VOCAL: Video Organization and
Interactive Compositional AnaLytics

Vision Paper

Maureen Daum’
mdaum@cs.washington.edu
University of Washington

Magdalena Balazinska
magda@cs.washington.edu
University of Washington

Apryle Craig
apryle@uw.edu
University of Washington

ABSTRACT

Current video database management systems (VDBMSs) fail to
support the growing number of video datasets in diverse domains
because these systems assume clean data and rely on pretrained
models to detect known objects or actions. Existing systems also
lack good support for compositional queries that seek events con-
sisting of multiple objects with complex spatial and temporal rela-
tionships. In this paper, we propose VOCAL, a vision of a VDBMS
that supports efficient data cleaning, exploration and organization,
and compositional queries, even when no pretrained model exists
to extract semantic content. These techniques utilize optimizations
to minimize the manual effort required of users.

1 INTRODUCTION

In many application domains—ranging from scientific research to
urban planning—the use of large video datasets has become com-
mon in great part because camera quality continues to improve and
storage remains affordable. Video datasets capture content from
diverse domains and support widely varying applications, such
as using cameras mounted on vehicles to understand how neigh-
borhoods evolved through the pandemic [39], using animal-borne
cameras to investigate animal (e.g., shark) habitat preferences [28],
or using citywide camera networks to measure the effect of traf-
fic interventions on crowded city streets [55]. In response to the
proliferation of video datasets and applications, recent work has
pushed the state of the art in the field of video database manage-
ment systems (VDBMSs) [1, 12, 23, 31, 37]. These systems, however,
(i) expect clean video data, (ii) require pretrained machine learning
models to detect objects or actions, and (iii) have limited or no sup-
port for compositional queries about multiple objects interacting
over time.
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Figure 1: We introduce VOCAL, an end-to-end video analyt-
ics system that facilitates cleaning, exploration, and com-
positional query processing over large-scale video datasets,
even for domains where no pretrained models exist.

In contrast, most real world collection efforts violate all three
assumptions. They result in videos with dirty data. They often lack
domain-specific models to support the target application. Users
would like to ask complex, compositional queries on their data. As
a motivating example, we are working with a dataset of videos
captured by cameras attached to wild deer (Odocoileus spp.) [16].
The videos are to be used to provide insight into deer activity
patterns: How much time do deer spend foraging versus lying
down? How do environmental conditions (e.g., slope and depth of
snow) affect deer activity? The collected data is dirty: camera lenses
are often obscured by snow for a large fraction of time (up to 75%),
requiring that scientists first manually clean each video to find
usable fragments. Because egocentric deer video is an uncommon
domain, there are no pretrained machine learning models available
to detect deer activity directly. Scientists thus need to annotate their
videos manually. This is tedious, so scientists have only annotated a
small fraction of the data. Finally, scientists would like to understand
complex deer behavior that goes beyond simple activity detection.

In this paper, we propose VOCAL (Video Organization and Inter-
active Compositional AnaLytics), a vision of a VDBMS that supports
user-defined applications and compositional queries for any dataset,
even when the videos are dirty or lack domain-specific pretrained
models (Figure 1). We contribute initial techniques towards devel-
oping VOCAL to (i) filter dirty data from videos (Section 2), (ii)
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Figure 2: VOCAL consists of three steps. (a) First, VOCAL supports data cleaning to remove dirty video data. (b) Second, VOCAL
enables exploring and labeling the clean video data to train domain-specific models. (c) Third, VOCAL utilizes these domain-
specific models to perform compositional query processing over the video data.

support model development through exploration and organization
of videos using an interactive clustering algorithm (Section 3), and
(iii) evaluate compositional queries by iteratively learning and refin-
ing the event specification (Section 4). These techniques and their
interactions are illustrated in Figure 2.

Prior to analyzing videos, users must filter dirty video segments
(Figure 2a). Dirty video data may be generated in many ways. For
example, the camera may malfunction and record when the user
did not intend (e.g., at night), environmental forces may misalign
the camera’s field of view, or the camera lens might be obscured.
Without support for data cleaning from existing VDBMSs, filtering
dirty data is a tedious manual process. The user likely does not know
all the causes of data collection failure, especially when there are
too many videos to watch in their entirety. We observe, however,
that the types of video segments we are trying to filter out are
identifiable by looking at a few frames (e.g., segments where the
camera lens is completely covered by snow). Therefore, we propose
learning simple classifiers using basic color and motion features,
which are cheap to extract. These models require minimal user
annotations and are fast to train. To do this, as users iteratively
mark dirty video segments, VOCAL'’s cleaning subsystem trains
a classifier that is used to automatically remove similar segments.
The output of this step is a clean dataset.

Once the dataset is cleaned, VOCAL'’s data exploration subsys-
tem (Figure 2b) supports investigative analyses by allowing users to
explore, organize, and label video segments with information, such
as entities, events, or environmental conditions, to build domain-
specific models. Today, users must manually annotate large datasets
to build such models if they do not exist yet. We seek to reduce
this manual effort. The first challenge is feature extraction. Simple
color or motion features may be too limited to distinguish events
of interest. Features from existing pretrained models from other
domains may not be applicable. For example, egocentric cameras
are mobile, complicating the identification of important visual fea-
tures. The second challenge is an evolving label set. When initially
working with a new dataset, users may be unsure of what events
occur and what they look like from the perspective of the camera,
thus updating their desired set of labels while exploring the data.

