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Abstract 

Background: Cell and circadian cycles control a large fraction of cell and organismal 

physiology by regulating large periodic transcriptional programs that encompass any-

where from 15 to 80% of the genome despite performing distinct functions. In each 

case, these large periodic transcriptional programs are controlled by gene regulatory 

networks (GRNs), and it has been shown through genetics and chromosome mapping 

approaches in model systems that at the core of these GRNs are small sets of genes 

that drive the transcript dynamics of the GRNs. However, it is unlikely that we have 

identified all of these core genes, even in model organisms. Moreover, large periodic 

transcriptional programs controlling a variety of processes certainly exist in important 

non-model organisms where genetic approaches to identifying networks are expen-

sive, time-consuming, or intractable. Ideally, the core network components could be 

identified using data-driven approaches on the transcriptome dynamics data already 

available.

Results: This study shows that a unified set of quantified dynamic features of high-

throughput time series gene expression data are more prominent in the core transcrip-

tional regulators of cell and circadian cycles than in their outputs, in multiple organism, 

even in the presence of external periodic stimuli. Additionally, we observe that the 

power to discriminate between core and non-core genes is largely insensitive to the 

particular choice of quantification of these features.

Conclusions: There are practical applications of the approach presented in this study 

for network inference, since the result is a ranking of genes that is enriched for core 

regulatory elements driving a periodic phenotype. In this way, the method provides 

a prioritization of follow-up genetic experiments. Furthermore, these findings reveal 

something unexpected—that there are shared dynamic features of the transcript 

abundance of core components of unrelated GRNs that control disparate periodic 

phenotypes.
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Background

Periodic phenotypes span nearly the entire tree of life and include such fundamen-

tal processes as the cell-division cycle, circadian rhythms, and developmental cycles. 

Probing the genetic mechanisms that give rise to these dynamic activities is not only 

crucial to our fundamental understanding of life and its evolution, it may also add to 

the current collection of synthetic biology components and principles of design, and 

may reveal novel treatments for disease and infection. A vast body of experimental 

evidence, gathered over years of targeted experimentation (e.g. gene knock-outs) has 

uncovered the existence of endogenous circadian clocks: complex GRNs—comprised 

mostly of interacting transcription factors (TFs)—within cyanobacteria, fungi, plants 

and mammals [1–3]. Moreover, a GRN also appears to control the timing of cell-cycle 

events in budding yeast [4–8]. To understand the complex dynamic functions of these 

GRNs, experimentalists and computational scientists have developed a variety of 

approaches to infer the structure of GRNs. An essential first step is to identify, from 

among an expansive set of candidate genes, those core gene products controlling the 

dynamics of the associated program of gene expression. We conceptualize core nodes 

as interacting in a strongly connected subnetwork of mutual activation and repres-

sion. The core then drives the dynamics of “output” or “effector” nodes that do not 

feed back into the core but rather transmit the dynamic expression pattern to down-

stream target genes (Fig. 1).

Identifying core nodes is especially daunting for organisms where genetic experi-

ments are largely intractable. Moreover, functional redundancy, and complex GRN 

mechanisms, such as accessory feedback loops, can complicate the discovery of core 

nodes. Here we identify distinguishing characteristics of the dynamics of gene expres-

sion that are conserved across organisms that are separated by hundreds of millions 

of years of evolution, in vastly different biological processes, and across data-collec-

tion modalities. We discover that a combination of dynamic features provides a rank 

ordering of all genes such that core nodes are generally highly ranked, even among 

the many genes which exhibit these features. Moreover, we find that, in general, a 

combination of dynamic features more accurately distinguishes core transcriptional 

regulators than individual features on their own. Our findings support the use of 

quantified dynamic characteristics of gene expression to identify core regulatory ele-

ments and show that there are common features in the dynamic gene expression of 

core regulatory variables that drive a variety of biological processes.

Results and discussion

Understanding the function of GRNs requires a specification of the control vari-

ables and their interactions. Accurate inferences have generally required substantial 

genetic perturbation and physical localization studies and thus has been confined 

to experimentally tractable model systems. However, previous work has indicated 

that interactions between GRN nodes can be inferred directly from transcriptome 

dynamics data [9]. Here we investigated whether the core nodes themselves could 

also be identified from time series transcriptomics. We determined that quantifi-

able features from time-series gene expression measurements can be used to identify 
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experimentally-inferred core nodes from model systems across taxa (yeast cell cycle, 

mouse circadian cycle, plant circadian cycle).

We consider two quantifiable characteristics of dynamic transcript abundance profiles, 

measured in multiple ways, and assess the capacity of each to differentiate core from 

non-core regulatory elements. Because the dynamic phenotypes of interest are rhyth-

mic, e.g. sleep-wake cycles, cell division, etc., it is natural to ask to what extent, relative 

to all genes, will the core elements driving these processes be endowed with periodicity 

that matches the observed cycling at the level of their transcript abundance? Moreo-

ver, since the core elements are by definition those TFs governing the dynamics of gene 

expression, to what extent will the strength of the regulatory signal be reflected in the 

dynamics of transcript abundance?

