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Abstract

Spatial-resolved scRNA-seq (sp-scRNA-seq) technologies provide the potential to
comprehensively profile the gene expression pattern in the tissue context. However, the
development of computational methods does not catch up with the fast advances of
technologies and fails to fully fulfill their potential. In this study, we develop a deep learning
approach for clustering sp-scRNA-seq data, named DSSC (Deep Spatial-constrained Single-cell
Clustering). In this model, we integrate the spatial information of cells into the clustering process
by two steps: 1) the spatial information is encoded by using a graphical neural network model;
2) cell-to-cell constraints are built based on the spatially expression pattern of the marker genes
and added in the model to guide the clustering process. Then, a deep embedding clustering is
performed on the bottle-neck layer of autoencoder by Kullback-Leibler (KL) divergence along
with the learning of feature representation. DSSC is the first model which can utilize the
information from both the spatial coordinates and the marker genes to guide the cell/spot
clustering. Extensive experiments on both simulated and real datasets demonstrate that DSSC
boosts clustering performance significantly compared to the state-of-art methods. It has a robust
performance over different datasets with various cell-type/tissue organization and/or cell-
typeltissue spatial dependency. We conclude that DSSC is a promising tool for clustering sp-

scRNA-seq data.

Introduction

Single-cell RNA-sequencing (scRNA-seq) is a powerful, systematic biological tool that allows for
transcriptomic analysis of cell heterogeneity and profiles thousands of cells at high resolution to
ultimately reveal unidentified cellular subpopulations (Moncada et al. 2020). Despite this,
conventional scRNA-seq alone leaves the tissue landscape undefined as cells are dissociated
from their respective tissues and suspended in solution (Longo et al. 2021), neglecting and
underappreciating the spatial complexity of cells and their relations to functions (Liao et al.
2021). Furthermore, cellular organization and intercellular communication networks for novel
types identified by scRNA-seq remain uncharacterized unless ligand-receptor relationships are
established (Skelly et al. 2018; Wang et al. 2019; Efremova et al. 2020). As cellular spatial
distributions are deeply intertwined with gene expression and cell functions (Zhuang 2021),
retaining this information is pivotal to further understand the collective dynamics of biological
activities. Spatially resolved single-cell transcriptomics (sp-scRNA-seq) provides an exciting
opportunity to map RNA molecules in their tissue locations, allowing for comprehensive profiling

of cell heterogeneity (Liao et al. 2021).
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Basically, the technologies to profile the spatial-resolved single-cell transcriptomics (or targeted
genes) can be divided into two types: 1) hybridization-based (or called image-based)
approaches, such as MERFISH, smFISH, and osmFISH. These technologies profile the

physical location attributes of cells by single-molecule fluorescence in situ hybridization
(Codeluppi et al. 2018; Miller et al. 2021). Pioneering studies in spatial genomics sought to
explore fluorescence in situ hybridization (FISH) and digital imaging microscopy to allow for the
detection of single RNA molecules in single cells (Femino et al. 1998). Thereafter, various FISH
probes were developed for single-cell transcript profiling, allowing for higher accuracy and
sensitivity when quantifying RNA molecules at the single-molecule level such as single-
molecule in situ hybridization (smFISH) (Femino et al. 1998; Lubeck and Cai 2012; Kwon 2013;
Shah et al. 2016). As some smFISH methods are multiplexed by barcoding (Femino et al. 1998;
Lubeck and Cai 2012), limitations such as optical crowding and transcript length hinder marker
gene targeting and cell-type mapping (Femino et al. 1998; Shah et al. 2016). Codeluppi et al.
developed a non-barcoded and unamplified cyclic-ouroboros smFISH (osmFISH) method,
optimized for brain tissue, to overcome the limitations of other smFISH methods (Codeluppi et al.
2018). This method demonstrates the ability to process and map large tissue areas and allows
for the construction of data-driven reference atlases of human tissue. 2) Sequencing-based
approaches, such as 10x Visium, and Slide-seq. A joint robust dissection of scRNA-seq data
with spatially resolved single-cell transcriptomics captures a detailed illustration of the concerted
cell-cell interactions within the tissue architecture. These technologies provide spatially resolved,
untargeted transcriptomic profiling at the pixel level, with a pixel size of 10-100um (Larsson et al.
2021). Using Visium as an example, it employs spatially barcoded mRNA-binding
oligonucleotides grouped in spots (larger than one cell) on the tissue slides. The mRNA from the
specialized tissue will bind to the oligos. Then, based on the collected mMRNA, a cDNA library
with spatial barcodes will be built, preserving the spatial information of spots. In this way, both
the gene expression level and the cells/spots spatial organization in the tissue can be measured.
The two types of technologies have their own advantages and disadvantages. Briefly, Imaging-
based technologies can reach the single-cell resolution, but they can only profile a limited
number of targeted genes/proteins; on the other hand, some sequencing-based technologies

can profile the whole transcriptomes, but they cannot reach the single-cell resolution.