To address these challenges, we propose an active learning ap-
proach that reduces manual efforts by prompting the user to only
annotate the most useful video segments. Behind our active learn-
ing approach lies a clustering technique to partition the dataset into

clusters of video segments with visually or semantically similar
content. VOCAL shows the most informative clusters to users, who
iteratively merge and split them to create useful labels. The output
of this step is a set of clusters that can be used to train domain-
specific models to automatically identify video events. These models
are used as input to the following step.

Finally, VOCAL supports complex inquiry by enabling compo-
sitional query processing (Figure 2c). For instance, scientists may
query for video where a deer was grazing, then sighted a predator,
and finally began running. Query specification is the primary chal-
lenge of compositional queries because users must express queries
in a manner that encompasses an event’s high variance (e.g., a deer
may graze for one minute or one hour on grass or snowy terrain,
then sight a predator). Models today can detect only a limited set
of activities in videos [47] and are expensive to evaluate. Thus,
most existing systems supporting spatiotemporal compositional
queries [23, 37, 54] still rely on models that process single frames,
detect all objects before query execution, and require precise query
specifications (we discuss related work in more detail in Section 5).

To address these challenges, we introduce an iterative query re-
finement approach that automatically learns the event specification
from user feedback. VOCAL iteratively presents frames that the
user annotates with objects, positions, and relationships. VOCAL
trains simple classifiers to learn the event specification using spatial
configurations extracted from the feedback because, as discussed
above, simple color and motion features fail to capture semantic
specifications from the annotations. To minimize the user’s anno-
tation efforts, VOCAL prioritizes frames using temporal sampling
based on event duration and predictions from simple classifiers. We
also explore techniques to accelerate compositional query execu-
tion.

While we focus on the deer video dataset, these three steps gen-
eralize to other domains. The second application we explore in this
paper is that of a city planner who seeks to utilize traffic cameras to
investigate whether allowing cars to turn right on red lights creates
hazards for pedestrians. The city planner must filter out video data
where the camera is obscured, for example, by heavy rain. They
must explore the video to learn how vehicles and pedestrians move
through the intersection. They can finally query for their events of
interest.

While the initial techniques presented in this paper are evaluated
on two datasets that correspond to our two running examples, our
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Figure 3: Exploration tool interface. The segments inside of
the red box would be identified as dirty data.

ultimate goal is to develop techniques that are applicable to any
video dataset where there are clearly identifiable entities, events,
or environmental conditions.

2 DATA CLEANING

In many video datasets, some amount of data is corrupted or has
captured something other than the input of interest. Data cleaning
is therefore necessary to remove this dirty data before users can
proceed with their analysis, as illustrated in Figure 2a.

Example: In the deer video dataset, between 0.4% and 75% of
the data for each deer, which corresponds to 0.2-35 hours of video
data, was either obscured by snow or unintentionally captured at
night, and therefore was not usable.

Requirements: VOCAL should support users in effectively remov-
ing dirty data. It should automatically identify clean and dirty data
given a small number of user-provided annotations. As the user
provides more annotations, VOCAL’s ability to detect dirty data
should improve.

Challenges: The first challenge (C1) is to support users in effi-
ciently finding examples of dirty data in large video datasets. The
second challenge (C2) is quickly updating models in response to
additional data.

Approach: Our approach to address challenge C1 is to first show
users a high-level summary of the data. To do this, VOCAL first
splits long videos into short segments. For the deer videos, the data
already comes in 10-second segments. As illustrated in Figure 3,
VOCAL initially shows only the first frame of each segment and the
user can scroll rapidly through the collection of segments. For many
segments, the first frame suffices to identify dirty data segments.
If the user is not sure of their label because a segment is directly
followed by something interesting, they can hover over the frame
to play the entire segment before labeling it.

VOCAL then builds a classifier to isolate the unannotated dirty
data. To address challenge C2 and ensure rapid data cleaning with
little manual effort, our current prototype uses a support vector
machine (SVM) classifier, which is fast to train and requires a small
number of labels compared to more complex models such as a deep
neural network (DNN). The model further uses basic features such
as color and motion, which are fast to extract. This approach works
because dirty data is typically very different from good data.
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Figure 4: Sample frames for activities from the deer dataset.
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Preliminary results: We train twelve SVM classifiers, one for each
individual deer, to detect dirty video segments. We train the SVM
on the following features (extracted using OpenCV [6]) in each
10-second video segment: average luminance extracted from the
median frame, the amplitude of the 2-dimensional discrete Fourier
transform, the changes in average gray-level values and intensity
distribution across frames using a 3x3 frame partitioning as in
[46], and changes along the horizontal and vertical axes across
frames computed with dense optical flow. These features capture
basic information about the visual content and motion. For each
deer, we order the video segments by time and use the last 25% as
the test set. We pick 5% of the remaining video segments as the
training set using stratified sampling to ensure it contains both
clear and obstructed video segments. These classifiers achieve a
median accuracy of 98% and a median F1 score of 98%.

While other datasets may have a smaller amount of dirty data
or data that is less obviously dirty, we expect to be able to extend
this simple classifier technique to detect dirty data in videos where
the dirty data is visually distinct from clean data.