Dynamic transcript abundance features identify regulatory elements in core networks

We first examined the list of dynamic features, used both individually and in various 

combinations (see Table 3) to distinguish core TFs from among all TFs. To provide a uni-

fied measure of performance across datasets, we considered the average precision (AP) 

of each metric’s ranking of transcripts. When restricting to TFs, using both periodic-

ity and regulation strength features together yields significantly higher AP scores than 

Fig. 1 Conceptual model of core regulatory elements. A Conceptual model of a transcriptional regulatory 

network with core nodes (squares) operating in a strongly-connected subnetwork of mutual activation 

(arrows) and repression (short bars), together with outputs of the core (circles). Output nodes transmit the 

transcriptional signal that is generated by the core, but which diminishes as it moves away from core nodes. 

B Illustrations of transcript abundance profiles exhibited by the core and its output nodes, with core nodes 

having oscillations that have a precise match to a specified period (shaded region) and large variations in 

expression
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the baseline for each of the six datasets examined (Fig. 2A). Even using just one of the 

two types of dynamic features, we see remarkable improvement over baseline, although 

generally lower AP scores, than the combined metrics, across all six datasets (Fig. 2B). 

Notably, the datasets considered in this study represent organisms from three different 

kingdoms, undergoing two ostensibly mechanistically distinct periodic dynamic pro-

cesses. The complete set of metrics scoring all genes in all datasets are available in Addi-

tional file 4: Gene Rankings and the complete precision-recall curves for all datasets and 

all metrics are available in Additional file 5: Figs. S1–S6.

From the viewpoint of an experimentalist interested in understanding the entirety of 

a core network, it is encouraging to observe the enrichment of the top 25 TFs with core 

genes. Among the top 25 TFs ranked by the measure DL×JTK, 13 (12) of the possible 

17 S. cerevisiae core genes are identified using the microarray (RNASeq) data. Similarly, 

10 (4) core M. musculus genes from the possible list of 15 (14) core genes, are among 

the top 25 transcription factors as ranked by DL×JTK using microarray (RNASeq) data. 

Finally, A. thaliana LDHC and LL_LDHC datasets contain 4 and 5 core genes, respec-

tively, from among the 11 possible core, in the top 25. Strikingly, 9 of the top 10 M. 

musculus TFs and 6 of the top 10 S. cerevisiae TFs are core when the high temporal reso-

lution microarray datasets are ranked using DL×JTK. These results are given in Table 1.

We emphasize the skill of dynamic gene expression features to identify core TFs in 

Fig. 3, which gives the distribution of core TF DL×JTK ranks among all TFs for S. cer-

evisiae (see also Additional file  5: Table  S1) and heatmaps of microarray gene expres-

sion grouped by DLxJTK rankings. The top 25 genes are clearly seen to robustly oscillate 

at approximately the specified period (94 min) and among these are 13 of the 17 core 

genes.

The recall of core genes by DL × JTK among the top 25 TFs is as much as 76.5% 

of the core yeast cell-cycle transcriptional regulatory network, up to 66.67% for the 

Fig. 2 Identifying core genes among transcription factors. Average precision of classifiers identifying core 

from non-core TFs among all TFs by combined metrics (A) and individual metrics (B) (Table 3) as well as the 

baseline average precision of a random classifier, for each dataset (Table 4)
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mouse circadian clock with well-sampled data, and 45.45% for the core plant circa-

dian network under circadian conditions. Meaning, by using only the dynamics of 

transcript abundance and a list of TFs, an experimentalist would identify three-quar-

ters of the known core cell-cycle TFs in yeast, two-thirds of the core circadian TFs 

in mice, and almost half of the core circadian TFs in plants from among the top 25 

TFs when ranked using a combined measure of periodicity and regulation strength. 

Other combined measures perform skillfully when examining the top 25 ranked TFs, 

although not as consistently well across all the datasets as DL × JTK (Additional file 5: 

Tables S2 and S3).

The ability of dynamic characteristics to identify core TFs from among all TFs may 

depend on the data collection modality and will certainly depend on the number of time 

points per cycle collected. This is made apparent by comparing the S. cerevisiae RNASeq 

and microarray datasets and, separately, M. musculus RNASeq and microarray datasets. 

We expect that the reduced DL × JTK classifier performance is largely due to the sensi-

tivity of the JTK algorithm to the number of timepoints per cycle [10], although we can-

not conclusively rule out the impact of the data type.

Table 1 Top 25 transcription factors ranked by DL×JTK metric

LL_LDHC: Constant light and temperature; LDHC: 24 hour cycling light and temperature; MA: Microarray; RNA: RNAseq