Clustering analysis is an essential step in most single-cell studies and has been studied

extensively. Based on the clustering results, researchers can explore the biological activities in
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cell type or subtype level, which could not be reached by studying bulk data (Shapiro et al.
2013; Kolodziejczyk et al. 2015; Kiselev et al. 2019). It has been demonstrated that some cell
types, such as the neurons, have high spatial dependency and heterogeneity (Codeluppi et al.
2018). Specifically, tissues are an ensemble of cell types that interactively give rise to a specific
function. It has been shown that endothelial cells in the brain are located under certain spatial
patterns (Xia et al. 2019; Stoltzfus et al. 2020). Furthermore, within cells of the same type, high
spatial self-affinity was measured in ependymal cells and spatial self-evasion was observed in
inhibitory neurons such as microglia and astrocytes (Codeluppi et al. 2018). Cell neighbors
identified by spatio-temporal organization within tissues in complex organs (e.g., the brain)
provides important context to make inferences regarding cell interactions and behaviors. As
such, highly accurate and sensitive mapping of tissue sections is important to reveal spatially
dependent cells and can be used to understand the convolutions of cell heterogeneity. The set
of neighboring cells from the spatial transcriptomics studies may provide valuable information
for cell-type annotation. In other cases, such knowledge can lead to the identification of new cell
types based on their neighborhood profiles. However, this entails that computational resources
to analyze transcriptomic data are appropriately equipped with mechanisms to integrate the
spatial features. However, traditional methods, such as Seurat (Butler et al. 2018) and SC3

(Kiselev et al. 2017), cannot utilize valuable spatial information in the clustering analysis.

Some tools have been developed for spatially transcriptomic data. Giotto is a computational
method specifically designed for spatial transcriptomic data analysis that performs cell-type
enrichment analysis, spatially coherent gene detection, cell neighborhood, and interaction
analyses, and spatial pattern recognition (Dries et al. 2021). Unlike other computational
methods that are geared towards scRNA-seq analysis but utilize spatial information to identify
cell types (Stuart et al. 2019), marker genes (Svensson et al. 2018), or domain patterns (Zhu et
al. 2018), Giotto is purely centered towards spatial data analysis but is capable of integrating
scRNA-seq data to enhance spatial-cell type enrichment analysis. In the clustering analysis,
Giotto employs graphic clustering algorithms, such as Louvain (Blondel et al. 2008), to find cell
communities. BayesSpace is a Bayesian statistical method that enhances spatial transcriptomic
resolution and performs clustering analysis by modeling dimensionally reduced representation
of the single-cell count matrix and grouping neighboring spots to the same cluster via spatial
prior (Zhao et al. 2021). BayesSpace draws a distinction in use of a t-distributed error model to
identify spatial clusters and employs a Markov chain Monte Carlo to estimate model parameters.

However, BayesSpace has a limited scope of application as it is majorly designed for
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decomposing the data with low resolution from the sequencing-based technologies, such as the
10x Visium. Besides, some other methods, such as SpaGCN (Hu et al. 2021) and stLearn
(Pham et al. 2020), employ deep neural networks, such as CNN and GCN, to analyze the sp-
scRNA-seq data. These tools can also integrate the information from the H&E images to

enhance the cell clustering.

It is widely demonstrated that in many tissues, especially in the brain, many marker genes have
exhibited strong spatial expression dependencies (Guillozet-Bongaarts et al. 2014; Zeisel et al.
2015; Maynard et al. 2021). Therefore, the information from the markers can be used as the
prior knowledge to guide the sp-scRNA-seq analyses, especially for the clustering analysis.
However, none of the methods mentioned above can incorporate the marker gene information

in the clustering process.

In this article, we propose a novel clustering approach for sp-scRNA-seq data, DSSC (Deep
Spatial-constrained Single-cell Clustering). DSSC integrates the prior information from both the
physical organization of cells and the expression of the spatial dependent marker genes into the
clustering process by a denoising graphical autoencoder with cell-to-cell constraints. Our
extensive experiments indicated that DSSC outperforms the state-of-the-art methods in both
simulated and real datasets, revealing that it is a promising tool for spatial-resolved single-cell

data clustering.