3 INTERACTIVE EXPLORATION & LABELING

Following data cleaning and as illustrated in Figure 2b, the next
requirement is the ability for users to annotate collected videos
with the interesting content that was captured with the goal to
train domain-specific models to automatically detect that content.
The baseline annotation process that we seek to improve upon
consists of users manually sampling video segments then having
workers manually annotate each segment. This process is tedious
and difficult to repeat due to inter- and intra-worker biases.

To address these challenges, VOCAL employs an interactive data
exploration and organization process. Our approach clusters video
segments into groups based on visual similarity and supports users
in labeling and refining those groups, which then serve as labeled
data for training domain-specific models. The output of this step
is a set of labeled clusters and trained models that automatically
classify video segments following the user-defined labels.

Example: In our running example, scientists seek to identify ac-
tivities that the deer engage in (e.g., foraging, lying down, walking,
being alert) and the environmental conditions associated with each
activity (e.g., terrain characteristics like slope, snow depth). Scien-
tists also need to capture the duration of each activity. Activities
can have arbitrary lengths, be hierarchically composed, and be
overlapping.

Requirements: VOCAL must support users in labeling their data
in a way that enables training accurate models for the domain
at hand. VOCAL should iteratively incorporate user feedback to
refine how data is labeled and the quality of the learned models.
Updates in response to user feedback should be fast to support
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an interactive user experience. The system can neither assume
that the dataset is fully annotated nor that the full set of labels is
known or fixed. Finally, it is important to minimize the amount of
user actions required to derive good labels and models. Therefore,
VOCAL should guide users to annotate the segments that are most
informative for the target downstream model.

Challenges: Automatically detecting entities, events, and con-
ditions in videos from a new domain poses three challenges. The
first challenge (C1) is to develop automatic ways of extracting and
learning features. Many video datasets, especially scientific ones,
capture unique domains that are different from the datasets used to
train existing models. For example, the deer dataset contains ego-
centric videos from the perspective of a deer as shown in Figure 4.
This is quite distinct from commonly used models in the consumer
or urban setting, such as the Kinetics dataset [7], which consists of
YouTube videos of human activities. When the data comes from a
unique domain, VOCAL cannot use models pretrained on existing
data to extract semantic information. The second challenge (C2) is
that users may not know ahead of time all the activities that the
dataset contains, nor what those activities look like. For example,
it is unclear what a foraging deer looks like in an egocentric video
prior to watching the video, or if the video will contain examples
of the deer running away from a predator. The third challenge (C3)
is that labeling the video dataset is tedious, especially for activities
that occur rarely and at unpredictable times. As a result, obtaining
large numbers of labels in order to train a domain-specific model
through transfer learning or from scratch is a difficult task.

3.1 User Interactions and Active Learning

To address challenges C2 and C3, we are developing an interactive
exploration and organization technique that minimizes annotations
by allowing users to work with clusters of video segments instead
of individual segments.

We assume we can extract features from video segments (dis-
cussed in the next subsection). Then, using these features, VOCAL
clusters all of the segments and allows the user to split (manually
or automatically), merge, or label each cluster. VOCAL then incor-
porates this feedback using two phases to decide which clusters
to show to the user in the next round of feedback. Picking the
best set of clusters to present to the user is important because it
determines which clustering errors the user notices, and therefore
which corrections they make. In the first phase, VOCAL updates
the set of clusters and labeled data. If the user manually split a
cluster, the system groups the segments as directed by the user. If
the user elects to automatically split a cluster, VOCAL applies a
clustering algorithm to just the points in that cluster to break it
into smaller clusters, each containing more similar video segments.
If the user merges or labels clusters, VOCAL propagates any labels
to all other members of these clusters. VOCAL additionally utilizes
the temporal relationship between video segments to automatically
propagate labels to temporally adjacent segments because nearby
segments are likely to correspond to the same activity and condi-
tions. Ideally, by increasing the total number of labels, despite some
of the automatically inferred ones being noisy, we can more quickly
converge on a useful dataset for training domain-specific models.

In the second phase, VOCAL uses active learning to rank the clus-
ters according to their potential to improve the model being trained

using an uncertainty metric [45]. It picks the top-ranked clusters to
show to the user in the next round. Rather than ranking all video
segments, VOCAL accelerates this step by only considering a sin-
gle representative from each cluster (the cluster medoid). VOCAL
further reduces the set of candidate segments by not considering
points that are temporally adjacent to points already constrained
by the user, again because events and activities are likely to extend
to nearby video segments. Once VOCAL prunes the set of segments
the active learning strategy should consider, it incorporates class
information if it is learning a multi-class classifier. This is impor-
tant because class imbalance can hurt the performance of active
learning algorithms [18], but we expect videos to contain imbal-
anced events and that rare events will be of interest to users. In
multi-class settings, there are two possible approaches VOCAL can
take: (1) sampling uncertain segments along each class decision
boundary as in [18], or (2) sampling first along the easiest class
decision boundary to build a high-quality binary classifier, then
later focusing user effort on distinguishing the more difficult deci-
sion boundaries. We are exploring under which conditions each of
these strategies performs better so that VOCAL can switch between
them automatically. Finally, once VOCAL picks a set of clusters to
show to the user, VOCAL further samples a small number of video
segments from each to show in the user interface because clusters
may be too large to show in their entirety. Our initial approach
is to show the cluster medoid, a few segments that are close to
the medoid, and a few segments near the boundary that may be
misclassified, as we showed this approach to be useful for model
debugging in prior work [40].

