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Introduction

Developing gene regulatory network models is a major challenge in systems

biology. Several computational tools and pipelines have been developed to tackle
this challenge, including the newly developed Inherent Dynamics Pipeline. The
Inherent Dynamics Pipeline consists of several previously published tools that work
synergistically and are connected in a linear fashion, where the output of one tool
is then used as input for the following tool. As with most computational techniques,
each step of the Inherent Dynamics Pipeline requires the user to make choices
about parameters that don't have a precise biological definition. These choices
can substantially impact gene regulatory network models produced by the analysis.
For this reason, the ability to visualize and explore the consequences of various
parameter choices at each step can help increase confidence in the choices and the
results.The Inherent Dynamics Visualizer is a comprehensive visualization package
that streamlines the process of evaluating parameter choices through an interactive
interface within a web browser. The user can separately examine the output of each
step of the pipeline, make intuitive changes based on visual information, and benefit
from the automatic production of necessary input files for the Inherent Dynamics
Pipeline. The Inherent Dynamics Visualizer provides an unparalleled level of access
to a highly intricate tool for the discovery of gene regulatory networks from time series

transcriptomic data.

Many important biological processes, such as cell gene regulatory network (GRN). These GRNs produce
differentiation and environmental response, are governed the transcriptional dynamics needed for activating and

by sets of genes that interact with each other in a maintaining the phenotype they control, so identifying the
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components and topological structure of the GRN is key to
understanding many biological processes and functions. A
GRN may be modeled as a set of interacting genes and/or
gene products described by a network whose nodes are the
genes and whose edges describe the direction and form of
interaction (e.g., activation/repression of transcription, post-
translational modification, etc.)1. Interactions can then be
expressed as parameterized mathematical models describing
the impact a regulating gene has on the production of its

target(s)2’3’4

. Inference of a GRN model requires both an
inference of the structure of the interaction network and
estimation of the underlying interaction parameters. A variety
of computational inference methods have been developed
that ingest time series gene expression data and output
GRN models®. Recently, a new GRN inference method was
developed, called the Inherent Dynamics Pipeline (IDP), that
utilizes time series gene expression data to produce GRN
models with labeled regulator-target interactions that are
capable of producing dynamics that match the observed
dynamics in the gene expression data®. The IDP is a
suite of tools connected linearly into a pipeline and can
be broken down into three steps: a Node Finding step
that ranks genes based on gene expression characteristics
known or suspected to be related to the function of the
GRN’-8 an Edge Finding step that ranks pairwise regulatory
relationships® 2, and a Network Finding step that produces
GRN models that are capable of producing the observed

dynamics'0:11,12,13,14,15

Like most computational methods, the IDP requires a set
of user-specified arguments that dictate how the input
data is analyzed, and different sets of arguments can
produce different results on the same data. For example,
several methods, including the IDP, contain arguments

that apply some threshold on the data, and increasing/

decreasing this threshold between successive runs of the
particular method can result in dissimilar results between
runs (see Supplement Note 10: Network inference methods
of5). Understanding how each argument may impact the
analysis and subsequent results is important for achieving
high confidence in the results. Unlike most GRN inference
methods, the IDP consists of multiple computational tools,
each having its own set of arguments that a user must
specify and each having its own results. While the IDP
provides extensive documentation on how to parameterize
each tool, the interdependency of each tool on the output of
the previous step makes parameterizing the entire pipeline
without intermediate analyses challenging. For instance,
arguments in the Edge and Network Finding steps are likely to
be informed by prior biological knowledge, and so will depend
on the dataset and/or organism. To interrogate intermediate
results, a basic understanding of programming, as well as a
deep understanding of all the result files and their contents

from the IDP, would be needed.

The Inherent Dynamics Visualizer (IDV) is an interactive
visualization package that runs in a user's browser window
and provides a way for users of the IDP to assess the impact
of their argument choices on results from any step in the
IDP. The IDV navigates a complicated directory structure
produced by the IDP and gathers the necessary data for
each step and presents the data in intuitive and interactive
figures and tables for the user to explore. After exploring these
interactive displays, the user can produce new data from an
IDP step that can be based on more informed decisions.
These new data can then be immediately used in the next
respective step of the IDP. Additionally, exploration of the
data can help determine whether an IDP step should be rerun
with adjusted parameters. The IDV can enhance the use of

the IDP, as well as make the use of the IDP more intuitive
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and approachable, as demonstrated by investigating the core
oscillator GRN of the yeast cell-cycle. The following protocol
includes IDP results from a fully parameterized IDP run versus
an approach that incorporates the IDV after runs of each IDP

step, i.e., Node, Edge, and Network Finding.

Protocol

1. Install the IDP and IDV

NOTE: This section assumes that docker, conda, pip, and git

are installed already (Table of materials).

1. In a terminal, enter the command: git clone https:/

gitlab.com/biochron/inherent_dynamics_pipeline.git.
2. Follow the install instructions in the IDP's README file.

3. In a terminal, enter the command: git clone https:/
gitlab.com/bertfordley/inherent_dynamics_visualizer.git.
NOTE: Cloning of the IDV should happen outside of the

IDP's top-level directory.