Results

Simulation experiments

DSSC is developed for clustering spatial-resolved single-cell data by integrating the prior
knowledge from cell/spot location and marker genes. The overall architecture of the DSSC
model is shown in Figure 1. In the simulation experiments, we test the performance of DSSC on
the data in different cell-type spatial organizations and dependencies. We simulated the scRNA-
seq data by Splatter and placed them in the spatial locations from two real datasets from 1)
osmFISH data (Figure 2a); 2) sample 151673 from spatialLIBD data (Figure 2b); We adjust the
cell-type spatial dependencies by perturbing the spatial coordinates of 10%, 15%, and 20% of
total cells (see details in the method section). Constraints are built based on the true labels with
5% perturbations. We compare DSSC with seven existing clustering methods including
SpaGCN, stLearn, Seurat, Giotto, BayesSpace, k-means + PCA, and SC3. We compare both
the clustering performance (measured by AC, NMI, and ARI) and the predicted label's spatial
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heterogeneity (denoted as PLSH, measured by KNN ACC and Moran’s |) of these methods. The
results of simulation experiments are shown in Figure 4. Generally, we find that the spatial-
based clustering methods (DSSC, SpaGCN, stLearn, BayesSpace, and Giotto) have higher
clustering performance and PLSH than the traditional scRNA-seq clustering methods (Seurat,
SC3, and k-means). Cell-type spatial-dependency is negatively correlated with the performance
of the spatial-based clustering methods, but it has no influence on the performance of the
traditional clustering methods. BayesSpace cannot encode the spatial coordinates of the
osmFISH data, so the clustering performance and PLSH of it are much higher in the spatial
organization 2 (Figure 2b) than in spatial organization 1 (Figure 2a). Although DSSC
outperforms the competing methods in both spatial organizations, its advantage is much higher
in spatial organization 1 than in spatial organization 2. In summary, these results reveal that
DSSC'’s performance is not affected by the sequencing technologies and cell type spatial
organizations, while other methods may prefer the sequencing-based technologies (such as the
10x Visium). Besides, DSSC can keep a superior performance over the competing methods
under low, medium, and high cell-type dependencies (Fig a and b). Therefore, these
experiments demonstrate the robustness of DSSC’s performance. The statistical tests of the
clustering performance between DSSC and the competing methods are shown in Table S1,S2,
and S3.

Real datasets

We then test the performance of DSSC in three studies including 25 real datasets with 1 dataset
from osmFISH (mouse cortex), 12 datasets from spatialLIBD (human cortex), and 12 datasets
from 10x Genomics (Mouse brain, denoted as 10xMBAD). In all datasets, we compare DSSC
with seven competing methods as described above. For the data from spatialLIBD and
10xMBAD, we use the markers from the original paper of spatialLIBD (Pardo et al. 2022). Since

osmFISH data only has 33 genes, we only use the genes with the top Moran’s I.

OsmFISH dataset

The results of the osmFISH dataset are shown in Figure 3. Since the latent dimension of
SpaGCN is larger than the feature dimension of this data, we exclude SpaGCN from the
competing methods for this experiment. BayesSpace cannot recognize the neighbors from the
hybridization technologies, so the spatial information is not used by it for this dataset. The
marker genes used here for DSSC are Rorb and Syt6 (Figure 3c). As expected, the expression

of these genes have high spatial dependency. We find that DSSC can identify the layer
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structures in the cortex (Figure 3a). These layers are not clearly profiled by the competing
methods (Figure 3b). Besides, DSSC outperforms the competing methods in both clustering
performance and PLSH (Figure 3b). Some spatial-based methods, such as Giotto and stLearn,
have very high KNN accuracy, but their clustering performance is much lower than DSSC. A
potential reason for this result is that the spatial information overwhelms the clustering signal
from the gene expression during the clustering process, resulting in the high spatial dependence

but low clustering performance.

SpatialLIBD dataset

We then test all the methods on the spatialLIBD datasets (Figure 4). The marker genes used in
this dataset are PCP4 and MOBP (Figure 4c) for layer 5 and WM respectively from the paper of
spatialLIBD. These genes show strong spatial dependencies. So, they can be used to guide the
clustering process. Figure 4a shows that DSSC is the only method that can identify 5 layers in
the sample 151673. Some other spatial-based methods, such as SpaGCN, and BayesSpace,
cluster some cells in clumps, not in layers. Figure 4b shows that DSSC outperforms all the
competing methods in the 12 spatialLIBD samples in both clustering performance and PLSH.
Spatial-based methods have overall better performance than the traditional scRNA-seq
clustering methods, revealing the benefits from using the spatial information. BayesSpace has
the second-best performance in this dataset since it can recognize the spatial neighbors for
each cell in this dataset. The statistical tests of the clustering performance between DSSC and

the competing methods are shown in Table S4.

10xMBAD dataset

We then apply DSSC on the 10xMBAD dataset (Figure 5). Since this dataset has no true labels,
we use silhouette score (SS) to evaluate the clustering performance. We find that all the
methods have similar predicted labels’ spatial heterogeneity on this dataset (Figure 5a). DSSC,
BayesSpace, and SpaGCN have higher SS than other methods. To further prove the accuracy
of clustering of DSSC, we identify the cluster of thalamus in a wild-type (WT) sample and an
Alzheimer’s Disease (AD) sample by a marker gene Tcf7/2 (Figure 5b)(Lipiec et al. 2020) and
then perform a different expression analysis (DE) between the two groups of cells. We select
thalamus since it has been widely demonstrated to be associated with the memory and
cognition loss during AD (Pardilla-Delgado et al. 2021; van de Mortel et al. 2021). BayesSpace
and SpaGCN fail to identify the region of thalamus in the corresponding WT and AD samples