As discussed, VOCAL operates over clusters rather than indi-
vidual data points. This has two main benefits. First, it acts as a
form of representative sampling for active learning [45], which is
a technique that prefers to query points that are both uncertain
and similar to other points in the dataset (rather than querying
highly uncertain points that are outliers). When clusters contain
similar points, feedback users apply to a cluster representative can
be propagated to other members of the cluster. This is more effi-
cient than users labeling individual points. Considering just cluster
representatives also reduces the total set of segments that have
to be considered for each round of active learning, and therefore
supports interactive updates. Second, users may want to go beyond
classification and add relationships (e.g., subclasses) to labels. Clus-
ters are a natural way to operate over data that will be organized
into a taxonomy (e.g., using hierarchical clustering).

Before users can engage in the iterative clustering process de-
scribed above, VOCAL first supports cold starting the exploration
process when there are no labels yet. Our prototype organizes the
video segments in temporal order and lets users browse the data
and make annotations as they start to understand the video con-
tent. We also enable filtering based on previously defined labels
and displaying the distribution of previously defined labels (e.g.,
while users may not currently be viewing any segments showing a
traveling deer, they can see that such an activity occurs in future
segments). Details of our prototype user interface are shown in
Figure 5. Maintaining interactive response times in the interface
in response to user actions (e.g., filtering or navigation) is difficult
because of the amount of data as well as the inherently high cost
of transferring and rendering videos. We are developing a variety
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Figure 5: The initial data exploration interface (before clus-
tering). (A) Options to select a deer’s data. (B) Options to
filter segments the user has manually annotated (example
shows selection of travel or foraging segments). (C) Seg-
ment details displayed after hovering over a segment. (D) A
text field to add annotations to selected segments. (E) Time-
line elements showing the distribution of annotations. (F) A
slider control to filter video segments by time.

of optimizations to minimize data transfers and rendering costs to
ensure interactivity.

3.2 Features and Clustering

To address challenge C1, VOCAL automatically extracts and learns
features from the video segments to create the clusters used in the
previous section. There are different ways to effectively pick these
features for videos from an arbitrary domain. We consider three
types of features that exhibit different tradeoffs between extraction
speed and quality for clustering and modeling. The fastest set of fea-
tures to extract are basic features. Basic features consist of color and
motion statistics extracted from the raw pixel values of the videos.
These features can be easily extracted with just a CPU. However,
they are not specific to any one domain, and therefore their cluster-
ing and modeling performance may be limited. We next consider
features extracted from pretrained models. While we do not expect
pretrained models to exist for the specific domain being analyzed,
it is possible that intermediate layers of neural networks trained
on a different task and dataset may capture general information
about the content of a video. These features are more expensive
to extract than the basic features because they require a GPU to
efficiently run inference on the pretrained model. The performance
of these features will depend on both the pretraining dataset and
the dataset being analyzed. For example, features extracted from a
model trained on a self-driving car dataset would likely perform
well on a different driving dataset, but features extracted from a
model pretrained on stationary video data may perform poorly on
egocentric video data.

Finally, we consider features extracted via self-supervised learn-
ing. Self-supervised learning learns embeddings for a dataset with-
out labels. This is the most computationally expensive of the tech-
niques we consider because it requires training a model before
features can be extracted. Depending on the size of the model,
this could require multiple GPUs to be done efficiently. However,

CIDR’22, January 10-13, 2022, Chaminade, USA

(Y Ne
'y " %‘. ® % 'J‘e’o‘
X @ ° )
$ o
« 9
€
@5 : %%
%% e Bedded To” o 3.3:::;3
» Travel de
® Foraging F ‘,-"
(a) Basic (b) Pretrained (c) Self-supervised

Figure 6: t-SNE visualization of video segments for different
feature types. All feature sets were reduced to 50 dimensions
using PCA.

self-supervised features are the most domain-specific because the
embedding is learned from the unlabeled dataset itself. This could
lead to superior performance on clustering and modeling tasks.

Given these different feature sets, the question then becomes
when are the cheap basic features sufficient, and when should
VOCAL invest the computational resources to learn more domain-
specific features? We propose to always initialize exploration with
the basic features because they are the cheapest to extract. This
enables the user to begin interacting with their dataset without
waiting for an expensive feature generation step. Then, VOCAL
periodically extracts various feature representations from a catalog
of pretrained models to determine whether any of them lead to
clusters that better agree with the user-provided feedback than the
basic features. During idle time when the user is not active, VOCAL
learns self-supervised features. It picks a model size (e.g., ResNet18
vs. ResNet50 [27]) based on the compute resources available.

When clustering video segments using these features, in many
cases the number of clusters is not known. This makes it challenging
to use clustering algorithms that require the number of clusters
to be specified, such as K-means. In general, it is better to specify
more clusters than the expected number of labels because it is
possible that a single label is best represented by multiple clusters.
Alternatively, when the number of clusters is unknown it may be
beneficial to use a clustering algorithm that can infer the number
of clusters, such as a Variational Bayesian Gaussian mixture [13].