4. Follow the install instructions in the IDV's README file.

2. Node finding

1. Create a new IDP configuration file that parametrizes the
Node Finding step.
NOTE: All quotation marks in the following steps should
not be typed out. The quotation marks are only used here
as a delimiter between the protocol text and what is to

be typed out.
1. Addthe main IDP arguments to the configuration file.

2. Open a new text file in a text editor and type

10.

For "data_file", after the equal to sign, type the path
to and name of the respective time series file and
type a comma after the name. Separate each data
by a comma, if more than one time series data
set is being used. See Supplemental File 1 and
Supplemental File 2 for an example of time series

gene expression files.

Type the path to and name of the annotation
file for "annotation_file", after the equal to sign.
See Supplemental File 3 for an example of an

annotation file.

For"output_file", after the equal to sign, type the path

to and name of the folder where results will be saved.

After the equal to sign, for "num_proc", type the

number of processes the IDP should use.

Add Node Finding arguments to the configuration

file.

In the same text file as in step 2.1.1, type in the
order presented "[dIxjtk_arguments]", "periods =",
and "dIxjtk_cutoff =" on individual lines. Place these

after the main arguments.

For "periods", after the equal to sign, if one-time
series data set is being used, type each period
length separated by commas. For more than one
time series data set, type each set of period lengths
as before but place square brackets around each set

and place a comma between the sets.

After the equal to sign, for "dIxjtk_cutoff", type an
integer specifying the maximum number of genes to
retain in the gene_list_file output by de Lichtenberg

by JTK_CYCLE (DLxJTK) (Table 1).

"data_file =", "annotation_file =", "output dir =",
"num_proc =", and "IDVconnection = True" on
individual lines.
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NOTE: It is highly recommended to review the
dixjtk_arguments sections in the IDP README
to get a better understanding of each argument.
See Supplemental File 4 for an example of a
configuration file with the Node Finding arguments

specified.

In the terminal, move into the IDP directory, named

inherent_dynamics_pipeline.

In the terminal, enter the command: conda activate

dat2net

Run the IDP using the configuration file created in step
2.1 by running this command in the terminal, where
<config file name> is the name of the file: python src/

dat2net.py <config file name>

In the terminal, move to the directory named
inherent_dynamics_visualizer and enter the command: ./
viz_results.sh <results_directory>

NOTE: <results_directory> will point to the directory used

as the output directory for the IDP.
In aweb browser, enter http://localhost:8050/ as the URL.

With the IDV now open in the browser, click on the Node
Finding tab and select the node finding folder of interest

from the dropdown menu.

Manually curate a new gene list from the gene list table

in the IDV to be used for subsequent IDP steps.

1. To extend or shorten the gene list table, click on
the up or down arrows or manually enter in an
integer between 1 and 50 in the box next to Gene

expression of DLxJTK-ranked genes. Top:.

2. Inthe gene list table, click on the box beside a gene
to view its gene expression profile in a line graph.

Multiple genes can be added.

3. Optionally specify the number of equally sized bins
to compute and order genes by the time interval
containing their peak expression, by inputting an
integer into the input box above the gene list table
labeled Input integer to divide the first cycle into
bins:.

NOTE: This option is specific to oscillatory dynamics
and might not be applicable to other types of

dynamics.

4. Select a heatmap viewing preference by clicking on
an option under Order Genes By: First Cycle Max
Expression (Table 1) which orders genes based
on the time of the gene-expression peak in the first
cycle.

NOTE: DLxJTK Rank orders genes based on the
periodicity ranking from the DLxJTK algorithm of the
IDP.

5. Click on the Download Gene List button to
download the gene list into the file format needed for
the Edge Finding step. See Supplemental File 5 for

an example of a gene list file.

In the Editable Gene Annotation Table, label a gene as
a target, a regulator, or both in the annotation file for the
Edge Finding step in a new Edge Finding run. If a gene
is a regulator, label the gene as an activator, repressor,

or both.

1. Tolabel a gene as an activator, click on the cell in the
tf_act column and change the value to 1. To label a
gene as a repressor, change the value in the tf_rep
column to 1. A gene will be allowed to act as both an
activator and a repressor in the Edge Finding step
by setting the values in both the tf_act and tf_rep

columns to 1.
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2.

To label a gene as a target, click on the cell in the

target column and change the value to 1.

10. Click on the Download Annot. File button to download

the annotation file into the file format needed for the Edge

Finding step.

3. Edge finding

1. Create a new IDP configuration file that parametrizes the

Edge Finding step.

1.

Add the main IDP arguments to the configuration file.
Open a new text file in a text editor and repeat step

211,

Add Edge Finding arguments to the configuration
file.

In the same text file as in step 3.1.1, type in the order
presented "[lempy_arguments]”, "gene_list_file =",
"[netgen_arguments]", "edge_score_column =",

"edge_score_thresho =", "num_edges_for_list =",
"seed_threshold =", and "num_edges for seed ="
on individual lines. These should go below the main

arguments.

For "gene_list_file", after the equal to sign, enter the
path to and name of the gene list file generated in

step 2.8.5.

For "edge_score_column", after the equal to sign,
enter either "pld" or "norm_loss" to specify which
data frame column from the lempy output is used to

filter the edges.

