
Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 1 of 22

Inherent Dynamics Visualizer, an Interactive Application
for Evaluating and Visualizing Outputs from a Gene
Regulatory Network Inference Pipeline
Robert C. Moseley1, Sophia Campione1, Bree Cummins2, Francis Motta3, Steven B. Haase1

1 Department of Biology, Duke University 2 Department of Mathematical Sciences, Montana State University 3 Department of Mathematical Sciences,
Florida Atlantic University

Corresponding Author

Robert C. Moseley

robert.moseley@duke.edu

Citation

Moseley, R.C., Campione, S.,

Cummins, B., Motta, F.,

Haase, S.B. Inherent Dynamics

Visualizer, an Interactive Application for

Evaluating and Visualizing Outputs from

a Gene Regulatory Network Inference

Pipeline. J. Vis. Exp. (178), e63084,

doi:10.3791/63084 (2021).

Date Published

December 7, 2021

DOI

10.3791/63084

URL

jove.com/video/63084

Abstract

Developing gene regulatory network models is a major challenge in systems

biology. Several computational tools and pipelines have been developed to tackle

this challenge, including the newly developed Inherent Dynamics Pipeline. The

Inherent Dynamics Pipeline consists of several previously published tools that work

synergistically and are connected in a linear fashion, where the output of one tool

is then used as input for the following tool. As with most computational techniques,

each step of the Inherent Dynamics Pipeline requires the user to make choices

about parameters that don't have a precise biological definition. These choices

can substantially impact gene regulatory network models produced by the analysis.

For this reason, the ability to visualize and explore the consequences of various

parameter choices at each step can help increase confidence in the choices and the

results.The Inherent Dynamics Visualizer is a comprehensive visualization package

that streamlines the process of evaluating parameter choices through an interactive

interface within a web browser. The user can separately examine the output of each

step of the pipeline, make intuitive changes based on visual information, and benefit

from the automatic production of necessary input files for the Inherent Dynamics

Pipeline. The Inherent Dynamics Visualizer provides an unparalleled level of access

to a highly intricate tool for the discovery of gene regulatory networks from time series

transcriptomic data.

Introduction

Many important biological processes, such as cell

differentiation and environmental response, are governed

by sets of genes that interact with each other in a

gene regulatory network (GRN). These GRNs produce

the transcriptional dynamics needed for activating and

maintaining the phenotype they control, so identifying the

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 2 of 22

components and topological structure of the GRN is key to

understanding many biological processes and functions. A

GRN may be modeled as a set of interacting genes and/or

gene products described by a network whose nodes are the

genes and whose edges describe the direction and form of

interaction (e.g., activation/repression of transcription, post-

translational modification, etc.)1 . Interactions can then be

expressed as parameterized mathematical models describing

the impact a regulating gene has on the production of its

target(s)2,3 ,4 . Inference of a GRN model requires both an

inference of the structure of the interaction network and

estimation of the underlying interaction parameters. A variety

of computational inference methods have been developed

that ingest time series gene expression data and output

GRN models5 . Recently, a new GRN inference method was

developed, called the Inherent Dynamics Pipeline (IDP), that

utilizes time series gene expression data to produce GRN

models with labeled regulator-target interactions that are

capable of producing dynamics that match the observed

dynamics in the gene expression data6 . The IDP is a

suite of tools connected linearly into a pipeline and can

be broken down into three steps: a Node Finding step

that ranks genes based on gene expression characteristics

known or suspected to be related to the function of the

GRN7,8 , an Edge Finding step that ranks pairwise regulatory

relationships8,9 , and a Network Finding step that produces

GRN models that are capable of producing the observed

dynamics10,11 ,12 ,13 ,14 ,15 .

Like most computational methods, the IDP requires a set

of user-specified arguments that dictate how the input

data is analyzed, and different sets of arguments can

produce different results on the same data. For example,

several methods, including the IDP, contain arguments

that apply some threshold on the data, and increasing/

decreasing this threshold between successive runs of the

particular method can result in dissimilar results between

runs (see Supplement Note 10: Network inference methods

of5). Understanding how each argument may impact the

analysis and subsequent results is important for achieving

high confidence in the results. Unlike most GRN inference

methods, the IDP consists of multiple computational tools,

each having its own set of arguments that a user must

specify and each having its own results. While the IDP

provides extensive documentation on how to parameterize

each tool, the interdependency of each tool on the output of

the previous step makes parameterizing the entire pipeline

without intermediate analyses challenging. For instance,

arguments in the Edge and Network Finding steps are likely to

be informed by prior biological knowledge, and so will depend

on the dataset and/or organism. To interrogate intermediate

results, a basic understanding of programming, as well as a

deep understanding of all the result files and their contents

from the IDP, would be needed.

The Inherent Dynamics Visualizer (IDV) is an interactive

visualization package that runs in a user's browser window

and provides a way for users of the IDP to assess the impact

of their argument choices on results from any step in the

IDP. The IDV navigates a complicated directory structure

produced by the IDP and gathers the necessary data for

each step and presents the data in intuitive and interactive

figures and tables for the user to explore. After exploring these

interactive displays, the user can produce new data from an

IDP step that can be based on more informed decisions.

These new data can then be immediately used in the next

respective step of the IDP. Additionally, exploration of the

data can help determine whether an IDP step should be rerun

with adjusted parameters. The IDV can enhance the use of

the IDP, as well as make the use of the IDP more intuitive

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 3 of 22

and approachable, as demonstrated by investigating the core

oscillator GRN of the yeast cell-cycle. The following protocol

includes IDP results from a fully parameterized IDP run versus

an approach that incorporates the IDV after runs of each IDP

step, i.e., Node, Edge, and Network Finding.

Protocol

1. Install the IDP and IDV

NOTE: This section assumes that docker, conda, pip, and git

are installed already (Table of materials).

1. In a terminal, enter the command: git clone https://

gitlab.com/biochron/inherent_dynamics_pipeline.git.

