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Abstract 12 

Spatial-resolved scRNA-seq (sp-scRNA-seq) technologies provide the potential to 13 

comprehensively profile the gene expression pattern in the tissue context. However, the 14 

development of computational methods does not catch up with the fast advances of 15 

technologies and fails to fully fulfill their potential. In this study, we develop a deep learning 16 

approach for clustering sp-scRNA-seq data, named DSSC (Deep Spatial-constrained Single-cell 17 

Clustering). In this model, we integrate the spatial information of cells into the clustering process 18 

by two steps: 1) the spatial information is encoded by using a graphical neural network model; 19 

2) cell-to-cell constraints are built based on the spatially expression pattern of the marker genes 20 

and added in the model to guide the clustering process. Then, a deep embedding clustering is 21 

performed on the bottle-neck layer of autoencoder by Kullback-Leibler (KL) divergence along 22 

with the learning of feature representation. DSSC is the first model which can utilize the 23 

information from both the spatial coordinates and the marker genes to guide the cell/spot 24 

clustering. Extensive experiments on both simulated and real datasets demonstrate that DSSC 25 

boosts clustering performance significantly compared to the state-of-art methods. It has a robust 26 

performance over different datasets with various cell-type/tissue organization and/or cell-27 

type/tissue spatial dependency. We conclude that DSSC is a promising tool for clustering sp-28 

scRNA-seq data. 29 

 30 

Introduction 31 

Single-cell RNA-sequencing (scRNA-seq) is a powerful, systematic biological tool that allows for 32 

transcriptomic analysis of cell heterogeneity and profiles thousands of cells at high resolution to 33 

ultimately reveal unidentified cellular subpopulations (Moncada et al. 2020). Despite this, 34 

conventional scRNA-seq alone leaves the tissue landscape undefined as cells are dissociated 35 

from their respective tissues and suspended in solution (Longo et al. 2021), neglecting and 36 

underappreciating the spatial complexity of cells and their relations to functions (Liao et al. 37 

2021). Furthermore, cellular organization and intercellular communication networks for novel 38 

types identified by scRNA-seq remain uncharacterized unless ligand-receptor relationships are 39 

established (Skelly et al. 2018; Wang et al. 2019; Efremova et al. 2020). As cellular spatial 40 

distributions are deeply intertwined with gene expression and cell functions (Zhuang 2021), 41 

retaining this information is pivotal to further understand the collective dynamics of biological 42 

activities. Spatially resolved single-cell transcriptomics (sp-scRNA-seq) provides an exciting 43 

opportunity to map RNA molecules in their tissue locations, allowing for comprehensive profiling 44 

of cell heterogeneity (Liao et al. 2021).  45 
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 46 

Basically, the technologies to profile the spatial-resolved single-cell transcriptomics (or targeted 47 

genes) can be divided into two types: 1) hybridization-based (or called image-based) 48 

approaches, such as MERFISH, smFISH, and osmFISH. These technologies profile the 49 

physical location attributes of cells by single-molecule fluorescence in situ hybridization 50 

(Codeluppi et al. 2018; Miller et al. 2021). Pioneering studies in spatial genomics sought to 51 

explore fluorescence in situ hybridization (FISH) and digital imaging microscopy to allow for the 52 

detection of single RNA molecules in single cells (Femino et al. 1998). Thereafter, various FISH 53 

probes were developed for single-cell transcript profiling, allowing for higher accuracy and 54 

sensitivity when quantifying RNA molecules at the single-molecule level such as single-55 

molecule in situ hybridization (smFISH) (Femino et al. 1998; Lubeck and Cai 2012; Kwon 2013; 56 

Shah et al. 2016). As some smFISH methods are multiplexed by barcoding (Femino et al. 1998; 57 

Lubeck and Cai 2012), limitations such as optical crowding and transcript length hinder marker 58 

gene targeting and cell-type mapping (Femino et al. 1998; Shah et al. 2016). Codeluppi et al. 59 

developed a non-barcoded and unamplified cyclic-ouroboros smFISH (osmFISH) method, 60 

optimized for brain tissue, to overcome the limitations of other smFISH methods (Codeluppi et al. 61 

2018). This method demonstrates the ability to process and map large tissue areas and allows 62 

for the construction of data-driven reference atlases of human tissue. 2) Sequencing-based 63 

approaches, such as 10x Visium, and Slide-seq. A joint robust dissection of scRNA-seq data 64 

with spatially resolved single-cell transcriptomics captures a detailed illustration of the concerted 65 

cell-cell interactions within the tissue architecture. These technologies provide spatially resolved, 66 

untargeted transcriptomic profiling at the pixel level, with a pixel size of 10-100μm (Larsson et al. 67 

2021). Using Visium as an example, it employs spatially barcoded mRNA-binding 68 

oligonucleotides grouped in spots (larger than one cell) on the tissue slides. The mRNA from the 69 

specialized tissue will bind to the oligos. Then, based on the collected mRNA, a cDNA library 70 

with spatial barcodes will be built, preserving the spatial information of spots. In this way, both 71 

the gene expression level and the cells/spots spatial organization in the tissue can be measured. 72 

The two types of technologies have their own advantages and disadvantages. Briefly, Imaging-73 

based technologies can reach the single-cell resolution, but they can only profile a limited 74 

number of targeted genes/proteins; on the other hand, some sequencing-based technologies 75 

can profile the whole transcriptomes, but they cannot reach the single-cell resolution.  76 

 77 

Clustering analysis is an essential step in most single-cell studies and has been studied 78 

extensively. Based on the clustering results, researchers can explore the biological activities in 79 
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cell type or subtype level, which could not be reached by studying bulk data (Shapiro et al. 80 