Select either "edge_score_threshold" or
"num_edges for_list", and delete the other. If
"edge_score_threshold" was selected, enter a

number between 0 and 1. This number will be used

to filter edges based on the column specified in step

3.1.5.

1. If "num_edges_for_list" was selected, enter a
value equal to or less than the number of
possible edges. This number will be used to
filter the edges based on how they are ranked
in the column specified in step 3.1.5. The edges
left over will be used to build networks in

Network Finding.

7. Select either "seed_threshold" or
"num_edges_for_seed" and delete the other. If
"seed_threshold" was selected, enter a number
between 0 and 1. This number will be used to filter

edges based on the column specified in step 3.1.5.

1. If "num_edges_for_seed" was selected, enter
a value equal to or less than the number of
possible edges. This number will be used to
filter the edges based on how they are ranked
in the column specified in step 3.1.5. The edges
left over will be used to build the seed network
(Table 1) used in Network Finding.

NOTE: It is highly recommended to review
the lempy_arguments and netgen_arguments
sections in the IDP README to get a
better understanding of each argument. See
Supplemental File 7 for an example of
a configuration file with the Edge finding

arguments specified.
Repeat steps 2.2 and 2.3.

Run the IDP using the configuration file created in step
3.1 by running this command in the terminal, where
<config file name> is the name of the file: python src/

dat2net.py <config file name>
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If the IDV is still running, stop it by pressing Control C in
the terminal window to stop the program. Repeat steps

2.5 and 2.6.

With the IDV open in the browser, click on the Edge
Finding tab and select the edge finding folder of interest
from the drop-down menu.

NOTE: If multiple datasets are used in Edge Finding, then
make sure to select the last dataset that was used in
the Local Edge Machine (LEM) analysis (Table 1). It is
important when selecting edges for the seed network or
edge list based on LEM results to look at the last time
series data listed in the configuration file as this output
incorporates all preceding datafiles in its inference of

regulatory relationships between nodes.

To extend or shorten the edge table, manually enter an

integer in the input box under Number of Edges:.

Optionally filter edges on the LEM ODE parameters. Click
and drag to move either the left side or the right side of
each parameter's slider to remove edges from the edge
table that have parameters outside of their new allowed

parameter bounds.

Optionally create a new seed network if a different seed
network is wanted than the one proposed by the IDP. See
Supplemental File 8 for an example of a seed network

file.

1. Select either From Seed to select the seed network
or From Selection from the dropdown menu under

Network:.

2. Deselect/select edges from the edge table by
clicking the corresponding checkboxes adjacent to
each edge to remove/add edges from the seed

network.

10.

Click on the Download DSGRN NetSpec button to
download the seed network in the Dynamic Signatures
Generated by Regulatory Networks (DSGRN) (Table 1)

network specification format.

Select additional nodes and edges to be used in the

Network Finding step.

1. Select edges from the edge table by clicking the
corresponding checkboxes to include in the edge list

file used in Network Finding.

2. Click on Download Node and Edge Lists to
download the node list and edge list files in the
format required for their use in Network Finding. See
Supplemental File 9 and Supplemental File 10 for
examples of edge and node list files, respectively.
NOTE: The node list must contain all the nodes in
the edge list file, so the IDV automatically creates
the node list file based on the selected edges.
Two options are available for viewing the edges
in Edge Finding. The LEM Summary Table option
presents the edges as a ranked list of the top 25
edges. Top-Line LEM Table presents the edges in
a concatenated list of the top three ranked edges
for each possible regulator. The number of edges
viewed for each option can be adjusted by the user
by changing the number in the Number of Edges

input box.

4. Network finding

Create a new IDP configuration file that parametrizes the

Network Finding step.

1. Addthe main IDP arguments to the configuration file.
Open a new text file in a text editor and repeat step

211,
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Add Network Finding arguments to the configuration

file.

In the same text file as in step 4.1.1, type

in the order presented "[netper arguments]",

"edge_list_file =", "node_list_file =", "seed_net_file
=", "range_operations =", "numneighbors =",
"maxparams =", "[[probabilities]]", "addNode =",

"addEdge =", "removeNode =", and "removeEdge ="

on individual lines, below the main arguments.

For "seed_net_file", "edge_list_file" and
"node_list_file", after the equal sign, enter the path
to and name of the seed network file and the edge

and node list files generated in steps 3.9 and 3.10.2.

After the equal to sign, for "range_operations", type
two numbers separated by a comma. The first and
second numbers are the minimum and the maximum
number of addition or removal of nodes or edges per

network made, respectively.

For "numneighbors", after the equal to sign, enter a
number that represents how many networks to find

in Network Finding.

For "maxparams", after the equal to sign, enter a
number that represents the maximum number of

DSGRN parameters to allow for a network.

Enter values between 0 and 1 for each of these
arguments: "addNode", "addEdge", "removeNode",
and "removeEdge", after the equal to sign. The
numbers must sum to 1.

NOTE: It is highly recommended to review
the netper_arguments and netquery arguments
sections in the IDP README to get a

better understanding of each argument. See

Supplemental File 11 and Supplemental File 12

for examples of a configuration file with the Network

Finding arguments specified.
Repeat steps 2.2 and 2.3.