2. Follow the install instructions in the IDP's README file.

3. In a terminal, enter the command: git clone https://

gitlab.com/bertfordley/inherent_dynamics_visualizer.git.

NOTE: Cloning of the IDV should happen outside of the

IDP's top-level directory.

4. Follow the install instructions in the IDV's README file.

2. Node finding

1. Create a new IDP configuration file that parametrizes the

Node Finding step.

NOTE: All quotation marks in the following steps should

not be typed out. The quotation marks are only used here

as a delimiter between the protocol text and what is to

be typed out.

1. Add the main IDP arguments to the configuration file.

2. Open a new text file in a text editor and type

"data_file =", "annotation_file =", "output_dir =",

"num_proc =", and "IDVconnection = True" on

individual lines.

3. For "data_file", after the equal to sign, type the path

to and name of the respective time series file and

type a comma after the name. Separate each data

by a comma, if more than one time series data

set is being used. See Supplemental File 1 and

Supplemental File 2 for an example of time series

gene expression files.

4. Type the path to and name of the annotation

file for "annotation_file", after the equal to sign.

See Supplemental File 3 for an example of an

annotation file.

5. For "output_file", after the equal to sign, type the path

to and name of the folder where results will be saved.

6. After the equal to sign, for "num_proc", type the

number of processes the IDP should use.

7. Add Node Finding arguments to the configuration

file.

8. In the same text file as in step 2.1.1, type in the

order presented "[dlxjtk_arguments]", "periods =",

and "dlxjtk_cutoff =" on individual lines. Place these

after the main arguments.

9. For "periods", after the equal to sign, if one-time

series data set is being used, type each period

length separated by commas. For more than one

time series data set, type each set of period lengths

as before but place square brackets around each set

and place a comma between the sets.

10. After the equal to sign, for "dlxjtk_cutoff", type an

integer specifying the maximum number of genes to

retain in the gene_list_file output by de Lichtenberg

by JTK_CYCLE (DLxJTK) (Table 1).

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 4 of 22

NOTE: It is highly recommended to review the

dlxjtk_arguments sections in the IDP README

to get a better understanding of each argument.

See Supplemental File 4 for an example of a

configuration file with the Node Finding arguments

specified.

2. In the terminal, move into the IDP directory, named

inherent_dynamics_pipeline.

3. In the terminal, enter the command: conda activate

dat2net

4. Run the IDP using the configuration file created in step

2.1 by running this command in the terminal, where

<config file name> is the name of the file: python src/

dat2net.py <config file name>

5. In the terminal, move to the directory named

inherent_dynamics_visualizer and enter the command: ./

viz_results.sh <results_directory>

NOTE: <results_directory> will point to the directory used

as the output directory for the IDP.

6. In a web browser, enter http://localhost:8050/ as the URL.

7. With the IDV now open in the browser, click on the Node

Finding tab and select the node finding folder of interest

from the dropdown menu.

8. Manually curate a new gene list from the gene list table

in the IDV to be used for subsequent IDP steps.

1. To extend or shorten the gene list table, click on

the up or down arrows or manually enter in an

integer between 1 and 50 in the box next to Gene

expression of DLxJTK-ranked genes. Top:.

2. In the gene list table, click on the box beside a gene

to view its gene expression profile in a line graph.

Multiple genes can be added.

3. Optionally specify the number of equally sized bins

to compute and order genes by the time interval

containing their peak expression, by inputting an

integer into the input box above the gene list table

labeled Input integer to divide the first cycle into

bins:.

NOTE: This option is specific to oscillatory dynamics

and might not be applicable to other types of

dynamics.

4. Select a heatmap viewing preference by clicking on

an option under Order Genes By: First Cycle Max

Expression (Table 1) which orders genes based

on the time of the gene-expression peak in the first

cycle.

NOTE: DLxJTK Rank orders genes based on the

periodicity ranking from the DLxJTK algorithm of the

IDP.

5. Click on the Download Gene List button to

download the gene list into the file format needed for

the Edge Finding step. See Supplemental File 5 for

an example of a gene list file.

9. In the Editable Gene Annotation Table, label a gene as

a target, a regulator, or both in the annotation file for the

Edge Finding step in a new Edge Finding run. If a gene

is a regulator, label the gene as an activator, repressor,

or both.

1. To label a gene as an activator, click on the cell in the

tf_act column and change the value to 1. To label a

gene as a repressor, change the value in the tf_rep

column to 1. A gene will be allowed to act as both an

activator and a repressor in the Edge Finding step

by setting the values in both the tf_act and tf_rep

columns to 1.

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 5 of 22

2. To label a gene as a target, click on the cell in the

target column and change the value to 1.

10. Click on the Download Annot. File button to download

the annotation file into the file format needed for the Edge

Finding step.

3. Edge finding

1. Create a new IDP configuration file that parametrizes the

Edge Finding step.

1. Add the main IDP arguments to the configuration file.

Open a new text file in a text editor and repeat step

2.1.1.

2. Add Edge Finding arguments to the configuration

file.

3. In the same text file as in step 3.1.1, type in the order

presented "[lempy_arguments]", "gene_list_file =",

"[netgen_arguments]", "edge_score_column =",

"edge_score_thresho =", "num_edges_for_list =",

"seed_threshold =", and "num_edges_for_seed ="

on individual lines. These should go below the main

arguments.

4. For "gene_list_file", after the equal to sign, enter the

path to and name of the gene list file generated in

step 2.8.5.

5. For "edge_score_column", after the equal to sign,

enter either "pld" or "norm_loss" to specify which

data frame column from the lempy output is used to

filter the edges.

6. Select either "edge_score_threshold" or

"num_edges_for_list", and delete the other. If

"edge_score_threshold" was selected, enter a

number between 0 and 1. This number will be used

to filter edges based on the column specified in step

3.1.5.

1. If "num_edges_for_list" was selected, enter a

value equal to or less than the number of

possible edges. This number will be used to

filter the edges based on how they are ranked

in the column specified in step 3.1.5. The edges

left over will be used to build networks in

Network Finding.