2013; Kolodziejczyk et al. 2015; Kiselev et al. 2019). It has been demonstrated that some cell 81 

types, such as the neurons, have high spatial dependency and heterogeneity (Codeluppi et al. 82 

2018). Specifically, tissues are an ensemble of cell types that interactively give rise to a specific 83 

function. It has been shown that endothelial cells in the brain are located under certain spatial 84 

patterns (Xia et al. 2019; Stoltzfus et al. 2020). Furthermore, within cells of the same type, high 85 

spatial self-affinity was measured in ependymal cells and spatial self-evasion was observed in 86 

inhibitory neurons such as microglia and astrocytes (Codeluppi et al. 2018). Cell neighbors 87 

identified by spatio-temporal organization within tissues in complex organs (e.g., the brain) 88 

provides important context to make inferences regarding cell interactions and behaviors. As 89 

such, highly accurate and sensitive mapping of tissue sections is important to reveal spatially 90 

dependent cells and can be used to understand the convolutions of cell heterogeneity. The set 91 

of neighboring cells from the spatial transcriptomics studies may provide valuable information 92 

for cell-type annotation. In other cases, such knowledge can lead to the identification of new cell 93 

types based on their neighborhood profiles. However, this entails that computational resources 94 

to analyze transcriptomic data are appropriately equipped with mechanisms to integrate the 95 

spatial features. However, traditional methods, such as Seurat (Butler et al. 2018) and SC3 96 

(Kiselev et al. 2017), cannot utilize valuable spatial information in the clustering analysis.  97 

 98 

Some tools have been developed for spatially transcriptomic data. Giotto is a computational 99 

method specifically designed for spatial transcriptomic data analysis that performs cell-type 100 

enrichment analysis, spatially coherent gene detection, cell neighborhood, and interaction 101 

analyses, and spatial pattern recognition (Dries et al. 2021). Unlike other computational 102 

methods that are geared towards scRNA-seq analysis but utilize spatial information to identify 103 

cell types (Stuart et al. 2019), marker genes (Svensson et al. 2018), or domain patterns (Zhu et 104 

al. 2018), Giotto is purely centered towards spatial data analysis but is capable of integrating 105 

scRNA-seq data to enhance spatial-cell type enrichment analysis. In the clustering analysis, 106 

Giotto employs graphic clustering algorithms, such as Louvain (Blondel et al. 2008), to find cell 107 

communities. BayesSpace is a Bayesian statistical method that enhances spatial transcriptomic 108 

resolution and performs clustering analysis by modeling dimensionally reduced representation 109 

of the single-cell count matrix and grouping neighboring spots to the same cluster via spatial 110 

prior (Zhao et al. 2021). BayesSpace draws a distinction in use of a t-distributed error model to 111 

identify spatial clusters and employs a Markov chain Monte Carlo to estimate model parameters. 112 

However, BayesSpace has a limited scope of application as it is majorly designed for 113 
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decomposing the data with low resolution from the sequencing-based technologies, such as the 114 

10x Visium. Besides, some other methods, such as SpaGCN (Hu et al. 2021) and stLearn 115 

(Pham et al. 2020), employ deep neural networks, such as CNN and GCN, to analyze the sp-116 

scRNA-seq data. These tools can also integrate the information from the H&E images to 117 

enhance the cell clustering.  118 

 119 

It is widely demonstrated that in many tissues, especially in the brain, many marker genes have 120 

exhibited strong spatial expression dependencies (Guillozet-Bongaarts et al. 2014; Zeisel et al. 121 

2015; Maynard et al. 2021). Therefore, the information from the markers can be used as the 122 

prior knowledge to guide the sp-scRNA-seq analyses, especially for the clustering analysis. 123 

However, none of the methods mentioned above can incorporate the marker gene information 124 

in the clustering process. 125 

 126 

In this article, we propose a novel clustering approach for sp-scRNA-seq data, DSSC (Deep 127 

Spatial-constrained Single-cell Clustering). DSSC integrates the prior information from both the 128 

physical organization of cells and the expression of the spatial dependent marker genes into the 129 

clustering process by a denoising graphical autoencoder with cell-to-cell constraints. Our 130 

extensive experiments indicated that DSSC outperforms the state-of-the-art methods in both 131 

simulated and real datasets, revealing that it is a promising tool for spatial-resolved single-cell 132 

data clustering. 133 

 134 

Results  135 

Simulation experiments 136 

DSSC is developed for clustering spatial-resolved single-cell data by integrating the prior 137 

knowledge from cell/spot location and marker genes. The overall architecture of the DSSC 138 

model is shown in Figure 1. In the simulation experiments, we test the performance of DSSC on 139 

the data in different cell-type spatial organizations and dependencies. We simulated the scRNA-140 

seq data by Splatter and placed them in the spatial locations from two real datasets from 1) 141 

osmFISH data (Figure 2a); 2) sample 151673 from spatialLIBD data (Figure 2b); We adjust the 142 

cell-type spatial dependencies by perturbing the spatial coordinates of 10%, 15%, and 20% of 143 

total cells (see details in the method section). Constraints are built based on the true labels with 144 

5% perturbations. We compare DSSC with seven existing clustering methods including 145 

SpaGCN, stLearn, Seurat, Giotto, BayesSpace, k-means + PCA, and SC3. We compare both 146 

the clustering performance (measured by AC, NMI, and ARI) and the predicted label’s spatial 147 
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heterogeneity (denoted as PLSH, measured by KNN ACC and Moran’s I) of these methods. The 148 

results of simulation experiments are shown in Figure 4. Generally, we find that the spatial-149 

based clustering methods (DSSC, SpaGCN, stLearn, BayesSpace, and Giotto) have higher 150 

clustering performance and PLSH than the traditional scRNA-seq clustering methods (Seurat, 151 