(Figure 5c). The DE results are shown in Figure 5d. Many genes that overexpress in the AD
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group are proved by previous studies. For example, Olfm1 has been shown as a potential
neuroprotective agent in Alzheimer’s disease (Takahama et al. 2014); Cst3 has contributions in
increasing the neuronal vulnerability and impaired neuronal ability to prevent neurodegeneration
(Kaur and Levy 2012); SynZ2 is related to the onset and progression of Alzheimer's disease
(Kumar and Reddy 2020). As a result, in the pathway analysis of the KEGG geneset from the
DE results (Figure 5e), the Alzheimer’'s disease pathway is significantly enriched in the thalamus
of the AD sample. Another significant pathway, olfactory transduction, is also shown to be
associated with AD from the previous studies (Zou et al. 2016). Spliceosome is also
demonstrated to be altered in the Alzheimer transcriptomes (Koch 2018), which is significantly
down-regulated in the AD sample. These downstream analyses further consolidate the
clustering results of DSSC. The statistical tests of the clustering performance (SS) between

DSSC and the competing methods are shown in Table S5.

Model test

We test three parameters in DSSC: 1) the number of constraints (ML and CL respectively); 2)
the parameter that controls the clustering loss (gamma); 3) the number of neighbors in the kNN
graph for GAT layers on the 12 spatialLIBD datasets (Figure 6a). We find that when the
constraint number is 0 (no constraints) or 6000 (too many constraints), the performance of
DSSC becomes unstable. A suitable number of constraints (here we suggest setting the
constraint number around the cell number) will not only improve the clustering performance but
also makes the model more stable. Compared to the model without clustering loss (gamma=0),
DSSC'’s performance is improved when gamma is 0.01. However, a too high gamma (>1) will
seriously impact the model’s performance. When the numbers of neighbors are higher than 10,
DSSC'’s performance is not sensitive to them. However, a model without considering neighbors
(K=0) has much lower performance revealing the contributions from using the spatial
information in clustering analysis. The results of the statistical tests of the parameter tuning
experiments are in Table S6, S7, and S8. We then test DSSC on the simulated datasets with
incremental numbers of cells (Figure 6b). We find that DSSC has a linearly ascending running
time with the increased cell numbers. Thus, it can be easily used for analyzing large datasets.

All experiments here are performed on the NVIDIA Tesla P100 with 16Gb memory.

Discussion
In this paper, we have developed a deep learning approach, DSSC, for clustering sp-scRNA-

seq data. DSSC utilizes a denoising graphical autoencoder to learn a nonlinear representation
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of data. Spatial information is integrated into the clustering approach by two ways: 1) constraints
from marker genes; and 2) GAT encoders. To our knowledge, DSSC is the first model that can
encoder the information from both spatial coordinates and marker genes for guiding the
clustering. More broadly, DSSC is a flexible model in which its reconstruction loss function can
be switched depending on the data structure. The available reconstruction loss includes ZINB
loss, NB loss, and MSE loss to deal with various scenarios. In this study, DSSC has been tested
on both simulated and real datasets. The aim of our experiments is to test the robustness of
DSSC’s clustering performance over the data with different cell type spatial organization and
cell type spatial dependency. The evaluation has been conducted regarding two aspects,
clustering performance, and space heterogeneity. Our results show that DSSC outperforms the

state-of-art methods over different datasets.

Recently, a new general-purpose density estimator has been introduced by employing a
symmetrical and paired generative adversarial network (GAN) architecture (Liu et al. 2021b).
Adopting this GAN architecture, a new method scDEC enables simultaneous learning of latent

features and cell clustering and shows its superiority over competing methods in scATAC-seq

analysis (Liu et al. 2021a). If spatial information could be accommodated in this GAN

architecture, we may expect similar promising improvement in analysis of sp-scRNA-seq data.

We leave such exploration to future work.

One limit of the current model is its compatibility with the datasets with low spatial dependency.
DSSC employs the spatial information of cells to boost the clustering performance, while not all
tissue types have a high spatial dependency. Besides, for approaches like 10x Visium, our
model is dependent on the assumption that all the cells in one spot are in the same cell type. In
the future investigation, this issue can be solved by doing the decomposition of spots. The latent
representation of DSSC can be used for many downstream analyses, such as the cell-to-cell

communication and trajectory analysis.

Methods

Denoising autoencoder

The autoencoder is a neural network for learning a nonlinear representation of data (Hinton and
Salakhutdinov 2006). It receives corrupted data with artificial noises and reconstructs the

original data (Vincent et al. 2008). It is able to learn a robust latent representation for noisy data.