*Core transcription factors in Additional file 2—Core Genes

Rank S. cerevisiae M. Musculus A. thaliana

MA RNA MA RNA LDHC LL_LDHC

1 SWI5* TOS4* ARNTL* DBP* COL1 STH

2 YOX1* HST4 DBP* NPAS2* HB-12 AT1G26790

3 HST3 HST3 NPAS2* CDX4 TGA3 CCA1*

4 ASF1 SWI5* NR1D1* ARNTL* RVE1 BBX18

5 ACE2* YOX1* NR1D2* EGR1 MYBL2 COL1

6 RTT107 RTT107 BHLHE41* GM14401 LHY* CDF1

7 STB1* WTM2 CLOCK* GM14305 CO COL2

8 HCM1* ASH1* NFIL3* POU4F1 PIL6 CDF3

9 RME1 FKH1* RFXANK EN2 AT2G28200 AT2G28200

10 FKH1* ASF1 RORC* DMRTA2 COL2 RVE1

11 PLM2* ACE2* TEF* LHX1 CCA1* LHY*

12 SWI4* POG1 CREM GM20422 PRR7* COL5

13 NDD1* SWI4* EGR1 GM14444 HYH PIF4

14 ASH1* RME1 PPARD OVOL2 BBX18 PIL6

15 YHP1* PLM2* ZBTB21 GM4969 RVE8* BBX16

16 TOS4* RLF2 NFIC HOXC4 PRE1 LUX*

17 EDS1 NDD1* AHCTF1 FOXO6 BZS1 PRR7*

18 RIF1 HCM1* ATF5 MESP1 EPR1 CDF2

19 SIP4 GAT1 LITAF AI854703 CDF3 LZF1

20 FHL1* TEC1 KLF10 NR1D1* RVE2 HB-12

21 NUT1 STB1* KLF13 BNC2 AT1G26790 RVE8*

22 ASG1 YHP1* ESR1 NPAS3 BBX16 ATCTH

23 TBF1 RPI1 STAT5B 2210418O10RIK COL9 MYBL2

24 SNF5 MTH1 SREBF1 HOXC6 LZF1 ARF11

25 WTM2 RIF1 MAFB TBX1 ARF10 RL6

Recall 76.5% 70.6% 66.7% 28.6% 36.4% 45.5%
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At the same time, quantitative measures of rhythmicity in transcript abundance and 

strength of regulation both independently improve the skill of a classifier above ran-

dom. Thus, the functional regulatory elements driving very different biological processes 

exhibit common characteristics in the dynamics of their transcript expression.

Dynamic transcript abundance characteristics remain adept at identifying core regulatory 

elements, even in the absence of prior knowledge of transcription factors

The organisms chosen for this study are model organisms in mammalian, plant, and 

fungi research which have been extensively studied. Thus, for these organisms, there are 

reliable annotations of gene function and comprehensive lists of TFs. If studying a non-

model organism, evidence of gene function may be much weaker, for example relying 

Fig. 3 Transcript abundance dynamics across DL × JTK rankings of transcription factors. A Distribution of DL 

× JTK ranks of core S. cerevisiae TFs among all TFs and time series expression of two core TFs: NDD1, which is 

highly ranked (rank 13), and MCM1, which is not highly ranked (rank 266). NDD1 and MCM1 act in a complex 

to regulate downstream targets. B Heatmaps of standardized gene expression profiles of the genes ranked 

(left) 1–25, (middle) 76–100, and (right) 276–300 by DL × JTK. Within each subpanel, genes are ranked by peak 

expression
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on sequence-based inferences. We ask, to what extent do the dynamic characteristics of 

transcript abundance that distinguish core TFs from non-core TFs continue to distin-

guish core from all genes? In this way, we assess the capacity for gene expression dynam-

ics to reduce hypothesis space in the absence of any prior biological knowledge. Note, 

this is an extremely lofty goal given the minuscule fraction of these genomes occupied by 

core transcriptional regulator elements.

For each dataset in Table 4 we ranked all transcript abundance profiles using the meth-

ods in Table 3. We have chosen to be very conservative in our labelling of core genes: 

only 17 out of nearly 6000 transcripts in S. cerevisiae, 14 out of close to 20,000 genes 

in M. Musculus, and 11 of over 22,000 genes in A. thaliana. As expected, AP scores are 

greatly reduced across all datasets. However, the APs remain significantly above baseline 

in most cases (Fig. 4). Examining the top 25 genes ranked by the measure DL × JTK, at 

least one core TF remained in the top 25 for all datasets, except the A. thaliana LDHC 

microarray dataset (Additional file 4—Gene Rankings). Remarkably, six of the 15 core 

mouse circadian TFs (recall of 40%) are identified among the top 25 genes ranked by DL 

× JTK in the M. Musculus liver microarray dataset.

The dynamic transcript abundance characteristics of core regulatory elements are 

not overrepresented among transcription factors

It is certainly possible that the dynamic features under investigation are characteristic 

of TFs themselves, and thus filtering on TFs selects for these features. To investigate the 

possibility that the dynamic metrics in this study are overrepresented in TFs and not just 

core transcriptional regulatory elements, we assessed the ability of the dynamic char-

acteristics of transcript abundance to identify TFs from among all transcripts. In line 

with our hypothesis, all methods listed in Table 3 performed poorly as each method’s 

AP dropped to near or below the AP baseline (Fig. 5). Said another way, TFs within these 

organisms are effectively randomly distributed in the rankings of all genes by periodicity 

Fig. 4 Identifying core genes among all genes. Average precision of classifiers identifying core from non-core 

TFs among all genes by A combined metrics and B individual metrics (Table 3) as well as the baseline 

average precision of a random classifier, for each dataset (Table 4)
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and variability of transcript abundance. The inability of the methods to identity TFs in 

each dataset demonstrates that these dynamic features are not characteristic of TFs in 

general, although they are indicative of core regulatory elements in disparate circadian 

systems and in the yeast cell-cycle.