SC3, and k-means). Cell-type spatial-dependency is negatively correlated with the performance 152 

of the spatial-based clustering methods, but it has no influence on the performance of the 153 

traditional clustering methods. BayesSpace cannot encode the spatial coordinates of the 154 

osmFISH data, so the clustering performance and PLSH of it are much higher in the spatial 155 

organization 2 (Figure 2b) than in spatial organization 1 (Figure 2a). Although DSSC 156 

outperforms the competing methods in both spatial organizations, its advantage is much higher 157 

in spatial organization 1 than in spatial organization 2. In summary, these results reveal that 158 

DSSC’s performance is not affected by the sequencing technologies and cell type spatial 159 

organizations, while other methods may prefer the sequencing-based technologies (such as the 160 

10x Visium). Besides, DSSC can keep a superior performance over the competing methods 161 

under low, medium, and high cell-type dependencies (Fig a and b). Therefore, these 162 

experiments demonstrate the robustness of DSSC’s performance. The statistical tests of the 163 

clustering performance between DSSC and the competing methods are shown in Table S1,S2, 164 

and S3. 165 

 166 

Real datasets 167 

We then test the performance of DSSC in three studies including 25 real datasets with 1 dataset 168 

from osmFISH (mouse cortex), 12 datasets from spatialLIBD (human cortex), and 12 datasets 169 

from 10x Genomics (Mouse brain, denoted as 10xMBAD). In all datasets, we compare DSSC 170 

with seven competing methods as described above. For the data from spatialLIBD and 171 

10xMBAD, we use the markers from the original paper of spatialLIBD (Pardo et al. 2022). Since 172 

osmFISH data only has 33 genes, we only use the genes with the top Moran’s I. 173 

 174 

OsmFISH dataset 175 

The results of the osmFISH dataset are shown in Figure 3. Since the latent dimension of 176 

SpaGCN is larger than the feature dimension of this data, we exclude SpaGCN from the 177 

competing methods for this experiment. BayesSpace cannot recognize the neighbors from the 178 

hybridization technologies, so the spatial information is not used by it for this dataset. The 179 

marker genes used here for DSSC are Rorb and Syt6 (Figure 3c). As expected, the expression 180 

of these genes have high spatial dependency. We find that DSSC can identify the layer 181 
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structures in the cortex (Figure 3a). These layers are not clearly profiled by the competing 182 

methods (Figure 3b). Besides, DSSC outperforms the competing methods in both clustering 183 

performance and PLSH (Figure 3b). Some spatial-based methods, such as Giotto and stLearn, 184 

have very high KNN accuracy, but their clustering performance is much lower than DSSC. A 185 

potential reason for this result is that the spatial information overwhelms the clustering signal 186 

from the gene expression during the clustering process, resulting in the high spatial dependence 187 

but low clustering performance. 188 

 189 

SpatialLIBD dataset 190 

We then test all the methods on the spatialLIBD datasets (Figure 4). The marker genes used in 191 

this dataset are PCP4 and MOBP (Figure 4c) for layer 5 and WM respectively from the paper of 192 

spatialLIBD. These genes show strong spatial dependencies. So, they can be used to guide the 193 

clustering process. Figure 4a shows that DSSC is the only method that can identify 5 layers in 194 

the sample 151673. Some other spatial-based methods, such as SpaGCN, and BayesSpace, 195 

cluster some cells in clumps, not in layers. Figure 4b shows that DSSC outperforms all the 196 

competing methods in the 12 spatialLIBD samples in both clustering performance and PLSH. 197 

Spatial-based methods have overall better performance than the traditional scRNA-seq 198 

clustering methods, revealing the benefits from using the spatial information. BayesSpace has 199 

the second-best performance in this dataset since it can recognize the spatial neighbors for 200 

each cell in this dataset. The statistical tests of the clustering performance between DSSC and 201 

the competing methods are shown in Table S4. 202 

 203 

10xMBAD dataset 204 

We then apply DSSC on the 10xMBAD dataset (Figure 5). Since this dataset has no true labels, 205 

we use silhouette score (SS) to evaluate the clustering performance. We find that all the 206 

methods have similar predicted labels’ spatial heterogeneity on this dataset (Figure 5a). DSSC, 207 

BayesSpace, and SpaGCN have higher SS than other methods. To further prove the accuracy 208 

of clustering of DSSC, we identify the cluster of thalamus in a wild-type (WT) sample and an 209 

Alzheimer’s Disease (AD) sample by a marker gene Tcf7l2 (Figure 5b)(Lipiec et al. 2020) and 210 

then perform a different expression analysis (DE) between the two groups of cells. We select 211 

thalamus since it has been widely demonstrated to be associated with the memory and 212 

cognition loss during AD (Pardilla-Delgado et al. 2021; van de Mortel et al. 2021). BayesSpace 213 

and SpaGCN fail to identify the region of thalamus in the corresponding WT and AD samples 214 

(Figure 5c). The DE results are shown in Figure 5d. Many genes that overexpress in the AD 215 
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group are proved by previous studies. For example, Olfm1 has been shown as a potential 216 

neuroprotective agent in Alzheimer’s disease (Takahama et al. 2014); Cst3 has contributions in 217 

increasing the neuronal vulnerability and impaired neuronal ability to prevent neurodegeneration 218 