Preliminary results: To validate that it is possible to partition the
video segments into clusters of similar activities, we use t-SNE [48]
to visualize the distribution of a subset of video segments from a
single deer containing different activities in Figure 6. We use the
same basic color and motion features as in Section 2 (Figure 6a), fea-
tures extracted from a pretrained Rubiksnet model [19] (Figure 6b),
and features learned via self-supervised learning using BYOL [24]
(Figure 6c¢). The figure shows that some activities are more easily
partitioned (e.g., bedded and traveling are better separated than for-
aging and traveling), and the different feature sets perform similarly
well. The results for other deer show similar trends.

To assess the clustering quality, we further perform clustering
using a mixture model on video segments showing bedded, travel-
ing, and foraging activities for ten deer, as shown in Figure 7. We
use PCA to reduce all features down to 50 dimensions. We measure
the homogeneity of the clusters, which is 1.0 when each cluster
contains a single activity type. Higher homogeneity values indicate
that video segments that represent the same activity belong to the
same clusters. We measure homogeneity for exactly three clusters
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(one per activity-type), as well as five and ten clusters to capture
activities that naturally form multiple clusters. Interestingly, none
of the feature sets leads to significantly better clustering. The self-
supervised features were learned over frames sampled from the
video segments. We expect that learning features over the video it-
self rather than individual frames would improve performance [21].
We observe that increasing the number of clusters is beneficial
because it improves homogeneity.

We repeat the experiment for three deer that had an even larger
number of data points, and we find the same trends with nearly
identical homogeneity values. We also tried using simple K-means
and achieved nearly identical results indicating that choosing a
good number of clusters is more important than the cluster shape
to achieve good homogeneity values. These results also show that
the initial clustering quality leaves room for improvement, thus
motivating the iterative user feedback approach from the previous
section.

While we have focused on a single dataset and use case so far,
we expect the initial techniques described in this section can be
extended to achieve desired clusterings for any dataset with clearly
identifiable activities or environmental conditions. We may need
to expand our feature set or experiment with different segment
durations in order to generalize.

4 COMPOSITIONAL QUERY PROCESSING

Once the interactive exploration and labeling process has trained
domain-specific models that can detect simple activities and ob-
jects, users can start to execute compositional queries in VOCAL
by utilizing these models and optionally other general-purpose
models (e.g., YOLO [42]), as shown in Figure 2c. A compositional
query consists of multiple spatially and temporally related objects
(defined in more detail in Section 4.1). In this section, we change
our running example from the deer dataset to a simpler scenario of
traffic cameras capturing interactions between cars and pedestri-
ans. While scientists are interested in compositional events over
the deer dataset, we are still at the phase of data cleaning and initial
exploration for that dataset.

Example: Compositional queries are helpful when monitoring
and managing transportation in a city. As a concrete example, con-
sider a scenario where a city planner seeks to determine if letting
cars turn right at red lights creates hazards for pedestrians. In this
application, the user may want to execute the following query:
“Find all instances where a pedestrian is crossing an intersection
while a car is turning at the same intersection.” To find the target
event, the user could: (i) apply some off-the-shelf model that can
directly detect the whole event, (ii) detect object instances in each
frame, and then explicitly define the event rule using objects and

relationships between them, or (iii) manually examine randomly-
sampled video segments until all instances are found. However,
these approaches present the following challenges.

Challenges: The first challenge (C1) of compositional query pro-
cessing is expressing the query. There are implicit constraints the
user may fail to specify (e.g., the pedestrian should cross at the
same location where the car is turning), and there are many satis-
fying spatial and temporal relationships (e.g., the pedestrian could
be crossing at any corner of the intersection and the car could be
turning before or after the pedestrian crosses). It can be difficult
and tedious to specify all possible configurations for a target event.

The second challenge (C2) is the lack of pretrained models that
can detect the complete compositional event. Unlike processing
simple video queries where models trained on the target objects
or actions may already exist (e.g., Faster R-CNN [43] for object
detection, SlowFast network [20] for activity recognition) and can
be applied directly to evaluate the query, such models are unlikely
to exist for compositional queries that involve multiple objects and
activities. The domain-specific models trained from the previous
step are useful to identify entities or simple activities, but they are
not sufficient for compositional queries. Additionally, it may not
be possible to train a customized model to detect the target event
because training such a model requires a large number of high-
quality training examples, which may be absent from the videos, or
even if they do exist, would require a tedious annotation process.

The final challenge (C3) we consider is the efficient execution
of compositional queries. Because compositional queries concern
objects and their relationships, a typical workflow for compositional
query processing is to first run object detectors frame-by-frame
and then match relationships [23, 37]. However, detecting every
object in every frame is known to be prohibitively expensive [43].

Requirements: Given the challenges above, we seek for VOCAL to
support users in finding user-defined compositional events without
them writing explicit and accurate query specifications. VOCAL
should be able to learn target query specifications through user feed-
back, while minimizing the user’s labeling effort. VOCAL should
also efficiently execute queries.

4.1 Query Definition

VOCAL uses the following data model for compositional queries.

Data Model: We define a video as a sequence of N consecutive
frames {fi, ..., fn}. The visual content of each frame f; is fully
described by a scene graph g; = (V;, E;) that consists of a set, V;,
of all objects in frame f;, along with a set, E;, of all relationships
between those objects. Relationships can be semantic [36] (e.g., a
person can hold an item) or spatial [30] (e.g., a car can be near a
pedestrian). A region graph, gi;, is a subgraph of a scene graph, i.e.,
9ij € gi-

Query Formulation: A compositional query q specifies an event
of interest. The specification consists of the following elements:

(1) Atemporally ordered sequence of region graphs {gi, . . ., gi },
which specifies that the event of interest consists of g;, fol-
lowed by g, followed by g3, etc., where each g; occurs one
or multiple times.