7. Select either "seed_threshold" or

"num_edges_for_seed" and delete the other. If

"seed_threshold" was selected, enter a number

between 0 and 1. This number will be used to filter

edges based on the column specified in step 3.1.5.

1. If "num_edges_for_seed" was selected, enter

a value equal to or less than the number of

possible edges. This number will be used to

filter the edges based on how they are ranked

in the column specified in step 3.1.5. The edges

left over will be used to build the seed network

(Table 1) used in Network Finding.

NOTE: It is highly recommended to review

the lempy_arguments and netgen_arguments

sections in the IDP README to get a

better understanding of each argument. See

Supplemental File 7 for an example of

a configuration file with the Edge finding

arguments specified.

2. Repeat steps 2.2 and 2.3.

3. Run the IDP using the configuration file created in step

3.1 by running this command in the terminal, where

<config file name> is the name of the file: python src/

dat2net.py <config file name>

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 6 of 22

4. If the IDV is still running, stop it by pressing Control C in

the terminal window to stop the program. Repeat steps

2.5 and 2.6.

5. With the IDV open in the browser, click on the Edge

Finding tab and select the edge finding folder of interest

from the drop-down menu.

NOTE: If multiple datasets are used in Edge Finding, then

make sure to select the last dataset that was used in

the Local Edge Machine (LEM) analysis (Table 1). It is

important when selecting edges for the seed network or

edge list based on LEM results to look at the last time

series data listed in the configuration file as this output

incorporates all preceding datafiles in its inference of

regulatory relationships between nodes.

6. To extend or shorten the edge table, manually enter an

integer in the input box under Number of Edges:.

7. Optionally filter edges on the LEM ODE parameters. Click

and drag to move either the left side or the right side of

each parameter's slider to remove edges from the edge

table that have parameters outside of their new allowed

parameter bounds.

8. Optionally create a new seed network if a different seed

network is wanted than the one proposed by the IDP. See

Supplemental File 8 for an example of a seed network

file.

1. Select either From Seed to select the seed network

or From Selection from the dropdown menu under

Network:.

2. Deselect/select edges from the edge table by

clicking the corresponding checkboxes adjacent to

each edge to remove/add edges from the seed

network.

9. Click on the Download DSGRN NetSpec button to

download the seed network in the Dynamic Signatures

Generated by Regulatory Networks (DSGRN) (Table 1)

network specification format.

10. Select additional nodes and edges to be used in the

Network Finding step.

1. Select edges from the edge table by clicking the

corresponding checkboxes to include in the edge list

file used in Network Finding.

2. Click on Download Node and Edge Lists to

download the node list and edge list files in the

format required for their use in Network Finding. See

Supplemental File 9 and Supplemental File 10 for

examples of edge and node list files, respectively.

NOTE: The node list must contain all the nodes in

the edge list file, so the IDV automatically creates

the node list file based on the selected edges.

Two options are available for viewing the edges

in Edge Finding. The LEM Summary Table option

presents the edges as a ranked list of the top 25

edges. Top-Line LEM Table presents the edges in

a concatenated list of the top three ranked edges

for each possible regulator. The number of edges

viewed for each option can be adjusted by the user

by changing the number in the Number of Edges

input box.

4. Network finding

1. Create a new IDP configuration file that parametrizes the

Network Finding step.

1. Add the main IDP arguments to the configuration file.

Open a new text file in a text editor and repeat step

2.1.1.

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 7 of 22

2. Add Network Finding arguments to the configuration

file.

3. In the same text file as in step 4.1.1, type

in the order presented "[netper_arguments]",

"edge_list_file =", "node_list_file =", "seed_net_file

=", "range_operations =", "numneighbors =",

"maxparams =", "[[probabilities]]", "addNode =",

"addEdge =", "removeNode =", and "removeEdge ="

on individual lines, below the main arguments.

4. For "seed_net_file", "edge_list_file" and

"node_list_file", after the equal sign, enter the path

to and name of the seed network file and the edge

and node list files generated in steps 3.9 and 3.10.2.

5. After the equal to sign, for "range_operations", type

two numbers separated by a comma. The first and

second numbers are the minimum and the maximum

number of addition or removal of nodes or edges per

network made, respectively.

6. For "numneighbors", after the equal to sign, enter a

number that represents how many networks to find

in Network Finding.

7. For "maxparams", after the equal to sign, enter a

number that represents the maximum number of

DSGRN parameters to allow for a network.

8. Enter values between 0 and 1 for each of these

arguments: "addNode", "addEdge", "removeNode",

and "removeEdge", after the equal to sign. The

numbers must sum to 1.

NOTE: It is highly recommended to review

the netper_arguments and netquery_arguments

sections in the IDP README to get a

better understanding of each argument. See

Supplemental File 11 and Supplemental File 12

for examples of a configuration file with the Network

Finding arguments specified.

2. Repeat steps 2.2 and 2.3.

3. Run the IDP using the configuration file created in step

4.1 by running this command in the terminal, where

<config file name> is the name of the file: python src/

dat2net.py <config file name>

4. If the IDV is still running, stop it by pressing Control C in

the terminal window to stop the program. Repeat steps

2.5 and 2.6.

5. With the IDV open in the browser, click on the Network

Finding tab and select the network finding folder of

interest.

6. Select a network or set of networks to generate an edge

prevalence table (Table 1) and to view the networks

along with their respective query results.

1. Two options are available for selecting networks:

Option 1 - Input lower and upper bounds on query

results by inputting minimum and maximum values

in the input boxes corresponding to the x-axis and

y-axis of the plot. Option 2 - Click and drag over

the scatterplot to draw a box around the networks

to be included. After selection or input bounds are

entered, press the Get Edge Prevalence From

Selected Networks button.

NOTE: If more than one DSGRN query was

specified, use the radio buttons labeled with the

query type to switch between each query's results.