Run the IDP using the configuration file created in step
4.1 by running this command in the terminal, where
<config file name> is the name of the file: python src/

dat2net.py <config file name>

If the IDV is still running, stop it by pressing Control C in
the terminal window to stop the program. Repeat steps

2.5and 2.6.

With the IDV open in the browser, click on the Network
Finding tab and select the network finding folder of

interest.

Select a network or set of networks to generate an edge
prevalence table (Table 1) and to view the networks

along with their respective query results.

1. Two options are available for selecting networks:
Option 1 - Input lower and upper bounds on query
results by inputting minimum and maximum values
in the input boxes corresponding to the x-axis and
y-axis of the plot. Option 2 - Click and drag over
the scatterplot to draw a box around the networks
to be included. After selection or input bounds are
entered, press the Get Edge Prevalence From
Selected Networks button.

NOTE: If more than one DSGRN query was
specified, use the radio buttons labeled with the
query type to switch between each query's results.
The same applies if more than one epsilon (noise

level) was specified.

Click the arrows beneath the edge prevalence table to
move to the next page of the table. Press Download

Table to download the edge prevalence table.
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8. Input aninteger in the Network Index input box to display
a single network from the selection made in step 4.6.
Click on Download DSGRN NetSpec to download the
displayed network in the DSGRN network specification

format.

9. Search networks for similarity to a specified motif or

network of interest.

1. Use the checkboxes corresponding to each edge to
select edges to be included in the network or motif
used for the similarity analysis. Click on Submit to
create the similarity scatterplot for the selected motif
or network.

NOTE: Use the arrows in the edge list to sort
alphabetically and the arrows beneath the table to

move to the next page of the table.

2. Click and drag over the scatterplot to draw a box
around the networks to be included to select a
network or set of networks to generate an edge
prevalence table and to view the networks along with
their respective query results.

NOTE: If more than one DSGRN query was
specified, use the radio buttons labeled with the
query type to switch between each query's results.

The same applies if more than one epsilon (noise

level) was specified.

3. Repeat steps 4.7 and 4.8 to download the edge
prevalence table and the displayed network for the

similarity analysis, respectively.

Representative Results

The steps described textually above and graphically in Figure
1 were applied to the core oscillating GRN of the yeast cell-

cycle to see if it is possible to discover functional GRN models

that are capable of producing the dynamics observed in time
series gene expression data collected in a yeast cell-cycle
study16. To illustrate how the IDV can clarify and improve
IDP output, the results, after performing this analysis in two
ways, were compared: 1) running all steps of the IDP in one
pass without the IDV and 2) stepping through the IDP with the
aid of the IDV, which allows the adjustment of intermediate
results both by incorporating prior biological knowledge and
by making refined choices based on IDP outputs. The well-
studied yeast cell-cycle GRN used as an example has many
of its regulatory relationships experimentally verified. If a
different and/or less annotated organism or biological process
is being studied, the choices on how intermediate results
or parameters are adjusted might be different. To illustrate
one type of query that can be used to assess networks, the
robustness of each network was measured to support stable
oscillations and match the observed transcriptional dynamics

of their nodes across model parameters.

Gene expression time series data of two replicate series
were taken from Orlando 2008'® and preprocessed to
remove any gene expression associated with the cell-cycle
synchronization method applied in the original experiment
(Supplemental File 1 and Supplemental File 2). An
annotation file was created containing all the genes in the
time series data that are supported by both DNA binding

t17 and thus could

and expression evidence found in Yeastrac
function as a regulator in a GRN. TOS4, PLM2, and NRM1
were also included as regulators, even though they were not
found in Yeastract to have both types of evidence, because
they are believed to be important for the yeast core GRN

based on evidence in the literature'®: 19 (

Supplemental File
3). All regulators were labeled as both an activator and

repressor as well as targets.
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The IDP was first parameterized to run through all steps of
the IDP, that is Node, Edge, and Network Finding. A set of
arguments was selected that appeared appropriate based
on the current understanding of the yeast cell-cycle GRN,
a small set of genes participating in a strongly connected
network (Supplemental File 4). This understanding mostly
influenced the Node and Edge Finding choices. The
probabilities parameters in Network Finding were based
on the assumption that only true genes and regulatory
interactions would be passed onto Network Finding. This
fully parameterized run of the IDP produced results for Node
and Edge Finding (Figure 2B,C), yet in Network Finding no
model-admissible networks were discovered (Figure 2A,D).
Model admissibility is explained in the code documentation
of the python module dsgrn_net_gen14, a dependency of
the IDP. Briefly, networks that contain self-repressing edges
or have too many inputs or outputs at a single node are
not queryable by the DSGRN software (Table 1). The IDP
gives many reasons why model-admissible networks may
not be found and describes troubleshooting steps to resolve
the issue(s). Essentially, this involves changing parameters
and/or input files and rerunning the respective IDP step, and
examining results. The IDV was used to make this process

less tedious and time-consuming.