283  We use the denoising autoencoder for the highly noisy count data of cells. Let’s denote the
284  preprocessed counts data as X and the corrupted data as X, formally:
285
Xe=X+0ox*n
286
287  where n is the artificial noise in standard Gaussian distribution (with mean=0 and variance=1),
288 and o controls the weights of n. We set o as 0.1.
289
290 Next, we use an autoencoder to reduce the dimension of count data. Encoders (E) are graphical
291  attention networks (GAT) layers and decoders (D) are fully connected neural networks.
292  Denoting the latent space as Z and the learnable weights of encoder as w, the encoder can be

293 shownas Z =E, (X.). The GAT layers in E can be formalized as:

294
ELU(BatchNorm(GATO (X, 4)))  ifi=1
X; ={ ELU(BatchNorm(GATS (ELU(X,_1),A)))  if1<i<L
GAT® (ELU(X,_,),A)  ifi=1L
295

296  Where X; is the output of the ith layer. GATi(K) is the ith GAT layer with K heads. L is the total
297  layers of encoder. A is the adjacent matrix of a kNN graph G built based on the spatial
298 coordinates of cells. Specifically, the distance between two cells i and j is measured by

299 Euclidean distance:

M;; = \/(Xi — %)%+ (Vi — ¥j)?
300 where x and y indicate the coordinates of cells i and j in a two-dimensional physical space.
301 Then A4;; (i,j€1,2,3,...,N)is built by:

302

A = {1, if iis the K nearest neighbor of j on the physical space
b 0, otherwise

303

304 Aisthen normalized by A = A- A - A, where A is the normalized graph, 4 is

305 diag(power(Z?’ Aj, —0.5)) and () means dot product. Then 4 is used as the input for the GAT
306 encoder. In this study, we set the number of heads as 3. The decoderis X’ = D,,,(Z), where w'
307 are the learnable weights for the decoder and X' is the reconstructed counts from the decoder.

308 The ELu activation function (Nair and Hinton 2010) and batch normalization are used for all the

10
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hidden layers in the encoder and decoder except the bottleneck layer. In the default setting, we

use two layers of encoder and decoder. The default bottleneck layer is set as 32.

We employ a zero-inflated negative binomial (ZINB) model in the reconstruction loss function to
characterize the zero-inflated and over-dispersed count data (Tian et al. 2019). Note, the raw
count data, not the normalized data, is used in the ZINB model (Lopez et al. 2018; Eraslan et al.

2019; Tian et al. 2019). Let X;; be the count for cell i and gene j in the raw count matrix. The NB

distributions are parameterized by My and 6;; as means and dispersions respectively. Formally:

(X + 0, g.. \Yi g.. \¥u
)0 V()

XytT(0y) \Oij + i) \Oij + i

Then, ZINB distribution is parameterized by the negative binomial and an additional coefficient

m;; for the probability of dropout events (zero mass):
ZINB(X;j|pij, 055, mi5) = mi580(Xi;) + (1 — ) )NB(Xij| g, 0;7)
The loss function of ZINB-based autoencoder for the count data is defined as:

Lyivg = z —log (ZINB(X;j |u;;, 0;;, 1))
ij
We use independent fully connected layers to estimate these parameters in ZINB loss functions.
We add three independent fully connected layers M, @, and II after the last hidden layer of the

decoder which outputs the reconstructed matrix X'. The parameter layers are defined as:

M = diag(s;) x exp (w,X");
® = exp (wpX");
M= exp (w,X");

where M, @, and IT are the matrix of estimated mean, dispersion, and drop-out probability for

the ZINB loss of count data. w,, wy, and w,, are the learnable weights for them, respectively.

The size factor s; for the cell i was calculated in the preprocessing step.

11
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The sizes of layers are set to (128, 32) for the GAT encoder and (32, 128) for the fully

connected decoder.

Deep embedded clustering

Our model has two learning stages, a pretraining stage and a clustering stage. In the pretraining
stage, we only train the autoencoder without considering the clustering loss and the constraint
loss (see details below). Then, in the clustering stage, we simultaneously optimize the
autoencoder and the clustering results. We perform unsupervised clustering on the latent space
of the autoencoder (Xie et al. 2016). Our autoencoder transfers the input matrix to a low
dimensional space Z. The clustering loss is defined as the Kullback-Leibler (KL) divergence

between the soft label distribution Q’ and the derived target distribution P”

1

Pir
q'ix

LClustering =KL(P' 11 Q) = ZZ p'ix log
i k

where the soft label ¢';;, measures the similarity between z; and cluster center u, by Student's
t-kernel (Maaten and Hinton 2008). The cluster center u, is initialized by applying a k-means on

the bottleneck layer from the pretraining stage, and then updated per batch in the clustering

stage. Formally, q';, is defined as:

Az 1)
T+l 7 = pye 1272

4

q ik

The target distribution P’ which emphasizes the more certain assignments is derived from Q.

Formally p';; is defined as:

Pl = q'%/ 24 ik
ik — [; [
' Zk!(q %k’/Zi q ikl)

During the training process, Q' and clustering loss are calculated per batch and P’ is updated
per epoch. This clustering loss will improve the initial estimate (from k-means) in each iteration
by learning from the high-confident cell assignments, which in turn helps to improve the low-

confident ones (Xie et al. 2016).

12
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Autoencoder with pairwise constraints

Based on the autoencoder architecture, we add pairwise constraints of cells (Tian et al. 2021)
on the latent space according to the expression of the marker genes. Similar to scDCC (Tian et
al. 2021), we employ the must-link constraints which pull two cells to have similar soft labels if
they have similar expression patterns of one or more marker genes, and cannot-link constraints
which encourage two cells to have different soft labels if they have different expression patterns

of one or more marker genes.

