 20)

M gas(< r )
where 7y = 4/37/32Gp is calculated using the mean density p
within the sphere. In the rest of this section, we will use & to refer to
the inferred value from this procedure, while e will refer to the value
used in runtime of the simulation. To calculate M, we use a procedure
analogous to that used in studies that determine € by counting young
stellar objects (YSOs) to determine the star formation rate within a
cloud (Evans et al. 2014; Heyer et al. 2016; Ochsendorf et al. 2017).
These studies use YSOs to estimate the mass of recently formed stars,
then divide it by the lifetime of the YSO phase typically set to a fixed
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Figure 23. Kernel density estimation of the distribution of e¢ inferred from
post-processing simulated star clusters and from observations. We use a
normalized Gaussian kernel with a width of 0.15 dex. The simulated clusters
are from the run with the Isolated MW IC, e = 100 per cent, fooost = 1,
and fun, 0 = 0. The 5 pc line shows &g as inferred from the region actively
participating in cluster formation, while the 30 pc line shows the value inferred
for larger star-forming complexes.

time of 0.5 Myr. As we do not store the full accretion histories of
simulated clusters, we cannot directly obtain the star formation rate
over the last 0.5 Myr. Instead, we approximate it with the average
star formation rate over the relevant time-scale:

M

M= 21
max (Ispreadv 0.5 Myr) ' ( )

where M is the current mass of the actively forming cluster. For
clusters with large age spreads this prescription gives the average
star formation rate, while for clusters with short age spreads this
matches the rate inferred observations assuming an 0.5 Myr time-
scale. We choose to use the cluster age spread rather than the full
duration as it more accurately reflects the time-scale over which the
bulk of cluster formation happens. The total M within a given sphere
is the sum of M from all actively forming clusters in the sphere.

This calculation of € involves significant averaging both in time
and space, compared to the application in simulation runtime. A
typical local time-step at the highest refinement levels is 100-
1000 yr, orders of magnitude shorter than even 0.5 Myr. Therefore,
the finite difference calculation of the star formation rate M from
equation (1) is a much closer approximation to the true derivative
than equation (21). Considering spheres of radius » > 5 pc also
introduces averaging of the stellar and gas mass on a larger scale
than our adopted GMC radius. Both of these effects tend to shift &
to smaller values than the input €.

In Fig. 23, we show the distribution of values of &y calculated for
two choices of the averaging radius: 5 and 30 pc. As there are few
clusters actively forming in any given snapshot, we use all snapshots
from z = 9—1.5 in the run using the Isolated MW IC, e =
100 per cent, fooost = 1, and fun o = 0, giving a sample of 748
actively forming clusters. The radius of 5 pc matches the GMC
sphere actively participating in star formation. The inferred values
peak at around 30 per cent with large scatter but are significantly
below the simulation input € = 100 per cent. The procedure to infer
& uses the cluster formation time-scale to average the star formation
rate, which creates the wide spread and systematic shift. In addition,
this procedure calculates #y and My, at one instant, which may not
reflect typical conditions over the course of the cluster’s growth.
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Considering a larger sphere radius of 30 pc adds also spatial aver-
aging. For an isolated cluster, increasing the size of the sphere would
simply include more surrounding gas without increasing M, leading
to smaller inferred values of €. However, we find that clusters often
form in larger star-forming complexes with many clusters in close
proximity of each other. Our choice of 30 pc corresponds to the
typical radius of these star-forming complexes. Fig. 23 shows that
these complexes have a peak value of &; ~ 10 percent, with less
scatter than the values inferred on 5 pc scales. The lower mean value
is due to the inclusion of more gas not participating in star formation,
while the decreased scatter comes from averaging together multiple
clusters within each region.

This exercise shows that the inferred values of &g are a factor
of 10 lower than the simulation input. Still, for this run typical &g
are higher than those seen in observations. In Fig. 23 we include
observations from Evans et al. (2014), Heyer et al. (2016), and
Ochsendorf et al. (2017), which all use the YSO method but do
so on different scales. Evans et al. (2014) and Heyer et al. (2016) use
clumps with typical radii of a few pc, while Ochsendorf et al. (2017)
use star-forming complexes with radii around 40 pc. Even with these
differences of scale, all studies measure mean values of € consistent
with ~1 per cent. However, we note that we cannot make a direct
comparison between these observations and our inferred values of €.
Each ingredient of the calculation of € has systematic differences.
The mass of recently formed stars is calculated differently, as we
do not directly model the number of observable YSOs in each
cluster. The time-scales for calculating the star formation rate are also
different, as many of our clusters have 7 y,q longer than the 0.5 Myr
used in observations. Lastly, detailed modelling of CO and HCN
abundances and ionization states is needed to calculate M,,, exactly
as is done in observations. To resolve these differences would require
a further analysis in the simulation runtime. Nevertheless, Fig. 23
demonstrates that the discrepancy with observations is substantially
smaller than appears from a straightforward comparison with the
simulation input.