The Node Finding results were loaded into the IDV to
examine the genes being passed to the Edge Finding step
of the IDP. The nodes given by IDP are the top N genes
as ranked by DLxJTK (Table 1), N being specified by the
user, however, this gene list may not be appropriate for
the goal of the analysis. Without prior biological knowledge,
automatic selection of nodes using only DLxJTK scores
returned a gene with limited evidence of a role in the yeast
cell-cycle (RME1), while a few known cell-cycle transcriptional

regulators were not highly ranked (Figure 2B). Yeastract

experimental evidence was used to select from among
the highest-ranking genes by DLxJTK those with cell-cycle
annotation. These genes are SWI4, YOX1, YHP1, HCM1,
FKH2, NDD1, and SWI5. Their known regulatory relationships
can be seen in Figure 3. FKH2 does not appear in the top ten
genes (dIxjtk_cutoff was set to ten in Supplemental File 4) as
ranked by DLxJTK, so the gene list was extended using the
IDV until FKH2 was found (Figure 4). Several of the additional
genes in the extended gene list are known core genes and
would have been missed without investigating the Node
Finding results. While more known core genes have been
found by extending the gene list down the DLxJTK ranked list,
the focus was kept on the genes of interest. Therefore, some
high-ranking genes were deselected, resulting in a gene list
(Supplemental File 5) containing seven genes (Figure 4). A
new annotation file was created (Supplemental File 6) based
on these seven genes, each gene was labeled as a target,
and the regulator type was specified using Yeastract. The new
gene list and annotation file were downloaded for subsequent
use in the next IDP step, Edge Finding. Without the IDV, the
procedure of adding and removing genes from the gene list

and annotation file would require modest coding skills.

A new IDP configuration file was parameterized for just
the Edge Finding step (Supplemental File 7), with the
new gene list and annotation file. After completion of the
IDP with the new configuration file, results were loaded
into the IDV (Figure 5A). As the Network Finding step
searches stochastically around the network space of the
seed network supplied to it, providing a good seed network
can be important. A good seed network can be thought of
as one that contains true edges. With the IDV and using
online databases such as Yeastract and the Saccharomyces
Genome Database (SGD)20, the seed network can be viewed

and adjusted using the regulatory relationships from LEM
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(Table 1) that have experimental evidence. As an example,
the edge YHP1 = tf_act(HCM1) was deselected because
there is no documented evidence of this relationship (Figure
5B) in Yeastract. The edge SWI5 = tf_act(FKH2) was added
as there is documented evidence of this relationship21 . Once
the seed network (Table 1) was satisfactory, the DSGRN
network specification file for the network was downloaded

(Supplemental File 8).

Without the IDV, there is a higher chance of edges for
which there is no experimental evidence being used to
construct the seed network. As can be seen in Figure 2C,
the seed network generated in the Edge Finding step from
running the IDP nonstop through each step contains an edge,
SWIi4 = tf_rep(NDD1), that is not supported by experimental
evidence in Yeastract, likely because NDD1 is known to be a
transcriptional activator?2. This information was not encoded
in the annotation file in the non-stop run, which allowed all

regulators to be both activators and repressors.

Using the IDV, a seed network was manually curated that
is a subnetwork of Figure 3, and the remaining four edges
were placed in the edge list used for sampling network
space (YHP1 = tf_act(SWI4), YOX1 = tf_act(SWI4), SWI4 =
tf_rep(YOX1), SWI5 = tf_act(NDD1)). Selecting edges based
on prior biological knowledge can also be used to build the
edge list; however, in this case, the top 20 edges from the
LEM Summary Table view were selected (Supplemental
File 9). The node list file is created from the selected edges
automatically (Supplemental File 10). The ODE parameters
from LEM can also be used to filter edges if one believes
the inferred parameters in the ODE model are not biologically

realistic, but this information was not used here.

Next, a new IDP configuration file was parameterized for

the Network Finding step using the three new files. As

the seed network was created with edges well-supported
by experimental evidence, the inclusion of these edges
in all networks was desired. Thus, the Network Finding
probabilities were set to allow the addition but not the removal
of nodes and edges (Supplemental File 11). The Network
Finding parameter numneighbors was set to search for
2,000 networks. After running the IDP, 37 model-admissible
networks were found in the Network Finding step, as opposed
to the non-stop run that had zero. Loading the Network
Finding results into the IDV, 64% (24) of these 37 networks
had the capacity to stably oscillate (Figure 6A). Of these
24 networks, the best performers were two networks that
matched the data at 50% of their stably oscillating model

parameters (Figure 6B).

The Edge Prevalence Table (Table 1) tabulates the number
of times an edge occurs in a selected collection of networks,
giving an indication of its prevalence in high-performing
networks. Examining the Edge Prevalence Table produced
by selecting the previous two networks in the scatter plot
reveals that all the seed network edges are present in each
of the two networks, as expected, along with two non-seed
network edges (Figure 6B), SWI4 = f _act(SWI5) and HCM1
= tf_rep(YHP1). Neither of these two edges had evidence
supporting them in Yeastract. As such a small amount of
network space was explored so it is difficult to assess the
importance of edges and nodes in producing the observed

dynamics.