Constraints are built by six steps, considering both the spatial coordinates and the gene
expression of the cells: 1) select the marker genes from literatures; 2) for each marker, say
gene A, smooth the expression of A by averaging the normalized count data of the k (k is
defined according to the technology, we set it as 6 in this study) spatial neighbors of each cells;
3) define the cells with the top 5% (cutoff1) expression of A as high, otherwise as low; 4) collect
the cells as the confident cells if more than half (cutoff2) of its neighbors (and itself) have the
high smoothed expression of A; 5) repeat step 2-4 for all the marker genes; 6) since each
marker gene represents a cell type (or a layer in cortex), we connect two confident cells by a
must-link if they are selected by the markers for the same cell type (or layer); otherwise, we
connect two confident cells by a cannot-link if they are selected by the markers for different cell
types (or layers). It is noted that there is a tradeoff between the coverage and the reliability of
constraints. A higher cutoff will decrease the coverage of constraints but also reduce the false
positive links. We denote the constraints sampled here as the pool of constraints.

The must-link and cannot-link constraints loss are defined as:

Ly = Z longi X qj
(i,))EML

Ly = z 10g(1—ZCIiXQj)

(i )ecCL

Where q is the soft labels described in the clustering section above. Must-links and cannot-links
are used for training the model alternately and are updated (resampled) during the training. The
number of constraints can be set according to the cell numbers. For example, for a dataset with

4000 cells, we sample 4000 must-links and cannot-links, respectively.

13
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Combining the pairwise constraint loss, reconstruction loss, and clustering loss, the total loss of
the DSSC is:

L =Lyng +V * Lewustering + B * L + 1 % Ly
Where v, 8, and 2 are the coefficients for the clustering loss, must-link loss, and cannot-link
loss respectively. In the experiments of this study, y is setto 0.01, § and 2 are set to 0.1 and

1 respectively (see parameter tuning in the result section).

Model implementation

This model is implemented in Python3 using PyTorch (Paszke et al. 2017). Adam with
AMSGrad variant (Kingma and Ba 2014; Reddi et al. 2018) with an initial learning rate = 0.001
is used for the pretraining stage and the clustering stage. The kNN graph is calculated by the
“kneighbors_graph” function from the scikit-learn package. The top 2000 HVGs are selected to
train the model. We pretrain the autoencoders for 200 epochs before entering the clustering
stage. In the beginning of the clustering stage, we initialize K centroids by the k-means
algorithm. During the clustering stage, reconstruction loss and clustering loss are optimized first.
Then, constraint losses are optimized with reconstruction loss. ML and CL losses are optimized
alternately. The centroids are also continuously updated by the learning process. Before each
epoch, constraints are randomly sampled from the constraint pools. The soft label distribution Q’
is calculated in each batch and the derived target distribution P’is updated after each epoch.
The convergence threshold for the clustering stage is that less than 0.1% of labels are changed
per epoch. The marker genes used in this study are from the original paper of the spatialLIBD
datasets (Maynard et al. 2021), including PCP4, MOBP, FABP7, AQP4, CARTPT, KRT17 and
so forth. More markers can be added if necessary. It is noted that we test the Moran’s | and
check the expression pattern of each marker before using it (See supplementary notes for
details). If a marker has very low spatial dependency in a dataset, we exclude it for building
constraints. For the osmFISH dataset with only 33 genes, we just use the genes with the
highest spatial dependency (Moran’ 1) as the markers. All experiments of DSSC in this study are
conducted on NVIDIA Tesla P100 with 16Gb memory.

Marker and gene selection
Before running the autoencoder model, we use Moran’s | statistic (Moran 1950; Miller et al.
gene

2021) to measure the gene spatial heterogeneity. I,"" stands for the Moran’s | of gene Kk,

which is defined as:
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Where x is the mean value of the normalized counts of the gene K over all cells. A is the kNN

graph from spatial information of cells. Marker genes with low Moran’ | will not be used to build

constraints. It is noted that gene filtering has a tiny influence on the performance of the osmFish

dataset since it only has 33 genes. These genes are all selected by the researchers so all of
them are important for all or a part of cells in the tissue. In our experiments, because of the low
feature number, we only select 30 HVGs out of 33 genes. On the other hand, the sequencing-
based methods profile the whole transcriptome (>20000 genes). Many genes are not
informative for clustering and even mislead the clustering. So, feature selection is essential for
these datasets. In our experiments, we select the top 2000 highly variable genes (HVGs) for

training DSSC. An optional feature selection approach is to use the genes with the top Moran’s .

Evaluation metrics for clustering performance
Adjusted Rand Index (ARI) (Hubert and Arabie 1985), Normalized Mutual Information
(NMI)(Alexander and Joydeep 2003), and Clustering Accuracy (AC) are used as metrics to

evaluate the performance of different methods.