(Kaur and Levy 2012); Syn2 is related to the onset and progression of Alzheimer's disease 219 

(Kumar and Reddy 2020). As a result, in the pathway analysis of the KEGG geneset from the 220 

DE results (Figure 5e), the Alzheimer’s disease pathway is significantly enriched in the thalamus 221 

of the AD sample. Another significant pathway, olfactory transduction, is also shown to be 222 

associated with AD from the previous studies (Zou et al. 2016). Spliceosome is also 223 

demonstrated to be altered in the Alzheimer transcriptomes (Koch 2018), which is significantly 224 

down-regulated in the AD sample. These downstream analyses further consolidate the 225 

clustering results of DSSC. The statistical tests of the clustering performance (SS) between 226 

DSSC and the competing methods are shown in Table S5. 227 

 228 

Model test 229 

We test three parameters in DSSC: 1) the number of constraints (ML and CL respectively); 2) 230 

the parameter that controls the clustering loss (gamma); 3) the number of neighbors in the kNN 231 

graph for GAT layers on the 12 spatialLIBD datasets (Figure 6a). We find that when the 232 

constraint number is 0 (no constraints) or 6000 (too many constraints), the performance of 233 

DSSC becomes unstable. A suitable number of constraints (here we suggest setting the 234 

constraint number around the cell number) will not only improve the clustering performance but 235 

also makes the model more stable. Compared to the model without clustering loss (gamma=0), 236 

DSSC’s performance is improved when gamma is 0.01. However, a too high gamma (>1) will 237 

seriously impact the model’s performance. When the numbers of neighbors are higher than 10, 238 

DSSC’s performance is not sensitive to them. However, a model without considering neighbors 239 

(K=0) has much lower performance revealing the contributions from using the spatial 240 

information in clustering analysis. The results of the statistical tests of the parameter tuning 241 

experiments are in Table S6, S7, and S8. We then test DSSC on the simulated datasets with 242 

incremental numbers of cells (Figure 6b). We find that DSSC has a linearly ascending running 243 

time with the increased cell numbers. Thus, it can be easily used for analyzing large datasets. 244 

All experiments here are performed on the NVIDIA Tesla P100 with 16Gb memory. 245 

 246 

Discussion 247 

In this paper, we have developed a deep learning approach, DSSC, for clustering sp-scRNA-248 

seq data. DSSC utilizes a denoising graphical autoencoder to learn a nonlinear representation 249 
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of data. Spatial information is integrated into the clustering approach by two ways: 1) constraints 250 

from marker genes; and 2) GAT encoders. To our knowledge, DSSC is the first model that can 251 

encoder the information from both spatial coordinates and marker genes for guiding the 252 

clustering. More broadly, DSSC is a flexible model in which its reconstruction loss function can 253 

be switched depending on the data structure. The available reconstruction loss includes ZINB 254 

loss, NB loss, and MSE loss to deal with various scenarios. In this study, DSSC has been tested 255 

on both simulated and real datasets. The aim of our experiments is to test the robustness of 256 

DSSC’s clustering performance over the data with different cell type spatial organization and 257 

cell type spatial dependency. The evaluation has been conducted regarding two aspects, 258 

clustering performance, and space heterogeneity. Our results show that DSSC outperforms the 259 

state-of-art methods over different datasets. 260 

 261 

Recently, a new general-purpose density estimator has been introduced by employing a 262 

symmetrical and paired generative adversarial network (GAN) architecture (Liu et al. 2021b). 263 

Adopting this GAN architecture, a new method scDEC enables simultaneous learning of latent 264 

features and cell clustering and shows its superiority over competing methods in scATAC-seq 265 

analysis (Liu et al. 2021a). If spatial information could be accommodated in this GAN 266 

architecture, we may expect similar promising improvement in analysis of sp-scRNA-seq data. 267 

We leave such exploration to future work. 268 

 269 

One limit of the current model is its compatibility with the datasets with low spatial dependency. 270 

DSSC employs the spatial information of cells to boost the clustering performance, while not all 271 

tissue types have a high spatial dependency. Besides, for approaches like 10x Visium, our 272 

model is dependent on the assumption that all the cells in one spot are in the same cell type. In 273 

the future investigation, this issue can be solved by doing the decomposition of spots. The latent 274 

representation of DSSC can be used for many downstream analyses, such as the cell-to-cell 275 

communication and trajectory analysis. 276 

 277 

Methods 278 

Denoising autoencoder 279 

The autoencoder is a neural network for learning a nonlinear representation of data (Hinton and 280 

Salakhutdinov 2006). It receives corrupted data with artificial noises and reconstructs the 281 

original data (Vincent et al. 2008). It is able to learn a robust latent representation for noisy data. 282 
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We use the denoising autoencoder for the highly noisy count data of cells. Let’s denote the 283 

preprocessed counts data as  � and the corrupted data as ��, formally: 284 

 285 

�� �  � � � � � 

 286 

where � is the artificial noise in standard Gaussian distribution (with mean=0 and variance=1), 287 

and � controls the weights of �. We set � as 0.1. 288 

 289 

Next, we use an autoencoder to reduce the dimension of count data. Encoders (E) are graphical 290 

attention networks (GAT) layers and decoders (D) are fully connected neural networks. 291 

Denoting the latent space as Z and the learnable weights of encoder as w, the encoder can be 292 

shown as 	 � 
�����. The GAT layers in 
 can be formalized as:  293 

 294 

�� �

�
� 
����������������������� , ����          �  � � 1


���������������������
��������, ����         � 1 " � " �
��������
��������, ��          �  � � �

# 
 295 

Where �� is the output of the ith layer. ������� is the ith GAT layer with K heads. L is the total 296 

layers of encoder. A is the adjacent matrix of a kNN graph � built based on the spatial 297 

coordinates of cells. Specifically, the distance between two cells i and j is measured by 298 

Euclidean distance: 299 

$�	 � %�&� ' &	�
 � �(� ' (	�
 
where x and y indicate the coordinates of cells i and j in a two-dimensional physical space. 300 

Then ��	 (�, ) * 1, 2, 3, … , �) is built by: 301 

 302 

��	 � .1, �  � �/ ��0 1 �0��0/� �0�2�3�� �  ) �� ��0 4�(/���5 /4��00, ���0�7�/0 # 
 303 

A is then normalized by �8 � �9 · � · �9, where �8 is the normalized graph, �9 is 304 

;��2�4�70�<∑ �	�
	 , '0.5@� and �·� means dot product. Then �8 is used as the input for the GAT 305 

encoder. In this study, we set the number of heads as 3. The decoder is  �� � A���	�, where  7B 306 

are the learnable weights for the decoder and �� is the reconstructed counts from the decoder. 307 

The ELu activation function (Nair and Hinton 2010) and batch normalization are used for all the 308 
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hidden layers in the encoder and decoder except the bottleneck layer. In the default setting, we 309 

use two layers of encoder and decoder. The default bottleneck layer is set as 32.  310 

 311 

We employ a zero-inflated negative binomial (ZINB) model in the reconstruction loss function to 312 

characterize the zero-inflated and over-dispersed count data (Tian et al. 2019). Note, the raw 313 

count data, not the normalized data, is used in the ZINB model (Lopez et al. 2018; Eraslan et al. 314 

2019; Tian et al. 2019). Let ��	 be the count for cell i and gene j in the raw count matrix. The NB 315 

distributions are parameterized by �
�	

 and ��	 as means and dispersions respectively. Formally: 316 

 317 

��<��	CD�	 , E�	@ � Γ<��	 � E�	@��	! Γ<E�	@ H E�	E�	 � D�	I

�� H E�	E�	 � D�	I���

 

 318 

Then, ZINB distribution is parameterized by the negative binomial and an additional coefficient 319 

J�	 for the probability of dropout events (zero mass): 320 

 321 

	K��<��	CD�	 , E�	 , J�	@ � J�	L�<��	@ � �1 ' J�	������	|D�	 , E�	� 

 322 

The loss function of ZINB-based autoencoder for the count data is defined as: 323 

 324 

����� � N 'log �	K�����	 |D�	 , E�	 , J�	 ��
�	

 

We use independent fully connected layers to estimate these parameters in ZINB loss functions. 325 

We add three independent fully connected layers $, �, and � after the last hidden layer of the 326 

decoder which outputs the reconstructed matrix ��. The parameter layers are defined as: 327 

 328 

$ � ;��2�/��  R  exp �7����; 329 

Θ � exp �7����; 330 

Π � exp �7����; 331 

 332 

where $, �, and � are the matrix of estimated mean, dispersion, and drop-out probability for 333 

the ZINB loss of count data. 7�, 7�, and 7� are the learnable weights for them, respectively. 334 

The size factor /� for the cell i was calculated in the preprocessing step.  335 

 336 
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The sizes of layers are set to (128, 32) for the GAT encoder and (32, 128) for the fully 337 

connected decoder.  338 

   339 

Deep embedded clustering 340 

Our model has two learning stages, a pretraining stage and a clustering stage. In the pretraining 341 

stage, we only train the autoencoder without considering the clustering loss and the constraint 342 

loss (see details below). Then, in the clustering stage, we simultaneously optimize the 343 

autoencoder and the clustering results. We perform unsupervised clustering on the latent space 344 

of the autoencoder (Xie et al. 2016). Our autoencoder transfers the input matrix to a low 345 

dimensional space Z. The clustering loss is defined as the Kullback-Leibler (KL) divergence 346 

between the soft label distribution Q’ and the derived target distribution P’: 347 

 348 

����������� � 1��XB Y ZB� �  N N 4B�� log 4B��[B��
��

 

 349 

 where the soft label [B�� measures the similarity between \�  and cluster center �
�
 by Student’s 350 

t-kernel (Maaten and Hinton 2008). The cluster center �
�
 is initialized by applying a k-means on 351 

the bottleneck layer from the pretraining stage, and then updated per batch in the clustering 352 

stage. Formally, [B�� is defined as: 353 

 354 

[B�� � �1 �Y \� ' D� Y
���∑ �1 �Y \� ' D�� Y
�����

 

 355 

The target distribution XB which emphasizes the more certain assignments is derived from Q’. 356 

Formally 4B�� is defined as: 357 

 358 

4B�� � [B��
 / ∑ [B���∑ �[B���
 / ∑ [B���� ���

 

 359 

During the training process, Z� and clustering loss are calculated per batch and X� is updated 360 

per epoch. This clustering loss will improve the initial estimate (from k-means) in each iteration 361 

by learning from the high-confident cell assignments, which in turn helps to improve the low-362 

confident ones (Xie et al. 2016). 363 



 13

 364 

Autoencoder with pairwise constraints 365 

Based on the autoencoder architecture, we add pairwise constraints of cells (Tian et al. 2021) 366 

on the latent space according to the expression of the marker genes. Similar to scDCC (Tian et 367 

al. 2021), we employ the must-link constraints which pull two cells to have similar soft labels if 368 

they have similar expression patterns of one or more marker genes, and cannot-link constraints 369 

which encourage two cells to have different soft labels if they have different expression patterns 370 

of one or more marker genes.  371 

 372 

Constraints are built by six steps, considering both the spatial coordinates and the gene 373 

expression of the cells: 1) select the marker genes from literatures; 2) for each marker, say 374 

gene A, smooth the expression of A by averaging the normalized count data of the k (k is 375 

defined according to the technology, we set it as 6 in this study) spatial neighbors of each cells; 376 