Statistical significance measures are not required to skillfully rank core genes

A major concern with the DL methods for determining significance is that they require 

the generation of empirical null distributions derived from the periodicity and regula-

tor metrics of many synthetic expression profiles generated by repeated sampling of the 

experimental data. As the number of genes and/or the number of time points increases, 

the background distributions of potential random synthetic abundance profiles grows 

rapidly. As a result, in general, many more synthetic profiles must be generated and 

characterized to improve estimates of these p-values. If too few random curves are 

analyzed, there may be ambiguity in the final rankings due to repeated p-values caused 

by the resulting coarse discretization of possible estimates. This is potentially an issue 

since ambiguous p-value rankings could, in principle, overstate the quality of the met-

ric. In the worst case scenario an experimentalist would have to test all genes in a block 

with the same p-value, since one cannot prioritize by this method alone one gene over 

another. Additionally, the choice of a background distribution has a large impact on sta-

tistical significance [11] and gives poor results when assumptions of the background 

Fig. 5 Identifying transcription factors among all genes. Average precision of classifiers identifying TFs 

from non-TFs among all genes by combined metrics and individual metrics (Table 3) as well as the baseline 

average precision of a random classifier, for each dataset (Table 4)
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distribution do not match the reality of the data (see the discussion of the malaria data-

set in [12]).

It should also be noted that, unlike some test statistics, the DL Per Scores need not 

rank genes in exactly the same way as the corresponding DL Per p-values. Thus we ask, 

is it necessary to compute a significance value in order to skillfully rank core TFs? We 

address this question by ranking genes according to DL’s “naive” measurements for peri-

odicity and regulation, individually (DL Per Score and DL Reg Score in Table 3, respec-

tively) and in combination (PerReg). These naive measurements are calculated quickly 

with no permutations or random sampling required, and thus greatly reduce the com-

putational time required to rank genes. When used individually, the naive DL measure-

ments perform equally well or better than the empirical p-values at identifying core, as 

measured by AP (Fig. 2B). Indeed, there is a striking difference across all datasets in the 

ranking of core genes using DL’s naive periodicity score rather than its associated empir-

ical p-value, which is particularly expensive to compute for large gene sets.

When combined, the naive measures also skillfully rank genes well above baseline 

across all datasets. In fact, there is a notable increase in AP over the other combined 

metrics, which are derived from p-values, for the A. thaliana data in both conditions 

(Fig. 2A). We expect that this, along with the generally lower performance of these met-

rics on A. thaliana data compared to the other datasets, may be due to the fact that 

the A. thaliana transcript abundance profiles reflect gene expression in multiple tissue 

types, making it difficult to collect accurate empirical p-values.

Much like DL × JTK, PerReg shows skillful recall at identifying core genes among the 

top 25 TFs (Additional file 5: Table S3), identifying at least 4 and at most 10 core TFs 

among the top 25, across all datasets considered in this study.

Several high ranking non‑core genes display regulatory relationships with core genes

The lists of core TFs used in this study are conservative since (1) a lack of strong evi-

dence supporting a gene as a core regulator is not proof that it is not core and (2) many 

functional regulators are also known to be transcriptional co-regulators and post-tran-

scriptional modifiers; we labelled the latter as non-core to ensure fair assessment of the 

performance of the ranking methods. Thus, our binary labels may contain false negatives 

(core labeled as non-core) due to a lack of strong experimental evidence, and certainly 

contain false negatives due to our restriction to TFs. We ask, what are the identities of 

the most highly ranked non-core TFs, and does there exist any evidence that they target 

the activity of and/or are targeted by our core TFs?

Utilizing the curated list of regulatory relationships in YEASTRACT [13] and Plant-

TFDB [14], as well as a literature search for M. musculus TF interactions, we indeed 

observe evidence that several yeast, plant, and mouse genes among the top 25 TFs 

ranked by the measure DL × JTK target core and/or are targeted by core (Table 2). For 

example, we find that among the top 25 S. cerevisiae TFs ranked by DL × JTK in either 

MA or RNASeq datasets, that 40% (9/23) of the genes have existing evidence of both 

regulating and being regulated by core. This observation suggests that genes that appear 

highly ranked by our combined measures, but were not labeled as core due to a lack of 

existing evidence, may in fact be core nodes.



Page 10 of 20Motta et al. BMC Bioinformatics           (2022) 23:94 

Within the top 25 of all genes, as ranked by DL × JTK, we observe a number of 

regulatory elements that are known to be essential to produce the given periodic 

program of gene expression, but which are not strictly TFs, and therefore do not 

qualify in our definition as a core gene. Examples include the mouse transcriptional 

Table 2 Interaction relationships∗ between core TFs and non-core that appear in the top 25 TFs as 

ranked by DL × JTK†

*S. cerevisiae and A. thaliana interactions determined respectively by database searches of [13] and [14] and represent a 

range of direct and indirect evidence types, including the presence of binding motifs in regulatory regions and response to 

TF over-expression. M. musculus interactions determined by evidence gathered in the associated citation