Adjusted Rand Index measures the agreements between two sets U and G. Assuming a is the
number of pairs of two cells in the same group in both U and G; b is the number of pairs of two
cells in different groups in both U and G; ¢ is the number of pairs of two cells in the same group
in U but in different groups in G; and d is the number of pairs of two cells in different groups in U,

but in the same group in G. The ARl is defined as:

gy - D@t d —l@+h)ata) +(c+d)b+d)
T (M -la+ba+o)+(c+d)(b+d)

LetU={U1,U2, ..., Cy}and G ={G1, G2, ..., Gy} be the predicted and ground truth labels on a

dataset with n cells. NMI is defined as:

1(U,6)

NMI = X TR, BV
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Where [(U,G) represents the mutual information between U and G and is defined as:

1(UG)=Z Z |UﬂG|10g|PnG|
' q=1 |Up| % |Gq

And H(U) and H(G) are the entropies:

tu | pl
HW) ==Y |Uyllog=2>
p_

9 %
HE@ == [G,llog—2
o

AC is defined as the best matching between predicted and true clusters, which is given as:

n I, = m(l
AC = max 1w
m i=1 n

Where [; are the true labels and [; are the predicted labels from clustering algorithms. n is the

number of cells and m is the number of all possible one-to-one mapping between [; and ;. The

best mapping is found by the Hungarian algorithm (Kuhn 1955).

The silhouette score (SS) is used to measure the clustering performance without labels. It

compares how similar a cell is to its own cluster compared to other clusters. The silhouette
score ranges from -1 to +1, where a high value indicates a better clustering. Let's denote the

silhouette score of cell i as S;, so we have:

a; ,

1—b—l lfai<bi

Si= 0 ifai=bi
b; .

a—l—l lfai>bi

Where q; stands for how well a cell i is assigned to its cluster based on the distance between
this cell and all other cells in its cluster; b; stands for the smallest mean distance of the cell i to
the cells in any other clusters. Then we use the mean value of S; over all the cells as the SS for

a dataset.
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Evaluation metrics for spatial heterogeneity and concentration
kNN accuracy measures the consistency of the labels between each cell and its spatial

neighbors. It is defined as:

_ Liyi =0
Agnn =7 N

Where y; is the predicted label of cell i by clustering algorithms and § is the major label of its
neighbors (K=20) on the physical space. We also employ a variant of Moran’s | (Moran 1950) to
measure the cell type spatial concentration. Let 1'4P¢! be the | score for the predicted labels

(y1, Y2, Y3, .-, Yn) defined as:

N 2121 AijBj

Jlabel _
N N '
Zi=12j=1A N

Where B;; of cell i and j is defined as:

B, :{1'if3’i =Y
Y 0, otherwise

, and A is the kNN graph (with k=20) from spatial information of cells. The 1'*?¢! measures the
degree that the physically neighboring cells have the same label. Both metrics are ranged from
0to 1.

Data simulation

In order to test the model’s performance to integrate spatial information for clustering, we
simulate the single-cell RNA-seq data by Splatter package in R (Zappia et al. 2017). The
parameters for scRNA-seq data simulation are estimated from a real scRNA-seq dataset

(https://support.10xgenomics.com/spatial-gene-expression/datasets) and the parameter of

clustering signal (de.scale) is fixed as 0.4. Besides simulating the count data, we place each cell
on a 2D space with a coordinate (x,y). The physical space and coordinates are extracted from
two real datasets (osmFISH and 151507 from spatialLIBD). The regions (domains) on the
physical space in the real datasets are provided by the authors. Specifically, let's denote the
spot number in a layer k (from true label) as n;, and the total layer number as K. During the
simulation, for a layer k, we use splatter to simulate n;, cells and randomly assign these cells to
the spatial coordinates of the spots in this layer. We do this for all K layers. So, the cell number
in the simulated datasets should be the same as the spot number in the real dataset. Then, we
perturb the spatial coordinate of 10%, 15%, and 20% of cells to control the cell type spatial

dependency. We also use the spatial coordinates from two datasets (osmFISH (Codeluppi et al.
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2018) and spatialLIBD 151507 (Maynard et al. 2021)) to simulate different spatial organizations.
Therefore, our simulation experiments can test the robustness of DSSC’s performance in the
data with different cell type spatial dependencies and cell type spatial organizations. To simulate
the constraints from markers, we randomly connect 3000 cells in the same cell type (from the
true label) as the must-links. We then perturb the cells in 5% must-links to simulate the real
accuracy (about 95%). Similarly, we randomly connect 3000 cells in the different cell types as

the cannot-links.