5.4 Failed cluster formation

In Section 3.4, we showed that in some runs with low eg, clusters
fail to finish formation before it is automatically ended at 15 Myr. In
this section, we investigate the reasons for these failed clusters.

We find that no runs with the high value of e = 100 per cent
have failed cluster formation, all runs with the low value of e =
1 per cent fail, and among the runs with the intermediate value e
= 10 per cent, only the run using the Isolated MW IC and fyoost
1 failed. All other runs with € = 10 per cent used higher fios
and did not fail. In total, 4 of our 29 runs experience failed cluster
formation.

These trends are due to an interplay between €5 and fioos. When
€ 1s low, cluster formation progresses slowly, leaving significant
amounts of gas. We find low values of €, for low e (Fig. 17),
meaning that at the end of cluster formation, only a small fraction
of gas has been turned into stars. This applies in the midst of cluster
formation, too. We examine the gas densities of the host cells of
clusters as they form and find that for lower values of € there is
more gas near the cluster at a given time after the beginning of
cluster formation, meaning that GMCs are more massive with low
values of €. In addition, the slower star formation with low €5
leads to fewer stars to provide feedback. When SNe begin, they must
first disperse the gas within the cluster. Higher values of fio0sr make
this process more efficient. Therefore, higher values of fyo0s lead to
shorter time-scales for cluster formation when € is low. In contrast,

MNRAS 514, 280-301 (2022)

1084

dM/dlogn [M]

10°4 froost =1, €= 1%, My, = B.9X10%Mo
— = fooost=1, €7 =10%, My, = 1.8x10°M,
—— fpoost = 1, £1= 100%, My, = 1.5x108M

fooost=2, €= 1%, My, = 3.0x10°M¢
oo =2, 5= 10%, My, = 14x10°M o

10° T T T
100 10t 102 10°

H, Number Density [cm™3]

S

[ oY Y ———

105

[N

Figure 24. The distribution of cell mass-weighted molecular gas densities
for different combinations of eg and fioos in the Isolated Mw IC. All
runs used fun, 0 = 0 and show the gas within 10 kpc of the galactic centre.
Dashed lines indicate runs with failed cluster formation. Runs with fyoest = 1
are shown at z = 1.56, while those with fpo0st = 2 are shown at z = 2.57. The
dotted line at 500 cm~3 indicates the minimum density for star formation.

when e = 100 per cent, clusters consume a high fraction of the
gas within their GMC. SN feedback of any fi.os is able to clear the
smaller amounts of gas that remain.

In Fig. 24, we illustrate this effect by presenting instantaneous
distribution of the molecular gas density within galaxies with
different combinations of e€g and fyoos- Runs with failed cluster
formation have distributions that extend to higher densities than runs
without failed cluster formation. As feedback cannot terminate star
formation, gas continues to accrete on to the GMC, increasing the
density. Of particular note is the gas at densities higher than the star
formation threshold. The total gas number density must be greater
than 10° cm™> with a molecular fraction of 0.5, giving a minimum
molecular number density of 500 cm™>. Above this threshold, the
failed runs have significantly more gas than runs that successfully
terminate star formation.

The prescription for SN feedback also contributes to why these
runs had failed cluster formation while the runs of L18 did not.
In the 15 Myr time-scale for cluster formation, the prescription of
L18 injects significantly more energy than the updated model (see
Fig. 1). For low hypernova fractions typical of most clusters, the new
prescription injects only 26 per cent of the energy of L18 within the
first 15 Myr, increasing to about 50 per cent after 40 Myr. This is
exacerbated by the lower fyoos used in the updated runs. The total
momentum injected by SN feedback during the 15 Myr of cluster
formation can be more than an order of magnitude lower than in
L18. For low values of €, this results in SN feedback being unable
to disperse the GMC.