Only 37 model-admissible networks were found in Network
Finding even though the parameter numneighbors was set
to 2,000, which suggests that the network search may have
been unduly limited. As described in the documentation for
the dsgrn_net_gen python module in the IDP, the issue could

be related to the seed network, edge list, node list, Network
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Finding parameter choices, or some combination of these.
To investigate, the same seed network, edge list, and node
list as before were used, but the Network Finding parameters
were altered by adding the ability to remove edges during
network generation (Supplemental File 12). Loading the
new Network Finding results into the IDV shows that 612
networks were found in this step, with 67% (411) of these
networks having the capacity to stably oscillate (Figure 7A).
Interestingly, 13% (82) of the networks that were capable of
stable oscillatory dynamics were not capable of producing
dynamics similar to those seen in the data (Figure 7B). Of
the 411 networks, 30% (124) exhibited robust matches to
data (i.e., more than 50% of their stably oscillating model

parameters exhibited a data match) (Figure 7C).

The edge prevalence numbers generated by the second
round of Network Finding are now based on a much larger
selection of networks and can be more confidently used
in assessing the importance of a regulatory relationship
in a GRN. For instance, HCM1 = tf rep(YHP1) is still
represented highly in networks that produce robust dynamics,
suggesting that this relationship could be worth investigating
experimentally (Figure 7C). Further examination of the Edge
Prevalence Table (based on the 124 networks mentioned

above) revealed that the edges SWI4 = tf_rep(YOX1) and

YOX1 = tf_act(SWI4) are not highly ranked yet the edges
SWI4 = tf_rep(YHP1) and YHP1 = tf_act(SWI4) are highly
ranked (Figure 7C). Negative feedback is important for
producing oscillatory dynamic:s23 and both of these sets
of regulatory relationships provide this function in the GRN
in Figure 3. Finding if a network exists that contains all
four of these edges could provide some insight into why
these do not frequently exist together in the collection of
GRN models; however, clicking through individual networks
would be tedious. Instead, the Similarity Analysis portion of
the Network Finding page was used to search for networks
that may contain all four edges (Figure 7D). Examining
the scatter plot that displays how similar the 612 networks
are to a motif of these four edges versus the percentage
of the model parameter space that matches the observed
dynamics reveals that only 0.65% (4) of the 612 networks
contain all four of these edges (Figure 7D). This suggests
a testable hypothesis that only one of the two negative
feedback loops is needed for a network of this size to
produce the observed dynamics. This hypothesis can be
further investigated computationally by reparameterization of
IDP steps and a more exhaustive search of network space or
experimentally, such as gene knockouts. All results from this

analysis can be found in Supplemental File 13.
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Figure 1: IDP and IDV workflow overview. The bottom row depicts the three major steps of the IDP: Node, Edge, and
Network Finding. The top row depicts the major steps of the IDV and describes various ways a user can interact with the
results. The dark gray arrows between the two depict how the IDV and the IDP can work synergistically to allow users to
make informed decisions for each step of the IDP, with individual IDP steps providing results for the visualizations in the IDV,
individual IDV steps allowing for the input of new or adjusted parameters and adjusted results and inputs for the subsequent

IDP step. Please click here to view a larger version of this figure.
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Figure 2: Example of results from running every step of the IDP consecutively without using the IDV between steps.
(A) A screenshot of the terminal output from running every IDP step consecutively. The IDP ran to completion, but zero
networks were found during the Network Finding step. (B) Node Finding results directory node_finding_20210705183301
(Supplemental File 13) loaded into the IDV. All the genes in the gene list table were selected (red arrow) to show their
respective expression profiles in the line graph and to generate an annotation table. The annotation table was filled

in to reflect how the genes are labeled in the original annotation file (green arrow). (C) Edge Finding results directory
edge_finding_20210705183301 (Supplemental File 13) loaded into the IDV. (D) Network Finding results directory
network_finding_20210705183301 (Supplemental File 13) loaded into the IDV. The Network Finding page shows no results,
suggesting either reparameterization of the Network Finding step or reevaluating the Node or Edge Finding step is needed.
The IDP documentation contains troubleshooting steps for helping the user determine what they could try next. Please click

here to view a larger version of this figure.
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Figure 3: A yeast cell-cycle GRN model. A set of known yeast cell-cycle regulators were selected from SGD and known
regulatory relationships between genes were extracted from Yeastract. Please click here to view a larger version of this

figure.

Select the Nod: Ading non <2 be dbspiased

Figure 4: Example of IDP Node Finding results in the IDV. Loaded into the IDV is the Node Finding results directory
node_finding 20210705183301 (Supplemental File 13). The adjusted results after inspecting curated online yeast
databases. The gene list table was extended (yellow arrow) to find the remaining gene in the GRN model of Figure 3 and
genes were deselected to remove genes not found in the same GRN model (red arrow). The annotation table was filled in
based on evidence of regulation for each gene found on Yeastract (green arrow). The new gene list and annotation file were
downloaded by selecting their respective download buttons (blue arrows). Please click here to view a larger version of this