The same applies if more than one epsilon (noise

level) was specified.

7. Click the arrows beneath the edge prevalence table to

move to the next page of the table. Press Download

Table to download the edge prevalence table.

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 8 of 22

8. Input an integer in the Network Index input box to display

a single network from the selection made in step 4.6.

Click on Download DSGRN NetSpec to download the

displayed network in the DSGRN network specification

format.

9. Search networks for similarity to a specified motif or

network of interest.

1. Use the checkboxes corresponding to each edge to

select edges to be included in the network or motif

used for the similarity analysis. Click on Submit to

create the similarity scatterplot for the selected motif

or network.

NOTE: Use the arrows in the edge list to sort

alphabetically and the arrows beneath the table to

move to the next page of the table.

2. Click and drag over the scatterplot to draw a box

around the networks to be included to select a

network or set of networks to generate an edge

prevalence table and to view the networks along with

their respective query results.

NOTE: If more than one DSGRN query was

specified, use the radio buttons labeled with the

query type to switch between each query's results.

The same applies if more than one epsilon (noise

level) was specified.

3. Repeat steps 4.7 and 4.8 to download the edge

prevalence table and the displayed network for the

similarity analysis, respectively.

Representative Results

The steps described textually above and graphically in Figure

1 were applied to the core oscillating GRN of the yeast cell-

cycle to see if it is possible to discover functional GRN models

that are capable of producing the dynamics observed in time

series gene expression data collected in a yeast cell-cycle

study16 . To illustrate how the IDV can clarify and improve

IDP output, the results, after performing this analysis in two

ways, were compared: 1) running all steps of the IDP in one

pass without the IDV and 2) stepping through the IDP with the

aid of the IDV, which allows the adjustment of intermediate

results both by incorporating prior biological knowledge and

by making refined choices based on IDP outputs. The well-

studied yeast cell-cycle GRN used as an example has many

of its regulatory relationships experimentally verified. If a

different and/or less annotated organism or biological process

is being studied, the choices on how intermediate results

or parameters are adjusted might be different. To illustrate

one type of query that can be used to assess networks, the

robustness of each network was measured to support stable

oscillations and match the observed transcriptional dynamics

of their nodes across model parameters.

Gene expression time series data of two replicate series

were taken from Orlando 200816 and preprocessed to

remove any gene expression associated with the cell-cycle

synchronization method applied in the original experiment

(Supplemental File 1 and Supplemental File 2). An

annotation file was created containing all the genes in the

time series data that are supported by both DNA binding

and expression evidence found in Yeastract17 and thus could

function as a regulator in a GRN. TOS4, PLM2, and NRM1

were also included as regulators, even though they were not

found in Yeastract to have both types of evidence, because

they are believed to be important for the yeast core GRN

based on evidence in the literature18,19 (Supplemental File

3). All regulators were labeled as both an activator and

repressor as well as targets.

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 9 of 22

The IDP was first parameterized to run through all steps of

the IDP, that is Node, Edge, and Network Finding. A set of

arguments was selected that appeared appropriate based

on the current understanding of the yeast cell-cycle GRN,

a small set of genes participating in a strongly connected

network (Supplemental File 4). This understanding mostly

influenced the Node and Edge Finding choices. The

probabilities parameters in Network Finding were based

on the assumption that only true genes and regulatory

interactions would be passed onto Network Finding. This

fully parameterized run of the IDP produced results for Node

and Edge Finding (Figure 2B,C), yet in Network Finding no

model-admissible networks were discovered (Figure 2A,D).

Model admissibility is explained in the code documentation

of the python module dsgrn_net_gen14 , a dependency of

the IDP. Briefly, networks that contain self-repressing edges

or have too many inputs or outputs at a single node are

not queryable by the DSGRN software (Table 1). The IDP

gives many reasons why model-admissible networks may

not be found and describes troubleshooting steps to resolve

the issue(s). Essentially, this involves changing parameters

and/or input files and rerunning the respective IDP step, and

examining results. The IDV was used to make this process

less tedious and time-consuming.

The Node Finding results were loaded into the IDV to

examine the genes being passed to the Edge Finding step

of the IDP. The nodes given by IDP are the top N genes

as ranked by DLxJTK (Table 1), N being specified by the

user, however, this gene list may not be appropriate for

the goal of the analysis. Without prior biological knowledge,

automatic selection of nodes using only DLxJTK scores

returned a gene with limited evidence of a role in the yeast

cell-cycle (RME1), while a few known cell-cycle transcriptional

regulators were not highly ranked (Figure 2B). Yeastract

experimental evidence was used to select from among

the highest-ranking genes by DLxJTK those with cell-cycle

annotation. These genes are SWI4, YOX1, YHP1, HCM1,

FKH2, NDD1, and SWI5. Their known regulatory relationships

can be seen in Figure 3. FKH2 does not appear in the top ten

genes (dlxjtk_cutoff was set to ten in Supplemental File 4) as

ranked by DLxJTK, so the gene list was extended using the

IDV until FKH2 was found (Figure 4). Several of the additional

genes in the extended gene list are known core genes and

would have been missed without investigating the Node

Finding results. While more known core genes have been

found by extending the gene list down the DLxJTK ranked list,

the focus was kept on the genes of interest. Therefore, some

high-ranking genes were deselected, resulting in a gene list

(Supplemental File 5) containing seven genes (Figure 4). A

new annotation file was created (Supplemental File 6) based

on these seven genes, each gene was labeled as a target,

and the regulator type was specified using Yeastract. The new

gene list and annotation file were downloaded for subsequent

use in the next IDP step, Edge Finding. Without the IDV, the

procedure of adding and removing genes from the gene list

and annotation file would require modest coding skills.