The timing of SN also contributes to failed cluster formation.
Compared to L18, SN start later in the new prescription due to the
stellar lifetimes chosen (Fig. 1). These runs also use the average
approach for determining cluster feedback timing, as they were run
before the hybrid approach was finalized. This average approach
further delays the onset of SN (Fig. 2). In addition, we find that
runs with lower eg have later average times of cluster formation,
tave, meaning that SN is delayed even further in these runs. These
delays in the onset of SN gives the gas outside the GMC more
time to accrete on to the GMC, leading to higher gas masses that
SN feedback then needs to disperse. This combines with the effect
described in the previous paragraphs to make GMCs more difficult
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to disperse for lower e, further explaining why we find that fioos
affects the time-scales of cluster formation for low € but not for €4
= 100 per cent.

To summarize our understanding of why massive star clusters fail
to finish forming when ei < 10 per cent, lower values of eg turn
gas into stars at a slower pace. At a given time after the beginning
of cluster formation this results in fewer stars, and therefore less
stellar feedback, embedded in a more massive GMC. The onset of
SN is delayed compared to L.18 due to our choice of stellar lifetimes
(see Fig. 1), and then is delayed further after accounting for the age
spread within the cluster. This allows more material to accrete on
to the GMC, making it even more difficult for feedback to disperse.
Once SN feedback starts, the updated feedback prescription injects
less momentum than L.18. The new prescription has fewer SN and is
further exacerbated if low values of fi0s are chosen. Although lower
values of fy,ost produce more reasonable star formation rates for z
> 2, these low values fail to provide enough feedback to disperse
GMCs when eg is low. This may indicate that another source of
feedback is needed at early times to help disperse GMCs or that the
combination of ey < 10 per cent and fy,0 = 1 is ruled out by our
simulations.

6 CONCLUSIONS

We have described improvements to the implementation of star
cluster formation and feedback in the ART code. We introduced
a new criterion for the seeding of cluster particles, requiring the
star-forming gas to be gravitationally bound. We also implemented
a new prescription for the initial bound fraction of clusters based
on simulations of individual GMCs. We added runtime tracking of
C, N, O, Mg, S, Ca, and Fe, with enrichment coming from SNIa,
SNII, stellar winds, and AGB stars. We updated the SN feedback
prescriptions significantly. We now implement SN as discrete events,
with rates based explicitly on the stellar lifetimes and IMF. We also
explored effects of hypernovae, which inject more energy and have
different elemental yields. Lastly, we improved our prescription for
the timing of SN to account for the age spread of stars within a
cluster.

With these code updates, we ran 20 simulations using the IC from
L18 and 9 simulations using two Local Group-like ICs from the
ELVIS project. These runs have a range of parameters, including
variations in €, fun, 0, fooost> and the timing of SN feedback. We
explored how these parameters affect the properties of galaxies as
well as the populations of star clusters within them. Our results are
summarized as follows.

(1) Delaying the onset of SN (without changing the total energy
injection) results in longer formation time-scales for massive clusters
and higher €;,, (Figs 4 and 5), but does not significantly change the
galaxy star formation rate.

(ii) Higher values of the momentum boosting factor for SN greatly
decrease the galactic star formation rate (Figs 6, 7). While no value
of fuoost can reproduce the abundance matching expectation for the
full redshift range explored here (z > 1.5), we find that the range 1
< froost < 3 produces reasonable agreement for z > 2. Higher values
of fieost decrease the total stellar mass by decreasing the number of
low-mass clusters that form, without changing the number of massive
clusters (Fig. 9).

(iii) The hypernova fraction fiy, o makes little difference to galaxy
or cluster properties (Figs 6 and 9). The strong decrease in fyn with
metallicity (equation 11) results in limited change in the total energy
injected by SN (Figs 1 and 8).
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(iv) The local star formation efficiency per freefall time does not
have a strong impact on the galactic star formation rate (Fig. 13).
However, it strongly changes cluster properties. Higher values of €
lead to more massive clusters (Figs 11 and 12), shorter time-scales for
cluster formation (Fig. 10), higher initial bound fractions (Fig. 16),
and higher €;, (Fig. 17).

(v) Adding the virial parameter criterion to require star-forming
gas be gravitationally bound produces more high-mass clusters
(Fig. 14), longer time-scales for cluster formation, and higher €y
(Fig. 15).

(vi) Inruns with low values of €, we find a population of clusters
that fail to finish forming after 15 Myr. Low values of eg form
stars slowly, leaving massive GMCs that are difficult for feedback to
disperse, especially with low values of fioos-

(vii) We present the evolution of the observable mass function of
clusters at various redshifts (Fig. 20). Most massive clusters form at
high redshifts when the star formation density is high, with low-mass
clusters dominating in quiescent epochs.