(2) A set of predicates, which can be applied to region graphs,
objects, or relationships.
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Figure 8: Sample frames from the Visual Road benchmark.

(3) A set of duration constraints, indicating that g; should per-
sist for at least (or at most, exactly, etc.) some number of
consecutive frames before transitioning to the next region
graph gj41.

(4) A window specification, expressed as a maximum number
of frames that can separate g; and g.

Example: The example in Section 4 has two possible configu-
rations: the pedestrian can be preceded or followed by the turn-
ing car. Using our semantics, one of the possible specifications is
q = {91, 92}, where g; contains one object, either a pedestrian or
a car, and g2 contains one object, either a pedestrian or a car, but
a different object class than g;. Further, there are predicates that
both the pedestrian and the car must be in the intersection and the
car must be turning.

4.2 TIterative Query Refinement

To address challenges C1 and C2, we advocate for an iterative query
refinement approach. The user should not have to precisely express
their query using the data model above. Instead, the user only needs
to specify a simple initial query and then provide continual feedback
to the system. VOCAL should learn the target event specification,
while minimizing the user’s video labeling effort.

Approach: VOCAL first asks users for an initial, partial query
for their target event. This query can be as simple as specifying
only the target object classes (e.g., “car” and “pedestrian”), or it can
include additional predicates (e.g., that the cars and pedestrians
should be in the intersection). VOCAL then samples video frames
that satisfy the partial query and asks the user to indicate if the
frames are positive or negative examples of their target event.

There are various types of feedback that the user can provide be-
yond labeling frames as positive or negative examples. For instance,
the user can specify important objects by drawing polygons around
them. The user can also specify the relationships between objects
that define the event. Further, the user can specify any objects or
relationships that should not be present, such as “no bikes should
be present at the intersection”.

Although the user could express the target query using the data
model introduced in Section 4.1, challenge C1 describes how dif-
ficult it is. Instead, VOCAL hides the complexity and learns the
query predicates by training a set of binary classifiers on the user
feedback. VOCAL extracts proxy features that represent the event
from different types of feedback, and incrementally trains classifiers
to predict whether each frame is part of the target event and ranks
the frames shown to the user by the classifiers’ confidence. As the
user labels more frames, the classifiers are retrained so that VOCAL
gradually learns the target event specification.
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Figure 9: Fraction of distinct event instances found vs. num-
ber of examined frames. Solid curves show the median and
shaded areas encompass the 25th to 75th percentiles. Each
experiment is run 100 times.

One limitation of the approach described so far is that VOCAL
risks showing the user multiple frames that belong to the same
event. To address this challenge, we add a temporal selection heuris-
tic that significantly lowers the probability of sampling a frame
within a small time-window of a previously found positive example.
Determining the right time-window and how to vary the sampling
probability within it requires extra knowledge of the average dura-
tion and frequency of the target event, which can be either provided
by the user or estimated by VOCAL over time.

Prototype Implementation Status: Currently, our prototype con-
siders simple region graphs that consist of a set of objects, and
we learn predicates over the spatial position of one of the objects,
designated as the primary object. Our ongoing work is extending
this early prototype.

While our design is broader, our prototype currently only uti-
lizes features extracted from individual frames. An object detector
cannot determine whether a car is turning based on a single frame.
We observe, however, that spatial features are a reasonable proxy
for many activities (e.g., turning cars appear more frequently at the
corners of the intersection). Thus, for each labeled frame, VOCAL
extracts five spatial features from the bounding box of one object
that the user designates as primary (e.g., the turning car in our
example): centroid coordinates (cx = (x1 + x2)/2,cy = (y1 +y2)/2),
height (h = y2 — y1), width (w = x2 — x1) and aspect ratio (r = w/h),
where x1, y1, X2, y2 are the upper-left and bottom-right coordinates
of the bounding box. We do not yet leverage relative spatial posi-
tions of different objects.

As in the previous sections, for interactivity, VOCAL trains a
random forest classifier rather than a DNN because it requires less
labeled data and is faster to train. In our example, training a random
forest classifier takes less than 0.03 seconds and requires only up
to a few hundred labeled frames to find all instances of the event,
as we show later in Figure 9, while training a specialized neural
network is typically considerably more expensive. For example, the
recently developed Blazelt system requires 150,000 labeled frames
and takes about 1 minute to train its specialized models [31].

Preliminary Results: We consider the example target query: “Find
all instances where a car turns at an intersection while a pedestrian
is crossing the same intersection” We say that VOCAL finds an
instance of the target event if it finds at least one frame of that
instance, since the user can later find all other adjacent frames
of that instance by playing the video directly. In our experiment,
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Figure 10: Retraining the classifier every 1, 2, 4, 8, and 16
annotations. Each experiment is run 100 times.

the user initializes the query by selecting the “car” and “person”
classes from a list of object classes supported by the object detector
and drawing a polygon to indicate the intersection region. For
the user feedback, the user annotates positive frames to indicate
which object instances are the important ones and whether their
spatial configuration matters. We experiment with this query on
a 15-minute VisualRoad [26] synthetic video captured at 25 fps
and 960 X 540 resolution (Figure 8). To obtain the ground truth,
we manually examine the video and label 951 frames as positive,
which constitutes 15 distinct, non-consecutive instances of the
target event. The average duration of the target event is 63 frames.