Real datasets

We use data from three studies including 25 sp-scRNA-seq datasets in this study. The first
dataset was measured by the osmFISH technology (Codeluppi et al. 2018), and the other two
datasets were sequenced by the 10x Visium technology and provided by spatialLIBD (Pardo et
al. 2022) and 10x Genomics website, respectively. Specifically, the osmFISH dataset of the
somatosensory cortex was downloaded from the website of Linnarsson lab

(http://linnarssonlab.org/osmFISH/). This dataset contains 33 genes and 4839 cells. We did not

implement the feature selection for this dataset as the low dimension of features. All 10x Visium
datasets are read by the ‘Load10x_Spatial’ function and preprocessed by the ‘SCTransform’
function by Seurat in R. The 10x mouse brain Alzheimer’s disease dataset is downloaded from

the website (https://www.10xgenomics.com/resources/datasets). This dataset contains 12 sp-

scRNA-seq data with 6 wild-type samples and 6 CRND8 APP-overexpressing transgenic
(Alzheimer’'s Disease, AD) samples. The mice brains were sampled in 2.5, 5.7, and 13.2 month
of age. Per phenotype per time-point has two replicates resulting in 12 samples in total. The
spatialLIBD dataset is downloaded from R package “spatialLIBD” (Pardo et al. 2022). This
dataset contains 12 spatial-resolved RNA-seq datasets which can be grouped into three spatial
organizations. Specifically, sample 151507-151510 have the similar spatial organization, sample
151669-151672 have the similar spatial organization, and sample 151673-151676 have the

similar spatial organization.

Count data preprocessing

The raw count data is preprocessed and normalized by the Python package SCANPY (Wolf et
al. 2018). Specifically, the genes with no count are filtered out. The counts of a cell are
normalized by a size factor s;, which is calculated as dividing the library size of that cell by the
median of the library size of all cells. In this way, all cells will have the same library size and

become comparable. Then, the counts are logarithm transformed and scaled to have unit
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variances and zero means. The treated count data is used in our denoising autoencoder model.
However, we use the raw count matrix to calculate the ZINB loss (Lopez et al. 2018; Eraslan et
al. 2019).

Competing methods

For consistency, we use DSSC'’s data preprocessing and feature selection approaches for all
the competing methods. Our competing methods include k-means (with PCA) (https:/scikit-
learn.org/stable/modules/generated/sklearn.cluster.KMeans.html), Seurat
(https://github.com/satijalab/seurat) (Butler et al. 2018), SC3 (https://github.com/hemberg-
lab/SC3) (Kiselev et al. 2017), BayesSpace (https://qgithub.com/edward130603/BayesSpace)
(Zhao et al. 2021), Giotto (https://rubd.github.io/Giotto_site/) (Dries et al. 2021), SpaGCN
(https://github.com/jianhuupenn/SpaGCN) and stlearn

(https://github.com/BiomedicalMachinelearning/stLearn). For Seurat and Giotto, we adjusted

the resolution in the Louvain algorithm for a better K estimation (same or close to the real K). All
other parameters in all the competing methods are kept in the default setting or following to the
settings in the official pipelines. It is noted that the latent dimension of SpaGCN is higher than
the feature dimension of osmFISH data. So SpaGCN cannot be used to analyze osmFISH data.

For consistency, H&E images are not used for all the methods.

Statistical test

The differences between the clustering performance of DSSC and the competing methods are

tested by the one-sided paired t-test.

Software availability

Source code of DSSC is available at GitHub (https://github.com/xianglin226/DSSC) and as
Supplemental Code.
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Figure Legends

Figure 1. DSSC model architecture. The inputs of DSSC are the gene expression matrix and
the cell coordinates. The outputs of DSSC are the low-dimension latent space (32D) and the
predicted labels. Briefly, DSSC learns a low-dimensional representation of the gene expression
matrix while simultaneously leveraging the prior knowledge from the spatial coordinates of
cells/spots and the marker genes. Clustering is performed on latent space. Constraint loss,
reconstruction loss, and clustering loss are optimized simultaneously. ML loss and CL loss are
optimized alternately. Notations: BN stands for the batch normalization; ELU stands for the ELU
activation; ML indicates the must-links constraints; CL indicates the cannot-link constraints;
ZINB means the zero-inflated negative binominal.

Figure 2. Simulation results from the spatial organization 1 (A, from osmFISH data) and 2 (B,
from spatialLIBD sample 151507). True labels with 10%, 15%, and 20% perturbed coordinates
are shown on the physical spaces (left). The corresponding clustering results are shown in the
bar plots (right).

Figure 3. Results of osmFISH dataset. A. predicted labels; B. clustering performance; and C.
marker genes used for DSSC.

Figure 4. Results of spatialLIBD datasets. A. visualization of the predicted label for sample
151673; B. the clustering performance of the 12 samples; and C. the marker gene used in this
experiment.

Figure 5. Results of 10xMBAD datasets. A. clustering performance (without true labels); B. a

cartoon of brain showing the position of thalamus (from www.flintrehab.com) and the expression

of a marker gene, Tcf712, for thalamus in a WT and an AD sample; C. predicted labels for a wild
type sample and an Alzheimer's disease sample from DSSC, BayesSpace, and SpaGCN; the
black arrows indicate the thalamus regions; D. volcano plot from the differential expression
analysis (DE) between the cells in thalamus from the wild type and the Alzheimer’s disease
samples; E. KEGG pathway analysis from the DE results in panel D. The pathway of
Alzheimer’s disease is highlighted by the red box.

Figure 6. Parameter tuning on the 12 spatialLIBD datasets (A) and running time test on the

simulated data with incremental cell numbers (B).
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