A new IDP configuration file was parameterized for just

the Edge Finding step (Supplemental File 7), with the

new gene list and annotation file. After completion of the

IDP with the new configuration file, results were loaded

into the IDV (Figure 5A). As the Network Finding step

searches stochastically around the network space of the

seed network supplied to it, providing a good seed network

can be important. A good seed network can be thought of

as one that contains true edges. With the IDV and using

online databases such as Yeastract and the Saccharomyces

Genome Database (SGD)20 , the seed network can be viewed

and adjusted using the regulatory relationships from LEM

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 10 of 22

(Table 1) that have experimental evidence. As an example,

the edge YHP1 = tf_act(HCM1) was deselected because

there is no documented evidence of this relationship (Figure

5B) in Yeastract. The edge SWI5 = tf_act(FKH2) was added

as there is documented evidence of this relationship21 . Once

the seed network (Table 1) was satisfactory, the DSGRN

network specification file for the network was downloaded

(Supplemental File 8).

Without the IDV, there is a higher chance of edges for

which there is no experimental evidence being used to

construct the seed network. As can be seen in Figure 2C,

the seed network generated in the Edge Finding step from

running the IDP nonstop through each step contains an edge,

SWI4 = tf_rep(NDD1), that is not supported by experimental

evidence in Yeastract, likely because NDD1 is known to be a

transcriptional activator22 . This information was not encoded

in the annotation file in the non-stop run, which allowed all

regulators to be both activators and repressors.

Using the IDV, a seed network was manually curated that

is a subnetwork of Figure 3, and the remaining four edges

were placed in the edge list used for sampling network

space (YHP1 = tf_act(SWI4), YOX1 = tf_act(SWI4), SWI4 =

tf_rep(YOX1), SWI5 = tf_act(NDD1)). Selecting edges based

on prior biological knowledge can also be used to build the

edge list; however, in this case, the top 20 edges from the

LEM Summary Table view were selected (Supplemental

File 9). The node list file is created from the selected edges

automatically (Supplemental File 10). The ODE parameters

from LEM can also be used to filter edges if one believes

the inferred parameters in the ODE model are not biologically

realistic, but this information was not used here.

Next, a new IDP configuration file was parameterized for

the Network Finding step using the three new files. As

the seed network was created with edges well-supported

by experimental evidence, the inclusion of these edges

in all networks was desired. Thus, the Network Finding

probabilities were set to allow the addition but not the removal

of nodes and edges (Supplemental File 11). The Network

Finding parameter numneighbors was set to search for

2,000 networks. After running the IDP, 37 model-admissible

networks were found in the Network Finding step, as opposed

to the non-stop run that had zero. Loading the Network

Finding results into the IDV, 64% (24) of these 37 networks

had the capacity to stably oscillate (Figure 6A). Of these

24 networks, the best performers were two networks that

matched the data at 50% of their stably oscillating model

parameters (Figure 6B).

The Edge Prevalence Table (Table 1) tabulates the number

of times an edge occurs in a selected collection of networks,

giving an indication of its prevalence in high-performing

networks. Examining the Edge Prevalence Table produced

by selecting the previous two networks in the scatter plot

reveals that all the seed network edges are present in each

of the two networks, as expected, along with two non-seed

network edges (Figure 6B), SWI4 = tf_act(SWI5) and HCM1

= tf_rep(YHP1). Neither of these two edges had evidence

supporting them in Yeastract. As such a small amount of

network space was explored so it is difficult to assess the

importance of edges and nodes in producing the observed

dynamics.

Only 37 model-admissible networks were found in Network

Finding even though the parameter numneighbors was set

to 2,000, which suggests that the network search may have

been unduly limited. As described in the documentation for

the dsgrn_net_gen python module in the IDP, the issue could

be related to the seed network, edge list, node list, Network

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 11 of 22

Finding parameter choices, or some combination of these.

To investigate, the same seed network, edge list, and node

list as before were used, but the Network Finding parameters

were altered by adding the ability to remove edges during

network generation (Supplemental File 12). Loading the

new Network Finding results into the IDV shows that 612

networks were found in this step, with 67% (411) of these

networks having the capacity to stably oscillate (Figure 7A).

Interestingly, 13% (82) of the networks that were capable of

stable oscillatory dynamics were not capable of producing

dynamics similar to those seen in the data (Figure 7B). Of

the 411 networks, 30% (124) exhibited robust matches to

data (i.e., more than 50% of their stably oscillating model

parameters exhibited a data match) (Figure 7C).

The edge prevalence numbers generated by the second

round of Network Finding are now based on a much larger

selection of networks and can be more confidently used

in assessing the importance of a regulatory relationship

in a GRN. For instance, HCM1 = tf_rep(YHP1) is still

represented highly in networks that produce robust dynamics,

suggesting that this relationship could be worth investigating

experimentally (Figure 7C). Further examination of the Edge

Prevalence Table (based on the 124 networks mentioned

above) revealed that the edges SWI4 = tf_rep(YOX1) and

YOX1 = tf_act(SWI4) are not highly ranked yet the edges

SWI4 = tf_rep(YHP1) and YHP1 = tf_act(SWI4) are highly

ranked (Figure 7C). Negative feedback is important for

producing oscillatory dynamics23 and both of these sets

of regulatory relationships provide this function in the GRN

in Figure 3. Finding if a network exists that contains all

four of these edges could provide some insight into why

these do not frequently exist together in the collection of

GRN models; however, clicking through individual networks

would be tedious. Instead, the Similarity Analysis portion of

the Network Finding page was used to search for networks

that may contain all four edges (Figure 7D). Examining

the scatter plot that displays how similar the 612 networks

are to a motif of these four edges versus the percentage

of the model parameter space that matches the observed

dynamics reveals that only 0.65% (4) of the 612 networks

contain all four of these edges (Figure 7D). This suggests

a testable hypothesis that only one of the two negative

feedback loops is needed for a network of this size to

produce the observed dynamics. This hypothesis can be

further investigated computationally by reparameterization of

IDP steps and a more exhaustive search of network space or

experimentally, such as gene knockouts. All results from this

analysis can be found in Supplemental File 13.