†
M. musculus non-core TFs drawn from MA dataset only, while non-core S. cerevisiae and A. thaliana TFs were drawn from 

the unions of each pair of analyzed datasets

S. cerevisiae M. musculus A. thaliana

Gene Targeted Targets Gene Targeted Targets Gene Targeted Targets

ASG1 FHL1 NDD1 EGR1 ARNTL [15] ARNTL [16] EPR1 RVE4 PRR5

EDS1 FHL1 TOS4 KLF10 ARNTL [17] ARNTL [18] PIF4 CCA1 LHY

GAT1 ACE2 ACE2 NFIC HLF [19] PIL6 CCA1 LHY

MTH1 FHL1 STB1 ATF5 CLOCK [20] ARF11 CHE

RME1 ACE2 ASH1 ESR1 CLOCK [21] CO CCA1

RPI1 FHL1 NDD1 SREBF1 BHLHE40 [22] COL1 CHE

SIP4 FHL1 STB1 BHLHE41 [22] COL9 CHE

TEC1 SWI4 ASH1 MYBL2 CHE

WTM2 ACE2 STB1 CDF2 LHY

ASF1 SWI4 RVE1 PRR5

HST3 FKH1 RVE2 CCA1

HST4 MBP1

POG1 MCM1

RLF2 MBP1

RTT107 MCM1

SNF5 ACE2

TBF1 FHL1

Table 3 Quantitative metrics of periodicity and regulation strength used in this study to rank genes

∗
Refer to Additional file 5: Supplementary Information for equation definitions

Name Function Type Description

DL Per Score Per(G) Periodicity A measure of abundance profile periodicity as defined by Eq. (3)∗

DL Per p-val pper(G) Periodicity An empirical p-value measuring the probability that a random abun-
dance profile will exhibit a DL Per Score larger than the actual gene’s 
expression pattern

JTK Per p-val pjtk(G) Periodicity An analytic p-value introduced in [41] measuring the correlation in the 
discrete up-down patterns of expression between a gene and a sinusoi-
dal template

DL Reg Score Reg(G) Regulation A measure of the variability of transcript abundance about its mean 
expression level as defined by Eq. (2)∗

DL Reg p-val preg(G) regulation An empirical p-value measuring the probability that a random abun-
dance profile will exhibit a DL Reg Score larger than the actual gene’s

PerReg Combined The product of DL Per and DL Reg Scores

DL Combined The original periodicity measure introduced in [42] and defined accord-
ing to Eq. (1)∗

DL × JTK Combined A modified version of the original periodicity measure introduced by [42], 
defined according to Eq. (1)∗ with pper(G) replaced by pjtk(G)
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co-regulators Period 3 (PER3) [23] and Cryptochrome 1 (CRY1) [24] and the plant 

post-transcriptional gene Gigantea (GI) [25] (Table 2), which are known or proposed 

to be transcriptional co-regulators and post-transcriptional elements. This supports 

our conclusion that core elements, even beyond the TFs, can be identified by quantifi-

able features in their transcript abundance dynamics. Improvement in the annotation 

of non-TF regulatory elements is needed before we can reliably quantify the extent to 

which these dynamic characteristics are exhibited by all nodes of these networks at 

the level of transcript abundance.

External periodic signals do not significantly alter the skill of transcript abundance 

dynamics at identifying core genes

Implicit in the definitions of the core transcriptional regulatory networks considered 

in this study is that they are free-running and can support rhythmic oscillations in the 

absence of external periodic stimuli due to their mutual regulatory interactions with 

other core elements. Is it necessary to collect time series transcriptomics in the absence 

of external circadian stimuli to skillfully identify core regulatory elements?

To address this question, we compared the skill of dynamic expression features to 

identify the core TFs for A. thaliana in (1) periodically fluctuating light and temperature 

(diurnal) conditions (LDHC) and (2) constant light, (circadian) conditions (LL_LDHC). 

For the details on the precise experimental setup see [26].

One might expect that the transcript dynamics of diurnal non-core genes—those that 

are strictly driven by periodic light-dark and/or temperature cycles—would reduce the 

capacity of dynamic gene expression features to distinguish core regulatory elements. 

We find that the signal of core genes is not degraded in the presence of external peri-

odic stimuli in these experiments, since all combined quantitative measures show nearly 

identical skill at identifying core genes across both conditions (Fig. 2A). Even more strik-

ing is the consistency in the individual ranks of core genes across diurnal and circadian 

conditions, as shown for DL × JTK in Additional file 5: Table S1.

Table 4 Time series transcript abundance datasets used in this study

LL_LDHC: Constant light and temperature; LDHC: 24 hour cycling light and temperature

*Cell-cycle period length was taken from the respective publication, which estimated period length using the CLOCCS 

algorithm [54]

† Counts are based on post-processed datasets (see Materials and Methods)

Organism S. cerevisiae M. musculus (liver) A. thaliana (whole leaf)

Synch. in Cell cycle Cell cycle Circadian Circadian Diurnal Circadian

Technology RNASeq Microarray Microarray RNASeq Microarray Microarray

Period 75 min* 94 min* 24 h 24 h 24 h 24 h

Duration 245 min 254 min 48 42 48 48

Frequency 5 min 16 min 2 h 6 h 4 h 4 h

Timepoints/cycle 15 5.875 12 4 6 6

Reference [53] [6] [29] [29] [26] (LL_LDHC) [26] (LDHC)