figure.
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Figure 5: Example of IDP Edge Finding results in the IDV. Loaded into the IDV is the Edge Finding results directory
edge_finding_20210701100152 (Supplemental File 13). (A) The initial result as produced by the IDP. The Network
dropdown option From Seed was selected (red arrow) to view the seed network produced by the IDP based on the
arguments in the configuration file used (Supplemental File 7). The selected genes in the edge table are the edges used
in the seed network. (B) The adjusted results after inspecting the seed network for edges that do not contain experimental
evidence. The Network dropdown option From Selection was selected (red arrow). Edges were selected/deselected
from the edge table (green arrow). The seed network, edge list, and node list files were downloaded by clicking their
respective buttons (yellow arrows). The edge table shown is for the last time series data as listed in the configuration file
two_wts_EdgeFinding_config.ixt (Supplemental File 7). It is important when selecting edges for the seed network or edge
list based on LEM results to look at the last time series data listed in the configuration file as this output incorporates all
preceding datafiles in its inference of regulatory relationships between nodes. Please click here to view a larger version of

this figure.
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Figure 6: Example of IDP Network Finding results in the IDV from using the IDP configuration file
two_wts_NetFind_rd1_config.txt (Supplemental File 11). (A) The query Stable Full Cycle was selected (red arrow) to
display the respective data on the y-axis in the scatter plot. Blue dots in the scatter plot represent selected points using the
Box Select function for the scatter plot. The dotted selection box was illustrated to show what the box selection looks like. (B)
The min and max integers for the y-axis and x-axis were manually entered to selected networks within these bounds (green
arrow). After each selection, the Get Edge Prevalence from Selected Networks button (yellow arrows) was clicked and

the Edge Prevalence Table and Selected DSGRN Predicted Networks areas were generated. In the Network Index, up and
down arrows can be clicked to browse the selected networks (blue arrows). Please click here to view a larger version of this

figure.
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Figure 7: Example of IDP Network Finding results in the IDV from using IDP configuration file
two_wts_NetFind_rd2_config.txt (Supplemental File 12). (A-C) The selection of networks was performed by entering
values into the min and max input boxes (red arrows). The Get Edge Prevalence from Selected Networks button was
clicked to generate the Edge Prevalence Table and Selected DSGRN Predicted Networks areas. (D) Edges of interest
were selected in the edge_list table (yellow arrow) and the Submit button (green arrow) was clicked to compute similarity
scores to plot in the scatter plot against the query selected (blue arrow). The Box Select function was used to select a set
of networks (purple arrow) to generate the Edge Prevalence Table and Selected DSGRN Predicted Networks areas. The
Network Index was increased to 2 (orange arrow) to view the second network in the selection. Please click here to view a

larger version of this figure.
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Machine (LEM)

Term Pipeline Step Definition
de Lichtenburg by Node Finding A single quantitative measure of both periodicity and regulation
JTK-CYCLE (DLxJTK) strength used to rank genes. Combines previously published
periodicity metrics de Lichtenberg (DL) and JTK-CYCLE (JTK).
First Cycle Max Node Finding The maximum gene expression during the first cycle of
Expression periodic gene expression. Genes ordered by First Cycle Max
Expression will be ordered based on the time point from the
first cycle at which they reach their maximum gene expression.
The Local Edge Edge Finding A Bayesian network inference method which ranks potential

models of gene interactions to identify the most likely regulator(s)
and modes of regulation (activation or repression) of a

given target gene using time series gene expression data.

Seed Network

Network Finding

An initial guess at a plausible network of global interactions by
selecting the top ranked LEM edges. The seed localizes a region
of network space that is highly oscillatory with a high probability

of showing consistency with the provided time series data.

Dynamic Signatures
Generated by
Regulatory
Networks (DSGRN)

Network Finding

A software package for comprehensively computing the variety

of long-term dynamical behaviors that a network can exhibit.

Edge Prevalence

Network Finding

The percentage of top scoring networks from the network
finding step that include the edge in question. The score

permits a ranking of edges that have a nonzero prevalence.

Table 1: Definition of Inherent Dynamics Pipeline and Inherent Dynamics Visualizer terms.

Supplemental File 1: Time series gene expression data

(Replicate 1) taken from Orlando, 2008713, Please click here

to download this File.

to download this File.
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Supplemental File 3: Annotation file containing all genes
found in Supplemental File 1 and Supplemental File 2.

Please click here to download this File.

Supplemental File 4: Fully parameterized Inherent
Dynamics Pipeline configuration file. Please click here to

download this File.

Supplemental File 5: Gene list file downloaded from the
Node Finding page of the Inherent Dynamics Visualizer.

Please click here to download this File.

Supplemental File 6: Annotation file downloaded from the
Node Finding page of the Inherent Dynamics Visualizer.

Please click here to download this File.

Supplemental File 7: Inherent Dynamics Pipeline
configuration file parameterized for just the Edge Finding

step. Please click here to download this File.

Supplemental File 8: Seed network file downloaded
from the Edge Finding page of the Inherent Dynamics

Visualizer. Please click here to download this File.

Supplemental File 9: Edge list file downloaded from the
Edge Finding page of the Inherent Dynamics Visualizer.

Please click here to download this File.

Supplemental File 10: Node list file downloaded from the
Edge Finding page of the Inherent Dynamics Visualizer.

Please click here to download this File.

Supplemental File 11: Inherent Dynamics Pipeline
configuration file parameterized for just the Network

Finding step. Please click here to download this File.

Supplemental File 12: Updated Inherent Dynamics

Pipeline configuration file (Supplemental File 11)
parameterized for just the Network Finding step. Please

click here to download this File.