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 12 of 22

Figure 1: IDP and IDV workflow overview. The bottom row depicts the three major steps of the IDP: Node, Edge, and

Network Finding. The top row depicts the major steps of the IDV and describes various ways a user can interact with the

results. The dark gray arrows between the two depict how the IDV and the IDP can work synergistically to allow users to

make informed decisions for each step of the IDP, with individual IDP steps providing results for the visualizations in the IDV,

individual IDV steps allowing for the input of new or adjusted parameters and adjusted results and inputs for the subsequent

IDP step. Please click here to view a larger version of this figure.

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 13 of 22

Figure 2: Example of results from running every step of the IDP consecutively without using the IDV between steps.

(A) A screenshot of the terminal output from running every IDP step consecutively. The IDP ran to completion, but zero

networks were found during the Network Finding step. (B) Node Finding results directory node_finding_20210705183301

(Supplemental File 13) loaded into the IDV. All the genes in the gene list table were selected (red arrow) to show their

respective expression profiles in the line graph and to generate an annotation table. The annotation table was filled

in to reflect how the genes are labeled in the original annotation file (green arrow). (C) Edge Finding results directory

edge_finding_20210705183301 (Supplemental File 13) loaded into the IDV. (D) Network Finding results directory

network_finding_20210705183301 (Supplemental File 13) loaded into the IDV. The Network Finding page shows no results,

suggesting either reparameterization of the Network Finding step or reevaluating the Node or Edge Finding step is needed.

The IDP documentation contains troubleshooting steps for helping the user determine what they could try next. Please click

here to view a larger version of this figure.

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 14 of 22

Figure 3: A yeast cell-cycle GRN model. A set of known yeast cell-cycle regulators were selected from SGD and known

regulatory relationships between genes were extracted from Yeastract. Please click here to view a larger version of this

figure.

Figure 4: Example of IDP Node Finding results in the IDV. Loaded into the IDV is the Node Finding results directory

node_finding_20210705183301 (Supplemental File 13). The adjusted results after inspecting curated online yeast

databases. The gene list table was extended (yellow arrow) to find the remaining gene in the GRN model of Figure 3 and

genes were deselected to remove genes not found in the same GRN model (red arrow). The annotation table was filled in

based on evidence of regulation for each gene found on Yeastract (green arrow). The new gene list and annotation file were

downloaded by selecting their respective download buttons (blue arrows). Please click here to view a larger version of this

figure.

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 15 of 22

Figure 5: Example of IDP Edge Finding results in the IDV. Loaded into the IDV is the Edge Finding results directory

edge_finding_20210701100152 (Supplemental File 13). (A) The initial result as produced by the IDP. The Network

dropdown option From Seed was selected (red arrow) to view the seed network produced by the IDP based on the

arguments in the configuration file used (Supplemental File 7). The selected genes in the edge table are the edges used

in the seed network. (B) The adjusted results after inspecting the seed network for edges that do not contain experimental

evidence. The Network dropdown option From Selection was selected (red arrow). Edges were selected/deselected

from the edge table (green arrow). The seed network, edge list, and node list files were downloaded by clicking their

respective buttons (yellow arrows). The edge table shown is for the last time series data as listed in the configuration file

two_wts_EdgeFinding_config.txt (Supplemental File 7). It is important when selecting edges for the seed network or edge

list based on LEM results to look at the last time series data listed in the configuration file as this output incorporates all

preceding datafiles in its inference of regulatory relationships between nodes. Please click here to view a larger version of

this figure.

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 16 of 22

Figure 6: Example of IDP Network Finding results in the IDV from using the IDP configuration file

two_wts_NetFind_rd1_config.txt (Supplemental File 11). (A) The query Stable Full Cycle was selected (red arrow) to

display the respective data on the y-axis in the scatter plot. Blue dots in the scatter plot represent selected points using the

Box Select function for the scatter plot. The dotted selection box was illustrated to show what the box selection looks like. (B)

The min and max integers for the y-axis and x-axis were manually entered to selected networks within these bounds (green

arrow). After each selection, the Get Edge Prevalence from Selected Networks button (yellow arrows) was clicked and

the Edge Prevalence Table and Selected DSGRN Predicted Networks areas were generated. In the Network Index, up and

down arrows can be clicked to browse the selected networks (blue arrows). Please click here to view a larger version of this

figure.

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 17 of 22

Figure 7: Example of IDP Network Finding results in the IDV from using IDP configuration file

two_wts_NetFind_rd2_config.txt (Supplemental File 12). (A-C) The selection of networks was performed by entering

values into the min and max input boxes (red arrows). The Get Edge Prevalence from Selected Networks button was

clicked to generate the Edge Prevalence Table and Selected DSGRN Predicted Networks areas. (D) Edges of interest

were selected in the edge_list table (yellow arrow) and the Submit button (green arrow) was clicked to compute similarity

scores to plot in the scatter plot against the query selected (blue arrow). The Box Select function was used to select a set

of networks (purple arrow) to generate the Edge Prevalence Table and Selected DSGRN Predicted Networks areas. The

Network Index was increased to 2 (orange arrow) to view the second network in the selection. Please click here to view a

larger version of this figure.

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 18 of 22

Term Pipeline Step Definition

de Lichtenburg by

JTK-CYCLE (DLxJTK)

Node Finding A single quantitative measure of both periodicity and regulation

strength used to rank genes. Combines previously published

periodicity metrics de Lichtenberg (DL) and JTK-CYCLE (JTK).

First Cycle Max

Expression

Node Finding The maximum gene expression during the first cycle of

periodic gene expression. Genes ordered by First Cycle Max

Expression will be ordered based on the time point from the

first cycle at which they reach their maximum gene expression.

The Local Edge

Machine (LEM)

Edge Finding A Bayesian network inference method which ranks potential

models of gene interactions to identify the most likely regulator(s)

and modes of regulation (activation or repression) of a

given target gene using time series gene expression data.

Seed Network Network Finding An initial guess at a plausible network of global interactions by

selecting the top ranked LEM edges. The seed localizes a region

of network space that is highly oscillatory with a high probability

of showing consistency with the provided time series data.