No. of genes† 5910 5718 19,750 18,388 22,484 22,484

No. of TFs† 304 307 1373 1118 1415 1415

No. of core 17 17 15 14 11 11
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Conclusions

Elucidating the underlying GRNs driving dynamic biological processes, such as cell-divi-

sion and sleep-wake cycles, is crucial if we are to leverage existing control mechanisms 

for synthetic biology applications, understand the evolution of biological networks, and 

inform experiments to discover new drug targets. However, experimentally identifying 

the core regulatory elements of these gene networks can be costly, time consuming and 

daunting, even for the simplest organisms, due to the large hypothesis space. We have 

shown that many core transcriptional regulators governing different periodic processes, 

appearing in evolutionarily distinct organisms, share common features in their tran-

script abundance dynamics. These findings indicate that cell and circadian cycle GRNs 

share functionally and/or evolutionarily conserved features. We demonstrated the use 

of several metrics that quantify and combine these dynamic features. The outcome is a 

substantial reduction in hypothesis space: a prioritization of gene targets for experimen-

tal validation, which may accelerate the discovery of the core control variables of gene 

regulatory networks.

High degrees of periodicity and strong regulation signals appear to be characteristic 

features of many core TFs involved in generating periodic biological processes. However, 

not all known core regulatory TFs strongly exhibit the dynamic features quantified here 

at the level of their transcript abundance. For instance, the abundance profile of the core 

S. cerevisiae TF NDD1 is highly periodic with a precise match to cell-cycle period and 

exhibits large dynamic range, but MCM1 does not show convincing oscillations at the 

cell-cycle period (Fig. 3A). MCM1 is the only core TF to not rank in the top 70 TFs in 

at least one of the two S. cerevisiae datasets using DL × JTK (Additional file 5: Table S1). 

However, MCM1 acts in complex with other rhythmically-expressed genes like NDD1 

[27, 28], so it can still be part of a highly periodic TF complex without itself exhibiting 

highly periodic signatures in transcript abundance. It is enticing to imagine there may be 

other features captured in the gene or protein expression profiles, as well as features not 

related to gene expression, such as sequence-based and protein interaction features that 

could be used to more accurately capture all core genes, including those identified in TF 

complexes.

It is known in the circadian field that several core clock genes have tissue-specific peri-

odic properties in mice [29]. Thus, we expect not all core genes will rise to the top of our 

rankings in every tissue. For example, within the three retinoid-related orphan receptors 

(RORs) TFs, RORA, RORB, and RORC, only RORC is known to display periodic gene 

expression in mouse liver [30]. Indeed, only RORC was ranked in the top 25 TFs ranked 

by DL × JTK (Table 1) in the mouse liver microarray dataset. Another example is the 

mouse core clock gene ARNTL2, which is not ranked highly in the mouse liver datasets. 

Most studies suggest ARNTL2 has brain-specific circadian expression with lower levels 

of expression in the liver in mammals [31–33]. There is also growing evidence for genes 

to exhibit tissue-specific dynamics in plants [34].

Our ability to identify plant core genes appears generally lower than the other organ-

isms we considered. This may be due to the fact that samples were taken from the whole 

leaf and thus contained a mixture of multiple tissue types such as mesophyll, epider-

mis, and vasculature [26]. The abundance and periodicity of any particular transcript 

might therefore appear muted as genes are likely expressed differentially across tissues. 
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Consistent with this hypothesis, several studies have shown that tissue-specific clocks 

in plants can be asymmetrically coupled [35], have different period lengths [36], or have 

different levels of gene expression for core components [37, 38]. Naturally it is more dif-

ficult to identify a core component whose observed dynamics is either a convolution 

of multiple dissimilar abundance profiles derived from multiple tissues or has specific-

ity to an under-represented tissue in a mixture of tissue types. Interestingly, the domi-

nant tissue type in whole leaf samples is mesophyll, and morning-expressed clock genes 

(CCA1, PRRs, and LHY) are highly expressed in the mesophyll [35, 39]. These morn-

ing-expressed genes are mostly the only plant core genes ranked highly in this study 

(Table 1).

Broadly speaking, our findings suggest that even naive measures of periodicity and 

regulatory strength can be used to skillfully rank genes. We speculate that other meth-

ods that quantify and combine these two features will show similar skill at ranking core 

above non-core genes. With the availability of proper experimental controls across 

organism, platform, sampling density, etc., it might be possible to compare the various 

metrics to make a more prescriptive recommendation of which particular method to use 

for a given dataset.

The use of naive metrics rather than empirical p-values does not suffer from ambigu-

ous rankings caused by insufficient sampling of the null distribution, as may be the case 

with DL’s method of measuring significance. It is possible to reduce the ambiguity of 

a ranking by increasing the sampling of the null distribution at the cost of increased 

compute time. The disambiguation of empirical regulator p-values computed by the DL 

metric through increased sampling is visualized in Additional file 5: Fig. S7. Similarly, 

combining several p-values derived from different dynamic characteristics into com-

bined metrics can eliminate ambiguous rankings that may be present in one of these 

features.