Supplemental File 13: Directory containing the results
from the Representative Results section. Please click here

to download this File.

Discussion

The inference of GRNs is an important challenge in
systems biology. The IDP generates model GRNs from gene
expression data using a sequence of tools that utilize the data
in increasingly complex ways. Each step requires decisions
about how to process the data and what elements (genes,
functional interactions) will be passed to the next layer of
the IDP. The impacts of these decisions on IDP results are
not as obvious. To help in this regard, the IDV provides
useful interactive visualizations of the outputs from individual
steps of the GRN inference tools within the IDP. The IDV
streamlines and facilitates the process of evaluating results
from these computational inference methods to speed up
experimentation and inform analysis choices, which in turn
will allow for the accelerated production of high-confidence
network models and hypotheses. The IDV also implements
features that expand on the functionality of the IDP, including
filtering edges by LEM ODE parameter choices, binning of
genes by their expression time, and clustering networks
based on similarity to a motif or network. Importantly, the

IDV allows for manual interventions between each IDP step,
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which allows the user to easily incorporate human knowledge
and prior information from the literature in ways that cannot
be easily automated. A naive run of the IDP will not natively
incorporate this information, so the use of the IDV will increase
the confidence in the results whenever information specific
to the experiment is available. Overall, using the IDV in
conjunction with the IDP allows users to create network
hypotheses for biological processes with greater confidence,

even with little or no knowledge of the true GRN.

There are three critical steps in the IDV. The first is evaluating
IDP Node Finding results in the IDV. IDV's Node Finding page
can produce a new gene list and, if desired, a gene annotation
file. Curating a new gene list is a critical step as it greatly
reduces the potential network space by limiting which genes
are allowed to be modeled as GRN targets and/or regulators.
Additionally, as GRNs are mostly made up of transcription
factors, having gene annotations will greatly help in creating

coherent GRN models.

The next step is evaluating IDP Edge Finding results in the
IDV. Curating a new seed network is a critical step since it
localizes the region of network space that will be sampled in
the Network Finding step. However, knowing where to start
isn't always obvious, so it is recommended to use edges
that have some form of experimental evidence to provide
confidence that one is starting in a region of network space
that contains high confidence edges. The IDV's Edge Finding
page enables easy assembly of seed networks and generates
the associated DSGRN network specification file as well as

node and edge lists.

The last step is evaluating IDP Network Finding results
in the IDV. IDV's Network Finding page allows for easy
exploration of sampled networks and their associated scores

that estimate the capacity of the network to produce the

observed dynamics. While Node and Edge Finding will always
return results (if at least two genes are passed on from Node
Finding), Network Finding can return zero results. Therefore,
knowing whether adjustments in parameters are needed will
be more obvious in Network Finding than in Node and Edge
Finding. Such occurrences of few to no networks found could
be a result of constraints placed on what networks can
be analyzed. These constraints are: 1) whether or not the
networks are always strongly connected, 2) the minimum and
the maximum number of input edges to each node, 3) the
probabilities of adding and removing nodes and edges, and
4) the number of additions and removals of nodes and edges
allowed. If few or no model-admissible networks are found,
as in Figure 2, then referring to the IDP documentation is
recommended for guidance on reparameterization of any or
all steps of the IDP with subsequent evaluation of results in

the IDV.

A current limitation of this approach is that the Node Finding
page is mostly focused on oscillatory dynamics, such as
those seen in the transcriptional programs of the cell-cycle
and circadian clock. In particular, the IDP Node Finding
step is currently configured to search for genes that exhibit
oscillatory dynamics at a specified period. As the IDP expands
to include analyses that can quantify different types of
transcriptional dynamics, so too will the IDV be updated
to support visualization and interrogation of these other
behaviors. The size of networks searched for and analyzed
in the Network Finding step are currently limited to networks
of smaller size, e.g., around 10 genes. This is a necessity
as computations in the DSGRN scale occur combinatorially.
Another limitation is that exploring model parameter space for
a selected network is not possible in the IDV. However, the
DSGRN network specification file for a given network can be

downloaded and the dynamics associated with each model
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parameter can be visualized on the DSGRN Visualization
website (https://sites.math.rutgers.edu/~gameiro/dsgrn_viz/).
Lastly, the IDV has been tested using Linux (Ubuntu) and iOS
(Big Sur) systems. The IDV has been tested on Windows 10
using the Windows Subsystem for Linux (WSL), which allows
Windows 10 users to run Linux and the IDV without the need
for a different computer, a virtual machine, or a dual-boot

setup. IDV does not currently run on native Windows.

Studying GRNs is difficult due to their inherent complexity
and useful inference tools such as the IDP can be difficult to
understand and deploy with confidence. The IDV provides a
method to reduce the complexity of studying GRNs inferred
using the IDP while facilitating the inclusion of additional
information beyond gene expression dynamics. Using the IDV
in conjunction with the IDP as described here will empower
researchers to develop and analyze functional models of well-
studied systems, such as the human cell-cycle. Furthermore,
these tools will generate testable hypotheses for less
understood processes, such as the malaria intra-erythrocytic
development cycle, which is suspected to be controlled by a

GRN?2* put for which a model is yet to be proposed.
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