Dynamic Signatures

Generated by

Regulatory

Networks (DSGRN)

Network Finding A software package for comprehensively computing the variety

of long-term dynamical behaviors that a network can exhibit.

Edge Prevalence Network Finding The percentage of top scoring networks from the network

finding step that include the edge in question. The score

permits a ranking of edges that have a nonzero prevalence.

Table 1: Definition of Inherent Dynamics Pipeline and Inherent Dynamics Visualizer terms.

Supplemental File 1: Time series gene expression data

(Replicate 1) taken from Orlando, 200813. Please click here

to download this File.

Supplemental File 2: Time series gene expression data

(Replicate 2) taken from Orlando, 200813. Please click here

to download this File.

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 19 of 22

Supplemental File 3: Annotation file containing all genes

found in Supplemental File 1 and Supplemental File 2.

Please click here to download this File.

Supplemental File 4: Fully parameterized Inherent

Dynamics Pipeline configuration file. Please click here to

download this File.

Supplemental File 5: Gene list file downloaded from the

Node Finding page of the Inherent Dynamics Visualizer.

Please click here to download this File.

Supplemental File 6: Annotation file downloaded from the

Node Finding page of the Inherent Dynamics Visualizer.

Please click here to download this File.

Supplemental File 7: Inherent Dynamics Pipeline

configuration file parameterized for just the Edge Finding

step. Please click here to download this File.

Supplemental File 8: Seed network file downloaded

from the Edge Finding page of the Inherent Dynamics

Visualizer. Please click here to download this File.

Supplemental File 9: Edge list file downloaded from the

Edge Finding page of the Inherent Dynamics Visualizer.

Please click here to download this File.

Supplemental File 10: Node list file downloaded from the

Edge Finding page of the Inherent Dynamics Visualizer.

Please click here to download this File.

Supplemental File 11: Inherent Dynamics Pipeline

configuration file parameterized for just the Network

Finding step. Please click here to download this File.

Supplemental File 12: Updated Inherent Dynamics

Pipeline configuration file (Supplemental File 11)

parameterized for just the Network Finding step. Please

click here to download this File.

Supplemental File 13: Directory containing the results

from the Representative Results section. Please click here

to download this File.

Discussion

The inference of GRNs is an important challenge in

systems biology. The IDP generates model GRNs from gene

expression data using a sequence of tools that utilize the data

in increasingly complex ways. Each step requires decisions

about how to process the data and what elements (genes,

functional interactions) will be passed to the next layer of

the IDP. The impacts of these decisions on IDP results are

not as obvious. To help in this regard, the IDV provides

useful interactive visualizations of the outputs from individual

steps of the GRN inference tools within the IDP. The IDV

streamlines and facilitates the process of evaluating results

from these computational inference methods to speed up

experimentation and inform analysis choices, which in turn

will allow for the accelerated production of high-confidence

network models and hypotheses. The IDV also implements

features that expand on the functionality of the IDP, including

filtering edges by LEM ODE parameter choices, binning of

genes by their expression time, and clustering networks

based on similarity to a motif or network. Importantly, the

IDV allows for manual interventions between each IDP step,

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 20 of 22

which allows the user to easily incorporate human knowledge

and prior information from the literature in ways that cannot

be easily automated. A naive run of the IDP will not natively

incorporate this information, so the use of the IDV will increase

the confidence in the results whenever information specific

to the experiment is available. Overall, using the IDV in

conjunction with the IDP allows users to create network

hypotheses for biological processes with greater confidence,

even with little or no knowledge of the true GRN.

There are three critical steps in the IDV. The first is evaluating

IDP Node Finding results in the IDV. IDV's Node Finding page

can produce a new gene list and, if desired, a gene annotation

file. Curating a new gene list is a critical step as it greatly

reduces the potential network space by limiting which genes

are allowed to be modeled as GRN targets and/or regulators.

Additionally, as GRNs are mostly made up of transcription

factors, having gene annotations will greatly help in creating

coherent GRN models.

The next step is evaluating IDP Edge Finding results in the

IDV. Curating a new seed network is a critical step since it

localizes the region of network space that will be sampled in

the Network Finding step. However, knowing where to start

isn't always obvious, so it is recommended to use edges

that have some form of experimental evidence to provide

confidence that one is starting in a region of network space

that contains high confidence edges. The IDV's Edge Finding

page enables easy assembly of seed networks and generates

the associated DSGRN network specification file as well as

node and edge lists.

The last step is evaluating IDP Network Finding results

in the IDV. IDV's Network Finding page allows for easy

exploration of sampled networks and their associated scores

that estimate the capacity of the network to produce the

observed dynamics. While Node and Edge Finding will always

return results (if at least two genes are passed on from Node

Finding), Network Finding can return zero results. Therefore,

knowing whether adjustments in parameters are needed will

be more obvious in Network Finding than in Node and Edge

Finding. Such occurrences of few to no networks found could

be a result of constraints placed on what networks can

be analyzed. These constraints are: 1) whether or not the

networks are always strongly connected, 2) the minimum and

the maximum number of input edges to each node, 3) the

probabilities of adding and removing nodes and edges, and

4) the number of additions and removals of nodes and edges

allowed. If few or no model-admissible networks are found,

as in Figure 2, then referring to the IDP documentation is

recommended for guidance on reparameterization of any or

all steps of the IDP with subsequent evaluation of results in

the IDV.

A current limitation of this approach is that the Node Finding

page is mostly focused on oscillatory dynamics, such as

those seen in the transcriptional programs of the cell-cycle

and circadian clock. In particular, the IDP Node Finding

step is currently configured to search for genes that exhibit

oscillatory dynamics at a specified period. As the IDP expands

to include analyses that can quantify different types of

transcriptional dynamics, so too will the IDV be updated

to support visualization and interrogation of these other

behaviors. The size of networks searched for and analyzed

in the Network Finding step are currently limited to networks

of smaller size, e.g., around 10 genes. This is a necessity

as computations in the DSGRN scale occur combinatorially.