Figure 9 shows the cumulative fraction of distinct instances
found as the user labels more frames. We compare our approach to
two baselines: randomly sampling frames (Random) and randomly
sampling frames that contain objects of interest within regions of
interest (Filtered). In the figure, our approach is labeled as VOCAL,
and we show the results with and without the temporal selection
heuristic. In the experiment, we empirically set the window size
of the heuristic to be four times the average duration of the target
event, and we set the shape of the probability distribution to be a
quadratic function. We also try other window sizes (e.g., 1, 2, 4, 6, 8
and 16 times the average duration) and shapes of the probability
distribution (e.g. linear and quadratic), and we find the performance
is quite robust. In both plots, Random performs poorly. Without the
temporal selection heuristic (Figure 9a), VOCAL performs worse
than Filtered. This is because VOCAL tends to choose frames with
higher confidence scores and, as a result, shows many positive
frames from already-found events to the user. With the heuristic
(Figure 9b), VOCAL and Filtered find 60% of the positive instances
similarly quickly. However, VOCAL outperforms Filtered by 3.6x
for finding all positive instances.

Currently, VOCAL retrains the random forest classifier every
time the user provides feedback because the model training time
is negligible compared to user annotation time. However, this as-
sumption would not hold if we switch to a more complex model or
if the size of the training dataset grows larger. In such a case, we
would retrain the model after some predefined amount of time, or
use a heuristic to determine how many new annotations are needed
to trigger a model retraining process. Moreover, model retraining
could occur while the user is annotating or in the background, so
that the user does not have to wait. Figure 10 shows how retraining
frequency affects VOCAL’s performance (with the temporal selec-
tion heuristic). The classifier is retrained after annotating every
1, 2, 4, 8, or 16 frames. The performance degrades slowly as the

retraining frequency decreases, but is consistently better than the
other two baselines (Figure 9).

4.3 Query Execution

A fundamental component of executing compositional queries is
identifying the objects involved in the events. Executing DNN-
based object detectors is known to be prohibitively expensive [43],
and prior work includes methods that first filter frames using less
expensive predicates [38] or build specialized models that can more
efficiently answer a specific, simple query [31]. While composi-
tional queries are more complicated than the queries considered
by these prior systems because the former involves multiple ob-
jects with additional spatial constraints that may change over time,
this additional complexity opens the door to several interesting
optimizations, addressing challenge C3.

First, VOCAL can decompose a compositional event into mul-
tiple sub-events (e.g., a car turning event followed by a crowd of
pedestrians walking event). VOCAL can try to estimate which sub-
event is likely to be less frequent and find the rare event first, then
process the remaining components of the compositional event on
the filtered data only. To efficiently prune frames that do not contain
sub-events, VOCAL can train specialized models for sub-events. For
example, a specialized model could be trained to classify whether
a frame contains a group of people in the intersection. Due to the
complexity of the event, there are more ways it could be negative,
and it is possible to build additional specialized models for these
cases to filter out negative frames.

To efficiently prune out frames that do not contain sub-events,
VOCAL can also try to determine which object in the sub-event, if
any, can serve as a higher-selectivity predicate, and use existing
techniques to find frames that contain that object. In our test video,
9.9%,72.3%, and 99.7% of frames contain bikes, cars, and pedestrians,
respectively. If the user issues a query involving both bicycles and
cars, then VOCAL can apply a cheap probabilistic predicate on
bikes during the first stage to filter out a large portion of frames
that do not contain bikes, and then only invoke the object detector
on remaining frames. This can even be done dynamically; VOCAL
could start to run each object detector (with the less expensive
predicates) in different parts of the video, measure the respective
selectivity, and then switch to searching for the most selective object
accordingly. While existing work orders filters for each object type
to minimize the processing cost [51], we envision VOCAL going
beyond this by incorporating user feedback to adjust the set of
filters used to prune video frames.

Further, VOCAL can optimize the sampling rate. Prior work has
optimized the sampling rate for object tracking queries [1], but
with a different goal of reducing uncertainty rather than filtering
out negative frames. As discussed in Section 4.2, VOCAL applies
a temporal selection heuristic to sample fewer frames at locations
where positive instances are already observed. We can do more,
though, by incorporating knowledge of the duration of events. If
the user specifies a lower bound on an event’s duration, we can
sample frames at this interval. If two sequential sampled frames do
not contain the event, then all frames in between can be discarded.
Finally, VOCAL can also reduce its sampling rate in parts of the
video that do not encode much new information because these are
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less likely to contain new events. To do this, we can adapt research
from the computer vision community that adaptively adjusts play-
back speed of a video based on its content [3], and ask queries over
the speedup video.

Lastly, filtering in the compressed domain is also possible [50].
Even before decoding the video, the metadata (e.g., bitrate, frame
size) or the compressed structure (e.g., quadtree, motion vectors)
can be used for filtering. For instance, the presence of a group of
objects within a specific region could result in a quadtree structure
that uses more memory in this region to describe the details while
the absence of objects would use less memory, so a filter based on
this information can be devised.