3) define the cells with the top 5% (cutoff1) expression of A as high, otherwise as low; 4) collect 377 

the cells as the confident cells if more than half (cutoff2) of its neighbors (and itself) have the 378 

high smoothed expression of A; 5) repeat step 2-4 for all the marker genes; 6) since each 379 

marker gene represents a cell type (or a layer in cortex), we connect two confident cells by a 380 

must-link if they are selected by the markers for the same cell type (or layer); otherwise, we 381 

connect two confident cells by a cannot-link if they are selected by the markers for different cell 382 

types (or layers). It is noted that there is a tradeoff between the coverage and the reliability of 383 

constraints. A higher cutoff will decrease the coverage of constraints but also reduce the false 384 

positive links. We denote the constraints sampled here as the pool of constraints. 385 

The must-link and cannot-link constraints loss are defined as: 386 

� � � N 5�2 N [� R [	
��,	�"#$

 

��� � N log �1 ' N [� R [	�
��,	�"�$

 

 387 

 Where q is the soft labels described in the clustering section above. Must-links and cannot-links 388 

are used for training the model alternately and are updated (resampled) during the training. The 389 

number of constraints can be set according to the cell numbers. For example, for a dataset with 390 

4000 cells, we sample 4000 must-links and cannot-links, respectively.  391 

 392 
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Combining the pairwise constraint loss, reconstruction loss, and clustering loss, the total loss of 393 

the DSSC is: 394 

� � ����� � ^ � ����������� � _ � � � � ` � ��� 
Where �, �, and ` are the coefficients for the clustering loss, must-link loss, and cannot-link 395 

loss respectively. In the experiments of this study, � is set to 0.01, � and ` are set to 0.1 and 396 

1 respectively (see parameter tuning in the result section). 397 

 398 

Model implementation 399 

This model is implemented in Python3 using PyTorch (Paszke et al. 2017). Adam with 400 

AMSGrad variant (Kingma and Ba 2014; Reddi et al. 2018) with an initial learning rate = 0.001 401 

is used for the pretraining stage and the clustering stage. The kNN graph is calculated by the 402 

“kneighbors_graph” function from the scikit-learn package. The top 2000 HVGs are selected to 403 

train the model. We pretrain the autoencoders for 200 epochs before entering the clustering 404 

stage. In the beginning of the clustering stage, we initialize K centroids by the k-means 405 

algorithm. During the clustering stage, reconstruction loss and clustering loss are optimized first. 406 

Then, constraint losses are optimized with reconstruction loss. ML and CL losses are optimized 407 

alternately. The centroids are also continuously updated by the learning process. Before each 408 

epoch, constraints are randomly sampled from the constraint pools. The soft label distribution Q’ 409 

is calculated in each batch and the derived target distribution P’ is updated after each epoch. 410 

The convergence threshold for the clustering stage is that less than 0.1% of labels are changed 411 

per epoch. The marker genes used in this study are from the original paper of the spatialLIBD 412 

datasets (Maynard et al. 2021), including PCP4, MOBP, FABP7, AQP4, CARTPT, KRT17 and 413 

so forth. More markers can be added if necessary. It is noted that we test the Moran’s I and 414 

check the expression pattern of each marker before using it (See supplementary notes for 415 

details). If a marker has very low spatial dependency in a dataset, we exclude it for building 416 

constraints. For the osmFISH dataset with only 33 genes, we just use the genes with the 417 

highest spatial dependency (Moran’ I) as the markers. All experiments of DSSC in this study are 418 

conducted on NVIDIA Tesla P100 with 16Gb memory.  419 

 420 

Marker and gene selection 421 

Before running the autoencoder model, we use Moran’s I statistic (Moran 1950; Miller et al. 422 

2021) to measure the gene spatial heterogeneity.  K����� stands for the Moran’s I of gene k, 423 

which is defined as: 424 
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Where  & is the mean value of the normalized counts of the gene K over all cells. A is the kNN 425 

graph from spatial information of cells. Marker genes with low Moran’ I will not be used to build 426 

constraints. It is noted that gene filtering has a tiny influence on the performance of the osmFish 427 

dataset since it only has 33 genes. These genes are all selected by the researchers so all of 428 

them are important for all or a part of cells in the tissue. In our experiments, because of the low 429 

feature number, we only select 30 HVGs out of 33 genes. On the other hand, the sequencing-430 

based methods profile the whole transcriptome (>20000 genes). Many genes are not 431 

informative for clustering and even mislead the clustering. So, feature selection is essential for 432 

these datasets. In our experiments, we select the top 2000 highly variable genes (HVGs) for 433 

training DSSC. An optional feature selection approach is to use the genes with the top Moran’s I. 434 

 435 

Evaluation metrics for clustering performance 436 

Adjusted Rand Index (ARI) (Hubert and Arabie 1985), Normalized Mutual Information 437 