Another limitation is that exploring model parameter space for

a selected network is not possible in the IDV. However, the

DSGRN network specification file for a given network can be

downloaded and the dynamics associated with each model

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 21 of 22

parameter can be visualized on the DSGRN Visualization

website (https://sites.math.rutgers.edu/~gameiro/dsgrn_viz/).

Lastly, the IDV has been tested using Linux (Ubuntu) and iOS

(Big Sur) systems. The IDV has been tested on Windows 10

using the Windows Subsystem for Linux (WSL), which allows

Windows 10 users to run Linux and the IDV without the need

for a different computer, a virtual machine, or a dual-boot

setup. IDV does not currently run on native Windows.

Studying GRNs is difficult due to their inherent complexity

and useful inference tools such as the IDP can be difficult to

understand and deploy with confidence. The IDV provides a

method to reduce the complexity of studying GRNs inferred

using the IDP while facilitating the inclusion of additional

information beyond gene expression dynamics. Using the IDV

in conjunction with the IDP as described here will empower

researchers to develop and analyze functional models of well-

studied systems, such as the human cell-cycle. Furthermore,

these tools will generate testable hypotheses for less

understood processes, such as the malaria intra-erythrocytic

development cycle, which is suspected to be controlled by a

GRN24 but for which a model is yet to be proposed.

Disclosures

The authors have nothing to disclose.

Acknowledgments

This work was funded by the NIH grant R01 GM126555-01

and NSF grant DMS-1839299.

References

1. Karlebach, G., Shamir, R. Modelling and analysis of

gene regulatory networks. Nature Reviews Molecular

Cell Biology. 9 (10), 770-780 (2008).

2. Aijö, T., Lähdesmäki, H.Learning gene regulatory

networks from gene expression measurements using

non-parametric molecular kinetics. Bioinformatics. 25

(22), 2937-2944 (2009).

3. Huynh-Thu, V. A., Sanguinetti, G. Combining tree-

based and dynamical systems for the inference of gene

regulatory networks. Bioinformatics. 31 (10), 1614-1622

(2015).

4. Oates, C. J. et al. Causal network inference using

biochemical kinetics. Bioinformatics. 30 (17), i468-i474

(2014).

5. Marbach, D. et al. Wisdom of crowds for robust gene

network inference. Nature Methods. 9 (8), 796-804

(2012).

6. inherent_dynamics_pipeline. https://gitlab.com/

biochron/inherent_dynamics_pipeline. (2021).

7. Motta, F. C., Moseley, R. C., Cummins, B., Deckard, A.,

Haase, S. B. Conservation of dynamic characteristics of

transcriptional regulatory elements in periodic biological

processes. bioRxiv. (2020).

8. LEMpy. https://gitlab.com/biochron/lempy. (2021).

9. McGoff, K.A. et al. The local edge machine: inference

of dynamic models of gene regulation. Genome Biology.

17, 214 (2016).

10. Cummins, B., Gedeon, T., Harker, S., Mischaikow, K.

Model rejection and parameter reduction via time series.

SIAM Journal on Applied Dynamical Systems. 17 (2),

1589-1616 (2018).

11. Cummins, B., Gedeon, T., Harker, S., Mischaikow,

K. Database of Dynamic Signatures Generated

by Regulatory Networks (DSGRN). Lecture Notes

in Computer Science. (including Subseries Lecture

Copyright © 2021 JoVE Journal of Visualized Experiments jove.com December 2021 • 178 • e63084 • Page 22 of 22

Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics). 10545 LNBI, 300-308 (2017).

12. Cummins, B., Gedeon, T., Harker, S., Mischaikow, K.

DSGRN: Examining the dynamics of families of logical

models. Frontiers in Physiology. 9, 549 (2018).

13. DSGRN. https://github.com/marciogameiro/

DSGRN. (2021).

14. dsgrn_net_gen. https://github.com/breecummins/

dsgrn_net_gen. (2021).

15. dsgrn_net_query. https://github.com/breecummins/

dsgrn_net_query. (2021).

16. Orlando, D. A. et al. Global control of cell-cycle

transcription by coupled CDK and network oscillators.

Nature. 453 (7197), 944-947 (2008).

17. Monteiro, P. T. et al. YEASTRACT+: a portal for cross-

species comparative genomics of transcription regulation

in yeasts. Nucleic Acids Research. 48 (D1), D642-D649

(2020).

18. Bruin, R. A. M. de et al. Constraining G1-specific

transcription to late G1 phase: The MBF-associated

corepressor Nrm1 acts via negative feedback. Molecular

Cell. 23 (4), 483-496 (2006).

19. Horak, C. E. et al. Complex transcriptional circuitry at the

G1/S transition in Saccharomyces cerevisiae. Genes &

Development. 16 (23), 3017-3033 (2002).

20. Cherry, J. M. et al. Saccharomyces genome database:

The genomics resource of budding yeast. Nucleic Acids

Research. 40 (Database issue), D700-D705 (2012).

21. Zhu, G. et al. Two yeast forkhead genes regulate the

cell cycle and pseudohyphal growth. Nature. 406 (6791),

90-94 (2000).

22. Loy, C. J., Lydall, D., Surana, U. NDD1, a high-dosage

suppressor of cdc28-1N, is essential for expression of a

subset of late-S-phase-specific genes in saccharomyces

cerevisiae. Molecular and Cellular Biology. 19 (5),

3312-3327 (1999).

23. Cho, C. Y., Kelliher, C. M., Hasse, S. B. The cell-cycle

transcriptional network generates and transmits a pulse

of transcription once each cell cycle. Cell Cycle. 18 (4),

363-378 (2019).

24. Smith, L. M. et al. An intrinsic oscillator drives the

blood stage cycle of the malaria parasite Plasmodium

falciparum. Science. 368 (6492), 754-759 (2020).