We have shown that our initial prototype is effective for one
dataset and one compositional query that involves objects and
predicates over their spatial positions. We expect to extend our
techniques to support a broader range of compositional queries
on different datasets, which requires a more detailed definition
of the data model and considering other types of user feedback.
Further, we will look for other active learning techniques [17] to
further reduce user effort, and other optimization techniques for
more efficient query execution.

5 RELATED WORK

Prior work on recent VDBMSs focuses on accelerating specific types
of queries, such as selection and aggregation queries [31], tracking
queries [1], or on optimizing a single component of a VDBMS
such as the storage layer [14, 25, 53]. However, these systems do
not handle the full data processing pipeline. Panorama [56] enables
users to specialize a vocabulary and make it more granular, but does
not create new vocabularies for new domains (a goal of VOCAL).

Compositional queries: Caesar [37] and Rekall [23] support com-
positional queries but require all objects to be materialized before-
hand, which is expensive. Further, Caesar assumes action detection
models already exist, while Zeus [12] requires training new models
and optimizes how actions are detected by using reinforcement
learning techniques. Our query optimizations avoid expensive full
materialization, do not require an action detection model to al-
ready exist or be trained, and automatically refine queries based
on user feedback. TQVS [10] and Chen et al. [11] also detect and
track all objects in every frame during the preprocessing stage and
limit the types of compositional queries to temporal queries that
count co-occurring objects. Vaas [2] enables users to execute a
complex query by combining the output of simpler queries, but
does not introduce any algebra to reason about spatiotemporal
events, and SVQ++ [8] only supports spatial queries. However, we
envision VOCAL supporting more general queries involving rela-
tionships between objects in space and time. Another line of work
proposes various filters to facilitate compositional queries involving
aggregation and spatial constraints [35], and interactions between
objects [51], which could be applied to VOCAL to speed up query
execution.

Semi-supervised clustering: Existing techniques generally either
learn a distance metric based on constraints [52], modify the ob-
jective function with a penalty term for violated constraints, or
employ a combination of these two strategies [4]. Contrary to our
use-case where we begin with an unlabeled dataset, these existing
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techniques assume that all constraints are known ahead of time. Fur-
ther, our goal is to update the clustering incrementally and rapidly
so that the system is interactive, but these techniques require fully
re-clustering the data when the constraints change. There exists
an efficient greedy algorithm to incrementally incorporate new
constraints [15]. However, it only adjusts the cluster assignments
of data points that have been constrained. Adjusting the cluster
assignments of only data points that have been constrained is not
sufficient because the initial clustering of video segments is of un-
known quality, so many segments may have to be reassigned which
could lead to high manual effort and slow convergence.

Image clustering: QCluster [32] focuses on known-item search
rather than fully partitioning the dataset. In contrast, our goal in
the video exploration step is to use user feedback to learn domain-
specific models rather than to locate video segments that match a
particular query. Biswas and Jacobs [5] propose a technique that
selects pairs of images for a user to compare to improve a clustering,
which could potentially be incorporated into our active learning
component. However, our optimization goal is different because
rather than optimizing for the quality of the clusters themselves,
VOCAL optimizes for the quality of the domain-specific models
trained based on the clusters.

Video clustering: Cineast [44] and Vitrivr-Explore [29] are video
browsing systems that are optimized for known-item search rather
than general exploration and require the user to specify which fea-
tures to use and how to weigh them. Near duplicate video retrieval
techniques [34] assume the similarity between videos is known
which is not true for a new dataset. A technique based on unsu-
pervised clustering was developed for the specific application of
detecting activities in egocentric sports videos [33], however it only
uses motion features. This may not be sufficient for all types of
events or environments, which is the reason VOCAL incorporates
self-supervised features.

Self-supervised learning: Self-supervised learning can be used to
learn embeddings from unlabeled data. SimCLR [9] demonstrated
useful augmentation techniques to learn good embeddings on im-
ages, and BYOL [24] achieved similar performance without requir-
ing negative pairs by learning to predict the representation of an
augmented view of the input that is encoded with weights that
are a moving average of the target model. This technique has been
extended beyond images to learn features from videos [21]. The
key challenge in incorporating these techniques into the data explo-
ration process is deciding when it is most beneficial to invest the
computational resources required to learn these representations.
Users may prefer to use less computationally expensive features if
they achieve similar performance.

Weak supervision: Rather than training domain-specific mod-
els using clusters refined by user-provided labels and constraints,
weak supervision could instead be used to produce training data
via data labeling functions as proposed in Snorkel [41]. Manually
writing labeling functions over video data is challenging, so the
user-labeled data could be passed to a system like Snuba [49] that
automatically learns heuristics given a small amount of labeled
data. However, it is still a challenge to decide which data the user
should label. Labeling functions over video data can utilize rich
temporal dependencies; the FlyingSquid framework [22] introduces
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techniques that enable weak supervision to efficiently operate over
this type of label source.

6 CONCLUSION

In this paper, we presented a vision with preliminary experiments
for VOCAL, a VDBMS that supports user-defined applications and
compositional queries for any dataset. We proposed techniques to
enable data cleaning and exploration over video data, even when
no pretrained models exist to detect objects and events. We also
introduced an iterative query refinement technique to work around
the difficulty of expressing compositional queries, as well as ways
to optimize query execution.
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