We have demonstrated the importance of reliable genome annotation of TF genes, 

but many organisms of interest currently lack comprehensive gene annotations. Thus 

it is desirable to have methods that can leverage high-throughput technologies to pro-

vide evidence of gene function. Additional evidence such as identifying DNA-binding 

domains and/or orthology to known TFs in other organisms are two such methods that 

could be used to provide putative TF lists for poorly-annotated genomes.

Here we demonstrate that dynamic features of periodic transcriptomes appear to be 

conserved across kingdoms and networks that appear to serve disparate functions such 

as cell-cycle or circadian clocks. It is possible that the conservation of these features 

results from a fundamental property of these GRNs, where a transcriptional signal is 

developed within a core set of nodes and that the signal degrades as it is propagated 

through effector nodes that control downstream gene expression. Alternatively, the con-

servation of features could reflect an evolutionary conservation of network topologies 

that produce rhythmic behaviors during circadian and cell cycles.

Methods

Dynamic curve features

We focused on two dynamic curve features of transcript abundance profiles: (1) perio-

dicity at a specified period and (2) amplitude. Although amplitude has been suggested as 
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a feature of core genes in mouse circadian GRN [40], to the best of our knowledge, this 

feature has not been articulated for core nodes of cell-cycle or plant circadian GRNs.

Several algorithms have been published that quantify one or both of these two fea-

tures [41–48] and several studies have performed benchmarking of the metrics used 

by these algorithms to quantify the dynamic features [10, 49, 50]. The consensus of the 

benchmarking studies is that there is no one best metric, as individual metrics each have 

various underlying definitions of these two dynamic features. Furthermore, when select-

ing a metric, one must take into account the characteristics of their dataset, e.g., noise, 

number of cycles, sampling frequency, etc., and whether these characteristics fit the 

algorithm’s definitions. Of the numerous algorithms to choose from, we selected JTK-

CYCLE (JTK) [41] and de Lichtenberg (DL) [42] as they have been shown to perform 

reasonably well across datasets with diverse characteristics [10].

JTK’s metric for measuring how well a transcript abundance profile fits to a speci-

fied period is based on correlating the profile to that of a reference curve that oscillates 

at the specified period, and then computing the significance of the correlation, using a 

non-parametric test that can capture non-linear correlations. DL’s metric for measur-

ing periodicity of a transcript abundance profile combines statistical measures of fit to 

a specified period and strength of regulation. DL’s strength of regulation is a measure of 

variability within the transcript abundance profile, and can be thought of as a measure 

of amplitude. To reduce any potential confusion between this study and any studies that 

also use DL, we use “strength of regulation” as opposed to “amplitude” as this is the same 

language used in the original DL study. The JTK and DL metrics used in this study are 

summarized in Table 3. Detailed descriptions of the algorithms used to compute these 

metrics are available in Additional file 5.

Performance of gene ranking metrics

The problem of identifying the core regulatory elements within an organism’s genome is 

fundamentally a question of binary classification of gene function: is a gene core or not? 

In practice, this decision task amounts to ranking all genes by some quantitative met-

ric or “score” in the hope that the ranking is enriched with core genes, so as to reduce 

the expected effort required to gather additional experimental evidence of gene function 

through, for example, knock-out experiments.

To assess the capacity of each ranking metric given in Table 3 to rank core genes above 

non-core genes, we compute the precision-recall (PR) curves of the gene rankings. PR 

curves track the precision (the fraction of true core genes among all genes ranked above 

some score threshold) across all levels of recall (the fraction of true core genes appear-

ing above the chosen threshold). From each PR curve we compute the average precision 

(AP), which summarizes with a single number a ranking’s performance across all recall 

levels. See Additional file 5—Supplementary Information for a precise definition of PR 

curves, precision, recall and AP.

Any ranking can achieve a perfect recall of 1 if the threshold is chosen so permis-

sively as to label all genes as core. However, given the goal to reduce hypothesis space 

and limit the amount of experimental validation needed to identify core regulatory ele-

ments, a permissive choice of threshold is of little practical utility. Thus, in this context, 

a meaningful measure of classifier skill is the precision at a given recall. For example, 
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the precision at a recall of 10% characterizes how many knock-out experiments one 

would expect to perform, in accordance with a given algorithm’s ranking of genes, before 

10% of the core regulatory elements are identified. It is this interpretation that may be 

of particular value to a researcher interested in using a ranking algorithm to prioritize 

experiments.

In some rare cases, if a scoring algorithm is particularly discriminating between two 

classes, the scores may be bimodally distributed and well-separated, allowing a data-

driven justification of a choice of threshold. Usually, this is not the case, and a threshold 

must be chosen arbitrarily. Moreover, it is known that periodicity scores produced by 

the methods used in this study depend on attributes of the data that may vary from one 

experiment to the next, e.g. number of time points per cycle [10], and that there is no 

universal threshold to distinguish periodic from non-periodic genes [51]. Thus, better 

measures of classifier performance, such as AP, assess the ranking itself, quantifying the 

skill of the classifier to rank the members of the true class (core) above the members of 

the other class (non-core).