(NMI)(Alexander and Joydeep 2003), and Clustering Accuracy (AC) are used as metrics to 438 

evaluate the performance of different methods.  439 

 440 

Adjusted Rand Index measures the agreements between two sets U and G. Assuming a is the 441 

number of pairs of two cells in the same group in both U and G; b is the number of pairs of two 442 

cells in different groups in both U and G; c is the number of pairs of two cells in the same group 443 

in U but in different groups in G; and d is the number of pairs of two cells in different groups in U, 444 

but in the same group in G. The ARI is defined as: 445 

 446 

�aK � <�
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 447 

Let U = {U1, U2, …, Ctu} and G = {G1, G2, …, Gtg} be the predicted and ground truth labels on a 448 

dataset with n cells. NMI is defined as: 449 

 450 

�$K � K��, ��max fg���, g�h�i 
 451 



 16

 Where I(U,G) represents the mutual information between U and G and is defined as: 452 

 453 

K��, �� � N N |�&j�'| log �|�( k �'||�&| R |�'|
��

'%�

��

&%�
 

 454 

And H(U) and H(G) are the entropies: 455 

 456 

g��� � ' N |�&| log |�&|�
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&%�
 

g��� � ' N |�&| log |�&|�
��

&%�
 

 457 

AC is defined as the best matching between predicted and true clusters, which is given as: 458 

 459 

�l � max
 

N 1 f5)m � ��5��i�
�

�%�
 

 460 

Where 5*� are the true labels and 5� are the predicted labels from clustering algorithms. n is the 461 

number of cells and m is the number of all possible one-to-one mapping between 5*� and 5�. The 462 

best mapping is found by the Hungarian algorithm (Kuhn 1955). 463 

 464 

The silhouette score (SS) is used to measure the clustering performance without labels. It 465 

compares how similar a cell is to its own cluster compared to other clusters. The silhouette 466 

score ranges from −1 to +1, where a high value indicates a better clustering. Let’s denote the 467 

silhouette score of cell i as n�, so we have: 468 

n� �

o
�
o�1 ' ��3�         �  �� " 3�  

0               �  �� � 3�3��� ' 1     �  �� p 3�
# 

Where �� stands for how well a cell i is assigned to its cluster based on the distance between 469 

this cell and all other cells in its cluster; 3� stands for the smallest mean distance of the cell i to 470 

the cells in any other clusters. Then we use the mean value of n� over all the cells as the SS for 471 

a dataset. 472 

 473 
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Evaluation metrics for spatial heterogeneity and concentration 474 

kNN accuracy measures the consistency of the labels between each cell and its spatial 475 

neighbors. It is defined as: 476 

���� � ∑ (� � ()q�
�%��  

Where (� is the predicted label of cell i by clustering algorithms and (r is the major label of its 477 

neighbors (K=20) on the physical space. We also employ a variant of Moran’s I (Moran 1950) to 478 

measure the cell type spatial concentration. Let K�+,�� be the I score for the predicted labels 479 

((� , (
 , (-, … , (�) defined as: 480 

K�+,�� �  �∑ ∑ ��
	%�

�
�%�
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�
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 481 

Where ��	 of cell i and j is defined as: 482 

��	 � . 1, �  (� � (	0, ���0�7�/0# 
, and A is the kNN graph (with k=20) from spatial information of cells. The K�+,�� measures the 483 

degree that the physically neighboring cells have the same label. Both metrics are ranged from 484 

0 to 1. 485 

 486 

Data simulation 487 

In order to test the model’s performance to integrate spatial information for clustering, we 488 

simulate the single-cell RNA-seq data by Splatter package in R (Zappia et al. 2017). The 489 

parameters for scRNA-seq data simulation are estimated from a real scRNA-seq dataset 490 

(https://support.10xgenomics.com/spatial-gene-expression/datasets) and the parameter of 491 

clustering signal (de.scale) is fixed as 0.4. Besides simulating the count data, we place each cell 492 

on a 2D space with a coordinate (x,y). The physical space and coordinates are extracted from 493 

two real datasets (osmFISH and 151507 from spatialLIBD). The regions (domains) on the 494 

physical space in the real datasets are provided by the authors. Specifically, let’s denote the 495 

spot number in a layer k (from true label) as �� and the total layer number as K. During the 496 

simulation, for a layer k, we use splatter to simulate �� cells and randomly assign these cells to 497 

the spatial coordinates of the spots in this layer. We do this for all K layers. So, the cell number 498 

in the simulated datasets should be the same as the spot number in the real dataset. Then, we 499 

perturb the spatial coordinate of 10%, 15%, and 20% of cells to control the cell type spatial 500 

dependency. We also use the spatial coordinates from two datasets (osmFISH (Codeluppi et al. 501 
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2018) and spatialLIBD 151507 (Maynard et al. 2021)) to simulate different spatial organizations. 502 

Therefore, our simulation experiments can test the robustness of DSSC’s performance in the 503 

data with different cell type spatial dependencies and cell type spatial organizations. To simulate 504 

the constraints from markers, we randomly connect 3000 cells in the same cell type (from the 505 

true label) as the must-links. We then perturb the cells in 5% must-links to simulate the real 506 

accuracy (about 95%). Similarly, we randomly connect 3000 cells in the different cell types as 507 

the cannot-links. 508 

 509 

Real datasets 510 

We use data from three studies including 25 sp-scRNA-seq datasets in this study. The first 511 

dataset was measured by the osmFISH technology (Codeluppi et al. 2018), and the other two 512 

datasets were sequenced by the 10x Visium technology and provided by spatialLIBD (Pardo et 513 

al. 2022) and 10x Genomics website, respectively. Specifically, the osmFISH dataset of the 514 

somatosensory cortex was downloaded from the website of Linnarsson lab 515 

(http://linnarssonlab.org/osmFISH/). This dataset contains 33 genes and 4839 cells. We did not 516 

implement the feature selection for this dataset as the low dimension of features. All 10x Visium 517 

datasets are read by the ‘Load10x_Spatial’ function and preprocessed by the ‘SCTransform’ 518 

function by Seurat in R. The 10x mouse brain Alzheimer’s disease dataset is downloaded from 519 

the website (https://www.10xgenomics.com/resources/datasets). This dataset contains 12 sp-520 

scRNA-seq data with 6 wild-type samples and 6 CRND8 APP-overexpressing transgenic 521 