(viii) We analytically extrapolate the dynamical disruption of
clusters from the last available output to z = 0 (Fig. 20). We can
match the observed mass function of MW GCs by assuming a high
value for the cluster disruption rate. The surviving clusters also match
the age—metallicity relation of MW GCs (Fig. 21).

(ix) Among the values of e we explored, only e = 100 per cent
can match the MW GC mass function. Runs with € = 1 per cent
produces clusters with unphysically long age spreads (Fig. 10), and
runs with e = 10 per cent produce too few high-mass clusters
(Figs 11, 12, and 19).

This exploration emphasizes the importance of well-calibrated
subgrid models for modelling star clusters in simulations of galaxy
formation. Some modelling choices, such as the optimal value of
€, whether to enforce a virial criterion when seeding star clusters,
and different prescriptions for the timing of SN feedback all affect
the resulting cluster populations without significantly impacting
global galaxy properties. A successful model of star formation and
feedback in simulations must be able to reproduce not only galaxy-
scale properties, but also the small-scale properties of individual star
clusters.
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Figure A1. Heatmap showing the temperature and density of gas within the
virial radius of the largest halo. In each panel, the shading shows the volume
of gas at the given temperature and density. The left-hand column shows a
run using the hydrodynamic scheme of L18, e = 100 per cent, fpoost = 35,
and fiN, o = 0, while the right column shows the run with the updated energy-
based hydrodynamics scheme, e = 100 per cent, fyoost = 1, and fun, 0 = 0.
The top row show these runs at z = 13.3 before any stars formed, while the
bottom row shows the runs at z = 1.5. In the top panels, the red line shows the
expected behaviour for pure adiabatic compression. The code version of L18
exactly follows this line, while the updated version has extra heating from
proper treatment of shocks.

APPENDIX A: HYDRODYNAMICS

When updating from the version of the ART code used in L18,
we changed the model of how internal energy is calculated in the
presence of subgrid turbulence. The hydro solver independently
tracks total energy, thermal energy, and energy of unresolved subgrid
turbulence. The thermal energy and subgrid turbulence are assumed
to evolve adiabatically (other than energy injection from sources such
as stellar feedback). As these are calculated independently, there is
no initial restriction for the sum of thermal, kinetic, and turbulent
energies to equal the total. As the adiabatic assumption is not always
correct for thermal energy (particularly in shocks), the new version
calculates the thermal energy as Ey, = Eiot — Exinetic — Ewrb- This
energy synchronization allows for shocks to transfer energy from
kinetic to thermal, as should happen. The adiabatic assumption is
only used in cases where the gas is highly supersonic, such that
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Figure A2. The star formation history for galaxies in our test runs with
varying hydrodynamics and feedback. We compare the feedback model of
L18 to the feedback model presented in this paper. All runs use e =
100 per cent, fyoost = 5, and fun, o = 0. We compare to the UNIVERSEMACHINE
model (Behroozi et al. 2019). The change in hydrodynamics is solely
responsible for the change in star formation rate, while our updates to feedback
have little eftect.

Eiot =~ Exineiic- In this case, the subtraction would be susceptible
to numerical errors, so we revert to the adiabatic assumption. In
the old version of the code, which always relied on the adiabatic
assumption, shocks were not treated properly and energy that should
have been transferred from kinetic to thermal was simply lost. This
is visualized in the top row of Fig. A1, where we show the phase
diagram of gas within the virial radius at z = 13.3 before stars have
formed. The hydrodynamic scheme of L18 follows what is expected
for pure adiabatic compression, while the new scheme shows gas
being heated by virial shocks.

While the newer version of the code is better physically motivated,
it significantly changed the structure of modelled galaxies. We find
large differences in temperature distributions of the gas. The bottom
panel of Fig. Al shows the phase diagram of gas within the virial
radius at z = 1.5. Here, the run with the updated hydrodynamics
has significantly more hot, low-density gas in the halo. This hot gas
prevented cold gas from accreting on to the disc, effectively reducing
star formation. We show this star formation in Fig. A2 using test runs
that vary both the hydro and feedback schemes. We test the stellar
feedback model presented in this paper as well as the model used
by L18. All runs use fyoost = 3, yet runs with the new hydro scheme
produce dramatically lower star formation rates.
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