A perfect ranking of genes is one in which all core genes are ranked higher than all 

non-core genes. In this way, an experimentalist prioritizing hypotheses using the gene 

ranking would encounter all core genes before testing any non-core. The AP of a perfect 

ranking will be 1. At the other extreme is an uninformative ranking which assigns scores 

to genes at random. The average precision achieved for a random classifier is C/N [52], 

where C is the number of core genes and N is the number of all genes. Moreover, the 

expected PR curve for such an algorithm is a horizontal line at precision level C/N across 

all recall levels, as seen in Additional file 5: Figs. S1–S6. Thus, performance of each clas-

sifier, as measured by its PR curve and its AP, should be compared against the (non-

universal) baseline performance of a random classifier. In other words, precision-recall 

points above the baseline reflect the skill of a metric, over the random classifier, to rank 

genes in a way which enriches the top of a list with core genes.

Gene expression datasets

Data processing

The normalized transcriptomic datasets used in this analysis were taken from the refer-

ences presented in Table 4. The datasets were adjusted to account for possible technical 

and biological variations between samples by the authors of the studies that generated 

them. For the specific normalization applied to each dataset, we refer the reader to the 

references cited in Table  4. Before deriving dynamic features, transcript abundances 

were processed to remove unreliable data. For the M. musculus and S. cerevisiae RNAseq 

datasets, genes were removed that had less than 1 FPKM normalized transcript level in 

more than half of the measured time points and were not considered in any part of this 

analysis.

Authors of [6] produced the S. cerevisiae microarray dataset from S. cerevisiae cells 

that were synchronized via centrifugal elutriation. It is known that elutriation impacts 

the transcription of many genes and that a brief recovery period is needed after elutria-

tion. The resulting transcript abundance dynamics early in the time series, which are 

not related to cell-cycle transcript abundance dynamics, can impact periodicity analyses 

[54]. Therefore, prior to any analysis, [6] eliminated data determined to be associated 



Page 16 of 20Motta et al. BMC Bioinformatics           (2022) 23:94 

with the elutriation recovery period. We adopted the same method of eliminating the 

first two time points from the S. cerevisiae microarray dataset.

In the S. cerevisiae mircoarray dataset and both A. thaliana datasets, some genes 

were associated with multiple probes, causing some genes to have more than one tran-

script abundance profile. The A. thaliana core gene, RVE8, was one such gene. Having 

two transcript abundance profiles for RVE8 resulted in inaccurate performance metrics. 

To remedy this issue, we applied a filtering step to the S. cerevisiae mircoarray dataset 

and both A. thaliana datasets after quantifying dynamic features using the methods in 

Table 3. For genes with multiple abundance profiles, we kept the profile with the highest 

average abundance, resulting in the elimination of 96 and 326 profiles from the S. cerevi-

siae mircoarray dataset and both A. thaliana datasets, respectively. All time series data 

can be found in Additional file 1—Gene Expression Data.

Curation of Core Regulatory Elements

In order to evaluate the ability of each method given in Table 3 to identify core TFs driv-

ing a periodic program of gene expression, we consider data derived from well-studied 

organisms for which there is significant experimental evidence of gene function. Core 

cell-cycle TFs in yeast are described as genes functioning in an autoregulatory transcrip-

tional network that robustly maintains a large program of periodic gene expression [4–6, 

8]. A list of yeast core cell-cycle TFs based on this definition was compiled in [9] for eval-

uating the transcriptonal oscillator underlying the yeast cell cycle. Therefore, the core TF 

list defined in [9] was used in this study as the ground truth for S. cerevisiae (Additional 

file  2—Core Genes). Similarly, core circadian clock TFs are described as genes func-

tioning in an autoregulatory transcriptional feedback loop, maintaining circadian-like 

transcript abundances under constant light or dark conditions and are necessary com-

ponents for generation and regulation of circadian rhythms [1, 55, 56]. The literature 

evidence supporting our labeling of plant and mammalian genes as core are listed in 

Additional file 2—Core Genes. Although the core networks are known to include non-

TF regulatory elements that control functional activity, such as kinases and ubiquitin 

ligases [1, 56, 57], we limit our definition of core to TFs since these are more reliably 

annotated in the genomes we consider. This ensures our conclusions are conservative by 

not unfairly inflating the core list with known core post-transcriptional modifiers while 

not simultaneously including all non-core members of these gene categories.

Curation of transcription factors

In this study, we define a TF as a gene that has the ability for sequence-specific DNA bind-

ing alone or in a complex and is capable of activating and/or repressing gene expression. 

This definition excludes genes that are also known to affect gene expression, such as chro-

matin-related genes like chromatin remodeling factors, histone demethylases, and histone 

acetyltransferases. To ensure the lists of TFs are consistent across strains, we used curated 

TF databases that use the given TF definition. In particular, TFs used in this study (Addi-

tional file 3—Transcription Factors) were retrieved from Animal TF Database 3.0 [58], Plant 

TF Database 4.0 [14], and YEASTRACT [13] for M. musculus, A. thaliana, and S. cerevi-

siae, respectively. Each species list of TFs was inspected for presence of the respective spe-

cies core regulatory elements. Upon inspection of the A. thaliana TF list, it was discovered 
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that the core regulatory elements from the pseudo-response regulator (PRR) family were 

not present. Therefore, we added PRR5, PRR7, PRR9, and PRR1 (TOC1) to A. thaliana list 

of TFs, which are known as core regulatory elements of the plant circadian clock [59–61].
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