(Alzheimer’s Disease, AD) samples. The mice brains were sampled in 2.5, 5.7, and 13.2 month 522 

of age. Per phenotype per time-point has two replicates resulting in 12 samples in total. The 523 

spatialLIBD dataset is downloaded from R package “spatialLIBD” (Pardo et al. 2022). This 524 

dataset contains 12 spatial-resolved RNA-seq datasets which can be grouped into three spatial 525 

organizations. Specifically, sample 151507-151510 have the similar spatial organization, sample 526 

151669-151672 have the similar spatial organization, and sample 151673-151676 have the 527 

similar spatial organization.  528 

 529 

Count data preprocessing 530 

The raw count data is preprocessed and normalized by the Python package SCANPY (Wolf et 531 

al. 2018). Specifically, the genes with no count are filtered out. The counts of a cell are 532 

normalized by a size factor /�, which is calculated as dividing the library size of that cell by the 533 

median of the library size of all cells. In this way, all cells will have the same library size and 534 

become comparable. Then, the counts are logarithm transformed and scaled to have unit 535 
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variances and zero means. The treated count data is used in our denoising autoencoder model. 536 

However, we use the raw count matrix to calculate the ZINB loss (Lopez et al. 2018; Eraslan et 537 

al. 2019). 538 

 539 

Competing methods 540 

For consistency, we use DSSC’s data preprocessing and feature selection approaches for all 541 

the competing methods. Our competing methods include k-means (with PCA) (https://scikit-542 

learn.org/stable/modules/generated/sklearn.cluster.KMeans.html), Seurat 543 

(https://github.com/satijalab/seurat) (Butler et al. 2018), SC3 (https://github.com/hemberg-544 

lab/SC3) (Kiselev et al. 2017), BayesSpace (https://github.com/edward130603/BayesSpace) 545 

(Zhao et al. 2021), Giotto (https://rubd.github.io/Giotto_site/) (Dries et al. 2021), SpaGCN 546 

(https://github.com/jianhuupenn/SpaGCN) and stlearn 547 

(https://github.com/BiomedicalMachineLearning/stLearn). For Seurat and Giotto, we adjusted 548 

the resolution in the Louvain algorithm for a better K estimation (same or close to the real K). All 549 

other parameters in all the competing methods are kept in the default setting or following to the 550 

settings in the official pipelines. It is noted that the latent dimension of SpaGCN is higher than 551 

the feature dimension of osmFISH data. So SpaGCN cannot be used to analyze osmFISH data. 552 

For consistency, H&E images are not used for all the methods. 553 

 554 

Statistical test 555 

The differences between the clustering performance of DSSC and the competing methods are 556 

tested by the one-sided paired t-test. 557 

 558 

Software availability  559 

Source code of DSSC is available at GitHub (https://github.com/xianglin226/DSSC) and as 560 

Supplemental Code. 561 
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 739 

Figure Legends 740 

Figure 1. DSSC model architecture. The inputs of DSSC are the gene expression matrix and 741 

the cell coordinates. The outputs of DSSC are the low-dimension latent space (32D) and the 742 

predicted labels. Briefly, DSSC learns a low-dimensional representation of the gene expression 743 

matrix while simultaneously leveraging the prior knowledge from the spatial coordinates of 744 

cells/spots and the marker genes. Clustering is performed on latent space. Constraint loss, 745 

reconstruction loss, and clustering loss are optimized simultaneously. ML loss and CL loss are 746 

optimized alternately. Notations: BN stands for the batch normalization; ELU stands for the ELU 747 

activation; ML indicates the must-links constraints; CL indicates the cannot-link constraints; 748 

ZINB means the zero-inflated negative binominal. 749 

Figure 2. Simulation results from the spatial organization 1 (A, from osmFISH data) and 2 (B, 750 

from spatialLIBD sample 151507). True labels with 10%, 15%, and 20% perturbed coordinates 751 

are shown on the physical spaces (left). The corresponding clustering results are shown in the 752 

bar plots (right). 753 

Figure 3. Results of osmFISH dataset. A. predicted labels; B. clustering performance; and C. 754 

marker genes used for DSSC. 755 

Figure 4. Results of spatialLIBD datasets. A. visualization of the predicted label for sample 756 

151673; B. the clustering performance of the 12 samples; and C. the marker gene used in this 757 

experiment. 758 

Figure 5. Results of 10xMBAD datasets. A. clustering performance (without true labels); B. a 759 

cartoon of brain showing the position of thalamus (from www.flintrehab.com) and the expression 760 

of a marker gene, Tcf7l2, for thalamus in a WT and an AD sample; C. predicted labels for a wild 761 

type sample and an Alzheimer’s disease sample from DSSC, BayesSpace, and SpaGCN; the 762 

black arrows indicate the thalamus regions; D. volcano plot from the differential expression 763 

analysis (DE) between the cells in thalamus from the wild type and the Alzheimer’s disease 764 

samples; E. KEGG pathway analysis from the DE results in panel D. The pathway of 765 

Alzheimer’s disease is highlighted by the red box. 766 

Figure 6. Parameter tuning on the 12 spatialLIBD datasets (A) and running time test on the 767 

simulated data with incremental cell numbers (B). 768 
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